File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Prior learning/markSceme-SL-paper2html
File size: 561.58 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p><strong>Give your answers to parts (b), (c) and (d) to the nearest whole number.</strong></p>
<p>Harinder has 14 000 US Dollars (USD) to invest for a period of five years. He has two options of how to invest the money.</p>
<p><strong>Option A:</strong> Invest the full amount, in USD, in a fixed deposit account in an American bank.</p>
<p>The account pays a nominal annual interest rate of <em>r </em>% , <strong>compounded yearly</strong>, for the five years. The bank manager says that this will give Harinder a return of 17<em> </em>500 USD.</p>
</div>

<div class="specification">
<p><strong>Option B:</strong> Invest the full amount, in Indian Rupees (INR), in a fixed deposit account in an Indian bank. The money must be converted from USD to INR before it is invested.</p>
<p>The exchange rate is 1 USD = 66.91 INR.</p>
</div>

<div class="specification">
<p>The account in the Indian bank pays a nominal annual interest rate of 5.2 % <strong>compounded monthly</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>r</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate 14 000 USD in INR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of this investment, in INR, in this account after five years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Harinder chose option B. At the end of five years, Harinder converted this investment back to USD. The exchange rate, at that time, was 1 USD = 67.16 INR.</p>
<p>Calculate how much <strong>more</strong> money, in USD, Harinder earned by choosing option B instead of option A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="17500 = 14000{\left( {1 + \frac{r}{{100}}} \right)^5}">
  <mn>17500</mn>
  <mo>=</mo>
  <mn>14000</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mfrac>
            <mi>r</mi>
            <mrow>
              <mn>100</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>5</mn>
    </msup>
  </mrow>
</math></span>     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the compound interest formula, <em><strong>(A1)</strong></em> for correct substitution. Award at most <em><strong>(M1)(A0)</strong></em> if not equated to 17500.</p>
<p>OR</p>
<p><em>N</em> = 5</p>
<p><em>PV</em> = ±14000</p>
<p><em>FV</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \mp ">
  <mo>∓</mo>
</math></span>17500</p>
<p><em>P</em>/<em>Y</em> = 1</p>
<p><em>C</em>/<em>Y</em> = 1     <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y</em> = 1 seen, <em><strong>(M1)</strong></em> for <strong>all</strong> other correct entries. <em>FV</em> and <em>PV</em> must have opposite signs.</p>
<p>= 4.56 (%)  (4.56395… (%))     <em><strong>(A1) (G3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>14000 × 66.91     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying 14000 by 66.91.</p>
<p>936740 (INR)     <em><strong>(A1) (G2)</strong></em></p>
<p><strong>Note:</strong> Answer must be given to the nearest whole number.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="936740 \times {\left( {1 + \frac{{5.2}}{{12 \times 100}}} \right)^{12 \times 5}}">
  <mn>936740</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mfrac>
            <mrow>
              <mn>5.2</mn>
            </mrow>
            <mrow>
              <mn>12</mn>
              <mo>×</mo>
              <mn>100</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mn>12</mn>
        <mo>×</mo>
        <mn>5</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the compound interest formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct substitution.</p>
<p><strong>OR </strong></p>
<p><em>N</em> = 60</p>
<p><em>I</em>% = 5.2</p>
<p><em>PV</em> = ±936740</p>
<p><em>P</em>/<em>Y</em>= 12</p>
<p><em>C</em>/<em>Y</em>= 12    <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y </em>= 12 seen, <em><strong>(M1)</strong></em> for <strong>all</strong> other correct entries.</p>
<p><strong>OR </strong></p>
<p><em>N</em> = 5</p>
<p><em>I</em>% = 5.2</p>
<p><em>PV</em> = ±936740</p>
<p><em>P</em>/<em>Y</em>= 1</p>
<p><em>C</em>/<em>Y</em>= 12    <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y </em>= 12 seen, <em><strong>(M1)</strong></em> for <strong>all</strong> other correct entries</p>
<p>= 1214204 (INR)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b). Answer must be given to the nearest whole number.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1214204}}{{67.16}}">
  <mfrac>
    <mrow>
      <mn>1214204</mn>
    </mrow>
    <mrow>
      <mn>67.16</mn>
    </mrow>
  </mfrac>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for dividing their (c) by 67.16.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{1214204}}{{67.16}}} \right) - 17500 = 579">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>1214204</mn>
        </mrow>
        <mrow>
          <mn>67.16</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>17500</mn>
  <mo>=</mo>
  <mn>579</mn>
</math></span> (USD)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for finding the difference between their conversion and 17500. Answer must be given to the nearest whole number. Follow through from part (c).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A large underground tank is constructed at Mills Airport to store fuel. The tank is in the shape of an isosceles trapezoidal prism, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCDEFGH</mtext></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>70</mn><mo> </mo><mtext>m</mtext></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext><mo>=</mo><mn>200</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AD</mtext><mo>=</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CD</mtext><mo>=</mo><mn>110</mn><mo> </mo><mtext>m</mtext></math>. Angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ADC</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math>&nbsp;and angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BCD</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math>. The tank is illustrated below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Once construction was complete, a fuel pump was used to pump fuel <strong>into</strong> the empty tank. The amount of fuel pumped into the tank by this pump <strong>each hour</strong> decreases as an arithmetic sequence with terms <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>u</mi><mn>2</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>u</mi><mn>3</mn></msub><mo>,</mo><mo>&nbsp;</mo><mo>…</mo><mo>,</mo><mo>&nbsp;</mo><msub><mi>u</mi><mi>n</mi></msub></math>.</p>
<p>Part of this sequence is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>At the end of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mtext>nd</mtext></math> hour, the total volume of fuel in the tank was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>88</mn><mo> </mo><mn>200</mn><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, the height of the tank.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of the tank is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624</mn><mo> </mo><mn>000</mn><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup></math>, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the common difference, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of fuel pumped into the tank in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>13th</mtext></math> hour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of hours that the pump was pumping fuel into the tank.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total amount of fuel pumped into the tank in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> hours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the tank will never be completely filled using this pump.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>60</mn><mo>°</mo><mo>=</mo><mfrac><mi>h</mi><mn>40</mn></mfrac></math><strong>  OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>60</mn><mo>°</mo><mo>=</mo><mfrac><mi>h</mi><mn>20</mn></mfrac></math><strong>   </strong>        <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitutions in trig ratio.