File "SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 2/SL-paper2html
File size: 785.45 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{27}}{{{x^2}}} - 16x,\,\,\,x \ne 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>−<!-- − --></mo>
<mn>16</mn>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f </em>(<em>x</em>), for −4 ≤ <em>x</em> ≤ 3 and −50 ≤ <em>y</em> ≤ 100.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the zero of <em>f </em>(<em>x</em>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the coordinates of the local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the tangent to the graph of <em>y</em> = <em>f </em>(<em>x</em>) at the point (–2, 38.75).</p>
<p>Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>
<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
<mn>0.5</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>
<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
<mn>2000</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-sectional view of a tunnel is shown on the axes below. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>8</mn></math>, relative to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>)</mo></math>, and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> the height of the tunnel is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>4</mn><mo> </mo><mtext>m</mtext></math> and when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math> the height of the tunnel is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>. These points are shown as <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> on the diagram, respectively.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum height of the tunnel.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integral which can be used to find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Urvashi wants to model the height of a moving object. She collects the following data showing the height, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> metres, of the object at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">She believes the height can be modeled by a quadratic function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( t \right) = a{t^2} + bt + c">
<mi>h</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>t</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b{\text{,}}\,\,c \in \mathbb{R}">
<mi>a</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>c</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Hence find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4a + 2b + c = 34">
<mn>4</mn>
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>34</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two more equations for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve this system of three equations to find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>when the height of the object is zero.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the maximum height of the object.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A wind turbine is designed so that the rotation of the blades generates electricity. The turbine is built on horizontal ground and is made up of a vertical tower and three blades.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is on the base of the tower directly below point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at the top of the tower. The height of the tower, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo> </mo><mtext>m</mtext></math>. The blades of the turbine are centred at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and are each of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo> </mo><mtext>m</mtext></math>. This is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The end of one of the blades of the turbine is represented by point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> on the diagram. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> be the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground, measured in metres, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> varies as the blade rotates.</p>
</div>
<div class="specification">
<p>Find the</p>
</div>
<div class="specification">
<p>The blades of the turbine complete <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> rotations per minute under normal conditions, moving at a constant rate.</p>
</div>
<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> can be modelled by the following function. Time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is measured from the instant when the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> first passes <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math> and is measured in seconds.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi><mo>°</mo></mrow></mfenced><mo>,</mo><mo> </mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></p>
</div>
<div class="specification">
<p>Looking through his window, Tim has a partial view of the rotating wind turbine. The position of his window means that he cannot see any part of the wind turbine that is <strong>more than</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">100</mn><mo mathvariant="bold"> </mo><mtext mathvariant="bold">m</mtext></math> above the ground. This is illustrated in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, it takes for the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> to make one complete rotation under these conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle, in degrees, that the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> turns through in one second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>5</mn></math>, clearly labelling the coordinates of the maximum and minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is above a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>m</mtext></math>, during each complete rotation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At any given instant, find the probability that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is visible from Tim’s window.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wind speed increases. The blades rotate at twice the speed, but still at a constant rate.</p>
<p>At any given instant, find the probability that Tim can see point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> from his window. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The Texas Star is a Ferris wheel at the state fair in Dallas. The Ferris wheel has a diameter of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>m</mtext></math>. To begin the ride, a passenger gets into a chair at the lowest point on the wheel, which is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>7</mn><mo> </mo><mtext>m</mtext></math> above the ground, as shown in the following diagram. A ride consists of multiple revolutions, and the Ferris wheel makes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> revolutions per minute.</p>
<p style="text-align: center;"><img src=""></p>
<p>The height of a chair above the ground, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, measured in metres, during a ride on the Ferris wheel can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>a</mi><mo> </mo><mi>cos</mi><mo>(</mo><mi>b</mi><mi>t</mi><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, in seconds, since a passenger began their ride.</p>
</div>
<div class="specification">
<p>Calculate the value of</p>
</div>
<div class="specification">
<p>A ride on the Ferris wheel lasts for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> minutes in total.</p>
</div>
<div class="specification">
<p>For exactly one ride on the Ferris wheel, suggest</p>
