File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 2/markSceme-HL-paper2html
File size: 606.56 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A wind turbine is designed so that the rotation of the blades generates electricity. The turbine is built on horizontal ground and is made up of a vertical tower and three blades.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is on the base of the tower directly below point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at the top of the tower. The height of the tower, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#8202;</mo><mtext>m</mtext></math>. The blades of the turbine are centred at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and are each of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>&#8202;</mo><mtext>m</mtext></math>. This is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The end of one of the blades of the turbine is represented by point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> on the diagram. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> be the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground, measured in metres, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> varies as the blade rotates.</p>
</div>

<div class="specification">
<p>Find the</p>
</div>

<div class="specification">
<p>The blades of the turbine complete <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> rotations per minute under normal conditions, moving at a constant rate.</p>
</div>

<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> can be modelled by the following function. Time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is measured&nbsp;from the instant when the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> first passes <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math> and is measured in seconds.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo>&#8202;</mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi><mo>&#176;</mo></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, it takes for the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> to make one complete rotation under these conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle, in degrees, that the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> turns through in one second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>5</mn></math>, clearly labelling the coordinates of the maximum and minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is above a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>m</mtext></math>, during each complete rotation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wind speed increases and the blades rotate faster, but still at a constant rate.</p>
<p>Given that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is now higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>110</mn><mo> </mo><mtext>m</mtext></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> second during each complete rotation, find the time for one complete rotation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>maximum <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>130</mn></math> metres             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimum <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>50</mn></math> metres             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>60</mn><mo>÷</mo><mn>12</mn><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>5</mn><mo> </mo><mtext>seconds</mtext></math>             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>÷</mo><mn>5</mn></math>            <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn></math> divided by their time for one revolution.<br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>72</mn><mo>°</mo></math>             <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(amplitude =)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math>         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(period <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>360</mn><mn>72</mn></mfrac><mo>=</mo></math>)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>Maximum point labelled with correct coordinates.         <strong><em>A1</em></strong></p>
<p>At least one minimum point labelled. Coordinates seen for any minimum points must be correct.         <strong><em>A1</em></strong></p>
<p>Correct shape with an attempt at symmetry and “concave up" evident as it approaches the minimum points. Graph must be drawn in the given domain.         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>144</mn><mo>°</mo></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>122</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>122</mn><mo>.</mo><mn>3606</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>100</mn></math> on graph  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi></mrow></mfenced></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>55</mn><mo> </mo><mo>(</mo><mn>3</mn><mo>.</mo><mn>54892</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>45</mn><mo> </mo><mo>(</mo><mn>1</mn><mo>.</mo><mn>45107</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo></math> or equivalent           <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>-coordinate seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>10</mn></math> seconds  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>09784</mn><mo>…</mo></mrow></mfenced></math>           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi>a</mi><mi>t</mi><mo>°</mo></mrow></mfenced><mo>=</mo><mn>110</mn></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi>a</mi><mi>t</mi><mo>°</mo></mrow></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>t</mi><mo>°</mo><mo>=</mo><mn>120</mn><mo>,</mo><mo> </mo><mn>240</mn></math>           <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><mfrac><mn>240</mn><mi>a</mi></mfrac><mo>-</mo><mfrac><mn>120</mn><mi>a</mi></mfrac></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>120</mn></math>           <strong><em>(A1)</em></strong></p>
<p>period <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>360</mn><mn>120</mn></mfrac><mo>=</mo><mn>3</mn></math> seconds           <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><img src=""></p>
<p>attempt at diagram           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>α</mi><mo>=</mo><mfrac><mn>20</mn><mn>40</mn></mfrac></math> (or recognizing special triangle)           <strong><em>(M1)</em></strong></p>
<p>angle made by <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>α</mi><mo>=</mo><mn>120</mn><mo>°</mo></math>           <strong><em>(A1)</em></strong></p>
<p>one third of a revolution in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> second           <strong><em>(M1)</em></strong></p>
<p>hence one revolution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn></math> seconds           <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>considering <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>110</mn></math> on original function           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math>  or  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>10</mn><mn>3</mn></mfrac></math>           <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>10</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>=</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math>           <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>67</mn></math> or equivalent.</p>
<p><br>so period is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>5</mn></mfrac></math> of original period           <strong><em>(R1)</em></strong></p>
<p>so new period is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> seconds           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was perhaps the question with the best responses on the paper. Many candidates got close to full marks on this problem. The issues associated with the question were sometimes due to a lack of understanding of the definitions of amplitude and period. A good number of candidates solved both parts of part (e) suggesting that they had a good understanding of the concept of a function and how it can be applied to mathematical models. Part (f) was also well done by a surprisingly large number of candidates using a variety of approaches. This is evidence that candidates had good problem-solving skills.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-sectional view of a tunnel is shown on the axes below. The line&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math>&nbsp;represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>&nbsp;</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>, relative to an origin&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>, point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>)</mo></math>, and point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>Find the height of the tunnel when</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum height of the tunnel.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integral which can be used to find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of power rule (at least one correct term seen)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>33</mn><mo>&nbsp;</mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>33333</mn><mo>…</mo><mo>,</mo><mo>&nbsp;</mo><mfrac><mn>16</mn><mn>3</mn></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>33333</mn><msup><mo>…</mo><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>33333</mn><msup><mo>…</mo><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for substituting their zero for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>&nbsp;</mo><mfenced><mrow><mn>5</mn><mo>.</mo><mn>333</mn><mo>…</mo></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>59</mn><mo>&nbsp;</mo><mo> </mo><mi mathvariant="normal">m</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>7</mn><mo>.</mo><mn>58519</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M0A0M0A0</strong></em> for an unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>59</mn></math>. <br>Award at most <em><strong>M0A0M1A0</strong></em> if only the last two lines in the solution are seen. <br>Award at most <em><strong>M1A0M1A1</strong></em> if their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>33</mn></math> is not seen.</p>
<p><strong><br></strong><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One correct substitution seen &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>4</mn><mo> </mo><mtext>m</mtext></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>2</mn><mfenced><mrow><mfenced><mrow><mn>2</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>0</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mn>6</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>.</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>2</mn></math> seen. Award <em><strong>M1</strong></em> for correct substitution into the trapezoidal rule (the zero can be omitted in working).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>29</mn><mo>.</mo><mn>6</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong><br></strong><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msubsup><mo>∫</mo><mn>2</mn><mn>8</mn></msubsup><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>d</mo><mi>x</mi></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msubsup><mo>∫</mo><mn>2</mn><mn>8</mn></msubsup><mi>y</mi><mo> </mo><mo>d</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for a correct integral, <em><strong>A</strong><strong>1</strong></em> for correct limits in the correct location. Award at most <em><strong>A0A1</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>d</mtext><mi>x</mi></math> is omitted.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>4</mn><mo>&nbsp;</mo><msup><mtext>m</mtext><mn>2</mn></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><strong><br>Note:</strong> As per the marking instructions, <em><strong>FT</strong></em> from their integral in part (d)(i). Award at most <em><strong>A1FTA0</strong></em> if their area is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>48</mn></math>, this is outside the constraints of the question (a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><mn>8</mn></math> rectangle).</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigating the relationship between chemical reactions and temperature finds&nbsp;the Arrhenius equation on the internet.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math></p>
<p>This equation links a variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> with the temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> are positive&nbsp;constants and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>The Arrhenius equation predicts that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>&#8202;</mo><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> is a straight line.</p>
</div>