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>20</mn><mn>2</mn></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>=</mo><msup><mn>40</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><msqrt><msup><mn>40</mn><mn>2</mn></msup><mo>-</mo><msup><mn>20</mn><mn>2</mn></msup></msqrt></mfenced></math><strong>   </strong>        <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitutions in Pythagoras’ theorem.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>34</mn><mo>.</mo><mn>6</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><msqrt><mn>1200</mn></msqrt><mo>,</mo><mo> </mo><mn>20</mn><msqrt><mn>3</mn></msqrt><mo>,</mo><mo> </mo><mn>34</mn><mo>.</mo><mn>6410</mn><mo>…</mo></mrow></mfenced></math>       <strong><em>(A1)</em><em>(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>70</mn><mo>+</mo><mn>110</mn></mrow></mfenced><mfenced><mrow><mn>34</mn><mo>.</mo><mn>6410</mn><mo>…</mo></mrow></mfenced><mo>×</mo><mn>200</mn></math><strong>   </strong>        <strong><em>(M1)(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for their correctly substituted area of trapezium formula, provided all substitutions are positive. Award <em><strong>(M1)</strong></em> for multiplying by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math>. Follow through from part (a).</p>
<p><br><strong>OR</strong></p>
<p><strong><br></strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>20</mn><mo>×</mo><mn>34</mn><mo>.</mo><mn>6410</mn><mo>…</mo><mo>+</mo><mn>70</mn><mo>×</mo><mn>34</mn><mo>.</mo><mn>6410</mn><mo>…</mo></mrow></mfenced><mo>×</mo><mn>200</mn></math><strong>   </strong>        <strong><em>(M1)(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for the addition of correct areas for two triangles and one rectangle. Award <em><strong>(M1)</strong></em> for multiplying by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math>. Follow through from part (a).</p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo>×</mo><mn>34</mn><mo>.</mo><mn>6410</mn><mo>…</mo><mo>×</mo><mn>200</mn><mo>+</mo><mn>2</mn><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>34</mn><mo>.</mo><mn>6410</mn><mo>…</mo><mo>×</mo><mn>20</mn><mo>×</mo><mn>200</mn></math><strong>   </strong>        <strong><em>(M1)(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution in volume of cuboid formula. Award <em><strong>(M1)</strong></em> for correctly substituted volume of triangular prism(s). Follow through from part (a).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>623538</mn><mo>…</mo></math>         <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>           <em><strong> (AG)</strong></em></p>
<p><strong><br>Note:</strong> Both an unrounded answer that rounds to the given answer and the rounded value must be seen for the <em><strong>(A1)</strong></em> to be awarded.</p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>d</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mo>-</mo><mn>1800</mn></math><strong>   </strong>        <strong><em>(A1)</em></strong></p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>u</mi><mn>13</mn></msub><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mn>13</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></math><strong>   </strong>        <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <strong><em>(M1)</em></strong> for correct substitutions in arithmetic sequence formula.<br><strong>OR</strong><br>Award <strong><em>(M1)</em></strong> for a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>4</mtext><mtext>th</mtext></msup></math> term seen as part of list.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>23400</mn><mo> </mo><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>        <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong><br>Note:</strong> Follow through from part (c) for their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></math><strong>   </strong>        <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <strong><em>(M1)</em></strong> for their correct substitution into arithmetic sequence formula, equated to zero.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mn>26</mn></math>        <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong><br>Note:</strong> Follow through from part (c). Award at most <em><strong>(M1)(A0)</strong></em> if their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is not a positive integer.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn></math><strong>   </strong>        <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong><br>Note:</strong> Follow through from part (e)(i), but only if their final answer in (e)(i) is positive. If their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> in part (e)(i) is not an integer, award  <em><strong>(A1)</strong></em><strong>(ft)</strong> for the nearest lower integer.</p>
<p><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>S</mi><mn>8</mn></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>8</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mn>8</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></mrow></mfenced></math><strong>   </strong>        <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitutions in arithmetic series formula. If a list method is used, award <em><strong>(M1)</strong></em> for the addition of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> correct terms.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>310</mn><mo> </mo><mn>000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced><mo> </mo><mfenced><mrow><mn>309</mn><mo> </mo><mn>600</mn></mrow></mfenced></math>       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><br><strong>Note:</strong> Follow through from part (c). Award at most <em><strong>(M1)(A0)</strong></em> if their final answer is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624</mn><mo> </mo><mn>000</mn></math>.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>S</mi><mn>25</mn></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>25</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mn>25</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></mrow></mfenced><mo> </mo><mo> </mo><mo>,</mo><mo> </mo><mo> </mo><mfenced><mrow><msub><mi>S</mi><mn>25</mn></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>25</mn><mn>2</mn></mfrac><mfenced><mrow><mn>45000</mn><mo>+</mo><mn>1800</mn></mrow></mfenced></math><strong>   </strong>        <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitutions into arithmetic series formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>25</mn></msub><mo>=</mo><mn>585000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for correctly finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>26</mn></msub><mo>=</mo><mn>585000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>, provided working is shown e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>S</mi><mn>26</mn></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>26</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mn>26</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></mrow></mfenced></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>S</mi><mn>26</mn></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mn>26</mn><mn>2</mn></mfrac><mfenced><mrow><mn>45000</mn><mo>+</mo><mn>0</mn></mrow></mfenced></math>. Follow through from part (c) and either their (e)(i) or (e)(ii). If <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&lt;</mo><mn>0</mn></math> and their final answer is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624</mn><mo> </mo><mn>000</mn></math>, award at most <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(R0)</strong></em>. If <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&gt;</mo><mn>0</mn></math>, there is no maximum, award at most <em><strong>(M1)(A0)(R0)</strong></em>. Award no marks if their number of terms is not a positive integer.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>585000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced><mo>&lt;</mo><mn>624000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>        <em><strong>(R1)</strong></em></p>
