File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 2/markSceme-HL-paper1html
File size: 745.42 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - {x^3}">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> is transformed onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 33 - 0.08{x^3}">
<mi>y</mi>
<mo>=</mo>
<mn>33</mn>
<mo>−<!-- − --></mo>
<mn>0.08</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> units vertically and a stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis of scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The outer dome of a large cathedral has the shape of a hemisphere of diameter 32 m, supported by vertical walls of height 17 m. It is also supported by an inner dome which can be modelled by rotating the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 33 - 0.08{x^3}">
<mi>y</mi>
<mo>=</mo>
<mn>33</mn>
<mo>−</mo>
<mn>0.08</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> through 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 33, as indicated in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>Find the volume of the space between the two domes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = 33 <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\sqrt[3]{{0.08}}}} = 2.32">
<mfrac>
<mn>1</mn>
<mrow>
<mroot>
<mrow>
<mn>0.08</mn>
</mrow>
<mn>3</mn>
</mroot>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2.32</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>volume within outer dome</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}\pi + {16^3} + \pi \times {16^2} \times 17 = 22\,250.85">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>+</mo>
<mrow>
<msup>
<mn>16</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>16</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>17</mn>
<mo>=</mo>
<mn>22</mn>
<mspace width="thinmathspace"></mspace>
<mn>250.85</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p>volume within inner dome</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {\int_0^{33} {\left( {\frac{{33 - y}}{{0.08}}} \right)} ^{\frac{2}{3}}}{\text{d}}y = 3446.92">
<mi>π</mi>
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>33</mn>
</mrow>
</msubsup>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>33</mn>
<mo>−</mo>
<mi>y</mi>
</mrow>
<mrow>
<mn>0.08</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>3446.92</mn>
</math></span> <em><strong> M1A1</strong></em></p>
<p>volume between = 22 250.85 − 3446.92 = 18 803.93 m<sup>3</sup> <em><strong> A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is given on the following set of axes. The graph passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math>, and has a horizontal asymptote at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<p><img src=""></p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>f</mi><mo>(</mo><mi>x</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>+</mo><mn>4</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the same set of axes draw the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, showing any intercepts and asymptotes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>16</mn></math> <em><strong>M1A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-asymptote <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mn>4</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>concave up decreasing curve and passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>16</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was not particularly well done. Candidates often failed to apply the transformation of the function correctly and did not understand how to use the algebra of graphical transformations. Others applied the geometry of stretches and translations, often incorrectly. Even if the graph was drawn correctly, some candidates failed to follow the instruction to show the asymptote.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was not particularly well done. Candidates often failed to apply the transformation of the function correctly and did not understand how to use the algebra of graphical transformations. Others applied the geometry of stretches and translations, often incorrectly. Even if the graph was drawn correctly, some candidates failed to follow the instruction to show the asymptote.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The strength of earthquakes is measured on the Richter magnitude scale, with values typically between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> is the most severe.</p>
<p>The Gutenberg–Richter equation gives the average number of earthquakes per year, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>, which have a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>. For a particular region the equation is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>N</mi><mo>=</mo><mi>a</mi><mo>-</mo><mi>M</mi></math>, for some <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>This region has an average of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> earthquakes per year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>The equation for this region can also be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><mi>b</mi><msup><mn>10</mn><mi>M</mi></msup></mfrac></math>.</p>
</div>
<div class="specification">
<p>Within this region the most severe earthquake recorded had a magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>The number of earthquakes in a given year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> can be modelled by a Poisson distribution, with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>. The number of earthquakes in one year is independent of the number of earthquakes in any other year.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the number of years between the earthquake of magnitude <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> and the next earthquake of at least this magnitude.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the average number of earthquakes in a year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>Y</mi><mo>></mo><mn>100</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mn>100</mn><mo>=</mo><mi>a</mi><mo>-</mo><mn>3</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><msup><mn>10</mn><mrow><mn>5</mn><mo>-</mo><mi>M</mi></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><msup><mn>10</mn><mn>5</mn></msup><msup><mn>10</mn><mi>M</mi></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>100000</mn><msup><mn>10</mn><mi>M</mi></msup></mfrac></mrow></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>=</mo><mfrac><mi>b</mi><msup><mn>10</mn><mn>3</mn></msup></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>100000</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><msup><mn>10</mn><mn>5</mn></msup><msup><mn>10</mn><mrow><mn>7</mn><mo>.</mo><mn>2</mn></mrow></msup></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>00631</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0063095</mn><mo>…</mo></mrow></mfenced></math></strong> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not accept an answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow></msup></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>></mo><mn>100</mn><mo>⇒</mo></math>no earthquakes in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> years <strong><em>(M1)</em></strong></p>
<p><br><strong>EITHER</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the number of earthquakes of at least magnitude <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> in a year</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>Po</mtext><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0063095</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>0</mn></mrow></mfenced></mrow></mfenced><mn>100</mn></msup></math> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the number of earthquakes in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> years</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>Po</mtext><mfenced><mrow><mn>0</mn><mo>.</mo><mn>0063095</mn><mo>…</mo><mo>×</mo><mn>100</mn></mrow></mfenced></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>532</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>532082</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>></mo><mn>100</mn><mo>⇒</mo></math>no earthquakes in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> years <strong><em>(M1)</em></strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the number of earthquakes in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> years</p>