</div>
<div class="specification">
<p>Big Tex is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>.</mo><mn>7</mn></math> metre-tall cowboy statue that stands on the horizontal ground next to the Ferris wheel.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><sup><br>[Source: Aline Escobar., n.d. Cowboy. [image online] Available at: <a href="https://thenounproject.com/search/?q=cowboy&i=1080130">https://thenounproject.com/search/?q=cowboy&i=1080130</a><br>This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) <br><a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a> [Accessed 13/05/2021]. Source adapted.]</sup></p>
</div>
<div class="specification">
<p>There is a plan to relocate the Texas Star Ferris wheel onto a taller platform which will increase the maximum height of the Ferris wheel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>65</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>. This will change the value of one parameter, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>, found in part (a).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of revolutions of the Ferris wheel per ride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>an appropriate domain for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>an appropriate range for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>, determine the length of time during one revolution of the Ferris wheel for which the chair is higher than the cowboy statue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify which parameter will change.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the new value of the parameter identified in part (e)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = (2x + 2)(5 - {x^2})">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>5</mn>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {5^x} + 6x - 6">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mn>5</mn>
<mi>x</mi>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>6</mn>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <strong>exact </strong>value of each of the zeros of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand the expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b)(ii) to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is increasing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Draw </strong>the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 \leqslant x \leqslant 3">
<mo>−</mo>
<mn>3</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40 \leqslant y \leqslant 20">
<mo>−</mo>
<mn>40</mn>
<mo>⩽</mo>
<mi>y</mi>
<mo>⩽</mo>
<mn>20</mn>
</math></span>. Use a scale of 2 cm to represent 1 unit on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and 1 cm to represent 5 units on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the point of intersection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A pan, in which to cook a pizza, is in the shape of a cylinder. The pan has a diameter of 35 cm and a height of 0.5 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.14.51.png" alt="M17/5/MATSD/SP2/ENG/TZ1/04"></p>
</div>
<div class="specification">
<p>A chef had enough pizza dough to exactly fill the pan. The dough was in the shape of a sphere.</p>
</div>
<div class="specification">
<p>The pizza was cooked in a hot oven. Once taken out of the oven, the pizza was placed in a dining room.</p>
<p>The temperature, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span>, of the pizza, in degrees Celsius, °C, can be modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P(t) = a{(2.06)^{ - t}} + 19,{\text{ }}t \geqslant 0">
<mi>P</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>2.06</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>19</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is a constant and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time, in minutes, since the pizza was taken out of the oven.</p>
<p>When the pizza was taken out of the oven its temperature was 230 °C.</p>
</div>
<div class="specification">
<p>The pizza can be eaten once its temperature drops to 45 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this pan.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius of the sphere in cm, correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature that the pizza will be 5 minutes after it is taken out of the oven.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to the nearest second, the time since the pizza was taken out of the oven until it can be eaten.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of this model, state what the value of 19 represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2, for −1 < <em>x</em> < 3</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve for −1 < <em>x</em> < 3 and −2 < <em>y</em> < 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A teacher asks her students to make some observations about the curve.</p>
<p>Three students responded.<br><strong>Nadia</strong> said <em>“The x-intercept of the curve is between −1 and zero”.</em><br><strong>Rick</strong> said <em>“The curve is decreasing when x < 1 ”.</em><br><strong>Paula</strong> said <em>“The gradient of the curve is less than zero between x = 1 and x = 2 ”.</em></p>
<p>State the name of the student who made an <strong>incorrect</strong> observation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{dy}}}}{{{\text{dx}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>dy</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>dx</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2 = <em>k</em> has <strong>three</strong> solutions, find the possible values of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>At Grande Anse Beach the height of the water in metres is modelled by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(t) = p\cos (q \times t) + r">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>p</mi>
<mi>cos</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>q</mi>
<mo>×<!-- × --></mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>r</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the number of hours after 21:00 hours on 10 December 2017. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> , for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 72">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>72</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.10.26.png" alt="M17/5/MATME/SP2/ENG/TZ1/08"></p>
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(6.25,{\text{ }}0.6)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>6.25</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.6</mn>
<mo stretchy="false">)</mo>
</math></span> represents the first low tide and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(12.5,{\text{ }}1.5)">
<mrow>
<mtext>B</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>12.5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.5</mn>
<mo stretchy="false">)</mo>
</math></span> represents the next high tide.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>How much time is there between the first low tide and the next high tide?</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference in height between low tide and high tide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are two high tides on 12 December 2017. At what time does the second high tide occur?</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^2} - 2">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = {x^4} - 4{x^2} + 3">
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo>∘</mo>
<mi>g</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the following grid, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x)">