<p>Hence it will never be filled        <em><strong>(AG)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>(AG)</strong></em> line must be seen. If it is omitted do not award the final <em><strong>(R1)</strong></em>. Do not follow through within the part.<br>For unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><msub><mi>S</mi><mn>25</mn></msub></mfenced><mo>=</mo><mn>585000</mn></math> seen, award at most <em><strong>(G1)(R1)(AG)</strong></em>. Working must be seen to follow through from parts (c) and (e)(i) or (e)(ii).</p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></mrow></mfenced></math><strong>   </strong>        <em><strong>(M1)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into arithmetic series formula, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<p><br>Maximum of this function <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>585225</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>       <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Follow through from part (c). Award at most <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(R0)</strong></em> if their final answer is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624</mn><mo> </mo><mn>000</mn></math>. Award at most <em><strong>(M1)(A0)(R0)</strong></em> if their common difference is not <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>–</mo><mn>1800</mn></math>. Award at most <em><strong>(M1)(A0)(R0)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>585</mn><mo> </mo><mn>225</mn></math> is not explicitly identified as the maximum of the function.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>585225</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced><mo>&lt;</mo><mn>624000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>        <em><strong>(R1)</strong></em><br><br>Hence it will never be filled        <em><strong>(AG)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>(AG)</strong></em> line must be seen. If it is omitted do not award the final <em><strong>(R1)</strong></em>. Do not follow through within the part.</p>
<p><br><strong>OR</strong></p>
<p><br>sketch with concave down curve <strong>and</strong> labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624000</mn></math> horizontal line<strong>   </strong>        <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Accept a label of “tank volume” instead of a numerical value. Award <em><strong>(M0)</strong></em> if the line and the curve intersect.</p>
<p><br>curve explicitly labelled as <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></mrow></mfenced></math> </strong>or equivalent       <em><strong>(A1)<br></strong></em><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for a written explanation interpreting the sketch. Accept a comparison of values, e.g <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>585225</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced><mo>&lt;</mo><mn>624000</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>585225</mn></math> is the graphical maximum. Award at most <em><strong>(M1)(A0)(R0)</strong></em> if their common difference is not <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>–</mo><mn>1800</mn></math>.</p>
<p><br>the line and the curve do not intersect        <em><strong>(R1)</strong></em></p>
<p>hence it will never be filled        <em><strong>(AG)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>(AG)</strong></em> line must be seen. If it is omitted do not award the final <em><strong>(R1)</strong></em>. Do not follow through within the part.</p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624000</mn><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>45000</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mn>1800</mn></mrow></mfenced></mrow></mfenced></math><strong>   </strong>        <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correctly substituted arithmetic series formula equated to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624000</mn><mo> </mo><mo>(</mo><mn>623538</mn><mo>)</mo></math>.</p>
<p><br>Demonstrates there is no solution       <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for a correct working that the discriminant is less than zero <strong>OR</strong> correct working indicating there is no real solution in the quadratic formula.</p>
<p><br>There is no (real) solution (to this equation)       <em><strong>(</strong><strong>R1)</strong></em></p>
<p>hence it will never be filled        <em><strong>(AG)</strong></em></p>
<p><br><strong>Note:</strong> At most <em><strong>(M1)(A0)(R0)</strong></em> for their correctly substituted arithmetic series formula <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>624000</mn><mo>,</mo><mo> </mo><mn>623538</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>622800</mn></math> with a statement "no solution". Follow through from their part (b).</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, and the average weight of the brain, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>

<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>

<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="529 - 3">
  <mn>529</mn>
  <mo>−</mo>
  <mn>3</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 526{\text{ (kg)}}">
  <mo>=</mo>
  <mn>526</mn>
  <mrow>
    <mtext> (kg)</mtext>
  </mrow>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.922{\text{ }}(0.921857 \ldots )">
  <mn>0.922</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0.921857</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(very) strong, positive     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0.000986x + 0.0923{\text{ }}(y = 0.000985837 \ldots x + 0.0923391…)">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.000986</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>0.0923</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>y</mi>
  <mo>=</mo>
  <mn>0.000985837</mn>
  <mo>…</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>0.0923391</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.000986x">
  <mn>0.000986</mn>
  <mi>x</mi>
</math></span>, <strong><em>(A1) </em></strong>for 0.0923.</p>
<p>Award a maximum of <strong><em>(A1)(A0) </em></strong>if the answer is not an equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.000985837 \ldots (36) + 0.0923391 \ldots ">
  <mn>0.000985837</mn>
  <mo>…</mo>
  <mo stretchy="false">(</mo>
  <mn>36</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>0.0923391</mn>
  <mo>…</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substituting 36 into their equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.128{\text{ (kg) }}\left( {0.127829 \ldots {\text{ (kg)}}} \right)">
  <mn>0.128</mn>
  <mrow>
    <mtext> (kg) </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.127829</mn>
      <mo>…</mo>
      <mrow>
        <mtext> (kg)</mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(</em></strong><strong><em>A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (c). The final <strong><em>(A1) </em></strong>is awarded only if their answer is positive.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{0.127829 \ldots  - 0.120}}{{0.120}}} \right| \times 100">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>0.127829</mn>
          <mo>…</mo>
          <mo>−</mo>
          <mn>0.120</mn>
        </mrow>
        <mrow>
          <mn>0.120</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>×</mo>
  <mn>100</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for their correct substitution into percentage error formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.52{\text{ }}(\% ){\text{ }}\left( {6.52442...{\text{ }}(\% )} \right)">
  <mn>6.52</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi mathvariant="normal">%</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>6.52442...</mn>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mi mathvariant="normal">%</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (d). Do not accept a negative answer.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The marks obtained by nine Mathematical Studies SL students in their projects (<em>x</em>) and their final IB examination scores (<em>y</em>) were recorded. These data were used to determine whether the project mark is a good predictor of the examination score. The results are shown in the table.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The equation of the regression line <em>y</em> on <em>x</em> is <em>y</em> = <em>mx</em> + <em>c</em>.</p>
