File "HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 2/HL-paper1html
File size: 275.16 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =&nbsp; - {x^3}">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> is transformed onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 33 - 0.08{x^3}">
  <mi>y</mi>
  <mo>=</mo>
  <mn>33</mn>
  <mo>−<!-- − --></mo>
  <mn>0.08</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> by a translation&nbsp;of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> units vertically and a stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis of scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The outer dome of a large cathedral has the shape of a hemisphere of diameter 32 m, supported by vertical walls of height 17 m. It is also supported by an inner dome which can be modelled by rotating the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 33 - 0.08{x^3}">
  <mi>y</mi>
  <mo>=</mo>
  <mn>33</mn>
  <mo>−</mo>
  <mn>0.08</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> through 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> = 33, as indicated in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>Find the volume of the space between the two domes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is given on the following set of axes. The graph passes through the&nbsp;points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>&#8722;</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mn>1</mn><mo>)</mo></math>, and has a horizontal asymptote at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<p><img src=""></p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>f</mi><mo>(</mo><mi>x</mi><mo>&#8722;</mo><mn>2</mn><mo>)</mo><mo>+</mo><mn>4</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the same set of axes draw the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, showing any intercepts and asymptotes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The strength of earthquakes is measured on the Richter magnitude scale, with values&nbsp;typically between&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>&nbsp;is the most severe.</p>
<p>The Gutenberg&ndash;Richter equation gives the average number of earthquakes per year,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>,&nbsp;which have a magnitude of at least&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>. For a particular region the equation is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo>&#8202;</mo><mi>N</mi><mo>=</mo><mi>a</mi><mo>-</mo><mi>M</mi></math>, for some&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
<p>This region has an average of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math>&nbsp;earthquakes per year with a magnitude of at least&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>The equation for this region can also be written as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><mi>b</mi><msup><mn>10</mn><mi>M</mi></msup></mfrac></math>.</p>
</div>

<div class="specification">
<p>Within this region the most severe earthquake recorded had a magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
</div>

<div class="specification">
<p>The number of earthquakes in a given year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> can be modelled&nbsp;by a Poisson distribution, with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>. The number of earthquakes in one year is independent&nbsp;of the number of earthquakes in any other year.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the number of years between the earthquake of magnitude <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> and the next&nbsp;earthquake of at least this magnitude.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the average number of earthquakes in a year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>Y</mi><mo>&gt;</mo><mn>100</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The rate, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, of a chemical reaction at a fixed temperature is related to the concentration of two compounds, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>, by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = k{B^x}{C^y}">
  <mi>A</mi>
  <mo>=</mo>
  <mi>k</mi>
  <mrow>
    <msup>
      <mi>B</mi>
      <mi>x</mi>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mi>C</mi>
      <mi>y</mi>
    </msup>
  </mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
  <mi>k</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>A scientist measures the three variables three times during the reaction and obtains the following values.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{ax + b}}{{cx + d}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>a</mi>
      <mi>x</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mi>c</mi>
      <mi>x</mi>
      <mo>+</mo>
      <mi>d</mi>
    </mrow>
  </mfrac>
</math></span>, for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R},\,\,x \ne&nbsp; - \frac{d}{c}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mi>d</mi>
    <mi>c</mi>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = \frac{{2x - 3}}{{x - 2}},\,\,x \in \mathbb{R},\,\,x \ne 2">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>3</mn>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>2</mn>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>, stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A + \frac{B}{{x - 2}}">
  <mi>A</mi>
  <mo>+</mo>
  <mfrac>
    <mi>B</mi>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
</math></span> where A, B are constants.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>. State the equations of any asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right) = \sqrt x ">
  <mi>h</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mi>x</mi>
  </msqrt>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≥ 0.</p>
<p>State the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h \circ g">
  <mi>h</mi>
  <mo>∘</mo>
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the time, in days, from December <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mtext>st</mtext></math> and the percentage of&nbsp;Christmas trees in stock at a shop on the beginning of that day.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The following table shows the natural logarithm of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> on these days to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> decimal places.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the data in the second table to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> for the regression line, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>m</mi><mo>(</mo><mi>ln</mi><mo> </mo><mi>d</mi><mo>)</mo><mo>+</mo><mi>b</mi></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the model found in part (a) remains valid, estimate the percentage of trees in stock when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>25</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{x^3} + 5,{\text{ }} - 2 \leqslant x \leqslant 2">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}(x)">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mn>3</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x + h)^2} + k">
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo>+</mo>
    <mi>h</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, indicating on it the equations of the asymptotes, the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mn>3</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f(x){\text{d}}x = \ln (p)} ">
  <msubsup>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>1</mn>
  </msubsup>
  <mrow>
    <mi>f</mi>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo stretchy="false">)</mo>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>=</mo>
    <mi>ln</mi>
    <mo>⁡</mo>
    <mo stretchy="false">(</mo>
    <mi>p</mi>
    <mo stretchy="false">)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>|</mo>
        <mi>x</mi>
        <mo>|</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>|</mo>
        <mi>x</mi>
        <mo>|</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and the lines with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 5 is shown in the following diagram. The curve intercepts the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at (1, 0) and (4, 0) and has a local minimum at (3, −1).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The shaded area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis is 0.5.&nbsp;Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = 3">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mn>0</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
</math></span>,</p>
</div>