<p>since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is large and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> is small</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>100</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0063095</mn><mo>…</mo></mrow></mfenced></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>531</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>531019</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Parts (a), (b), and (c) were accessible to many candidates who earned full marks with the manipulation of logs and indices presenting no problems. Part (d), however, proved to be too difficult for most and very few correct attempts were seen. As in question 9, most candidates relied on calculator notation when using the Poisson distribution. The discipline of defining a random variable in terms of its distribution and parameters helps to conceptualize the problem in terms that aid a better understanding. Most candidates who attempted this question blindly entered values into the Poisson distribution calculator and were unable to earn any marks. There were a couple of correct solutions using a binomial distribution to approximate the given quantity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The rate, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, of a chemical reaction at a fixed temperature is related to the concentration of two compounds, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>, by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = k{B^x}{C^y}">
<mi>A</mi>
<mo>=</mo>
<mi>k</mi>
<mrow>
<msup>
<mi>B</mi>
<mi>x</mi>
</msup>
</mrow>
<mrow>
<msup>
<mi>C</mi>
<mi>y</mi>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
<mi>k</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>A scientist measures the three variables three times during the reaction and obtains the following values.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{log}}\,A = x\,{\text{log}}\,B + y\,{\text{log}}\,C + {\text{log}}\,k">
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>A</mi>
<mo>=</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>B</mi>
<mo>+</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>C</mi>
<mo>+</mo>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{log}}\,5.74 = x\,{\text{log}}\,2.1 + y\,{\text{log}}\,3.4 + {\text{log}}\,k">
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5.74</mn>
<mo>=</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2.1</mn>
<mo>+</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>3.4</mn>
<mo>+</mo>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{log}}\,2.88 = x\,{\text{log}}\,1.5 + y\,{\text{log}}\,2.4 + {\text{log}}\,k">
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2.88</mn>
<mo>=</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>1.5</mn>
<mo>+</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2.4</mn>
<mo>+</mo>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{log}}\,0.980 = x\,{\text{log}}\,0.8 + y\,{\text{log}}\,1.9 + {\text{log}}\,k">
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>0.980</mn>
<mo>=</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>0.8</mn>
<mo>+</mo>
<mi>y</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>1.9</mn>
<mo>+</mo>
<mrow>
<mtext>log</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Allow any consistent base, allow numerical equivalents.</p>
<p>attempting to solve their system of equations <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = 1.53, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = 0.505 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> = 0.997 <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{ax + b}}{{cx + d}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mrow>
<mi>c</mi>
<mi>x</mi>
<mo>+</mo>
<mi>d</mi>
</mrow>
</mfrac>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R},\,\,x \ne - \frac{d}{c}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>d</mi>
<mi>c</mi>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = \frac{{2x - 3}}{{x - 2}},\,\,x \in \mathbb{R},\,\,x \ne 2">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>2</mn>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A + \frac{B}{{x - 2}}">
<mi>A</mi>
<mo>+</mo>
<mfrac>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span> where A, B are constants.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>. State the equations of any asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right) = \sqrt x ">
<mi>h</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mi>x</mi>
</msqrt>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>State the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h \circ g">
<mi>h</mi>
<mo>∘</mo>
<mi>g</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to make <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> the subject of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{ax + b}}{{cx + d}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mrow>
<mi>c</mi>
<mi>x</mi>
<mo>+</mo>
<mi>d</mi>
</mrow>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y\left( {cx + d} \right) = ax + b">
<mi>y</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>c</mi>
<mi>x</mi>
<mo>+</mo>
<mi>d</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{dy - b}}{{a - cy}}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>d</mi>
<mi>y</mi>
<mo>−</mo>
<mi>b</mi>
</mrow>
<mrow>
<mi>a</mi>
<mo>−</mo>
<mi>c</mi>
<mi>y</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right) = \frac{{dx - b}}{{a - cx}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>d</mi>
<mi>x</mi>
<mo>−</mo>
<mi>b</mi>
</mrow>
<mrow>
<mi>a</mi>
<mo>−</mo>
<mi>c</mi>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not allow <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ">
<mi>y</mi>
<mo>=</mo>
</math></span> in place of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne \frac{a}{c},\,\,\,\left( {x \in \mathbb{R}} \right)">
<mi>x</mi>
<mo>≠</mo>
<mfrac>
<mi>a</mi>
<mi>c</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> The final <em><strong>A</strong></em> mark is independent.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 2 + \frac{1}{{x - 2}}">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span> <em><strong> A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>hyperbola shape, with single curves in second and fourth quadrants and third quadrant blank, including vertical asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>horizontal asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>intercepts <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{3}{2},\,0} \right),\,\left( {0,\,\frac{3}{2}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h \circ g">
<mi>h</mi>
<mo>∘</mo>
<mi>g</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \leqslant \frac{3}{2},\,\,x > 2">
<mi>x</mi>
<mo>⩽</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>></mo>
<mn>2</mn>
</math></span> <em><strong>A1A1</strong></em></p>
<p>the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h \circ g">
<mi>h</mi>
<mo>∘</mo>
<mi>g</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \geqslant 0,\,\,y \ne \sqrt 2 ">
<mi>y</mi>
<mo>⩾</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>≠</mo>
<msqrt>
<mn>2</mn>
</msqrt>
</math></span> <em><strong>A1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the time, in days, from December <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mtext>st</mtext></math> and the percentage of Christmas trees in stock at a shop on the beginning of that day.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The following table shows the natural logarithm of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> on these days to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> decimal places.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the data in the second table to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> for the regression line, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>m</mi><mo>(</mo><mi>ln</mi><mo> </mo><mi>d</mi><mo>)</mo><mo>+</mo><mi>b</mi></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the model found in part (a) remains valid, estimate the percentage of trees in stock when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>25</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>695</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>695383</mn><mo>…</mo></mrow></mfenced><mo>;</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>63</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>62974</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>695</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mn>25</mn></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>63</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>39288</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo>%</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Those candidates who did this question were often successful. There were a number, however, who found an equation of a line through two of the points instead of using their technology to find the equation of the regression line. A common problem was to introduce rounding errors at various stages throughout the problem. Some candidates failed to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> from that of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi></math>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Those candidates who did this question were often successful. There were a number, however, who found an equation of a line through two of the points instead of using their technology to find the equation of the regression line. A common problem was to introduce rounding errors at various stages throughout the problem. Some candidates failed to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> from that of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi></math>.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{x^3} + 5,{\text{ }} - 2 \leqslant x \leqslant 2">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}(x)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 11 \leqslant f(x) \leqslant 21">
