File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 2/HL-paper2html
File size: 250.12 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">EspaƱol</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A wind turbine is designed so that the rotation of the blades generates electricity. The turbine is built on horizontal ground and is made up of a vertical tower and three blades.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is on the base of the tower directly below point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at the top of the tower. The height of the tower, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo> </mo><mtext>m</mtext></math>. The blades of the turbine are centred at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and are each of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo> </mo><mtext>m</mtext></math>. This is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The end of one of the blades of the turbine is represented by point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> on the diagram. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> be the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground, measured in metres, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> varies as the blade rotates.</p>
</div>
<div class="specification">
<p>Find the</p>
</div>
<div class="specification">
<p>The blades of the turbine complete <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> rotations per minute under normal conditions, moving at a constant rate.</p>
</div>
<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> can be modelled by the following function. Time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is measured from the instant when the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> first passes <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math> and is measured in seconds.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi><mo>°</mo></mrow></mfenced><mo>,</mo><mo> </mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, it takes for the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> to make one complete rotation under these conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle, in degrees, that the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> turns through in one second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>ā¤</mo><mi>t</mi><mo>ā¤</mo><mn>5</mn></math>, clearly labelling the coordinates of the maximum and minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is above a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>m</mtext></math>, during each complete rotation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wind speed increases and the blades rotate faster, but still at a constant rate.</p>
<p>Given that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is now higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>110</mn><mo> </mo><mtext>m</mtext></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> second during each complete rotation, find the time for one complete rotation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The cross-sectional view of a tunnel is shown on the axes below. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>8</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mn>2</mn><mo>ā¤</mo><mi>x</mi><mo>ā¤</mo><mn>8</mn></math>, relative to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>4</mn><mo>)</mo></math>, and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>8</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>Find the height of the tunnel when</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the maximum height of the tunnel.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule, with three intervals, to estimate the cross-sectional area of the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integral which can be used to find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cross-sectional area of the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigating the relationship between chemical reactions and temperature finds the Arrhenius equation on the internet.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>c</mi><mi>T</mi></mfrac></mrow></msup></math></p>
<p>This equation links a variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> with the temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> are positive constants and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>The Arrhenius equation predicts that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math> is a straight line.</p>
</div>
<div class="specification">
<p>Write down</p>
</div>
<div class="specification">
<p>The following data are found for a particular reaction, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is measured in Kelvin and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cm</mtext><mn>3</mn></msup><mo> </mo><msup><mtext>mol</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mtext>s</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Find an estimate of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>k</mi></mrow><mrow><mo>d</mo><mi>T</mi></mrow></mfrac></math> is always positive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>ā</mo><mo>ā</mo></mrow></munder><mi>k</mi><mo>=</mo><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>T</mi><mo>ā</mo><mn>0</mn></mrow></munder><mi>k</mi><mo>=</mo><mn>0</mn></math>, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) the gradient of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>;</p>
<p>(ii) the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of this line in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>ā</mo><mi>k</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>T</mi></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<p>It is not required to state units for this value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{cot}}\left( {\frac{\pi }{4} - x} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mi>Ļ<!-- Ļ --></mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>cot</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>Ļ<!-- Ļ --></mi>
<mn>4</mn>
</mfrac>
<mo>ā<!-- ā --></mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {\text{tan}}\,x">
<mi>t</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>Ī±<!-- Ī± --></mi>
</math></span>, <em>Ī²</em> be the roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = k">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>k</mi>
</math></span>, where 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> < 1.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{5\pi }}{8} \leqslant x \leqslant \frac{\pi }{8}">
<mo>ā</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>Ļ</mi>
</mrow>
<mn>8</mn>
</mfrac>
<mo>ā©½</mo>
<mi>x</mi>
<mo>ā©½</mo>
<mfrac>
<mi>Ļ</mi>
<mn>8</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph, explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is a function on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has no inverse on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is not a function for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{3\pi }}{4} \leqslant x \leqslant \frac{\pi }{4}">
<mo>ā</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>Ļ</mi>
</mrow>
<mn>4</mn>
</mfrac>
<mo>ā©½</mo>
<mi>x</mi>
<mo>ā©½</mo>
<mfrac>
<mi>Ļ</mi>
<mn>4</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>t</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>ā</mo>
<mi>t</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for <em>t</em> ā¤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>Ī±</mi>
</math></span> and <em>Ī²</em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>Ī±</mi>
</math></span> + <em>Ī²</em> < ā2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Charlotte decides to model the shape of a cupcake to calculate its volume.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>From rotating a photograph of her cupcake she estimates that its cross-section passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>7</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>, where all units are in centimetres. The cross-section is symmetrical in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, as shown below:</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She models the section from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> as a straight line.</p>