</div>

<div class="specification">
<p>A tenth student, Jerome, obtained a project mark of 17.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean examination score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <em>r </em>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <em>m</em> and of <em>c</em> for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression line <em>y</em> on <em>x</em> to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether it is valid to use the regression line y on x to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>54     <em><strong>(G1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.5     <em><strong>(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em> = 0.875, <em>c</em> = 41.75  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {m = \frac{7}{8}{\text{,}}\,\,c = \frac{{167}}{4}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>m</mi>
      <mo>=</mo>
      <mfrac>
        <mn>7</mn>
        <mn>8</mn>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>c</mi>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>167</mn>
        </mrow>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>        <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 0.875 seen. Award <em><strong>(A1)</strong></em> for 41.75 seen. If 41.75 is rounded to 41.8 do not award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = 0.875(17) + 41.75      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong> </em>for correct substitution into their regression line.</p>
<p> </p>
<p>= 56.6   (56.625)      <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the estimate is valid      <em><strong>(A1)</strong></em></p>
<p>since this is interpolation <strong>and</strong> the correlation coefficient is large enough      <em><strong>(R1)</strong></em></p>
<p><strong>OR</strong></p>
<p>the estimate is not valid      <em><strong>(A1)</strong></em></p>
<p>since the correlation coefficient is not large enough      <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)(R0)</strong></em>. The <em><strong>(R1)</strong></em> may be awarded for reasoning based on strength of correlation, but do not accept “correlation coefficient is not strong enough” or “correlation is not large enough”.</p>
<p>Award <em><strong>(A0)</strong></em><em><strong>(R0)</strong></em> for this method if no numerical answer to part (a)(iii) is seen.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>John purchases a new bicycle for 880 US dollars (USD) and pays for it with a Canadian credit card. There is a transaction fee of 4.2 % charged to John by the credit card company to convert this purchase into Canadian dollars (CAD).</p>
<p>The exchange rate is 1 USD = 1.25 CAD.</p>
</div>

<div class="specification">
<p>John insures his bicycle with a US company. The insurance company produces the following table for the bicycle’s value during each year.</p>
<p style="text-align: center;"><img src=""></p>
<p>The values of the bicycle form a geometric sequence.</p>
</div>

<div class="specification">
<p>During the 1st year John pays 120 USD to insure his bicycle. Each year the amount he pays to insure his bicycle is reduced by 3.50 USD.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in CAD, the total amount John pays for the bicycle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the bicycle during the 5th year. <strong>Give your answer to two decimal places</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in years, when the bicycle value will be less than 50 USD.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total amount John has paid to insure his bicycle for the first 5 years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>1.042 × 880 × 1.25  <strong>OR</strong>  (880 + 0.042 × 880) × 1.25     <em><strong> (M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying 880 by 1.042 and <em><strong>(M1)</strong></em> for multiplying 880 by 1.25.</p>
<p>1150 (CAD)  (1146.20 (CAD))     <em><strong> (A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Accept 1146.2 (CAD)</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{704}}{{880}}">
  <mfrac>
    <mrow>
      <mn>704</mn>
    </mrow>
    <mrow>
      <mn>880</mn>
    </mrow>
  </mfrac>
</math></span>  <strong>OR</strong>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{563.20}}{{704}}">
  <mfrac>
    <mrow>
      <mn>563.20</mn>
    </mrow>
    <mrow>
      <mn>704</mn>
    </mrow>
  </mfrac>
</math></span>    <em><strong>  (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly dividing sequential terms to find the common ratio, or 0.8 seen.</p>
<p>880(0.8)<sup>5−1</sup>    <em><strong>  (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into geometric sequence formula.</p>
<p>360.45 (USD)     <em><strong> (A1)(G3)</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>(A1)</strong></em> if the answer is not correct to 2 decimal places. Award at most <em><strong>(M0)(M1)(A0)</strong></em> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 1.25">
  <mi>r</mi>
  <mo>=</mo>
  <mn>1.25</mn>
</math></span>.</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="880{\left( {0.8} \right)^{n - 1}} &lt; 50">
  <mn>880</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.8</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mi>n</mi>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>&lt;</mo>
  <mn>50</mn>
</math></span>   <em><strong>  (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into geometric sequence formula and (in)equating to 50. Accept weak or strict inequalities. Accept an equation. Follow through from their common ratio in part (b). Accept a sketch of their GP with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 50">
  <mi>y</mi>
  <mo>=</mo>
  <mn>50</mn>
</math></span> as a valid method.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{13}} = 60.473">
  <mrow>
    <msub>
      <mi>u</mi>
      <mrow>
        <mn>13</mn>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>60.473</mn>
</math></span>  <strong>AND</strong>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{14}} = 48.379">
  <mrow>
    <msub>
      <mi>u</mi>
      <mrow>
        <mn>14</mn>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>48.379</mn>
</math></span>    <em><strong>  (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{13}}">
  <mrow>
    <msub>
      <mi>u</mi>
      <mrow>
        <mn>13</mn>
      </mrow>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{14}}">
  <mrow>
    <msub>
      <mi>u</mi>
      <mrow>
        <mn>14</mn>
      </mrow>
    </msub>
  </mrow>
</math></span> <strong>both</strong> seen. If the student states <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{14}} = 48.379 &lt; 50">
  <mrow>
    <msub>
      <mi>u</mi>
      <mrow>
        <mn>14</mn>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>48.379</mn>
  <mo>&lt;</mo>
  <mn>50</mn>
</math></span>, without <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{13}} = 60.473">
  <mrow>
    <msub>
      <mi>u</mi>
      <mrow>
        <mn>13</mn>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>60.473</mn>
</math></span> seen, this is not sufficient to award <em><strong>(M1)</strong></em>.</p>
<p>14 or “14th year” or “after the 13th year”    <strong> <em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> The context of the question requires the final answer to be an integer. Award at most <em><strong>(M1)(A0)</strong></em> for a final answer of 13.9 years. Follow through from their 0.8 in part (b).</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{2}\left( {\left( {2 \times 120} \right) + \left( { - 3.5\left( {5 - 1} \right)} \right)} \right)">
  <mfrac>
    <mn>5</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>2</mn>
          <mo>×</mo>