<div class="specification">
<p>Write down</p>
</div>

<div class="specification">
<p>The following data are found for a particular reaction, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is measured in Kelvin&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cm</mtext><mn>3</mn></msup><mo>&#8202;</mo><msup><mtext>mol</mtext><mrow><mo>&#8722;</mo><mn>1</mn></mrow></msup><mo>&#8202;</mo><msup><mtext>s</mtext><mrow><mo>&#8722;</mo><mn>1</mn></mrow></msup></math>:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Find an estimate of</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac></math> is always positive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mo>∞</mo></mrow></munder><mi>k</mi><mo>=</mo><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></munder><mi>k</mi><mo>=</mo><mn>0</mn></math>, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)   the gradient of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>;</p>
<p>(ii)  the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use chain rule, including the differentiation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mo>×</mo><mfrac><mi>c</mi><msup><mi>T</mi><mn>2</mn></msup></mfrac><mo>×</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math>          <em><strong>A1</strong></em></p>
<p>this is the product of positive quantities so must be positive          <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong> </em>may be awarded for correct argument from <strong>their</strong> derivative. <em><strong>R1</strong> </em>is not possible if their derivative is not always positive.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">         <em><strong>A1A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for an increasing graph, entirely in first quadrant, becoming concave down for larger values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, <em><strong>A1</strong></em> for tending towards the origin and <em><strong>A1</strong> </em>for asymptote labelled at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>taking <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi></math> of both sides   <strong>OR</strong>   substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mi>T</mi></mfrac></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>A</mi><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>ln</mi><mo> </mo><mi>A</mi></math>           <em><strong>(A1)</strong></em></p>
<p><br>(i)   so gradient is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>c</mi></math>         <em><strong>A1</strong></em></p>
<p><br>(ii)  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>A</mi></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The implied <em><strong>(M1)</strong></em> and <em><strong>(A1)</strong></em> can only be awarded if <strong>both</strong> correct answers are seen. Award zero if only one value is correct <strong>and</strong> no working is seen.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to convert data to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math>           <em><strong>(M1)</strong></em></p>
<p>e.g. at least one correct row in the following table</p>
<p><img src=""></p>
<p>line is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi><mo>=</mo><mo>-</mo><mn>13400</mn><mo>×</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>+</mo><mn>15</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>13383</mn><mo>.</mo><mn>1</mn><mo>…</mo><mo>×</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>+</mo><mn>15</mn><mo>.</mo><mn>0107</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>13400</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>13383</mn><mo>.</mo><mn>1</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to rearrange or solve graphically <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>A</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>0107</mn><mo>…</mo></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn><mo> </mo><mn>300</mn><mo> </mo><mn>000</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>3</mn><mo> </mo><mn>304</mn><mo> </mo><mn>258</mn><mo>…</mo></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> <strong>Note</strong>: Accept an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3269017</mn></math>… from use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mi>sf</mi></math> value.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question caused significant difficulties for many candidates and many did not even attempt the question. Very few candidates were able to differentiate the expression in part (a) resulting in difficulties for part (b). Responses to parts (c) to (e) illustrated a lack of understanding of linearizing a set of data. Those candidates that were able to do part (d) frequently lost a mark as their answer was given in <em>x</em> and <em>y</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the expression&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{cot}}\left( {\frac{\pi }{4} - x} \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>tan</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mfrac>
        <mi>π<!-- π --></mi>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mtext>cot</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π<!-- π --></mi>
        <mn>4</mn>
      </mfrac>
      <mo>−<!-- − --></mo>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The expression&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> can be written as&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left(&nbsp;t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {\text{tan}}\,x">
  <mi>t</mi>
  <mo>=</mo>
  <mrow>
    <mtext>tan</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α<!-- α --></mi>
</math></span>,&nbsp;<em>β</em> be the roots of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = k">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>k</mi>
</math></span>, where 0 &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> &lt; 1.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{5\pi }}{8} \leqslant x \leqslant \frac{\pi }{8}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>5</mn>
      <mi>π</mi>
    </mrow>
    <mn>8</mn>
  </mfrac>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mfrac>
    <mi>π</mi>
    <mn>8</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph, explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is a function on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has no inverse on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is not a function for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{3\pi }}{4} \leqslant x \leqslant \frac{\pi }{4}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>π</mi>
    </mrow>
    <mn>4</mn>
  </mfrac>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mfrac>
    <mi>π</mi>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mn>1</mn>
              <mo>+</mo>
              <mi>t</mi>
            </mrow>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>t</mi>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> for <em>t</em> ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span> and <em>β</em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span> + <em>β</em> &lt; −2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="">     <em><strong>A1A1</strong></em></p>
<p><em><strong>A1</strong> </em>for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.</p>
<p><strong>Note:</strong> Axes intercepts and scales not required.</p>
<p><strong>A1</strong> for correct domain</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for each value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> there is a unique value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept “passes the vertical line test” or equivalent.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no inverse because the function fails the horizontal line test or equivalent      <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> No <strong>FT</strong> if the graph is in degrees (one-to-one).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the expression is not valid at either of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}\,\,\left( {{\text{or}} - \frac{{3\pi }}{4}} \right)">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>4</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>or</mtext>
      </mrow>
      <mo>−</mo>
      <mfrac>
        <mrow>
          <mn>3</mn>
          <mi>π</mi>
        </mrow>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{\text{tan}}\left( {x + \frac{\pi }{4}} \right)}}{{{\text{tan}}\left( {\frac{\pi }{4} - x} \right)}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>tan</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mfrac>
            <mi>π</mi>
            <mn>4</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>tan</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mi>π</mi>