</div>
<div class="specification">
<p>Charlotte models the section of the cupcake that passes through the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo><mo>,</mo><mo> </mo><mo>(</mo><mn>7</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> with a quadratic curve.</p>
</div>
<div class="specification">
<p>Charlotte thinks that a quadratic with a maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>)</mo></math> and that passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>7</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> would be a better fit.</p>
</div>
<div class="specification">
<p>Believing this to be a better model for her cupcake, Charlotte finds the volume of revolution about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to estimate the volume of the cupcake.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line passing through these two points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression quadratic curve for these four points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the gradient of this curve when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>, explain why it may not be a good model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the new model.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for her estimate of the volume as a sum of two integrals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of Charlotteās estimate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An environmental scientist is asked by a river authority to model the effect of a leak from a power plant on the mercury levels in a local river. The variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> measures the concentration of mercury in micrograms per litre.</p>
<p>The situation is modelled using the second order differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>x</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mn>3</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>0</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math> is the time measured in days since the leak started. It is known that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>If the mercury levels are greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math> micrograms per litre, fishing in the river is considered unsafe and is stopped.</p>
</div>
<div class="specification">
<p>The river authority decides to stop people from fishing in the river for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> longer than the time found from the model.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the system of coupled first order equations:</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math></p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi></math></p>
<p style="text-align:left;">can be written as the given second order differential equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the eigenvalues of the system of coupled first order equations given in part (a).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact solution of the second order differential equation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, labelling the maximum point of the graph with its coordinates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to calculate the total amount of time when fishing should be stopped.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down one reason, with reference to the context, to support this decision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>Ļ<!-- Ļ --></mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
<mi>t</mi>
<mo>ā©¾<!-- ā©¾ --></mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in seconds.</p>
</div>
<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>Ļ<!-- Ļ --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>Ć<!-- Ć --></mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The average power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
<mi>t</mi>
<mo>=</mo>
<mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
<msubsup>
<mo>ā«<!-- ā« --></mo>
<mn>0</mn>
<mi>T</mi>
</msubsup>
<mrow>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
<mi>T</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ā¤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ā¤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval 0 ā¤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ā¤ 0.02 for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> ā„ 3.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span>(0.007).</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</math></span> > 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> > 0.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>ā</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>d</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> > 0, use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>ā<!-- ā --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo>ā”<!-- ā” --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>ā<!-- ā --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>ā<!-- ā --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo>ā”<!-- ā” --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>ā<!-- ā --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>ā<!-- ā --></mo>
<mi>D</mi>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>ā<!-- ā --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo>ā”<!-- ā” --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>ā<!-- ā --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>ā<!-- ā --></mo>
<mrow>
<mo>]</mo>
<mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi mathvariant="normal">ā<!-- ā --></mi>
</mrow>
<mo>[</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>ā</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>ā</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
<msup>
<mi>g</mi>
<mo>ā²</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>ā²</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>ā</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>ā²</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>At an archery tournament, a particular competition sees a ball launched into the air while an archer attempts to hit it with an arrow.</p>
<p>The path of the ball is modelled by the equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><msub><mi>u</mi><mi>x</mi></msub></mtd></mtr><mtr><mtd><msub><mi>u</mi><mi>y</mi></msub><mo>-</mo><mn>5</mn><mi>t</mi></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is the horizontal displacement from the archer and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> is the vertical displacement from the ground, both measured in metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time, in seconds, since the ball was launched.</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub></math> is the horizontal component of the initial velocity</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub></math> is the vertical component of the initial velocity.</li>
</ul>
<p>In this question both the ball and the arrow are modelled as single points. The ball is launched with an initial velocity such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>x</mi></msub><mo>=</mo><mn>8</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>y</mi></msub><mo>=</mo><mn>10</mn></math>.</p>
</div>
<div class="specification">
<p>An archer releases an arrow from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>. The arrow is modelled as travelling in a straight line, in the same plane as the ball, with speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and an angle of elevation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>°</mo></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the initial speed of the ball.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation of the ball as it is launched.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum height reached by the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the ground is horizontal and the ball is not hit by the arrow, find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> coordinate of the point where the ball lands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the path of the ball, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the two positions where the path of the arrow intersects the path of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time when the arrow should be released to hit the ball before the ball reaches its maximum height.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{si}}{{\text{n}}^3}\,x + {\text{ln}}\,x">