<mo>−</mo>
<mn>11</mn>
<mo>⩽</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>⩽</mo>
<mn>21</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>A1 </em></strong>for correct end points, <strong><em>A1 </em></strong>for correct inequalities.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}(x) = \sqrt[3]{{\frac{{x - 5}}{2}}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mroot>
<mrow>
<mfrac>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mn>3</mn>
</mroot>
</math></span> <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 11 \leqslant x \leqslant 21,{\text{ }} - 2 \leqslant {f^{ - 1}}(x) \leqslant 2">
<mo>−</mo>
<mn>11</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>21</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mo>⩽</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>⩽</mo>
<mn>2</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x + h)^2} + k">
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, indicating on it the equations of the asymptotes, the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}">
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f(x){\text{d}}x = \ln (p)} ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mi>ln</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the lines with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} - \frac{1}{4}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2 = (x + 2)(x + 1)">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_13.58.40.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.b/M"></p>
<p><strong><em>A1</em></strong> for the shape</p>
<p><strong><em>A1</em></strong> for the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><strong><em>A1</em></strong> for asymptotes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p><strong><em>A1</em></strong> for coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{3}{2},{\text{ }} - 4} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><strong><em>A1</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,{\text{ }}\frac{1}{2}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{{(x + 2) - (x + 1)}}{{(x + 1)(x + 2)}}">
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{{x^2} + 3x + 2}}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}{\text{d}}x} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</munderover>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {\ln (x + 1) - \ln (x + 2)} \right]_0^1">
<mo>=</mo>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mi>ln</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mn>1</mn>
</msubsup>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ln 2 - \ln 3 - \ln 1 + \ln 2">
<mo>=</mo>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
<mo>−</mo>
<mi>ln</mi>
<mo></mo>
<mn>3</mn>
<mo>−</mo>
<mi>ln</mi>
<mo></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ln \left( {\frac{4}{3}} \right)">
<mo>=</mo>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore p = \frac{4}{3}">
<mo>∴</mo>
<mi>p</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</math></span></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_14.20.03.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.e/M"></p>
<p>symmetry about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis <strong><em>M1</em></strong></p>
<p>correct shape <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Allow <strong><em>FT </em></strong>from part (b).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\int_0^1 {f(x){\text{d}}x} ">
<mn>2</mn>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\ln \left( {\frac{4}{3}} \right)">
<mo>=</mo>
<mn>2</mn>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong><em>FT </em></strong>from part (e).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 5 is shown in the following diagram. The curve intercepts the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at (1, 0) and (4, 0) and has a local minimum at (3, −1).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The shaded area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis is 0.5. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = 3">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span>,</p>
</div>
<div class="specification">
<p>The area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4">
<mi>x</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> is 2.5 .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 5 indicating clearly the coordinates of the maximum and minimum points and any intercepts with the coordinate axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use definite integral of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f'\left( x \right){\text{d}}x} = 0.5">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) - f\left( 0 \right) = 0.5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) = 0.5 + 3">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
<mo>+</mo>
<mn>3</mn>
</math></span></p>
<p>= 3.5 <em><strong> A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_1^4 {f'\left( x \right){\text{d}}x} = - 2.5">
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>4</mn>
</msubsup>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2.5</mn>
</math></span> <em><strong> (A1)</strong></em></p>
<p><strong>Note:</strong> <em><strong>(A1)</strong></em> is for −2.5.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right) - f\left( 1 \right) = - 2.5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right) = 3.5 - 2.5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3.5</mn>
<mo>−</mo>
<mn>2.5</mn>
</math></span></p>
<p>= 1 <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong> A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for correct shape over approximately the correct domain<br><em><strong>A1</strong></em> for maximum and minimum (coordinates or horizontal lines from 3.5 and 1 are required),<br><em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept at 3</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Roger buys a new laptop for himself at a cost of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>£</mo><mn>495</mn></math>. At the same time, he buys his daughter Chloe a higher specification laptop at a cost of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>£</mo><mn>2200</mn></math>.</p>
<p>It is anticipated that Roger’s laptop will depreciate at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> per year, whereas Chloe’s laptop will depreciate at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>%</mo></math> per year.</p>
</div>
<div class="specification">
<p>Roger and Chloe’s laptops will have the same value <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> years after they were purchased.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the value of Roger’s laptop after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> years.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the validity of your answer to part (b).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>£</mo><mn>495</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>9</mn><mn>5</mn></msup><mo>=</mo><mo>£</mo><mn>292</mn><mo> </mo><mo> </mo><mo>(</mo><mo>£</mo><mn>292</mn><mo>.</mo><mn>292</mn><mo>…</mo><mo>)</mo></math> <em><strong>(M1)A1</strong></em> </p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>£</mo><mn>495</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>9</mn><mi>k</mi></msup><mo>=</mo><mn>2200</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>85</mn><mi>k</mi></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>26</mn><mo>.</mo><mn>1</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>26</mn><mo>.</mo><mn>0968</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award<em> <strong>M1A0 </strong></em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>-</mo><mn>1</mn></math> in place of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.<em><strong><br><br></strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>depreciation rates unlikely to be constant (especially over a long time period) <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> Accept reasonable answers based on the magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> or the fact that “value” depends on factors other than time.</p>