          <mn>120</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>3.5</mn>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mn>5</mn>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>  <em><strong>  (M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into arithmetic series formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>565 (USD)   <strong> <em>(A1)</em><em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A pan, in which to cook a pizza, is in the shape of a cylinder. The pan has a diameter of 35 cm and a height of 0.5 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.14.51.png" alt="M17/5/MATSD/SP2/ENG/TZ1/04"></p>
</div>

<div class="specification">
<p>A chef had enough pizza dough to exactly fill the pan. The dough was in the shape of a sphere.</p>
</div>

<div class="specification">
<p>The pizza was cooked in a hot oven. Once taken out of the oven, the pizza was placed in a dining room.</p>
<p>The temperature, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span>, of the pizza, in degrees Celsius, °C, can be modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P(t) = a{(2.06)^{ - t}} + 19,{\text{ }}t \geqslant 0">
  <mi>P</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2.06</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>19</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>t</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is the time, in minutes, since the pizza was taken out of the oven.</p>
<p>When the pizza was taken out of the oven its temperature was 230 °C.</p>
</div>

<div class="specification">
<p>The pizza can be eaten once its temperature drops to 45 °C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this pan.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius of the sphere in cm, correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature that the pizza will be 5 minutes after it is taken out of the oven.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to the nearest second, the time since the pizza was taken out of the oven until it can be eaten.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of this model, state what the value of 19 represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(V = ){\text{ }}\pi  \times {{\text{(17.5)}}^2} \times 0.5">
  <mo stretchy="false">(</mo>
  <mi>V</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>π</mi>
  <mo>×</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>(17.5)</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>×</mo>
  <mn>0.5</mn>
</math></span>     <strong><em>(A1)(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1) </em></strong>for 17.5 (or equivalent) seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correct substitutions into volume of a cylinder formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 481{\text{ c}}{{\text{m}}^3}{\text{ }}(481.056 \ldots {\text{ c}}{{\text{m}}^3},{\text{ }}153.125\pi {\text{ c}}{{\text{m}}^3})">
  <mo>=</mo>
  <mn>481</mn>
  <mrow>
    <mtext> c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>481.056</mn>
  <mo>…</mo>
  <mrow>
    <mtext> c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>153.125</mn>
  <mi>π</mi>
  <mrow>
    <mtext> c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3} \times \pi  \times {r^3} = 481.056 \ldots ">
  <mfrac>
    <mn>4</mn>
    <mn>3</mn>
  </mfrac>
  <mo>×</mo>
  <mi>π</mi>
  <mo>×</mo>
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>481.056</mn>
  <mo>…</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for equating <strong>their </strong>answer to part (a) to the volume of sphere.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{3 \times 481.056 \ldots }}{{4\pi }}{\text{ }}( = 114.843 \ldots )">
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mo>×</mo>
      <mn>481.056</mn>
      <mo>…</mo>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mi>π</mi>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>=</mo>
  <mn>114.843</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correctly rearranging so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3}">
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> is the subject.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 4.86074 \ldots {\text{ (cm)}}">
  <mi>r</mi>
  <mo>=</mo>
  <mn>4.86074</mn>
  <mo>…</mo>
  <mrow>
    <mtext> (cm)</mtext>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for correct unrounded answer seen. Follow through from part (a).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.9{\text{ (cm)}}">
  <mo>=</mo>
  <mn>4.9</mn>
  <mrow>
    <mtext> (cm)</mtext>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     The final <strong><em>(A1)</em>(ft) </strong>is awarded for rounding their unrounded answer to one decimal place.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="230 = a{(2.06)^0} + 19">
  <mn>230</mn>
  <mo>=</mo>
  <mi>a</mi>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2.06</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>0</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>19</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 211">
  <mi>a</mi>
  <mo>=</mo>
  <mn>211</mn>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(P = ){\text{ }}211 \times {(2.06)^{ - 5}} + 19">
  <mo stretchy="false">(</mo>
  <mi>P</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>211</mn>
  <mo>×</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2.06</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mo>−</mo>
        <mn>5</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>19</mn>
</math></span>      <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution into the function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P(t)">
  <mi>P</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
</math></span>. Follow through from part (c). The negative sign in the exponent is required for correct substitution.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 24.7">
  <mo>=</mo>
  <mn>24.7</mn>
</math></span> (°C) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(24.6878 \ldots ">
  <mo stretchy="false">(</mo>
  <mn>24.6878</mn>
  <mo>…</mo>
</math></span> (°C))     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="45 = 211 \times {(2.06)^{ - t}} + 19">
  <mn>45</mn>
  <mo>=</mo>
  <mn>211</mn>
  <mo>×</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2.06</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mo>−</mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>19</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for equating 45 to the exponential equation and for correct substitution (follow through for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> in part (c)).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(t = ){\text{ }}2.89711 \ldots ">
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>2.89711</mn>
  <mo>…</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="174{\text{ (seconds) }}\left( {173.826 \ldots {\text{ (seconds)}}} \right)">
  <mn>174</mn>
  <mrow>
    <mtext> (seconds) </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>173.826</mn>
      <mo>…</mo>
      <mrow>
        <mtext> (seconds)</mtext>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award final <strong><em>(A1)</em>(ft) </strong>for converting their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{2.89711}} \ldots ">
  <mrow>
    <mtext>2.89711</mtext>
  </mrow>
  <mo>…</mo>
</math></span> minutes into seconds.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the temperature of the (dining) room     <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>the lowest final temperature to which the pizza will cool     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(A = ){\text{ }}\pi {r^2} + 2\pi rh"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span>    <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi rh"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </math></span>    <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Units <strong>not </strong>required.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000 = \pi {r^2}h"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> equating to their part (b).</p>
<p>Do not accept unless <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi {r^2}h"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> is explicitly defined as their part (b).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>    <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> into a <strong>correct </strong>part (a).</p>