<div class="specification">
<p>The area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4">
  <mi>x</mi>
  <mo>=</mo>
  <mn>4</mn>
</math></span> is 2.5 .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mn>4</mn>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ 5 indicating clearly the coordinates of the maximum and minimum points and any intercepts with the coordinate axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Roger buys a new laptop for himself at a cost of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>£</mo><mn>495</mn></math>. At the same time, he buys his&nbsp;daughter Chloe a higher specification laptop at a cost of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>£</mo><mn>2200</mn></math>.</p>
<p>It is anticipated that Roger’s laptop will depreciate at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> per year, whereas&nbsp;Chloe’s laptop will depreciate at a rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>%</mo></math> per year.</p>
</div>

<div class="specification">
<p>Roger and Chloe’s laptops will have the same value <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> years after they were purchased.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the value of Roger’s laptop after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> years.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the validity of your answer to part (b).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4\,{\text{cos}}\,x + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
</math></span>,&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \leqslant x \leqslant \frac{\pi }{2}">
  <mi>a</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < \frac{\pi }{2}">
  <mi>a</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - \frac{\pi }{2}"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>. Indicate clearly the maximum and minimum values of the function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> has an inverse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>ln</mi><mfenced><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mfenced></math>&nbsp;is defined for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#62;</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>. You are not required to state a domain.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>It is believed that the power <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> of a signal at a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> km from an antenna is inversely proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mi>n</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p>The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is recorded at distances of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mi mathvariant="normal">m</mi></math>&nbsp;to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math>&nbsp;and the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> are plotted on the graph below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> are shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why this graph indicates that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is inversely proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mi>n</mi></msup></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b) to write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> to the nearest integer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)"> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right) = {x^3} + 3{x^2} + 8x - 24"><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>−</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><mi>x</mi><mo>−</mo><mn>24</mn></math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}"> <mi>x</mi> <mo>∈<!-- &#8712; --></mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 2} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 3} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
  <mi>p</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> has only one real zero.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the transformation that will transform the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> onto the graph&nbsp;of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 8{x^3} + 12{x^2} + 16x - 24"><mi>y</mi><mo>=</mo><mn>8</mn><msup><mi>x</mi><mn>3</mn></msup><mo>−</mo><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn><mi>x</mi><mo>−</mo><mn>24</mn></math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> follows a Poisson distribution with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6{\text{P}}\left( {X = 3} \right) = 3{\text{P}}\left( {X = 2} \right) - 2{\text{P}}\left( {X = 1} \right) + 3{\text{P}}\left( {X = 0} \right)">
  <mn>6</mn>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mo>=</mo>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>It is believed that two variables, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;are related. Experimental values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;are obtained. A graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,m">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>m</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;shows a straight line passing through (2.1, 7.3) and (5.6, 2.4).</p>
</div>