<p><em><strong><br></strong></em><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4\,{\text{cos}}\,x + 1">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \leqslant x \leqslant \frac{\pi }{2}">
<mi>a</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < \frac{\pi }{2}">
<mi>a</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - \frac{\pi }{2}"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>. Indicate clearly the maximum and minimum values of the function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> has an inverse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""></p>
<p>concave down and symmetrical over correct domain <em><strong>A1</strong></em></p>
<p>indication of maximum and minimum values of the function (correct range) <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 0 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 0 only if consistent with their graph.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant x \leqslant 5"> <mn>1</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>5</mn> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow FT from their graph.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4\,{\text{cos}}\,x + 1"> <mi>y</mi> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4\,{\text{cos}}\,y + 1"> <mi>x</mi> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x - 1}}{4} = {\text{cos}}\,y"> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow y = {\text{arccos}}\left( {\frac{{x - 1}}{4}} \right)"> <mo stretchy="false">⇒</mo> <mi>y</mi> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {g^{ - 1}}\left( x \right) = {\text{arccos}}\left( {\frac{{x - 1}}{4}} \right)"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>ln</mi><mfenced><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mfenced></math> is defined for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>2</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>. You are not required to state a domain.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mfenced></math></p>
<p>an attempt to isolate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> if switched) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mi>y</mi></msup><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mn>2</mn><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>y</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>y</mi></mrow></msup><mo>+</mo><mn>2</mn></math></p>
<p>switching <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (seen anywhere) <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>x</mi></mrow></msup><mo>+</mo><mn>2</mn></math> <strong><em>A1</em></strong></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>12</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>12002</mn><mo>…</mo></mrow></mfenced></math> <strong><em>A1</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered by most candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>It is believed that the power <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> of a signal at a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> km from an antenna is inversely proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mi>n</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p>The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is recorded at distances of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mi mathvariant="normal">m</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math> and the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> are plotted on the graph below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> are shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why this graph indicates that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is inversely proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mi>n</mi></msup></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b) to write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> to the nearest integer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>a straight line with a negative gradient <strong>A1A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi><mo> </mo><mi>P</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>040</mn><mo>…</mo><mo> </mo><mi>log</mi><mo> </mo><mi>d</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>12632</mn><mo>…</mo><mo>≈</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>04</mn><mo> </mo><mi>log</mi><mo> </mo><mi>d</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>126</mn></math> <strong>A1A1</strong></p>
<p> </p>
<p><strong>Note: A1</strong> for each correct term.</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>126</mn><mo>…</mo></mrow></msup><msup><mi>d</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≈</mo><mn>0</mn><mo>.</mo><mn>748</mn><msup><mi>d</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)"> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right) = {x^3} + 3{x^2} + 8x - 24"><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>−</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><mi>x</mi><mo>−</mo><mn>24</mn></math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 2} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 3} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> has only one real zero.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the transformation that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 8{x^3} + 12{x^2} + 16x - 24"><mi>y</mi><mo>=</mo><mn>8</mn><msup><mi>x</mi><mn>3</mn></msup><mo>−</mo><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn><mi>x</mi><mo>−</mo><mn>24</mn></math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> follows a Poisson distribution with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6{\text{P}}\left( {X = 3} \right) = 3{\text{P}}\left( {X = 2} \right) - 2{\text{P}}\left( {X = 1} \right) + 3{\text{P}}\left( {X = 0} \right)">
<mn>6</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( 2 \right) = 8 - 12 + 16 - 24">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>8</mn>
<mo>−</mo>
<mn>12</mn>
<mo>+</mo>
<mn>16</mn>
<mo>−</mo>
<mn>24</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for a valid attempt at remainder theorem or polynomial division.</p>
<p>= −12 <em><strong>A1</strong></em></p>
<p>remainder = −12</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( 3 \right) = 27 - 27 + 24 - 24">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>27</mn>
<mo>−</mo>
<mn>27</mn>
<mo>+</mo>
<mn>24</mn>
<mo>−</mo>
<mn>24</mn>
</math></span> = 0 <em><strong>A1</strong></em> </p>
<p>remainder = 0</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> (is a zero) <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A1</span></p>
<p><strong>Note:</strong> Can be seen anywhere.</p>
<p><strong>EITHER</strong></p>
<p>factorise to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 3} \right)\left( {{x^2} + 8} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>8</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 8 \ne 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>8</mn>
<mo>≠</mo>
<mn>0</mn>
</math></span> (for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>) (or equivalent statement) <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>if correct two complex roots are given.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p'\left( x \right) = 3{x^2} - 6x + 8">
<msup>
<mi>p</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mi>x</mi>
<mo>+</mo>
<mn>8</mn>
</math></span> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A1</span></p>
<p>attempting to show <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p'\left( x \right) \ne 0">
<msup>
<mi>p</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>≠</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><em>eg</em> discriminant = 36 – 96 < 0, completing the square</p>
<p>no turning points<em><strong> R1</strong></em></p>
<p><strong>THEN</strong></p>
<p>only one real zero (as the curve is continuous) <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>new graph is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( {2x} \right)"> <mi>y</mi> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p>stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> invariant), scale factor 0.5 <em><strong>A</strong><strong>1</strong></em></p>
<p><strong>Note:</strong> Accept “horizontal” instead of “parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis”.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6{\lambda ^3}{e^{ - \lambda }}}}{6} = \frac{{3{\lambda ^2}{e^{ - \lambda }}}}{2} - 2\lambda {e^{ - \lambda }} + 3{e^{ - \lambda }}">
<mfrac>
<mrow>
<mn>6</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mn>6</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mn>2</mn>
<mi>λ</mi>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Allow factorials in the denominator for <em><strong>A1</strong></em>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\lambda ^3} - 3{\lambda ^2} + 4\lambda - 6 = 0">