<p>Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh = \frac{{500\,000}}{r}"> <mi>π</mi> <mi>r</mi> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span> and substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh"> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> in expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>    <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>The conclusion, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>, must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{10^6}"> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </math></span> as equivalent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1\,000\,000}"> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>    <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r"> <mn>2</mn> <mi>π</mi> <mi>r</mi> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{r^2}}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^{ - 2}}"> <mrow> <msup> <mi>r</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{1}}\,{\text{000}}\,{\text{000}}"> <mo>−</mo> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{1\,000\,000}}{{2\pi }}"> <mrow> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}"> <mi>r</mi> <mo>=</mo> <mroot> <mrow> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </mrow> <mn>3</mn> </mroot> </math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch of derivative function     <strong><em>(M1)</em></strong></p>
<p>with its zero indicated     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>54.2</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}"> <mi>π</mi> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )"> <mo>=</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>700</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27\,679.0 \ldots }}{{2000}}"> <mfrac> <mrow> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> </mrow> <mrow> <mn>2000</mn> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by 2000.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 13.8395 \ldots "> <mo>=</mo> <mn>13.8395</mn> <mo>…</mo> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (g).</p>
<p> </p>
<p>14 (cans)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13.8395 \ldots "> <mn>13.8395</mn> <mo>…</mo> </math></span> to the next integer.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The Tower of Pisa is well known worldwide for how it leans.</p>
<p>Giovanni visits the Tower and wants to investigate how much it is leaning. He draws a diagram&nbsp;showing a non-right triangle, ABC.</p>
<p>On Giovanni’s diagram the length of AB is 56 m, the length of BC is 37 m, and angle ACB is 60°.&nbsp;AX is the perpendicular height from A to BC.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Giovanni’s tourist guidebook says that the actual horizontal displacement of the Tower,&nbsp;BX, is 3.9 metres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni’s diagram to show that angle ABC, the angle at which the Tower is leaning relative to the<br>horizontal, is 85° to the nearest degree.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to calculate the length of AX.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to find the length of BX, the horizontal displacement of the Tower.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error on Giovanni’s diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Giovanni adds a point D to his diagram, such that BD = 45 m, and another triangle is formed.</p>
<p><img src=""></p>
<p>Find the angle of elevation of A from D.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{sin BAC}}}}{{37}} = \frac{{{\text{sin 60}}}}{{56}}"> <mfrac> <mrow> <mrow> <mtext>sin BAC</mtext> </mrow> </mrow> <mrow> <mn>37</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>sin 60</mtext> </mrow> </mrow> <mrow> <mn>56</mn> </mrow> </mfrac> </math></span>    <em><strong>(M1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting the sine rule formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{C}}"> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>C</mtext> </mrow> </math></span> = 34.9034…°    <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if unrounded answer does not round to 35. Award <em><strong>(G2)</strong></em> if 34.9034… seen without working.</p>
<p>angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge  {\text{C}}"> <mrow> <mtext>A</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>C</mtext> </mrow> </math></span> = 180 − (34.9034… + 60)     <em><strong>(M1)</strong></em></p>
<p>Note: Award <em><strong>(M1)</strong></em> for subtracting their angle BAC + 60 from 180.</p>
<p>85.0965…°    <em><strong>(A1)</strong></em></p>
<p>85°     <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> Both the unrounded and rounded value must be seen for the final <em><strong>(A1)</strong></em> to be awarded. If the candidate rounds 34.9034...° to 35° while substituting to find angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge  {\text{C}}"> <mrow> <mtext>A</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>C</mtext> </mrow> </math></span>, the final <em><strong>(A1)</strong></em> can be awarded but <strong>only</strong> if both 34.9034...° and 35° are seen.<br>If 85 is used as part of the workings, award at most <em><strong>(M1)(A0)(A0)(M0)(A0)(AG)</strong></em>. This is the reverse process and not accepted.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sin 85… × 56     <em><strong>(M1)</strong></em></p>
<p>= 55.8 (55.7869…) (m)     <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in trigonometric ratio.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{56}^2} - 55.7869{ \ldots ^2}} ">
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mn>56</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>−</mo>
    <mn>55.7869</mn>
    <mrow>
      <msup>
        <mo>…</mo>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the Pythagoras theorem formula. Follow through from part (a)(ii).</p>
<p><strong>OR</strong></p>
<p>cos(85) × 56     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in trigonometric ratio.</p>
<p>= 4.88 (4.88072…) (m)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Accept 4.73 (4.72863…) (m) from using their 3 s.f answer. Accept equivalent methods.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{4.88 - 3.9}}{{3.9}}} \right| \times 100">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>4.88</mn>
          <mo>−</mo>
          <mn>3.9</mn>
        </mrow>
        <mrow>
          <mn>3.9</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>×</mo>
  <mn>100</mn>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into the percentage error formula.</p>
<p>= 25.1  (25.1282) (%)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a)(iii).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^{ - 1}}\left( {\frac{{55.7869 \ldots }}{{40.11927 \ldots }}} \right)">
  <mrow>
    <mtext>ta</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>n</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>55.7869</mn>
          <mo>…</mo>
        </mrow>
        <mrow>
          <mn>40.11927</mn>
          <mo>…</mo>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their 40.11927… seen. Award <em><strong>(M1)</strong></em> for correct substitution into trigonometric ratio.</p>
<p><strong>OR</strong></p>
<p>(37 − 4.88072…)<sup>2</sup> + 55.7869…<sup>2</sup></p>
<p>(AC =) 64.3725…</p>
<p>64.3726…<sup>2</sup> + 8<sup>2</sup> − 2 × 8 × 64.3726… × cos120</p>
<p>(AD =) 68.7226…</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{sin 120}}}}{{68.7226 \ldots }} = \frac{{{\text{sin A}}\mathop {\text{D}}\limits^ \wedge  {\text{C}}}}{{64.3725 \ldots }}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>sin 120</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>68.7226</mn>
      <mo>…</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>sin A</mtext>
      </mrow>
      <mover>
        <mrow>
          <mtext>D</mtext>
        </mrow>
        <mo>∧</mo>
      </mover>
      <mo>⁡</mo>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>64.3725</mn>
      <mo>…</mo>
    </mrow>
  </mfrac>
</math></span>    <em><strong>(A1)</strong></em><strong>(ft)<em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct values seen, <em><strong>(M1)</strong></em> for correct substitution into the sine formula.</p>