            <mn>4</mn>
          </mfrac>
          <mo>−</mo>
          <mi>x</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}}}{{\frac{{{\text{tan}}\,\frac{\pi }{4} - {\text{tan}}\,x}}{{1 + {\text{tan}}\,\frac{\pi }{4}{\text{tan}}\,x}}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
          <mo>+</mo>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mfrac>
            <mi>π</mi>
            <mn>4</mn>
          </mfrac>
        </mrow>
        <mrow>
          <mn>1</mn>
          <mo>−</mo>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
          <mspace width="thinmathspace"></mspace>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mfrac>
            <mi>π</mi>
            <mn>4</mn>
          </mfrac>
        </mrow>
      </mfrac>
    </mrow>
    <mrow>
      <mfrac>
        <mrow>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mfrac>
            <mi>π</mi>
            <mn>4</mn>
          </mfrac>
          <mo>−</mo>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
        </mrow>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mfrac>
            <mi>π</mi>
            <mn>4</mn>
          </mfrac>
          <mrow>
            <mtext>tan</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
        </mrow>
      </mfrac>
    </mrow>
  </mfrac>
</math></span>      <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}">
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mn>1</mn>
              <mo>+</mo>
              <mi>t</mi>
            </mrow>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>t</mi>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>      <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{tan}}\left( {\frac{\pi }{2} - \frac{\pi }{4} + x} \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>tan</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mfrac>
        <mi>π</mi>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mtext>tan</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>2</mn>
      </mfrac>
      <mo>−</mo>
      <mfrac>
        <mi>π</mi>
        <mn>4</mn>
      </mfrac>
      <mo>+</mo>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>  (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ta}}{{\text{n}}^2}\left( {x + \frac{\pi }{4}} \right)">
  <mo>=</mo>
  <mrow>
    <mtext>ta</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>n</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mfrac>
        <mi>π</mi>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = {\left( {\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}} \right)^2}">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mrow>
                <mtext>tan</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mi>x</mi>
              <mo>+</mo>
              <mrow>
                <mtext>tan</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
            </mrow>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mrow>
                <mtext>tan</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mi>x</mi>
              <mspace width="thinmathspace"></mspace>
              <mrow>
                <mtext>tan</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}">
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mn>1</mn>
              <mo>+</mo>
              <mi>t</mi>
            </mrow>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>t</mi>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>      <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><img src=""></p>
<p>for <em>t</em> ≤ 0, correct concavity with two axes intercepts and with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> = 1      <em><strong>A1</strong></em></p>
<p><em>t</em> intercept at (−1, 0)      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> intercept at (0, 1)       <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span>, <em>β</em> satisfy <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {1 + t} \right)}^2}}}{{{{\left( {1 - t} \right)}^2}}} = k">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>1</mn>
                <mo>+</mo>
                <mi>t</mi>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>1</mn>
                <mo>−</mo>
                <mi>t</mi>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mi>k</mi>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + {t^2} + 2t = k\left( {1 + {t^2} - 2t} \right)">
  <mn>1</mn>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>t</mi>
  <mo>=</mo>
  <mi>k</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1</mn>
      <mo>+</mo>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>2</mn>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k - 1} \right){t^2} - 2\left( {k + 1} \right)t + \left( {k - 1} \right) = 0">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>t</mi>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <em><strong>A1</strong></em></p>
<p>attempt at using quadratic formula      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span>, <em>β </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{k + 1 \pm 2\sqrt k }}{{k - 1}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>k</mi>
      <mo>+</mo>
      <mn>1</mn>
      <mo>±</mo>
      <mn>2</mn>
      <msqrt>
        <mi>k</mi>
      </msqrt>
    </mrow>
    <mrow>
      <mi>k</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span> or equivalent     <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span>, <em>β</em> satisfy <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 + t}}{{1 - t}} = \left(  \pm  \right)\sqrt k ">
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo>+</mo>
      <mi>t</mi>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mi>t</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mo>±</mo>
    <mo>)</mo>
  </mrow>
  <msqrt>
    <mi>k</mi>
  </msqrt>
</math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t + \sqrt k t = \sqrt k  - 1">
  <mi>t</mi>
  <mo>+</mo>
  <msqrt>
    <mi>k</mi>
  </msqrt>
  <mi>t</mi>
  <mo>=</mo>
  <msqrt>
    <mi>k</mi>
  </msqrt>
  <mo>−</mo>
  <mn>1</mn>
</math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{\sqrt k  - 1}}{{\sqrt k  + 1}}">
  <mi>t</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span> (or equivalent)      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t - \sqrt k t =  - \left( {\sqrt k  + 1} \right)">
  <mi>t</mi>
  <mo>−</mo>
  <msqrt>
    <mi>k</mi>
  </msqrt>
  <mi>t</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{\sqrt k  + 1}}{{\sqrt k  - 1}}">
  <mi>t</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span> (or equivalent)       <em><strong>A1</strong></em></p>
<p>so for <em>eg</em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha  = \frac{{\sqrt k  - 1}}{{\sqrt k  + 1}}">
  <mi>α</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span>, <em>β</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt k  + 1}}{{\sqrt k  - 1}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <msqrt>
        <mi>k</mi>
      </msqrt>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span> + <em>β </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\frac{{\left( {k + 1} \right)}}{{\left( {k - 1} \right)}}\,\left( { =  - 2\frac{{\left( {1 + k} \right)}}{{\left( {1 - k} \right)}}} \right)">
  <mo>=</mo>
  <mn>2</mn>
  <mfrac>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>k</mi>
          <mo>+</mo>
          <mn>1</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>k</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mo>−</mo>
      <mn>2</mn>
      <mfrac>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mn>1</mn>
              <mo>+</mo>
              <mi>k</mi>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mn>1</mn>
              <mo>−</mo>
              <mi>k</mi>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p>since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + k &gt; 1 - k">
  <mn>1</mn>
  <mo>+</mo>
  <mi>k</mi>
  <mo>&gt;</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mi>k</mi>
</math></span>     <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span> + <em>β</em> &lt; −2     <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Accept a valid graphical reasoning.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Charlotte decides to model the shape of a cupcake to calculate its volume.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>From rotating a photograph of her cupcake she estimates that its cross-section passes&nbsp;through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>4</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>, where all units are in&nbsp;centimetres. The cross-section is symmetrical in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, as shown below:</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She models the section from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo></math> as a straight line.</p>
</div>