<mn>2</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mi>λ</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A</strong><strong>1</strong></em></p>
<p><strong>Note:</strong> Accept any correct cubic equation without factorials and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{e^{ - \lambda }}}">
<mrow>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mi>λ</mi>
</mrow>
</msup>
</mrow>
</mrow>
</math></span>.</p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\left( {2{\lambda ^3} - 3{\lambda ^2} + 4\lambda - 6} \right) = 8{\lambda ^3} - 12{\lambda ^2} + 16\lambda - 24 = 0">
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mi>λ</mi>
<mo>−</mo>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>8</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>12</mn>
<mrow>
<msup>
<mi>λ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>16</mn>
<mi>λ</mi>
<mo>−</mo>
<mn>24</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\lambda = 3">
<mn>2</mn>
<mi>λ</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {2\lambda - 3} \right)\left( {{\lambda ^2} + 2} \right) = 0">
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>λ</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>λ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span> = 1.5 <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>It is believed that two variables, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> are related. Experimental values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> are obtained. A graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,m">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>m</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> shows a straight line passing through (2.1, 7.3) and (5.6, 2.4).</p>
</div>
<div class="specification">
<p>Hence, find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the straight line, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,m = ap + b">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>m</mi>
<mo>=</mo>
<mi>a</mi>
<mi>p</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b \in \mathbb{R}">
<mi>a</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0">
<mi>p</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gradient = −1.4 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,m - 7.3 = - 1.4\left( {p - 2.1} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>m</mi>
<mo>−</mo>
<mn>7.3</mn>
<mo>=</mo>
<mo>−</mo>
<mn>1.4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>p</mi>
<mo>−</mo>
<mn>2.1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,m = - 1.4p + 10.24">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>m</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1.4</mn>
<mi>p</mi>
<mo>+</mo>
<mn>10.24</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = {e^{ - 1.4p + 10.24}}\,\,\left( { = 28000{e^{ - 1.4p}}} \right)">
<mi>m</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mn>1.4</mn>
<mi>p</mi>
<mo>+</mo>
<mn>10.24</mn>
</mrow>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>28000</mn>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mn>1.4</mn>
<mi>p</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>28000 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A function is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>12</mn><mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>7</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>7</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mn>5</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the inverse function<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>. The domain is not required.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mfenced><mn>7</mn></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mn>1</mn></math> <em><strong>(A1)</strong></em> </p>
<p>range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>≥</mo><mn>8</mn></math> <em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><br><strong>Note:</strong> Award at most <em><strong>A1A1A0</strong></em> if strict inequalities are used.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi></math> at any stage <em><strong>(A1)</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>12</mn><mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>12</mn><mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfrac><mo>=</mo><mn>2</mn><mo>-</mo><mi>y</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>12</mn><mrow><mn>2</mn><mo>-</mo><mi>y</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>+</mo><mn>5</mn></math> <em><strong>(A1)</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>12</mn><mrow><mn>2</mn><mo>-</mo><mi>y</mi></mrow></mfrac><mo>-</mo><mn>5</mn><mo>=</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo> </mo><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>12</mn><mrow><mn>2</mn><mo>-</mo><mi>x</mi></mrow></mfrac><mo>-</mo><mn>5</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mo>+</mo><mn>5</mn><mi>x</mi></mrow><mrow><mn>2</mn><mo>-</mo><mi>x</mi></mrow></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>7</mn><mo>≤</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>7</mn><mo>,</mo><mo> </mo><mo> </mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>≠</mo><mo>-</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{ln}}\left| x \right|">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ 0 \right\}">
<mrow>
<mo>{</mo>
<mn>0</mn>
<mo>}</mo>
</mrow>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {\text{ln}}\left| {x + k} \right|">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>k</mi>
</mrow>
<mo>|</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ { - k} \right\}">
<mrow>
<mo>{</mo>
<mrow>
<mo>−<!-- − --></mo>
<mi>k</mi>
</mrow>
<mo>}</mo>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k > 2">
<mi>k</mi>
<mo>></mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> intersect at the point P .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the transformation by which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is transformed to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> on the same axes, clearly stating the points of intersection with any axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tangent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> at P passes through the origin (0, 0).</p>
<p>Determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>translation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> units to the left (or equivalent) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>range is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g\left( x \right) \in } \right)\mathbb{R}"> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>∈</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> translated <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> units to left (possibly shown by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> </math></span> marked on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis) <em><strong>A1</strong></em></p>
<p>asymptote included and marked as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k + 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{ln}}\,k"> <mi>y</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>k</mi> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not penalise candidates if their graphs “cross” as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \pm \infty "> <mi>x</mi> <mo stretchy="false">→</mo> <mo>±</mo> <mi mathvariant="normal">∞</mi> </math></span>.</p>
<p><strong>Note:</strong> Do not award <em><strong>FT</strong> </em>marks from the candidate’s part (a) to part (c).</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at P <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {x + k} \right) = {\text{ln}}\left( { - x} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + k = - x"> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mi>x</mi> </math></span> (or equivalent) <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \frac{k}{2} \Rightarrow y = {\text{ln}}\left( {\frac{k}{2}} \right)\,\,"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo stretchy="false">⇒</mo> <mi>y</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math></span> (or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{ln}}\left| {\frac{k}{2}} \right|"> <mi>y</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </math></span>) <em><strong>A1</strong></em></p>