<p>= 54.3°  (54.2781…°)     <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (a). Accept equivalent methods.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory packages coconut water in cone-shaped containers with a base radius of 5.2 cm and a height of 13 cm.</p>
</div>

<div class="specification">
<p>The factory designers are currently investigating whether a cone-shaped container can be replaced with a cylinder-shaped container with the same radius and the same total surface area.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the slant height of the cone-shaped container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the slant height of the cone-shaped container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the total surface area of the cone-shaped container is 314 cm<sup>2</sup>, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>, of this cylinder-shaped container.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The factory director wants to increase the volume of coconut water sold per container.</p>
<p>State whether or not they should replace the cone-shaped containers with cylinder‑shaped containers. Justify your conclusion.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math alttext="\frac{{\pi {{\left( {5.2} \right)}^2} \times 13}}{3}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mrow> <mi>π</mi> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>5.2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>×</mo> <mn>13</mn> </mrow> <mn>3</mn> </mfrac> </math></span>    <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the volume formula for cone.</p>
<p>368  (368.110…) cm<sup><span style="font-size: small;">3</span></sup>     <strong><em>(A1)</em><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Accept 117.173…<span class="mjpage"><math alttext="\pi " xmlns="http://www.w3.org/1998/Math/MathML"> <mi>π</mi> </math></span> cm<sup><span style="font-size: small;">3</span></sup> or <span class="mjpage"><math alttext="\frac{{8788}}{{75}}\pi " xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mrow> <mn>8788</mn> </mrow> <mrow> <mn>75</mn> </mrow> </mfrac> <mi>π</mi> </math></span> cm<sup><span style="font-size: small;">3</span></sup>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(slant height<sup>2</sup>) = (5.2)<sup>2</sup> + 13<sup>2</sup>   <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into the formula.</p>
<p>14.0  (14.0014…) (cm)     <strong><em>(A1)</em><em>(G2)</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>14.0014… × (5.2) × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> + (5.2)<sup>2</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>     <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution in the curved surface area formula for cone; <em><strong>(M1)</strong></em> for adding the correct area of the base. The addition must be explicitly seen for the second <em><strong>(M1)</strong></em> to be awarded. Do not accept rounded values here as may come from working backwards.</p>
<p>313.679… (cm<sup>2</sup>)     <strong><em>(A1)</em></strong></p>
<p><strong>Note:</strong> Use of 3 sf value 14.0 gives an unrounded answer of 313.656….</p>
<p>314 (cm<sup>2</sup>)     <strong><em>(AG)</em></strong></p>
<p><strong>Note:</strong> Both the unrounded and rounded answers must be seen for the final <strong><em>(A1)</em></strong> to be awarded.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> × (5.2) × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> + 2 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> × (5.2)<sup>2</sup> = 314     <em><strong>(M1)(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the curved surface area formula for cylinder; <em><strong>(M1)</strong></em> for adding two correct base areas of the cylinder; <em><strong>(M1)</strong></em> for equating their total cylinder surface area to 314 (313.679…). For this mark to be awarded the areas of the two bases must be added to the cylinder curved surface area and equated to 314. Award at most <em><strong>(M1)(M0)(M0)</strong></em> for cylinder curved surface area equated to 314.</p>
<p>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> =) 4.41 (4.41051…) (cm)     <strong><em>(A1)(G3)</em></strong></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> × (5.2)<sup>2</sup> × 4.41051…     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the volume formula for cylinder.</p>
<p>375  (374.666…) (cm<sup>3</sup>)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note</strong>: Follow through from part (d).</p>
<p>375 (cm<sup>3</sup>) &gt; 368 (cm<sup>3</sup>)      <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>“volume of cylinder is larger than volume of cone” or similar    <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their answer to part (a). The verbal statement should be consistent with their answers from parts (e) and (a) for the <strong><em>(R1)</em></strong> to be awarded.</p>
<p><strong>replace</strong> with the cylinder containers     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note</strong>: Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>. <strong>Follow through</strong> from their <strong>incorrect</strong> volume for the cylinder <strong>in this question part</strong> but only if substitution in the volume formula shown.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>An archaeological site is to be made accessible for viewing by the public. To do this, archaeologists built two straight paths from point A to point B and from point B to point C as shown in the following diagram. The length of path AB is 185 m, the length of path BC is 250 m, and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge&nbsp; {\text{C}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> is 125°.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The archaeologists plan to build two more straight paths, AD and DC. For the paths to go around the site, angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge&nbsp; {\text{D}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>A</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> is to be made equal to 85° and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{C}}\limits^ \wedge&nbsp; {\text{D}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> is to be made equal to 70° as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}\mathop {\text{A}}\limits^ \wedge  {\text{D}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>A</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{C}}\limits^ \wedge  {\text{D}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(CAD =) 53.1°  (53.0521…°)       <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their part (b)(i) only if working seen.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(ACD = ) 70° − (180° − 125° − 31.9478°…)      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting their angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{C}}\limits^ \wedge  {\text{B}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> from 70°.</p>
<p><strong>OR</strong></p>
<p>(ADC =) 360 − (85 + 70 + 125) = 80</p>
<p>(ACD =) 180 − 80 − 53.0521...      <em><strong>(M1)</strong></em></p>
<p>46.9°  (46.9478…°)      <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Abdallah owns a plot of land, near the river Nile, in the form of a quadrilateral ABCD.</p>
<p>The lengths of the sides are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = {\text{40 m, BC}} = {\text{115 m, CD}} = {\text{60 m, AD}} = {\text{84 m}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>40 m, BC</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>115 m, CD</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>60 m, AD</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>84 m</mtext>
  </mrow>
</math></span> and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AD}} = 90^\circ ">
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">D</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>90</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p>This information is shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.24.18.png" alt="N17/5/MATSD/SP2/ENG/TZ0/03"></p>