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo>∘</mo>
<mi>g</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 2.25">
<mn>0</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>2.25</mn>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_08.00.33.png" alt="M17/5/MATME/SP2/ENG/TZ2/06.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = k">
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo>∘</mo>
<mi>g</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
</math></span> has exactly two solutions, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 2.25">
<mn>0</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>2.25</mn>
</math></span>. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0.3{x^3} + \frac{{10}}{x} + {2^{ - x}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mi>x</mi>
</mfrac>
<mo>+</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider a second function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 2x - 3">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 7 \leqslant x \leqslant 4">
<mo>−</mo>
<mn>7</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>4</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 30 \leqslant y \leqslant 30">
<mo>−</mo>
<mn>30</mn>
<mo>⩽</mo>
<mi>y</mi>
<mo>⩽</mo>
<mn>30</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < 0">
<mi>x</mi>
<mo><</mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) > 0">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the solution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = g(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^3} + k{x^2} - 15x + 5">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>15</mn>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 21x + 7">
<mi>y</mi>
<mo>=</mo>
<mn>21</mn>
<mi>x</mi>
<mo>+</mo>
<mn>7</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 6">
<mi>k</mi>
<mo>=</mo>
<mn>6</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>, to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinates of the stationary points of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g’( - 1)">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence justify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is decreasing at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-coordinate of the local minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the straight line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>. Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mo>-</mo><mn>9</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>2</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> are points on <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> is the midpoint of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext></math>.</p>
</div>
<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> and passes through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math>.</p>
</div>
<div class="specification">
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext><mfenced><mrow><mi>k</mi><mo>,</mo><mo> </mo><mn>4</mn></mrow></mfenced></math> is on <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AM</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>45</mn></msqrt></math>, find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ANC</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 2\,{\text{sin}}\left( {3x} \right) + 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>4</mn>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 5f\left( {2x} \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>5</mn>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 10\,{\text{sin}}\left( {bx} \right) + c">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>10</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 12"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>12</mn> </math></span> has two solutions where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{4\pi }}{3}}"> <mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </math></span>. Find both solutions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of the quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>8</mn></mrow></mfenced></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mi>c</mi></mrow></mfenced></math>.</p>
</div>
<div class="specification">
<p>The vertex of the function is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>12</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>12</mn></math> has two solutions. The first solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>10</mn></math>.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for the axis of symmetry of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Use the symmetry</strong> of the graph to show that the second solution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>10</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>14</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>14</mn></math>. Use a scale of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the tangent <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> on your graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><mn>5</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><mo>-</mo><mn>6</mn></math>, state whether the function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, is increasing or decreasing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>a</mi></math>. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows a circular clockface with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>. The clock’s minute hand has a length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>cm</mtext></math>. The clock’s hour hand has a length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mtext>cm</mtext></math>.</p>
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>:</mo><mn>00</mn></math> pm the endpoint of the minute hand is at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and the endpoint of the hour hand is at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p> </p>
</div>
<div class="specification">
<p>Between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>:</mo><mn>00</mn></math> pm and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>:</mo><mn>13</mn></math> pm, the endpoint of the <strong>minute hand</strong> rotates through an angle, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>, from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>. This is illustrated in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A <strong>second</strong> clock is illustrated in the diagram below. The clock face has radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>cm</mtext></math> with minute and hour hands both of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>cm</mtext></math>. The time shown is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>:</mo><mn>00</mn></math> am. The bottom of the clock face is located <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>cm</mtext></math> above a horizontal bookshelf.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> centimetres, of the endpoint of the minute hand above the bookshelf is modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mn>10</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mn>13</mn><mo>,</mo><mo> </mo><mi>θ</mi><mo>≥</mo><mn>0</mn><mo>,</mo></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is the angle rotated by the minute hand from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>:</mo><mn>00</mn></math> am.</p>
</div>