<p>P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{k}{2},\,\,{\text{ln}}\frac{k}{2}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (or P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{k}{2},\,\,{\text{ln}}\left| {\frac{k}{2}} \right|} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>)</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( { - x} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left| x \right|"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{x}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p>at P, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2}}{k}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mi>k</mi> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p>recognition that tangent passes through origin <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{y}{x} = \frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mo stretchy="false">⇒</mo> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{ln}}\left| {\frac{k}{2}} \right|}}{{ - \frac{k}{2}}} = \frac{{ - 2}}{k}"> <mfrac> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mi>k</mi> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {\frac{k}{2}} \right)\, = 1"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow k = 2{\text{e}}"> <mo stretchy="false">⇒</mo> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mrow> <mtext>e</mtext> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> For candidates who explicitly differentiate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {x} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> (rather than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( { - x} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left| x \right|"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </math></span>, award <em><strong>M0A0A1M1A1A1A1</strong></em>.</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>The graph of the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math> so that it then passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><msup><mtext>e</mtext><mn>3</mn></msup><mo>,</mo><mo> </mo><mn>1</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>)</mo></math> .</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>new function is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mi>b</mi><mfenced><mrow><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mi>b</mi></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>ln</mi><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mi>b</mi><mo>=</mo><mn>1</mn></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><msup><mtext>e</mtext><mn>3</mn></msup></mfenced><mo>=</mo><mi>ln</mi><mfenced><mrow><msup><mtext>e</mtext><mn>3</mn></msup><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mi>b</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>2</mn></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mi>ln</mi><mfenced><mrow><msup><mtext>e</mtext><mn>3</mn></msup><mo>-</mo><mi>a</mi></mrow></mfenced><mo>-</mo><mi>ln</mi><mo> </mo><mn>2</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mi>ln</mi><mfenced><mfrac><mrow><msup><mtext>e</mtext><mn>3</mn></msup><mo>-</mo><mi>a</mi></mrow><mn>2</mn></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>a</mi><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mn>3</mn></msup><mo>-</mo><mi>a</mi></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>a</mi><mo>=</mo><msup><mtext>e</mtext><mn>3</mn></msup><mo>-</mo><mi>a</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><msup><mtext>e</mtext><mn>3</mn></msup><mtext> </mtext><mfenced><mrow><mo>=</mo><mo>-</mo><mn>20</mn><mo>.</mo><mn>0855</mn><mo>…</mo></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>1</mn><mo>-</mo><mi>ln</mi><mo> </mo><msup><mtext>e</mtext><mn>3</mn></msup><mo>=</mo><mn>1</mn><mo>-</mo><mn>3</mn><mo>=</mo><mo>-</mo><mn>2</mn></math> <em><strong> (M1)A1</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Adesh wants to model the cooling of a metal rod. He heats the rod and records its temperature as it cools.</p>
<p style="text-align: center;"><img src=""></p>
<p>He believes the temperature can be modeled by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T\left( t \right) = a{{\text{e}}^{bt}} + 25">
<mi>T</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>b</mi>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>25</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b \in \mathbb{R}">
<mi>a</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Hence</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = bt + {\text{ln}}\,a">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>b</mi>
<mi>t</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>predict the temperature of the metal rod after 3 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = {\text{ln}}\left( {a{{\text{e}}^{bt}}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>a</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>b</mi>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = {\text{ln}}\,a + {\text{ln}}\left( {{{\text{e}}^{bt}}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>a</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>b</mi>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = bt + {\text{ln}}\,a">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>b</mi>
<mi>t</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>a</mi>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = - 0.00870t + 3.89">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>0.00870</mn>
<mi>t</mi>
<mo>+</mo>
<mn>3.89</mn>
</math></span> <em><strong>M1A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = - 0.00870">
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.00870</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = {e^{3.89...}} = 49.1">
<mi>a</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>3.89...</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>49.1</mn>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T\left( {180} \right) = 49.1{e^{ - 0.00870\left( {180} \right)}} + 25 = 35.2">
<mi>T</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>180</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>49.1</mn>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mn>0.00870</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>180</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>25</mn>
<mo>=</mo>
<mn>35.2</mn>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^4} - 6{x^2} - 2x + 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is translated two units to the left to form the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{x^4} + b{x^3} + c{x^2} + dx + e">
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>d</mi>
<mi>x</mi>
<mo>+</mo>
<mi>e</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e \in \mathbb{Z}">
<mi>e</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = f\left( {x + 2} \right)\left( { = {{\left( {x + 2} \right)}^4} - 6{{\left( {x + 2} \right)}^2} - 2\left( {x + 2} \right) + 4} \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p>attempt to expand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{{\left( {x + 2} \right)}^4}}">
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x + 2} \right)^4} = {x^4} + 4\left( {2{x^3}} \right) + 6\left( {{2^2}{x^2}} \right) + 4\left( {{2^3}x} \right) + {2^4}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mn>3</mn>
</msup>
</mrow>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>4</mn>
</msup>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^4} + 8{x^3} + 24{x^2} + 32x + 16">
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>8</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>24</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>32</mn>
<mi>x</mi>
<mo>+</mo>
<mn>16</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^4} + 8{x^3} + 24{x^2} + 32x + 16 - 6\left( {{x^2} + 4x + 4} \right) - 2x - 4 + 4">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>8</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>24</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>32</mn>
<mi>x</mi>
<mo>+</mo>
<mn>16</mn>
<mo>−</mo>
<mn>6</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mo>+</mo>
<mn>4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^4} + 8{x^3} + 18{x^2} + 6x - 8">
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>8</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>18</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>8</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> For correct expansion of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {x - 2} \right) = {x^4} - 8{x^3} + 18{x^2} - 10x">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>8</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>18</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>10</mn>
<mi>x</mi>
</math></span> award max <em><strong>M0M1(A1)A0A1</strong></em>.</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{1 - 3x}}{{x - 2}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span>, showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.</p>
<p><img src="images/Schermafbeelding_2018-02-07_om_17.42.06.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a"></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{1 - 3x}}{{x - 2}}} \right| < 2">
<mrow>
<mo>|</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mo>|</mo>
</mrow>
<mo><</mo>
<mn>2</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2018-02-07_om_17.44.18.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a/M"></p>
<p>correct vertical asymptote <strong><em>A1</em></strong></p>