<div class="specification">
<p>Charlotte models the section of the cupcake that passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>4</mn><mo>)</mo><mo>,</mo><mo>&nbsp;</mo><mo>(</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> with a quadratic curve.</p>
</div>

<div class="specification">
<p>Charlotte thinks that a quadratic with a maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>6</mn><mo>)</mo></math> and that passes through&nbsp;the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math> would be a better fit.</p>
</div>

<div class="specification">
<p>Believing this to be a better model for her cupcake, Charlotte finds the volume of revolution&nbsp;about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to estimate the volume of the cupcake.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line passing through these two points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression quadratic curve for these&nbsp;four points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the gradient of this curve when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>, explain why it may not be&nbsp;a good model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the new model.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for her estimate of the volume as a sum of two integrals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of Charlotte’s estimate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>5</mn><mn>8</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>625</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>625</mn><mi>x</mi></math>, <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn></math>.<br>Award a maximum of <em><strong>A0A1</strong></em> if not part of an equation.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>975</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>.</mo><mn>56</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>.</mo><mn>7</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>974630</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>9</mn><mo>.</mo><mn>55919</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>.</mo><mn>6569</mn><mo>…</mo></mrow></mfenced></math></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient of curve is positive at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><em><br></em><strong>Note:</strong> Accept a sensible rationale that refers to the gradient.</p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p>differentiating or using&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></p>
<p>substituting in the coordinates<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mi>a</mi><mo>+</mo><mn>7</mn><mo>.</mo><mn>5</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)<br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>4</mn><mn>2</mn></msup><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>solve to get<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>192</mn><mn>49</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>90</mn><mn>49</mn></mfrac></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>490</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mo>.</mo><mn>92</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>84</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Use of quadratic regression with points using the symmetry of the graph is a valid method.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mn>7</mn><mo>.</mo><mn>5</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; <strong>OR&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>490</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mfenced><mrow><mfrac><mn>5</mn><mn>8</mn></mfrac><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo>+</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>7</mn><mo>.</mo><mn>5</mn></mrow></msubsup><msup><mfenced><mrow><mo>-</mo><mfrac><mn>24</mn><mn>49</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)(M1)&nbsp;(M1)A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)(M1)(M1)A0</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> is omitted but response is otherwise correct. Award <em><strong>(M1)</strong></em> for an integral that indicates volume,<em><strong> (M1)</strong></em> for their part (a) within their volume integral, <em><strong>(M1)</strong></em> for their part (b)(i) within their volume integral, <em><strong>A1</strong></em> for their correct two integrals with all correct limits.</p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>501</mn><mo>&nbsp;</mo><msup><mtext>cm</mtext><mn>3</mn></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>501</mn><mo>.</mo><mn>189</mn><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An environmental scientist is asked by a river authority to model the effect of a leak from a power plant on the mercury levels in a local river. The variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> measures the concentration of mercury in micrograms per litre.</p>
<p>The situation is modelled using the second order differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
<p>where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math>&nbsp;is the time measured in days since the leak started. It is known that when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>If the mercury levels are greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> micrograms per litre, fishing in the river is considered unsafe and is stopped.</p>
</div>

<div class="specification">
<p>The river authority decides to stop people from fishing in the river for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> longer than the time found from the model.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the system of coupled first order equations:</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math></p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi></math></p>
<p style="text-align:left;">can be written as the given second order differential equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of the system of coupled first order equations given in part (a).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact solution of the second order differential equation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, labelling the maximum point of the graph with its coordinates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to calculate the total amount of time when fishing should be stopped.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one reason, with reference to the context, to support this decision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>differentiating first equation.         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>substituting in for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>0</mn></math>         <strong><em>AG</em></strong></p>
<p><br><strong>Note:</strong> The <strong>AG</strong> line must be seen to award the final <em><strong>M1</strong></em> mark.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the relevant matrix is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>           <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn><mo> </mo><mo> </mo></mtd><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> is also possible.</p>
<p><br>(this has characteristic equation) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>λ</mi><mfenced><mrow><mo>-</mo><mn>3</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn></math>         <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER </strong></p>
<p>the general solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math>             <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Must have constants, but condone sign error for the <em><strong>M1</strong></em>.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math>             <em><strong>M1A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempt to find eigenvectors           <em><strong>(M1)</strong></em></p>
<p>respective eigenvectors are <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> (or any multiple)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>           <em><strong>(M1)A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>the initial conditions become:</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>A</mi><mo>+</mo><mi>B</mi></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>=</mo><mo>-</mo><mi>A</mi><mo>-</mo><mn>2</mn><mi>B</mi></math>             <em><strong>M1</strong></em></p>
<p>this is solved by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mo>-</mo><mn>1</mn></math></p>
<p>so the solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></math>            <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src="">            <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct shape (needs to go through origin, have asymptote at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> and a single maximum; condone <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&lt;</mo><mn>0</mn></math>). Award <em><strong>A1</strong></em> for correct coordinates of maximum.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>intersecting graph with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></math>         <em><strong>(M1)</strong></em></p>
<p style="padding-left:60px;"><img src=""></p>
<p>so the time fishing is stopped between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>1830</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>11957</mn><mo>…</mo></math>           <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>06</mn><mo> </mo><mfenced><mrow><mn>343</mn><mo>…</mo></mrow></mfenced></math>  days           <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any reasonable answer. For example:</em></p>
<p>There are greater downsides to allowing fishing when the levels may be dangerous than preventing fishing when the levels are safe.</p>
<p>The concentration of mercury may not be uniform across the river due to natural variation / randomness.</p>
<p>The situation at the power plant might get worse.</p>
<p>Mercury levels are low in water but still may be high in fish.           <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for a reasonable answer that refers to this specific context (and not a generic response that could apply to <em>any</em> model).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates did not get this far, but the attempts at the question that were seen were generally good. The greater difficulties were seen in parts (e) and (f), but this could be a problem with time running out.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>100</mn>
      <mi>π<!-- π --></mi>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
  <mi>t</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span>&nbsp;where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in seconds.</p>
</div>