<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> centimetres, of the endpoint of the <strong>hour hand</strong> above the bookshelf is modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mo>-</mo><mn>10</mn><mo> </mo><mi>cos</mi><mfenced><mfrac><mi>θ</mi><mn>12</mn></mfrac></mfenced><mo>+</mo><mn>13</mn><mo>,</mo><mo> </mo><mi>θ</mi><mo>≥</mo><mn>0</mn><mo>,</mo></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is the angle in degrees rotated by the minute hand from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>:</mo><mn>00</mn></math> am.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext></math> in degrees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> in degrees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the shaded sector, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOC</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of the endpoint of the minute hand above the bookshelf at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>:</mo><mn>00</mn></math> am.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>160</mn><mo>°</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>θ</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The endpoints of the minute hand and hour hand meet when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mi>k</mi></math>.</p>
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>Boris recorded the number of daylight hours on the first day of each month in a northern hemisphere town.</p>
<p>This data was plotted onto a scatter diagram. The points were then joined by a smooth curve, with minimum point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>8</mn><mo>)</mo></math> and maximum point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>6</mn><mo>,</mo><mo> </mo><mn>16</mn><mo>)</mo></math> as shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Let the curve in the diagram be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, measured in months, since Boris first recorded these values.</p>
<p>Boris thinks that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> might be modelled by a quadratic function.</p>
</div>
<div class="specification">
<p>Paula thinks that a better model is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo> </mo><mi>cos</mi><mo>(</mo><mi>b</mi><mi>t</mi><mo>)</mo><mo>+</mo><mi>d</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, for specific values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
</div>
<div class="specification">
<p>For Paula’s model, use the diagram to write down</p>
</div>
<div class="specification">
<p>The true maximum number of daylight hours was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> hours and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> minutes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one reason why a quadratic function would not be a good model for the number of hours of daylight per day, across a number of years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the amplitude.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the period.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the equation of the principal axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise find the equation of this model in the form:</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo> </mo><mi>cos</mi><mo>(</mo><mi>b</mi><mi>t</mi><mo>)</mo><mo>+</mo><mi>d</mi></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the first year of the model, find the length of time when there are more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> hours and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes of daylight per day.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage error in the maximum number of daylight hours Boris recorded in the diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The rate of change of the height <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>h</mi><mo>)</mo></math> of a ball above horizontal ground, measured in metres, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after it has been thrown and until it hits the ground, can be modelled by the equation</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>11</mn><mo>.</mo><mn>4</mn><mo>-</mo><mn>9</mn><mo>.</mo><mn>8</mn><mi>t</mi></math></p>
<p>The height of the ball when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> of the ball at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the ball hits the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p>For each student, the number of hours spent on social media (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>) and the number of IB Diploma points obtained (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>) are shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p>Use your graphic display calculator to find</p>
</div>
<div class="specification">
<p>Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between 3 and 30 hours on social media.</p>
<p>The equation of the regression line <em>y </em>on <em>x </em>for these ten female students is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="y = - \frac{2}{3}x + \frac{{125}}{3}.">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mrow>
<mn>125</mn>
</mrow>
<mn>3</mn>
</mfrac>
<mo>.</mo>
</math></span></p>
<p>An eleventh girl spent 34 hours on social media in the month before her IB Diploma examinations.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw a scatter diagram for these data. Use a scale of 2 cm to represent 5 hours on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and 2 cm to represent 10 points on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
<mrow>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean number of hours spent on social media;</p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
<mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
<mo stretchy="false">(</mo>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo stretchy="false">)</mo>
</math></span> on your scatter diagram and label this point M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for these eight male students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the given equation of the regression line to estimate the number of IB Diploma points that this girl obtained.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The braking distance of a vehicle is defined as the distance travelled from where the brakes are applied to the point where the vehicle comes to a complete stop.</p>
<p>The speed, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\,{\text{m}}\,{{\text{s}}^{ - 1}}">
<mi>s</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, and braking distance, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d\,{\text{m}}">
<mi>d</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
</math></span>, of a truck were recorded. This information is summarized in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>This information was used to create Model A, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> is a function of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> ≥ 0.</p>
<p style="text-align: center;">Model A: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d\left( s \right) = p{s^2} + qs">
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>s</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>p</mi>
<mrow>
<msup>
<mi>s</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>q</mi>
<mi>s</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{Z}">
<mi>q</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span></p>
<p>At a speed of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6\,{\text{m}}\,{{\text{s}}^{ - 1}}">
<mn>6</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, Model A can be represented by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6p + q = 2">