<p>shape including correct horizontal asymptote <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{3},{\text{ }}0} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,{\text{ }} - \frac{1}{2}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{1}{2}">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> marked on the axes.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><img src="images/Schermafbeelding_2018-02-07_om_18.03.17.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.b/M"></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - 3x}}{{x - 2}} = 2">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = 1">
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \left( {\frac{{1 - 3x}}{{x - 2}}} \right) = 2">
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award this <strong><em>M1 </em></strong>for the line above or a correct sketch identifying a second critical value.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = - 3">
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>solution is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < x < 1">
<mo>−</mo>
<mn>3</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {1 - 3x} \right| < 2\left| {x - 2} \right|,{\text{ }}x \ne 2">
<mrow>
<mo>|</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mo>|</mo>
</mrow>
<mo><</mo>
<mn>2</mn>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>|</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠</mo>
<mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 6x + 9{x^2} < 4({x^2} - 4x + 4)">
<mn>1</mn>
<mo>−</mo>
<mn>6</mn>
<mi>x</mi>
<mo>+</mo>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo><</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 6x + 9{x^2} < 4{x^2} - 16x + 16">
<mn>1</mn>
<mo>−</mo>
<mn>6</mn>
<mi>x</mi>
<mo>+</mo>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo><</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>16</mn>
<mi>x</mi>
<mo>+</mo>
<mn>16</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5{x^2} + 10x - 15 < 0">
<mn>5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>10</mn>
<mi>x</mi>
<mo>−</mo>
<mn>15</mn>
<mo><</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 2x - 3 < 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mo><</mo>
<mn>0</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x + 3)(x - 1) < 0">
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo><</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p>solution is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < x < 1">
<mo>−</mo>
<mn>3</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 < \frac{{1 - 3x}}{{x - 2}} < 2">
<mo>−</mo>
<mn>2</mn>
<mo><</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo><</mo>
<mn>2</mn>
</math></span></p>
<p>consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - 3x}}{{x - 2}} < 2">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo><</mo>
<mn>2</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Also allow consideration of “>” or “=” for the awarding of the <strong><em>M </em></strong>mark.</p>
<p> </p>
<p>recognition of critical value at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 < \frac{{1 - 3x}}{{x - 2}}">
<mo>−</mo>
<mn>2</mn>
<mo><</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Also allow consideration of “>” or “=” for the awarding of the <strong><em>M </em></strong>mark.</p>
<p> </p>
<p>recognition of critical value at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 3">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>solution is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < x < 1">
<mo>−</mo>
<mn>3</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<p><strong><em> </em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| x \right|">
<mi>y</mi>
<mo>=</mo>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \left| x \right| + b">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in {\mathbb{Z}^ + }">
<mi>b</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs on the same set of axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the graphs enclose a region of area 18 square units, find the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-08_om_11.15.31.png" alt="M17/5/MATHL/HP1/ENG/TZ1/A6.a/M"></p>
<p>graphs sketched correctly (condone missing <em>b</em>) <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{b^2}}}{2} = 18">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mn>18</mn>
</math></span> <strong><em>(M1)A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 6">
<mi>b</mi>
<mo>=</mo>
<mn>6</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{2^a},\,b \times {2^{ - 3a}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mi>a</mi>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>a</mi>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> where <em>a</em>, <em>b</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Q}">
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span>. Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to differentiate <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = - 3{x^{ - 4}} - 3x">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for using quotient or product rule award <em><strong>A1</strong> </em>if correct derivative seen even in unsimplified form, for example <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{ - 15{x^4} \times 2{x^3} - 6{x^2}\left( {2 - 3{x^5}} \right)}}{{{{\left( {2{x^3}} \right)}^2}}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>15</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{{{x^4}}} - 3x = 0">
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {x^5} = - 1 \Rightarrow x = - 1">
<mo stretchy="false">⇒</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( { - 1,\, - \frac{5}{2}} \right)">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 12{x^{ - 5}} - 3\left( { = 0} \right)">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct derivative seen even if not simplified.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)">
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>5</mn>
</mroot>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>hence (at most) one point of inflexion <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> This mark is independent of the two <em><strong>A1</strong> </em>marks above. If they have shown or stated their equation has only one solution this mark can be awarded.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right)">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> changes sign at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)">
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>5</mn>
</mroot>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>R1</strong></em></p>
<p>so exactly one point of inflexion</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[5]{4} = {2^{\frac{2}{5}}}\left( { \Rightarrow a = \frac{2}{5}} \right)">
<mi>x</mi>
<mo>=</mo>
<mroot>
<mn>4</mn>
<mn>5</mn>
</mroot>
<mo>=</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">⇒</mo>
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {{2^{\frac{2}{5}}}} \right) = \frac{{2 - 3 \times {2^2}}}{{2 \times {2^{\frac{6}{5}}}}} = - 5 \times {2^{ - \frac{6}{5}}}\left( { \Rightarrow b = - 5} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>6</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mn>5</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">⇒</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for the substitution of their value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for shape for <em>x</em> < 0<br><em><strong>A1 </strong></em>for shape for <em>x</em> > 0<br><em><strong>A1 </strong></em>for maximum at A<br><em><strong>A1 </strong></em>for POI at B.</p>
<p><strong>Note:</strong> Only award last two <em><strong>A1</strong></em>s if A and B are placed in the correct quadrants, allowing for follow through.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A rational function is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a + \frac{b}{{x - c}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mo>+</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mi>c</mi>
</mrow>
</mfrac>
</math></span> where the parameters <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}">
<mi>a</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>c</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}\backslash \{ c\} ">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mi mathvariant="normal">∖<!-- ∖ --></mi>
<mo fence="false" stretchy="false">{</mo>
<mi>c</mi>
<mo fence="false" stretchy="false">}</mo>
</math></span>. The following diagram represents the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_09.42.27.png" alt="N16/5/MATHL/HP1/ENG/TZ0/03"></p>
<p>Using the information on the graph,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>state the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 1">
<mi>a</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 3">