<mi>y</mi>
<mo>=</mo>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1 + {\text{cos}}\,x">
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> on the following axes for 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ā¤ 9.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^3}\,x + {\text{ln}}\,x - {\text{cos}}\,x - 1 < 0">
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>ā</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>ā</mo>
<mn>1</mn>
<mo><</mo>
<mn>0</mn>
</math></span> in the range 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ā¤ 9.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi ">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mi>x</mi>
</msqrt>
</mrow>
<mrow>
<mi>sin</mi>
<mo>ā”<!-- ā” --></mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mi>Ļ<!-- Ļ --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the region bounded by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>Ļ<!-- Ļ --></mi>
<mn>6</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>Ļ<!-- Ļ --></mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-coordinate of the minimum point on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> satisfies the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x">
<mi>tan</mi>
<mo>ā”</mo>
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> where the normal to the graph is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x">
<mi>y</mi>
<mo>=</mo>
<mo>ā</mo>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
<mn>2</mn>
<mi>Ļ</mi>
</math></span> radians about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Beth goes for a run. She uses a fitness app to record her distance, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span>ākm, and time, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>āminutes. A graph of her distance against time is shown.</p>
<p><img src=""></p>
<p>Beth runs at a constant speed of 2.3āms<sup>ā1</sup> for the first 8 minutes.</p>
</div>
<div class="specification">
<p>Between 8 and 20 minutes, her distance can be modeled by a cubic function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = a{t^3} + b{t^2} + ct + d">
<mi>s</mi>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>t</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mi>t</mi>
<mo>+</mo>
<mi>d</mi>
</math></span>. She reads the following data from her app.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Hence find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate her distance after 8 minutes. Give your answer in km, correct to 3 decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the distance she runs in 20 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>her maximum speed, in ms<sup>ā1</sup>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 3x\arccos (x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo>ā”<!-- ā” --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x \leqslant 1">
<mo>ā<!-- ā --></mo>
<mn>1</mn>
<mo>ā©½<!-- ā©½ --></mo>
<mi>x</mi>
<mo>ā©½<!-- ā©½ --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo>ā”</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>></mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Jorge is carefully observing the rise in sales of a new app he has created.</p>
<p>The number of sales in the first four months is shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jorge believes that the increase is exponential and proposes to model the number of sales <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> in month <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with the equation</p>
<p style="text-align: left; padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mrow><mi>r</mi><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mi>A</mi><mo>,</mo><mo>ā</mo><mi>r</mi><mo>ā</mo><mi mathvariant="normal">ā</mi></math></p>
</div>
<div class="specification">
<p>Jorge plans to adapt Eulerās method to find an approximate value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p>With a step length of one month the solution to the differential equation can be approximated using Eulerās method where</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>ā</mo><mi>N</mi><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>Ć</mo><mi>N</mi><mo>'</mo><mfenced><mi>n</mi></mfenced><mo>,</mo><mo> </mo><mi>n</mi><mo>ā</mo><mi mathvariant="normal">ā</mi></math></p>
</div>
<div class="specification">
<p>Jorge decides to take the mean of these values as the approximation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> for his model. He also decides the graph of the model should pass through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>52</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>The sum of the square residuals for these points for the least squares regression model is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>555</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jorgeās model satisfies the differential equation</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>N</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>r</mi><mi>N</mi></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>ā</mo><mfrac><mrow><mi>N</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow><mrow><mi>N</mi><mfenced><mi>n</mi></mfenced></mrow></mfrac></math></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find three approximations for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation for Jorgeās model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the sum of the square residuals for Jorgeās model using the values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment how well Jorgeās model fits the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give two possible sources of error in the construction of his model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>.</p>
</div>
<div class="specification">
<p>The shape of a piece of metal can be modelled by the region bounded by the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>, as shown in the following diagram. The units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> axes are measured in metres.</p>
<p style="text-align: center;"><img src=""></p>
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><msqrt><mi>x</mi></msqrt><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>16</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>16</mn><mo><</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mtd></mtr></mtable></math></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained from the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> by:</p>
<ul>
<li>a stretch scale factor of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> direction,</li>
<li>followed by a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> direction,</li>
<li>followed by a translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> units to the right.</li>
</ul>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>825</mn><mo>)</mo></math>. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> under the given transformations and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>The piecewise function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>{</mo><mtable><mtr><mtd><mi>h</mi><mfenced><mi>x</mi></mfenced><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mi>b</mi><mo> </mo><mo> </mo></mtd><mtd><mi>a</mi><mo><</mo><mi>x</mi><mo>≤</mo><mi>p</mi></mtd></mtr></mtable></math></p>
</div>
<div class="specification">
<p>The area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0627292</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math> correct to six significant figures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the equation of the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>25</mn><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region on the diagram.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br>