<mn>6</mn>
<mi>p</mi>
<mo>+</mo>
<mi>q</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>Additional data was used to create Model B, <strong>a revised model</strong> for the braking distance of a truck.</p>
<p style="text-align: center;">Model B: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d\left( s \right) = 0.95{s^2} - 3.92s">
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>s</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.95</mn>
<mrow>
<msup>
<mi>s</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>3.92</mn>
<mi>s</mi>
</math></span></p>
</div>
<div class="specification">
<p>The actual braking distance at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20\,{\text{m}}\,{{\text{s}}^{ - 1}}">
<mn>20</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="320\,{\text{m}}">
<mn>320</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a second equation to represent Model A, when the speed is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10\,{\text{m}}\,{{\text{s}}^{ - 1}}">
<mn>10</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the vertex of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = d\left( s \right)">
<mi>y</mi>
<mo>=</mo>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>s</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the values in the table and your answer to part (b), sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = d\left( s \right)">
<mi>y</mi>
<mo>=</mo>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>s</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> ≤ 10 and −10 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> ≤ 60, clearly showing the vertex.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, identify why Model A may not be appropriate at lower speeds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Model B to calculate an estimate for the braking distance at a speed of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20\,{\text{m}}\,{{\text{s}}^{ - 1}}">
<mn>20</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage error in the estimate in part (e).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is found that once a driver realizes the need to stop their vehicle, 1.6 seconds will elapse, on average, before the brakes are engaged. During this reaction time, the vehicle will continue to travel at its original speed.</p>
<p>A truck approaches an intersection with speed <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\,{\text{m}}\,{{\text{s}}^{ - 1}}">
<mi>s</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>. The driver notices the intersection’s traffic lights are red and they must stop the vehicle within a distance of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="330\,{\text{m}}">
<mn>330</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p>Using model B and taking reaction time into account, calculate the maximum possible speed of the truck if it is to stop before the intersection.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{48}}{x} + k{x^2} - 58">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>48</mn>
</mrow>
<mi>x</mi>
</mfrac>
<mo>+</mo>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>58</mn>
</math></span>, where <em>x</em> > 0 and <em>k</em> is a constant.</p>
<p>The graph of the function passes through the point with coordinates (4 , 2).</p>
</div>
<div class="specification">
<p>P is the minimum point of the graph of <em>f </em>(<em>x</em>).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your value of <em>k</em> , find <em>f</em> ′(<em>x</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Use your answer</strong> to part (b) to show that the minimum value of <em>f</em>(<em>x</em>) is −22 .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for 0 < <em>x</em> ≤ 6 and −30 ≤ <em>y</em> ≤ 60.<br>Clearly indicate the minimum point P and the <em>x</em>-intercepts on your graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A cafe makes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> litres of coffee each morning. The cafe’s profit each morning, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, measured in dollars, is modelled by the following equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mfrac><mi>x</mi><mn>10</mn></mfrac><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>3</mn><mn>100</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is a positive constant.</p>
</div>
<div class="specification">
<p>The cafe’s manager knows that the cafe makes a profit of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>426</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> litres of coffee are made in a morning.</p>
</div>
<div class="specification">
<p>The manager of the cafe wishes to serve as many customers as possible.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>C</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><msup><mi>k</mi><mn>3</mn></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> is a constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to find how much coffee the cafe should make each morning to maximize its profit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, labelling the maximum point and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts with their coordinates.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum amount of coffee the cafe can make that will not result in a loss of money for the morning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{16}}{x}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>16</mn>
</mrow>
<mi>x</mi>
</mfrac>
</math></span>. The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8">
<mi>x</mi>
<mo>=</mo>
<mn>8</mn>
</math></span>.</p>
</div>
<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> can be expressed in the form <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} 8 \\ 2 \end{array}} \right) + t">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
</math></span><em><strong>u</strong></em>.</p>
</div>
<div class="specification">
<p>The direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em><strong>u</strong></em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the obtuse angle formed by the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8"> <mi>x</mi> <mo>=</mo> <mn>8</mn> </math></span> and the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The depth of water in a port is modelled by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d(t) = p\cos qt + 7.5">
<mi>d</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>p</mi>
<mi>cos</mi>
<mo><!-- --></mo>
<mi>q</mi>
<mi>t</mi>
<mo>+</mo>
<mn>7.5</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 12">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>12</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the number of hours after high tide.</p>
<p>At high tide, the depth is 9.7 metres.</p>
<p>At low tide, which is 7 hours later, the depth is 5.3 metres.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to find the depth of the water 10 hours after high tide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - {x^4} + a{x^2} + 5">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is a constant. Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.47.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>It is known that at the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> is horizontal.</p>
</div>
<div class="specification">
<p>There are two other points on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at which the tangent is horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
<mi>a</mi>
<mo>=</mo>