<mi>c</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use the coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}0)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span> on the graph <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1) = 0 \Rightarrow 1 + \frac{b}{{1 - 3}} = 0 \Rightarrow b = 2">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>b</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{x}{2} + 1">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| {x - 2} \right|">
<mi>y</mi>
<mo>=</mo>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>|</mo>
</mrow>
</math></span> on the following axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2} + 1 = \left| {x - 2} \right|">
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>|</mo>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""></p>
<p>straight line graph with correct axis intercepts <em><strong>A1</strong></em></p>
<p>modulus graph: V shape in upper half plane <em><strong>A1</strong></em></p>
<p>modulus graph having correct vertex and <em>y</em>-intercept <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD</strong> <strong>1</strong></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2} + 1 = x - 2">
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 6">
<mi>x</mi>
<mo>=</mo>
<mn>6</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 6">
<mi>x</mi>
<mo>=</mo>
<mn>6</mn>
</math></span> using the graph.</p>
<p>attempt to solve (algebraically) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2} + 1 = 2 - x">
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<mi>x</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{x}{2} + 1} \right)^2} = {\left( {x - 2} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>x</mi>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{x^2}}}{4} + x + 1 = {x^2} - 4x + 4">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = \frac{{3{x^2}}}{4} - 5x + 3">
<mn>0</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mn>5</mn>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} - 20x + 12 = 0">
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>20</mn>
<mi>x</mi>
<mo>+</mo>
<mn>12</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>attempt to factorise (or equivalent) <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3x - 2} \right)\left( {x - 6} \right) = 0">
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 6">
<mi>x</mi>
<mo>=</mo>
<mn>6</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced></mrow></msup><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>. Part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> have coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>)</mo></math>, and lie on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is a local maximum and the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is a local minimum.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mn>0</mn></mfenced></mrow></msup><mo>=</mo><mn>6</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mi>q</mi></msup></math> <em><strong>(A1)</strong></em></p>
<p><br>substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mi>r</mi></mrow></mfenced></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mi>p</mi><mi>q</mi><mi>r</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p>minimum occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>p</mi><mi>q</mi><mi>r</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mi>r</mi></mrow></mfenced><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mn>5</mn><mo>.</mo><mn>2</mn><mi>r</mi></mrow></mfenced></mrow></msup><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>×</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>=</mo><mi mathvariant="normal">π</mi></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>minimum value occurs when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>×</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>=</mo><mi mathvariant="normal">π</mi></math> <em><strong>(A1)</strong></em></p>
<p><strong><br>OR</strong></p>
<p>period <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>×</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>=</mo><mn>10</mn><mo>.</mo><mn>4</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>4</mn></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mrow><mn>5</mn><mo>.</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>604152</mn><mo>…</mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>604</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>=</mo><mi>p</mi><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>q</mi></mrow></msup></math> <em><strong>(A1)</strong></em></p>
<p>eliminate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mn>2</mn><mi>q</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>=</mo><mfrac><msup><mi>p</mi><mn>2</mn></msup><mrow><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>74</mn><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>74062</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>14017</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>14</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was a challenging question and suitably positioned at the end of the examination. Candidates who attempted it were normally able to substitute points A and B into the given equation. Some were able to determine the first derivative. Only a few candidates were able to earn significant marks for this question.</p>
</div>
<br><hr><br><div class="question">
<p>It is believed that two variables, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> are related by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = k{w^n}">
<mi>v</mi>
<mo>=</mo>
<mi>k</mi>
<mrow>
<msup>
<mi>w</mi>
<mi>n</mi>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k{\text{,}}\,\,n \in \mathbb{R}">
<mi>k</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>n</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>. Experimental values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> are obtained. A graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,v">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>v</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,w">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>w</mi>
</math></span> shows a straight line passing through (−1.7, 4.3) and (7.1, 17.5).</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>. </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,v = n\,{\text{ln}}\,w + {\text{ln}}\,k">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>v</mi>
<mo>=</mo>
<mi>n</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>w</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p>gradient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{17.5 - 4.3}}{{7.1 + 1.7}}{\text{ }}\left( { = 1.5} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>17.5</mn>
<mo>−</mo>
<mn>4.3</mn>
</mrow>
<mrow>
<mn>7.1</mn>
<mo>+</mo>
<mn>1.7</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>1.5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 1.5">
<mi>n</mi>
<mo>=</mo>
<mn>1.5</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.5 \times 1.7 + 4.3{\text{ }}\left( { = 6.85} \right)">
<mo>=</mo>
<mn>1.5</mn>
<mo>×</mo>
<mn>1.7</mn>
<mo>+</mo>
<mn>4.3</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>6.85</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = {e^{6.85}} = 944">
<mi>k</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>6.85</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>944</mn>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mo> </mo><mi>cos</mi><mo> </mo><mfenced><mrow><mi>b</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>,</mo><mo> </mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<p>Part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> is shown below. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is a local maximum and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math> and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is a local minimum with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question">
<p>Write down a sequence of transformations that will transform the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>cos</mi><mo> </mo><mi>x</mi></math> onto the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>Vertical stretch, scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> <strong>A1</strong></p>
<p>Horizontal stretch, scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi mathvariant="normal">π</mi></mfrac><mo>≈</mo><mn>0</mn><mo>.</mo><mn>318</mn></math> <strong>A1</strong></p>
<p>Horizontal translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit to the right <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> The vertical stretch can be at any position in the order of transformations. If the order of the final two transformations are reversed the horizontal translation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> units to the right.</p>
<p> </p>
<p><strong>[3 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>