<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
  <mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
  <mi>i</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>100</mn>
      <mi>π<!-- π --></mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>t</mi>
          <mo>+</mo>
          <mn>0.003</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>×<!-- × --></mo>
  <mi>i</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The average power&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
  <mi>t</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
  <mi>t</mi>
  <mo>=</mo>
  <mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>T</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mi>T</mi>
  </mfrac>
  <msubsup>
    <mo>∫<!-- ∫ --></mo>
    <mn>0</mn>
    <mi>T</mi>
  </msubsup>
  <mrow>
    <mi>p</mi>
    <mrow>
      <mo>(</mo>
      <mi>t</mi>
      <mo>)</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>t</mi>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
  <mi>T</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>v</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>i</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval&nbsp;0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 0.02 for which&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;≥ 3.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
</math></span>(0.007).</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;explain why&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>T</mi>
    <mo>)</mo>
  </mrow>
</math></span> &gt; 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span> &gt; 0.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> can be written as&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>t</mi>
          <mo>−</mo>
          <mi>c</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>d</mi>
</math></span>&nbsp;where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span> &gt; 0,&nbsp;use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span>.</p>
<p>&nbsp;</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3,&nbsp;−3&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><em><strong>A1</strong></em>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis invariant), scale factor&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}">
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span>&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>translation of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 0.003} \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>0.003</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; (shift to the left by 0.003) &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Can be done in either order.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape over correct domain with correct endpoints&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><br>first maximum at (0.0035, 4.76)&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><br>first minimum at (0.0085, −1.24)&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;≥ 3 between&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 0.0016762 and 0.0053238 and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 0.011676 and 0.015324&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for either interval.</p>
<p>= 0.00730&nbsp;&nbsp;&nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}} = \frac{1}{{0.007}}\int_0^{0.007} {6\,{\text{sin}}\left( {100\pi t} \right)} {\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right){\text{d}}t">
  <mrow>
    <msub>
      <mi>p</mi>
      <mrow>
        <mi>a</mi>
        <mi>v</mi>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>0.007</mn>
    </mrow>
  </mfrac>
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mrow>
      <mn>0.007</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mn>6</mn>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <mtext>sin</mtext>
    </mrow>
    <mrow>
      <mo>(</mo>
      <mrow>
        <mn>100</mn>
        <mi>π</mi>
        <mi>t</mi>
      </mrow>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>100</mn>
      <mi>π</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>t</mi>
          <mo>+</mo>
          <mn>0.003</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mi>t</mi>
</math></span>&nbsp;&nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>=&nbsp;2.87 &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in each cycle the area under the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> axis is smaller than area above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> axis&nbsp; &nbsp; &nbsp; <em><strong>R1</strong></em></p>
<p>the curve begins with the positive part of the cycle&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{4.76 - \left( { - 1.24} \right)}}{2}">
  <mi>a</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4.76</mn>
      <mo>−</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>1.24</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3.00">
  <mi>a</mi>
  <mo>=</mo>
  <mn>3.00</mn>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = \frac{{4.76&nbsp;+ \left( { - 1.24} \right)}}{2}">
  <mi>d</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4.76</mn>
      <mo>+</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>1.24</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d&nbsp;= 1.76">
  <mi>d</mi>
  <mo>=</mo>
  <mn>1.76</mn>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{0.01}}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mn>0.01</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 628\left( { = 200\pi } \right)">
  <mi>b</mi>
  <mo>=</mo>
  <mn>628</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mn>200</mn>
      <mi>π</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.0035 - \frac{{0.01}}{4}">
  <mi>c</mi>
  <mo>=</mo>
  <mn>0.0035</mn>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>0.01</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.00100">
  <mi>c</mi>
  <mo>=</mo>
  <mn>0.00100</mn>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mi>D</mi>
</math></span></p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mo>]</mo>
    <mrow>
      <mn>1</mn>
      <mo>,</mo>
      <mrow>
        <mtext>&nbsp;</mtext>
      </mrow>
      <mi mathvariant="normal">∞<!-- ∞ --></mi>
    </mrow>
    <mo>[</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <msup>
    <mo stretchy="false">)</mo>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1 &gt; 0">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>1</mn>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt; - 1">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &gt; 1">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_15.40.09.png" alt="M17/5/MATHL/HP2/ENG/TZ1/12.b/M"></p>
<p>shape     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts     <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is symmetrical about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis     <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f( - x) = f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>R1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is not one-to-one function     <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>horizontal line cuts twice     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept any equivalent correct statement.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1 + \ln \left( {\sqrt {{y^2} - 1} } \right)">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>y</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−</mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = {y^2} - 1">
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
        <mo>+</mo>
        <mn>2</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>y</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>1</mn>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}(x) = \sqrt {{{\text{e}}^{2x + 2}} + 1} ,{\text{ }}x \in \mathbb{R}">
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mtext>e</mtext>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mi>x</mi>
          <mo>+</mo>
          <mn>2</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>1</mn>
  </msqrt>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>     <strong><em>A1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{1}{{\sqrt {{x^2} - 1} }} \times \frac{{2x}}{{2\sqrt {{x^2} - 1} }}">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−</mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <msqrt>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>−</mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}}">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}} = 0 \Rightarrow x = 0">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <strong><em>M1</em></strong></p>
<p>which is not in the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> (hence no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>)     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = \frac{{{{\text{e}}^{2x + 2}}}}{{\sqrt {{{\text{e}}^{2x + 2}} + 1} }}">
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <msup>
    <mo stretchy="false">)</mo>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mrow>
            <mn>2</mn>
            <mi>x</mi>
            <mo>+</mo>
            <mn>2</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <msqrt>
        <mrow>
          <msup>
            <mrow>
              <mtext>e</mtext>
            </mrow>
            <mrow>
              <mn>2</mn>
              <mi>x</mi>
              <mo>+</mo>
              <mn>2</mn>
            </mrow>
          </msup>
        </mrow>
        <mo>+</mo>
        <mn>1</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>     <strong><em>M1</em></strong></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} &gt; 0 \Rightarrow ({g^{ - 1}})'(x) &gt; 0">
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
        <mo>+</mo>
        <mn>2</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <msup>
    <mo stretchy="false">)</mo>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span> so no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <msup>
    <mo stretchy="false">)</mo>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept: equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = 0">
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
        <mo>+</mo>
        <mn>2</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span> has no solutions.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>At an archery tournament, a particular competition sees a ball launched into the air while an&nbsp;archer attempts to hit it with an arrow.</p>
<p>The path of the ball is modelled by the equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><msub><mi>u</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>u</mi><mi>y</mi></msub><mo>-</mo><mn>5</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the horizontal displacement from the archer and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the vertical displacement&nbsp;from the ground, both measured in metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, in seconds, since the ball&nbsp;was launched.</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub></math> is the horizontal component of the initial velocity</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub></math> is the vertical component of the initial velocity.</li>
</ul>
<p>In this question both the ball and the arrow are modelled as single points. The ball is launched&nbsp;with an initial velocity such that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub><mo>=</mo><mn>8</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub><mo>=</mo><mn>10</mn></math>.</p>
</div>