<mn>8</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinates of these two points;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the intervals where the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> is positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of possible solutions to the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>5</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = m">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>m</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}">
<mi>m</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, has four solutions. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} + 2x + 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = x - 5">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>5</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(8)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x)">
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x) = 0">
<mo stretchy="false">(</mo>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mfrac><mn>50</mn><mi>x</mi></mfrac><mo>,</mo><mo> </mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn><mo>.</mo></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a local minimum at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a water wheel with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> metres. Water flows into buckets, turning the wheel clockwise at a constant speed.</p>
<p><br>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of the top of a bucket above the ground <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after it passes through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>13</mn><mo>+</mo><mn>8</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>18</mn></mfrac><mi>t</mi></mrow></mfenced><mo>-</mo><mn>6</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>18</mn></mfrac><mi>t</mi></mrow></mfenced></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>A bucket moves around to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> which is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>06</mn></math> metres above the ground. It takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> seconds for the top of this bucket to go from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>
<div class="specification">
<p>The chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>0</mn></math> metres, correct to three significant figures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of seconds it takes for the water wheel to complete one rotation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the number of rotations the water wheel makes in one hour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the rate of change of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> when the top of the bucket is at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Scott purchases food for his dog in large bags and feeds the dog the same amount of dog food each day. The amount of dog food left in the bag at the end of each day can be modelled by an arithmetic sequence.</p>
<p>On a particular day, Scott opened a new bag of dog food and fed his dog. By the end of the third day there were <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>115</mn><mo>.</mo><mn>5</mn></math> cups of dog food remaining in the bag and at the end of the eighth day there were <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>108</mn></math> cups of dog food remaining in the bag.</p>
</div>
<div class="specification">
<p>Find the number of cups of dog food</p>
</div>
<div class="specification">
<p>In <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2021</mn></math>, Scott spent <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>625</mn></math> on dog food. Scott expects that the amount he spends on dog food will increase at an annual rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>4</mn><mo>%</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>fed to the dog per day.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>remaining in the bag at the end of the first day.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of days that Scott can feed his dog with one bag of food.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amount that Scott expects to spend on dog food in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2025</mn></math>. Round your answer to the nearest dollar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mn>10</mn></munderover><mfenced><mrow><mn>625</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>064</mn><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></msup></mrow></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what the value in part (d)(i) represents in this context.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the appropriateness of modelling this scenario with a geometric sequence.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 5{x^2} + 6x - 3 + \frac{1}{x}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mi>x</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
<mi>x</mi>
<mo>></mo>
<mn>0</mn>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 5{x^2} + 6x - 3 + \frac{1}{x}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mi>x</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
<mi>x</mi>
<mo>></mo>
<mn>0</mn>
</math></span>, models the path of a river, as shown on the following map, where both axes represent distance and are measured in kilometres. On the same map, the location of a highway is defined by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 0.5{\left( 3 \right)^{ - x}} + 1">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The origin, O(0, 0) , is the location of the centre of a town called Orangeton.</p>
<p>A straight footpath, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span>, is built to connect the centre of Orangeton to the river at the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Bridges are located where the highway crosses the river.</p>
</div>
<div class="specification">
<p>A straight road is built from the centre of Orangeton, due north, to connect the town to the highway.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from the centre of Orangeton to the point at which the road meets the highway.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This straight road crosses the highway and then carries on due north.</p>
<p>State whether the straight road will ever cross the river. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Note: In this question, distance is in millimetres.</strong></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = x + a\sin \left( {x - \frac{\pi }{2}} \right) + a">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>x</mi>
<mo>+</mo>
<mi>a</mi>
<mi>sin</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>a</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \geqslant 0">
<mi>x</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> passes through the origin. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
</math></span> be any point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2k\pi ">
<mn>2</mn>
<mi>k</mi>
<mi>π<!-- π --></mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{N}">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">N</mi>
</mrow>
</math></span>. A straight line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> passes through all the points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Diagram 1 shows a saw. The length of the toothed edge is the distance AB.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_15.10.11.png" alt="N17/5/MATME/SP2/ENG/TZ0/10.d_01"></p>