<div class="specification">
<p>Hence, find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the straight line, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,m = ap + b">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>m</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>p</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b \in \mathbb{R}">
  <mi>a</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A function is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>12</mn><mrow><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>7</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>7</mn><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>≠</mo><mo>-</mo><mn>5</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the inverse function<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&nbsp;</mo><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>. The domain is not required.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&nbsp;</mo><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{ln}}\left| x \right|">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>|</mo>
    <mi>x</mi>
    <mo>|</mo>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ 0 \right\}">
  <mrow>
    <mo>{</mo>
    <mn>0</mn>
    <mo>}</mo>
  </mrow>
</math></span>, and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {\text{ln}}\left| {x + k} \right|">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mi>k</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ { - k} \right\}">
  <mrow>
    <mo>{</mo>
    <mrow>
      <mo>−<!-- − --></mo>
      <mi>k</mi>
    </mrow>
    <mo>}</mo>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k > 2">
  <mi>k</mi>
  <mo>&gt;</mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> intersect at the point P .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the transformation by which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is transformed to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> on the same axes, clearly stating the points of intersection with any axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tangent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> at P passes through the origin (0, 0).</p>
<p>Determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>The graph of the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math> so that it then passes through the&nbsp;points <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><msup><mtext>e</mtext><mn>3</mn></msup><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>)</mo></math> .</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>Adesh wants to model the cooling of a metal rod. He heats the rod and records its temperature as it cools.</p>
<p style="text-align: center;"><img src=""></p>
<p>He believes the temperature can be modeled by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T\left( t \right) = a{{\text{e}}^{bt}} + 25">
  <mi>T</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mi>b</mi>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>25</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b \in \mathbb{R}">
  <mi>a</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>Hence</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = bt + {\text{ln}}\,a">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>T</mi>
      <mo>−</mo>
      <mn>25</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>b</mi>
  <mi>t</mi>
  <mo>+</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right)">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>T</mi>
      <mo>−</mo>
      <mn>25</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>predict the temperature of the metal rod after 3 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^4} - 6{x^2} - 2x + 4">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is translated two units to the left to form the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{x^4} + b{x^3} + c{x^2} + dx + e">
  <mi>a</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>d</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>e</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e \in \mathbb{Z}">
  <mi>e</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{1 - 3x}}{{x - 2}}">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mn>3</mn>
      <mi>x</mi>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
</math></span>, showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.</p>
<p><img src="images/Schermafbeelding_2018-02-07_om_17.42.06.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a"></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{1 - 3x}}{{x - 2}}} \right| &lt; 2">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>1</mn>
          <mo>−</mo>
          <mn>3</mn>
          <mi>x</mi>
        </mrow>
        <mrow>
          <mi>x</mi>
          <mo>−</mo>
          <mn>2</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| x \right|">
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mo>|</mo>
    <mi>x</mi>
    <mo>|</mo>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =&nbsp; - \left| x \right| + b">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <mo>|</mo>
    <mi>x</mi>
    <mo>|</mo>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in {\mathbb{Z}^ + }">
  <mi>b</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <msup>
      <mrow>
        <mi mathvariant="double-struck">Z</mi>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs on the same set of axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the graphs enclose a region of area 18 square units, find the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>−<!-- − --></mo>
      <mn>3</mn>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{2^a},\,b \times {2^{ - 3a}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mn>2</mn>
          <mi>a</mi>
        </msup>
      </mrow>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mi>b</mi>
      <mo>×</mo>
      <mrow>
        <msup>
          <mn>2</mn>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
            <mi>a</mi>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> where <em>a</em>, <em>b</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Q}">
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Q</mi>
  </mrow>
</math></span>. Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A rational function is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a + \frac{b}{{x - c}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mfrac>
    <mi>b</mi>
    <mrow>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mi>c</mi>
    </mrow>
  </mfrac>
</math></span> where the parameters <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}">
  <mi>a</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>b</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>c</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}\backslash \{ c\} ">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mi mathvariant="normal">∖<!-- ∖ --></mi>
  <mo fence="false" stretchy="false">{</mo>
  <mi>c</mi>
  <mo fence="false" stretchy="false">}</mo>
</math></span>. The following diagram represents the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_09.42.27.png" alt="N16/5/MATHL/HP1/ENG/TZ0/03"></p>
<p>Using the information on the graph,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>state the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{x}{2} + 1">
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mi>x</mi>
    <mn>2</mn>
  </mfrac>
  <mo>+</mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| {x - 2} \right|">
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span> on the following axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2} + 1 = \left| {x - 2} \right|">
  <mfrac>
    <mi>x</mi>
    <mn>2</mn>
  </mfrac>
  <mo>+</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>p</mi><msup><mtext>e</mtext><mrow><mi>q</mi><mo> </mo><mi>cos</mi><mfenced><mrow><mi>r</mi><mi>t</mi></mrow></mfenced></mrow></msup><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>. Part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is shown.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> have coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>5</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>)</mo></math>, and lie on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is a local maximum and the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is a local minimum.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
</div>
<br><hr><br><div class="question">
<p>It is believed that two variables, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> are related by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = k{w^n}">
  <mi>v</mi>
  <mo>=</mo>
  <mi>k</mi>
  <mrow>
    <msup>
      <mi>w</mi>
      <mi>n</mi>
    </msup>
  </mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k{\text{,}}\,\,n \in \mathbb{R}">
  <mi>k</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>n</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.  Experimental values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> are obtained. A graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,v">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>v</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,w">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>w</mi>
</math></span> shows a straight line passing through (−1.7, 4.3) and (7.1, 17.5).</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>. </p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mo> </mo><mi>cos</mi><mo> </mo><mfenced><mrow><mi>b</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<p>Part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> is shown below. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is a local maximum and has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math> and point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is a local minimum with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question">
<p>Write down a sequence of transformations that will transform the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>cos</mi><mo> </mo><mi>x</mi></math> onto the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>
<br><hr><br>