<div class="specification">
<p>An archer releases an arrow from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mn>2</mn><mo>)</mo></math>. The arrow is modelled as travelling in a&nbsp;straight line, in the same plane as the ball, with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>&#8202;</mo><msup><mtext>m&#8202;s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and an angle of elevation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>&#176;</mo></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial speed of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation of the ball as it is launched.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum height reached by the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the ground is horizontal and the ball is not hit by the arrow, find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinate of the point where the ball lands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the path of the ball, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the two positions where the path of the arrow intersects the path of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time when the arrow should be released to hit the ball before the ball reaches its maximum height.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mn>10</mn><mn>2</mn></msup><mo>+</mo><msup><mn>8</mn><mn>2</mn></msup></msqrt></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>8</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo>.</mo><mn>8062</mn><mo>…</mo><mo>,</mo><mo> </mo><msqrt><mn>164</mn></msqrt></mrow></mfenced><mo> </mo><mfenced><mrow><mtext>m</mtext><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mn>10</mn><mn>8</mn></mfrac></mfenced></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>896</mn></math>   <strong>OR   </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>3</mn></math>   (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>896055</mn><mo>…</mo></math>   <strong>OR   </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>3401</mn><mo>…</mo><mo>°</mo></math>)           <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>897</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>51</mn><mo>.</mo><mn>4</mn></math> from use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arcsin</mtext><mfenced><mfrac><mn>10</mn><mrow><mn>12</mn><mo>.</mo><mn>8</mn></mrow></mfrac></mfenced></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>t</mi><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced></math>           <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>might be implied by a correct graph or use of the correct equation.</p>
<p> </p>
<p><strong>METHOD 1 – graphical Method</strong></p>
<p>sketch graph           <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong> </em>might be implied by correct graph or correct maximum (eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>).</p>
<p><br>max occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>           <em><strong>A1</strong></em><br><br></p>
<p><strong>METHOD 2 – calculus</strong><br><br>differentiating and equating to zero           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>10</mn><mo>-</mo><mn>10</mn><mi>t</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mo>=</mo><mn>1</mn><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3 – symmetry</strong></p>
<p>line of symmetry is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mo>=</mo><mn>1</mn><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>  (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>)          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><mo>+</mo><mn>8</mn><mo>×</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mo> </mo><mn>21</mn><mo> </mo><mtext>m</mtext></math>           <em><strong>A1</strong></em><br><br></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong> </em>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> is also seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></math>            <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></mfenced><mfenced><mrow><mn>10</mn><mo>-</mo><mn>5</mn><mo>×</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p><br><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>k</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>21</mn></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>13</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>5</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>5</mn><mrow><mfenced><mrow><mn>13</mn><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mn>13</mn><mo>-</mo><mn>21</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac></math>            <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>21</mn></mrow></mfenced></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>25</mn><mi>a</mi><mo>+</mo><mn>5</mn><mi>b</mi><mo>+</mo><mi>c</mi></math><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>169</mn><mi>a</mi><mo>+</mo><mn>13</mn><mi>b</mi><mo>+</mo><mi>c</mi></math><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>441</mn><mi>a</mi><mo>+</mo><mn>21</mn><mi>b</mi><mo>+</mo><mi>c</mi></math>            <em><strong>M1A1</strong></em></p>
<p>solving simultaneously, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math>           <em><strong>A1</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math>)</p>
<p> </p>
<p><strong>METHOD 4</strong><br><br>use quadratic regression on <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>13</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>21</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>            <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>64</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>130</mn><mn>64</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>525</mn><mn>64</mn></mfrac></math>           <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Question asks for expression; condone omission of "<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo></math>".</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>trajectory of arrow is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>10</mn><mo>+</mo><mn>2</mn></math>             <em><strong>(A1)</strong></em></p>
<p>intersecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mn>10</mn><mo>+</mo><mn>2</mn></math> and their answer to (d)             <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>8</mn><mo>.</mo><mn>66</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>53</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mfenced><mrow><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>52647</mn><mo>…</mo></mrow></mfenced></mfenced></math>           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>15</mn><mo>.</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>66</mn></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mfenced><mrow><mn>15</mn><mo>.</mo><mn>0859</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>66006</mn><mo>…</mo></mrow></mfenced></mfenced></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mtext>target</mtext></msub><mo>=</mo><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><msub><mi>t</mi><mtext>target</mtext></msub><mo>=</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>65705</mn><mo>…</mo><mo>-</mo><mn>5</mn></mrow><mn>8</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>457132</mn><mo>…</mo><mo> </mo><mtext>s</mtext></math>             <em><strong>(A1)</strong></em></p>
<p>attempt to find the distance from point of release to intersection             <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>8</mn><mo>.</mo><mn>65705</mn><msup><mo>…</mo><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>3</mn><mo>.</mo><mn>52647</mn><mo>…</mo><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>8</mn><mo>.</mo><mn>79060</mn><mo>…</mo><mo> </mo><mtext>m</mtext></mrow></mfenced></math></p>
<p>time for arrow to get there is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>79060</mn><mo>…</mo></mrow><mn>60</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>146510</mn><mo>…</mo><mtext>s</mtext></math>             <em><strong>(A1)</strong></em></p>
<p>so the arrow should be released when</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>311</mn><mo> </mo><mfenced><mtext>s</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>310622</mn><mo>…</mo><mo> </mo><mfenced><mtext>s</mtext></mfenced></mrow></mfenced></math>           <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was found to be the most difficult on the paper. There were a good number of good solutions to parts (a) and part (b), frequently with answers just written down with no working. Part (c) caused some difficulties with confusing variables. The most significant difficulties started with part (d) and became greater to the end of the question. Few candidates were able to work through the final two parts.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{si}}{{\text{n}}^3}\,x + {\text{ln}}\,x">
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mtext>si</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>n</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1 + {\text{cos}}\,x">
  <mi>y</mi>
  <mo>=</mo>
  <mn>1</mn>
  <mo>+</mo>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span>&nbsp;on the following axes&nbsp;for 0 &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ 9.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence solve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^3}\,x + {\text{ln}}\,x - {\text{cos}}\,x - 1 < 0">
  <mrow>
    <mtext>si</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>n</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>−</mo>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>−</mo>
  <mn>1</mn>
  <mo>&lt;</mo>
  <mn>0</mn>
</math></span> in the range&nbsp;0 &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ 9.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="">&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct curve, showing all local max &amp; mins.</p>
<p><strong>Note:</strong> Award<em><strong> A0A0</strong></em> for the curves drawn in degrees.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;= 1.35, 4.35, 6.64&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt to find points of intersections between two curves.</p>
<p>0&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &lt; 1.35&nbsp; &nbsp; &nbsp;<em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;&lt; 1.35.</p>
<p>4.35&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &lt;&nbsp;6.64&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct endpoints, <em><strong>A1</strong></em> for correct inequalities.</p>
<p><strong>Note:</strong> Award <em><strong>M1FTA1FTA0FTA0FT</strong></em> for 0 &lt;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;&lt; 7.31.</p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;&lt;&nbsp;7.31.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi ">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>x</mi>
      </msqrt>
    </mrow>
    <mrow>
      <mi>sin</mi>
      <mo>⁡<!-- ⁡ --></mo>
      <mi>x</mi>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mi>π<!-- π --></mi>
</math></span>.</p>
</div>