<p>The toothed edge of the saw can be modelled using the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>. Diagram 2 represents this model.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_15.11.17.png" alt="N17/5/MATME/SP2/ENG/TZ0/10.d_02"></p>
<p>The shaded part on the graph is called a tooth. A tooth is represented by the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>, between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_{k + 1}}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2\pi ) = 2\pi ">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_0}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mn>0</mn>
</msub>
</mrow>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_1}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance between the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_{k + 1}}">
<mrow>
<msub>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
<mn>2</mn>
<mi>π</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A saw has a toothed edge which is 300 mm long. Find the number of complete teeth on this saw.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The Voronoi diagram below shows four supermarkets represented by points with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>6</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>. The vertices <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Z</mtext></math> are also shown. All distances are measured in kilometres.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>(XY)</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>−</mo><mi>x</mi></math> and the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>(YZ)</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>.</mo><mn>5</mn></math>.</p>
</div>
<div class="specification">
<p>The coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Y</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> and the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Z</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>,</mo><mo> </mo><mn>7</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>A town planner believes that the larger the area of the Voronoi cell <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>XYZ</mtext></math>, the more people will shop at supermarket <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the midpoint of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BD]</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>(XZ)</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the exact length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[YZ]</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the exact length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[XY]</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>32</mn></msqrt></math>, find the size of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>XŶZ</mtext></math> in degrees.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>XYZ</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State one criticism of this interpretation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All lengths in this question are in metres.</strong></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 0.8{x^2} + 0.5">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>0.8</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>0.5</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.5 \leqslant x \leqslant 0.5">
<mo>−<!-- − --></mo>
<mn>0.5</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>0.5</mn>
</math></span>. Mark uses <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> as a model to create a barrel. The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 0.5">
<mi>x</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>0.5</mn>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.5">
<mi>x</mi>
<mo>=</mo>
<mn>0.5</mn>
</math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_15.49.19.png" alt="N16/5/MATME/SP2/ENG/TZ0/06"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to find the volume of the barrel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The empty barrel is being filled with water. The volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}{{\text{m}}^3}">
<mi>V</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span> of water in the barrel after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> minutes is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = 0.8(1 - {{\text{e}}^{ - 0.1t}})">
<mi>V</mi>
<mo>=</mo>
<mn>0.8</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>0.1</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>. How long will it take for the barrel to be half-full?</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 12\,\,{\text{cos}}\,x - 5\,\,{\text{sin}}\,x,\,\, - \pi \leqslant x \leqslant 2\pi ">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>5</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−<!-- − --></mo>
<mi>π<!-- π --></mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>2</mn>
<mi>π<!-- π --></mi>
</math></span>, be a periodic function with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = f\left( {x + 2\pi } \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>π<!-- π --></mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">There is a maximum point at A. The minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is −13 .</p>
</div>
<div class="specification">
<p>A ball on a spring is attached to a fixed point O. The ball is then pulled down and released, so that it moves back and forth vertically.</p>
<p style="text-align: center;"><img src=""></p>
<p>The distance, <em>d</em> centimetres, of the centre of the ball from O at time <em>t</em> seconds, is given by</p>
<p style="padding-left: 90px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d\left( t \right) = f\left( t \right) + 17,\,\,0 \leqslant t \leqslant 5.">
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>17</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>5.</mn>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, write down the amplitude.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, write down the period.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\,\,{\text{cos}}\,\left( {x + r} \right)"> <mi>p</mi> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mi>r</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum speed of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the first time when the ball’s speed is changing at a rate of 2 cm s<sup>−2</sup>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{3}{x^3} + \frac{3}{4}{x^2} - x - 1">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent line to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>. Give the equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + d = 0">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>d</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> where, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{Z}">
<mi>d</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a\sin bx + c">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 12">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>12</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.53.31.png" alt="N16/5/MATME/SP2/ENG/TZ0/10"></p>
<p style="text-align: center;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> and a maximum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(9,{\text{ }}17)">
<mo stretchy="false">(</mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>17</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>. The maximum point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11.5,{\text{ }}17)">
<mo stretchy="false">(</mo>