<div class="specification">
<p>Consider the region bounded by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>6</mn>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>3</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate of the minimum point on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> satisfies the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x">
  <mi>tan</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> where the normal to the graph is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =&nbsp; - x">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
  <mn>2</mn>
  <mi>π</mi>
</math></span> radians about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>x</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
          <mrow>
            <msup>
              <mi>x</mi>
              <mrow>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>−</mo>
      <msqrt>
        <mi>x</mi>
      </msqrt>
      <mi>cos</mi>
      <mo>⁡</mo>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mi>sin</mi>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>2</mn>
          <msqrt>
            <mi>x</mi>
          </msqrt>
          <mi>sin</mi>
          <mo>⁡</mo>
          <mi>x</mi>
        </mrow>
      </mfrac>
      <mo>−</mo>
      <mfrac>
        <mrow>
          <msqrt>
            <mi>x</mi>
          </msqrt>
          <mi>cos</mi>
          <mo>⁡</mo>
          <mi>x</mi>
        </mrow>
        <mrow>
          <mrow>
            <msup>
              <mrow>
                <mi>sin</mi>
              </mrow>
              <mn>2</mn>
            </msup>
          </mrow>
          <mi>x</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{2\sqrt x \sin x}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>2</mn>
      <msqrt>
        <mi>x</mi>
      </msqrt>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>x</mi>
    </mrow>
  </mfrac>
</math></span> or equivalent and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mi>x</mi>
      </msqrt>
      <mi>cos</mi>
      <mo>⁡</mo>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mi>sin</mi>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>x</mi>
    </mrow>
  </mfrac>
</math></span> or equivalent.</p>
<p>&nbsp;</p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 0">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span> &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} - \sqrt x \cos x = 0">
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <msqrt>
        <mi>x</mi>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <msqrt>
    <mi>x</mi>
  </msqrt>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x">
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <msqrt>
        <mi>x</mi>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <msqrt>
    <mi>x</mi>
  </msqrt>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
</math></span> or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x">
  <mi>tan</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span> &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.17">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1.17</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x \leqslant 1.17">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>1.17</mn>
</math></span> &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
</math></span> and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \leqslant 1.17">
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>1.17</mn>
</math></span>. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < 1.17">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>1.17</mn>
</math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.19.25.png" alt="N17/5/MATHL/HP2/ENG/TZ0/10.b/M"></p>
<p>concave up curve over correct domain with one minimum point above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> asymptotically &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi ">
  <mi>x</mi>
  <mo>=</mo>
  <mi>π</mi>
</math></span> asymptotically &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p>Note: &nbsp; &nbsp; For the final <strong><em>A1 </em></strong>an asymptote must be seen, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> must be seen on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis or in an equation.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mi>sin</mi>
          <mo>⁡</mo>
          <mi>x</mi>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mrow>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mo>−</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                  </mrow>
                </msup>
              </mrow>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>−</mo>
          <msqrt>
            <mi>x</mi>
          </msqrt>
          <mi>cos</mi>
          <mo>⁡</mo>
          <mi>x</mi>
        </mrow>
        <mrow>
          <mrow>
            <msup>
              <mrow>
                <mi>sin</mi>
              </mrow>
              <mn>2</mn>
            </msup>
          </mrow>
          <mi>x</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
</math></span> &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>attempt to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.96">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1.96</mn>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(1.96 \ldots )">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1.96</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.51">
  <mo>=</mo>
  <mn>1.51</mn>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} ">
  <mi>V</mi>
  <mo>=</mo>
  <mi>π</mi>
  <msubsup>
    <mo>∫</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
    </mrow>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>3</mn>
      </mfrac>
    </mrow>
  </msubsup>
  <mrow>
    <mfrac>
      <mrow>
        <mi>x</mi>
        <mrow>
          <mtext>d</mtext>
        </mrow>
        <mi>x</mi>
      </mrow>
      <mrow>
        <mrow>
          <msup>
            <mrow>
              <mi>sin</mi>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mi>x</mi>
      </mrow>
    </mfrac>
  </mrow>
</math></span> &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; <strong><em>M1 </em></strong>is for an integral of the correct squared function (with or without limits and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>).</p>
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2.68{\text{ }}( = 0.852\pi )">
  <mo>=</mo>
  <mn>2.68</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>0.852</mn>
  <mi>π</mi>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Beth goes for a run. She uses a fitness app to record her distance, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
  <mi>s</mi>
</math></span> km, and time, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> minutes. A graph of her distance against time is shown.</p>
<p><img src=""></p>
<p>Beth runs at a constant speed of 2.3 ms<sup>–1</sup>&nbsp;for the first 8 minutes.</p>
</div>

<div class="specification">
<p>Between 8 and 20 minutes, her distance can be modeled by a cubic function,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = a{t^3} + b{t^2} + ct + d">
  <mi>s</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
  <mi>t</mi>
  <mo>+</mo>
  <mi>d</mi>
</math></span>.&nbsp;She reads the following data from her app.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Hence find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate her distance after 8 minutes. Give your answer in km, correct to 3 decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the distance she runs in 20 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>her maximum speed, in ms<sup>–1</sup>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.3 \times 8 \times 60}}{{1000}} = 1.104">
  <mfrac>
    <mrow>
      <mn>2.3</mn>
      <mo>×</mo>
      <mn>8</mn>
      <mo>×</mo>
      <mn>60</mn>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1.104</mn>
</math></span>    <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>either using a cubic regression or solving a system of 4 equations         <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 0.00364{\text{,}}\,\,b = 0.150{\text{,}}\,\,c =  - 1.67{\text{,}}\,\,d = 6.72">
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.00364</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>=</mo>
  <mn>0.150</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>c</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.67</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>d</mi>
  <mo>=</mo>
  <mn>6.72</mn>
</math></span>         <em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( {20} \right) = 4.21">
  <mi>s</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>20</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4.21</mn>
</math></span> km  (Note: Condone <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( {20} \right) = 4.2">
  <mi>s</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>20</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4.2</mn>
</math></span> km obtained from using rounded values.)      <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>EITHER finding maximum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ds}}{{dt}}">
  <mfrac>
    <mrow>
      <mi>d</mi>
      <mi>s</mi>
    </mrow>
    <mrow>
      <mi>d</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
</math></span> OR solving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{d^2}s}}{{d{t^2}}} = 0">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>d</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>s</mi>
    </mrow>
    <mrow>
      <mi>d</mi>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <em><strong>M1</strong></em></p>
<p>maximum speed = 0.390… km per minute      <em><strong>A1</strong></em></p>
<p>maximum speed = 6.51 ms<sup>–1</sup>     <em><strong>M1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 3x\arccos (x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mi>arccos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x \leqslant 1">
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mn>3</mn>
      <mi>x</mi>
      <mi>arccos</mi>
      <mo>⁡</mo>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>&gt;</mo>
  <mn>1</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-01_om_06.12.12.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.a/M"></p>
<p>correct shape passing through the origin and correct domain &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Endpoint coordinates are not required. The domain can be indicated by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1">
  <mo>−</mo>
  <mn>1</mn>
</math></span> and 1 marked on the axis.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0.652,{\text{ }}1.68)">
  <mo stretchy="false">(</mo>
  <mn>0.652</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>1.68</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>two correct intercepts (coordinates not required) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>A graph passing through the origin is sufficient for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[-9.42,{\text{ }}1.68]{\text{ }}({\text{or }} - 3\pi ,{\text{ }}1.68])">
  <mo stretchy="false">[</mo>
  <mo>−</mo>
  <mn>9.42</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>1.68</mn>
  <mo stretchy="false">]</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>or&nbsp;</mtext>
  </mrow>
  <mo>−</mo>
  <mn>3</mn>
  <mi>π</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>1.68</mn>
  <mo stretchy="false">]</mo>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>A1A0 </em></strong>for open or semi-open intervals with correct endpoints. Award <strong><em>A1A0 </em></strong>for closed intervals with one correct endpoint.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to solve either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mn>3</mn>
      <mi>x</mi>
      <mi>arccos</mi>
      <mo>⁡</mo>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>&gt;</mo>
  <mn>1</mn>
</math></span> (or equivalent) or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| = 1">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mn>3</mn>
      <mi>x</mi>
      <mi>arccos</mi>
      <mo>⁡</mo>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
</math></span> (or equivalent) (<em>eg</em>. graphically) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><img src="images/Schermafbeelding_2017-03-01_om_06.22.47.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.c/M"></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = &nbsp;- 0.189,{\text{ }}0.254,{\text{ }}0.937">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.189</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0.254</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0.937</mn>
</math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x < &nbsp;- 0.189{\text{ or }}0.254 < x < 0.937">
  <mo>−</mo>
  <mn>1</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>0.189</mn>
  <mrow>
    <mtext>&nbsp;or&nbsp;</mtext>
  </mrow>
  <mn>0.254</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>0.937</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>A0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < &nbsp;- 0.189">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>0.189</mn>
</math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Jorge is carefully observing the rise in sales of a new app he has created.</p>
<p>The number of sales in the first four months is shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jorge believes that the increase is exponential and proposes to model the number of sales&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> in month <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with the equation</p>
<p style="text-align: left; padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup><mo>,</mo><mo>&nbsp;</mo><mi>A</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math></p>
</div>

<div class="specification">
<p>Jorge plans to adapt Euler’s method to find an approximate value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p>With a step length of one month the solution to the differential equation can be approximated using Euler’s method where</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></math></p>
</div>

<div class="specification">
<p>Jorge decides to take the mean of these values as the approximation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> for his model. He&nbsp;also decides the graph of the model should pass through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>52</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>The sum of the square residuals for these points for the least squares regression model is&nbsp;approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>555</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jorge’s model satisfies the differential equation</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>N</mi></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find three approximations for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation for Jorge’s model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the sum of the square residuals for Jorge’s model using the values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment how well Jorge’s model fits the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give two possible sources of error in the construction of his model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup></math>        <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>Note: M1</strong> is for an attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>r</mi><mi>N</mi></math>        <strong>AG</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept solution of the differential equation by separating variables</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≈</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>⇒</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>≈</mo><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></math>        <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>≈</mo><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></math>        <strong>M1A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mo>≈</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math>        <strong>AG</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not penalize the use of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math> sign.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Correct method         <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>52</mn><mo>-</mo><mn>40</mn></mrow><mn>40</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>70</mn><mo>-</mo><mn>52</mn></mrow><mn>52</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>346</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>≈</mo><mfrac><mrow><mn>98</mn><mo>-</mo><mn>70</mn></mrow><mn>70</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math>        <strong>A2</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for a single error <strong>A0</strong> for two or more errors.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>349</mn><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>34871</mn><mo>…</mo></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>68</mn><mn>195</mn></mfrac></math>        <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>34871</mn><mo>…</mo><mo>×</mo><mn>2</mn></mrow></msup></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>8887</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>9</mn><msup><mtext>e</mtext><mrow><mn>0</mn><mo>.</mo><mn>349</mn><mi>t</mi></mrow></msup></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>36</mn><mo>.</mo><mn>6904</mn><mo>…</mo><mo>-</mo><mn>40</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>+</mo><msup><mfenced><mrow><mn>73</mn><mo>.</mo><mn>6951</mn><mo>…</mo><mo>-</mo><mn>70</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>104</mn><mo>.</mo><mn>4435</mn><mo>…</mo><mo>-</mo><mn>98</mn></mrow></mfenced><mn>2</mn></msup></math>        <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>66</mn><mo>.</mo><mn>1</mn><mo> </mo><mfenced><mrow><mn>66</mn><mo>.</mo><mn>126</mn><mo>…</mo></mrow></mfenced></math>        <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The sum of the square residuals is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> times as large as the minimum possible, so Jorge’s model is unlikely to fit the data exactly     <strong>R1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For example</p>
<p>Selecting a single point for the curve to pass through</p>
<p>Approximating the gradient of the curve by the gradient of a chord       <strong>R1R1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>.</p>
</div>

<div class="specification">
<p>The shape of a piece of metal can be modelled by the region bounded by the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>,&nbsp;the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>, as shown in the following diagram. The units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes are measured in metres.</p>
<p style="text-align: center;"><img src=""></p>
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><msqrt><mi>x</mi></msqrt><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>16</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>16</mn><mo>&#60;</mo><mi>x</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></math></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained from the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> by:</p>
<ul>
<li>a stretch scale factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> direction,</li>
<li>followed by a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> direction,</li>
<li>followed by a translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> units to the right.</li>
</ul>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>.</mo><mn>825</mn><mo>)</mo></math>. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;under the given transformations and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>p</mi><mo>,</mo><mo>&#160;</mo><mi>q</mi><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>2</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mi>b</mi><mo>&#160;</mo><mo>&#160;</mo></mtd><mtd><mi>a</mi><mo>&#60;</mo><mi>x</mi><mo>&#8804;</mo><mi>p</mi></mtd></mtr></mtable></math></p>
</div>

<div class="specification">
<p>The area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>&#8202;</mo><msup><mtext>m</mtext><mn>2</mn></msup></math> correct to&nbsp;six significant figures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the equation of the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region on the diagram.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math>          <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mfrac><mn>1</mn><msqrt><mn>0</mn><mo>.</mo><mn>16</mn></msqrt></mfrac></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced></math>          <em><strong>M1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced><mo>+</mo><mi>b</mi></math>          <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not allow working backwards from the given answer.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mo> </mo><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4125</mn></math>  (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>413</mn></math>)  (accept " <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4125</mn><mo>)</mo></math> ")          <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msqrt><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></msqrt></math>          <em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>if only two correct transformations are seen. </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>28</mn></math>          <em><strong>A1</strong></em></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>Correct substitution of their part (b) (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>28</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math>) into the given expression         <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>.</mo><mn>25</mn><mo>×</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math>         <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for transforming the equivalent expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> correctly.</p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>b</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>15</mn></math>          <em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing need to add two integrals        <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow></msubsup><msqrt><mi>x</mi></msqrt><mo>d</mo><mi>x</mi><mo>+</mo><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>16</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>d</mo><mi>x</mi></math>         <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> The second integral could be replaced by the formula for the area of a trapezoid <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>34</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>825</mn></mrow></mfenced></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>251</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>250916</mn><mo>…</mo></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>area of a trapezoid <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>05</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4125</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>825</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math>        <strong><em>(M1)(A1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>8</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math>        <strong><em>(M1)(A1)</em></strong></p>
<p><strong><br>Note:</strong> If the rounded answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>413</mn></math> from part (b) is used, the integral is <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup><mfenced><mrow><mn>8</mn><mo>.</mo><mn>24</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>.</mo><mn>295</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>03095</mn></math> which would be awarded <strong><em>(M1)(A1)</em></strong>.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>shaded area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>250916</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>0309375</mn></math>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for the subtraction of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo>…</mo></math> and their area for the trapezoid from their answer to (a)(i).</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>15725</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The differentiation using the power rule was well done. In part (ii) some candidates felt it was sufficient to refer to the equation being the same as the one generated by their calculator. Generally, for ‘show that’ questions an algebraic derivation is expected.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function <em>h</em>. In most cases it was due to not appreciating the effect the horizontal transformations have on <em>x</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The candidates were successful at applying transformations to points but very few were able to apply these transformations to derive the correct function <em>h</em>. In most cases it was due to not appreciating the effect the horizontal transformations have on <em>x</em>.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (i) was frequently done well using the inbuilt functionality of the GDC. Part (ii) was less structured, and candidates needed to create a clear diagram so they could easily see which areas needed to be subtracted. Most of those who were successful used the formula for the trapezoid for the area they needed to find, though others were also successful through finding the equation of the line AB.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br>