<mn>11.5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>17</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> changes from concave-up to concave-down when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w">
<mi>x</mi>
<mo>=</mo>
<mi>w</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<p>(ii) Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
</math></span>.</p>
<p>(iii) Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<p>(ii) Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span>.</p>
<p>(ii) Hence or otherwise, find the maximum positive rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A theatre set designer is designing a piece of flat scenery in the shape of a hill. The scenery is formed by a curve between two vertical edges of unequal height. One edge is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> metres high and the other is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre high. The width of the scenery is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> metres.</p>
<p>A coordinate system is formed with the origin at the foot of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> metres high edge. In this coordinate system the highest point of the cross‐section is at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p>A set designer wishes to work out an approximate value for the area of the scenery <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>A</mi><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>In order to obtain a more accurate measure for the area the designer decides to model the curved edge with the polynomial <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi><mo> </mo><mo> </mo><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres is the height of the curved edge a horizontal distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>m</mtext></math> from the origin.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo><</mo><mn>21</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By dividing the area between the curve and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>‐axis into two trapezoids of unequal width show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>></mo><mn>14</mn><mo>.</mo><mn>5</mn></math>, justifying the direction of the inequality.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use differentiation to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi><mo>+</mo><mi>c</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine two other linear equations in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the expression found in (f) to calculate a value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>At an amusement park, a Ferris wheel with diameter 111 metres rotates at a constant speed. The bottom of the wheel is <em>k</em> metres above the ground. A seat starts at the bottom of the wheel.</p>
<p style="text-align: center;"><img src=""></p>
<p>The wheel completes one revolution in 16 minutes.</p>
</div>
<div class="specification">
<p>After <em>t</em> minutes, the height of the seat above ground is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( t \right) = 61.5 + a\,{\text{cos}}\left( {\frac{\pi }{8}t} \right)">
<mi>h</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>61.5</mn>
<mo>+</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π<!-- π --></mi>
<mn>8</mn>
</mfrac>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, for 0 ≤ <em>t</em> ≤ 32.</p>
</div>
<div class="question">
<p>Find when the seat is 30 m above the ground for the third time.</p>
</div>
<br><hr><br><div class="specification">
<p>A new concert hall was built with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> seats in the first row. Each subsequent row of the hall has two more seats than the previous row. The hall has a total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> rows.</p>
</div>
<div class="specification">
<p>Find:</p>
</div>
<div class="specification">
<p>The concert hall opened in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math>. The average number of visitors per concert during that year was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>584</mn></math>. In <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2020</mn></math>, the average number of visitors per concert increased by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo>%</mo></math>.</p>
</div>
<div class="specification">
<p>The concert organizers use this data to model future numbers of visitors. It is assumed that the average number of visitors per concert will continue to increase each year by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo>%</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the number of seats in the last row.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the total number of seats in the concert hall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the average number of visitors per concert in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2020</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the first year in which this model predicts the average number of visitors per concert will exceed the total seating capacity of the concert hall.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is assumed that the concert hall will host <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> concerts each year.</p>
<p>Use the average number of visitors per concert per year to predict the <strong>total</strong> number of people expected to attend the concert hall from when it opens until the end of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2025</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 \leqslant x \leqslant - 2">
<mo>−<!-- − --></mo>
<mn>6</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
</math></span>.</p>
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 6,{\text{ }}6)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}6)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>. There is a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 4,{\text{ }}0)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p><img src=""></p>
</div>
<div class="question">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>A hollow chocolate box is manufactured in the form of a right prism with a regular hexagonal base. The height of the prism is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo> </mo><mtext>cm</mtext></math>, and the top and base of the prism have sides of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>cm</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>60</mn><mo>°</mo><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math>, show that the area of the base of the box is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the total external surface area of the box is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>, show that the volume of the box may be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>300</mn><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>-</mo><mfrac><mn>9</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>300</mn><msqrt><mn>3</mn></msqrt><mi>x</mi><mo>-</mo><mfrac><mn>9</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>16</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> which maximizes the volume of the box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the maximum possible volume of the box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The box will contain spherical chocolates. The production manager assumes that they can calculate the exact number of chocolates in each box by dividing the volume of the box by the volume of a single chocolate and then rounding down to the nearest integer.</p>
<p>Explain why the production manager is incorrect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br>