</div>

<div class="specification">
<p>The formula that the ancient Egyptians used to estimate the area of a quadrilateral ABCD is</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = \frac{{({\text{AB}} + {\text{CD}})({\text{AD}} + {\text{BC}})}}{4}">
  <mrow>
    <mtext>area</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>CD</mtext>
      </mrow>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>BC</mtext>
      </mrow>
      <mo stretchy="false">)</mo>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
<p>Abdallah uses this formula to estimate the area of his plot of land.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BD}} = 93{\text{ m}}">
  <mrow>
    <mtext>BD</mtext>
  </mrow>
  <mo>=</mo>
  <mn>93</mn>
  <mrow>
    <mtext> m</mtext>
  </mrow>
</math></span> correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat CD}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">C</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">D</mi>
    </mrow>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Abdallah’s estimate for the area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in Abdallah’s estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2} = {40^2} + {84^2}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>D</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>40</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mn>84</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras.</p>
<p>Accept correct substitution into cosine rule.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BD}} = 93.0376 \ldots ">
  <mrow>
    <mtext>BD</mtext>
  </mrow>
  <mo>=</mo>
  <mn>93.0376</mn>
  <mo>…</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 93">
  <mo>=</mo>
  <mn>93</mn>
</math></span>     <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Both the rounded and unrounded value must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos C = \frac{{{{115}^2} + {{60}^2} - {{93}^2}}}{{2 \times 115 \times 60}}{\text{ }}({93^2} = {115^2} + {60^2} - 2 \times 115 \times 60 \times \cos C)">
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>C</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>115</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>60</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>93</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mn>115</mn>
      <mo>×</mo>
      <mn>60</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mn>93</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>115</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mn>60</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>115</mn>
  <mo>×</mo>
  <mn>60</mn>
  <mo>×</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>C</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into cosine formula, <strong><em>(A1) </em></strong>for correct substitutions.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 53.7^\circ {\text{ }}(53.6679 \ldots ^\circ )">
  <mo>=</mo>
  <msup>
    <mn>53.7</mn>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>53.6679</mn>
  <msup>
    <mo>…</mo>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}(40)(84) + \frac{1}{2}(115)(60)\sin (53.6679 \ldots )">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo stretchy="false">(</mo>
  <mn>40</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>84</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo stretchy="false">(</mo>
  <mn>115</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>60</mn>
  <mo stretchy="false">)</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mn>53.6679</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)(M1)(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into right-angle triangle area. Award <strong><em>(M1) </em></strong>for substitution into area of triangle formula and <strong><em>(A1)</em>(ft) </strong>for correct substitution.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4460{\text{ }}{{\text{m}}^2}{\text{ }}(4459.30 \ldots {\text{ }}{{\text{m}}^2})">
  <mo>=</mo>
  <mn>4460</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>4459.30</mn>
  <mo>…</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (b).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(40 + 60)(84 + 115)}}{4}">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>40</mn>
      <mo>+</mo>
      <mn>60</mn>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mn>84</mn>
      <mo>+</mo>
      <mn>115</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution in the area formula used by ‘Ancient Egyptians’.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4980{\text{ }}{{\text{m}}^2}{\text{ }}(4975{\text{ }}{{\text{m}}^2})">
  <mo>=</mo>
  <mn>4980</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>4975</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)(G2)</em></strong></p>
<p> </p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{4975 - 4459.30 \ldots }}{{4459.30 \ldots }}} \right| \times 100">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>4975</mn>
          <mo>−</mo>
          <mn>4459.30</mn>
          <mo>…</mo>
        </mrow>
        <mrow>
          <mn>4459.30</mn>
          <mo>…</mo>
        </mrow>
      </mfrac>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>×</mo>
  <mn>100</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into percentage error formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 11.6{\text{ }}(\% ){\text{ }}(11.5645 \ldots )">
  <mo>=</mo>
  <mn>11.6</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi mathvariant="normal">%</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>11.5645</mn>
  <mo>…</mo>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes:    </strong>Follow through from parts (c) and (d)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A sector of a circle, centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>&#8202;</mo><mtext>m</mtext></math>, is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A square field with side <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>&#8202;</mo><mtext>m</mtext></math> has a goat tied to a post in the centre by a rope such that the&nbsp;goat can reach all parts of the field up to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>&#8202;</mo><mtext>m</mtext></math> from the post.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;"><sup>[Source: mynamepong, n.d. Goat [image online] Available at: <a href="https://thenounproject.com/term/goat/1761571/">https://thenounproject.com/term/goat/1761571/</a></sup><br><sup>This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)</sup><br><sup><a href="https://creativecommons.org/licenses/by-sa/3.0/deed.en">https://creativecommons.org/licenses/by-sa/3.0/deed.en</a> [Accessed 22 April 2010] Source adapted.]</sup></p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume of grass eaten by the goat, in cubic metres, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> be the length of time,&nbsp;in hours, that the goat has been in the field.</p>
<p>The goat eats grass at the rate of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>&#8202;</mo><mi>t</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded segment.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of a circle with radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the field that can be reached by the goat.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> at which the goat is eating grass at the greatest rate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mtext>AÔB</mtext><mo>=</mo></mrow></mfenced><mo> </mo><mtext>arccos</mtext><mfenced><mfrac><mn>4</mn><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfrac></mfenced><mo>=</mo><mn>27</mn><mo>.</mo><mn>266</mn><mo>…</mo></math>        <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AÔB</mtext><mo>=</mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo><mo>≈</mo><mn>54</mn><mo>.</mo><mn>5</mn><mo>°</mo></math>  (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>951764</mn><mo>…</mo><mo>≈</mo><mn>0</mn><mo>.</mo><mn>952</mn></math> radians)        <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Other methods may be seen; award <em><strong>(M1)(A1)</strong></em> for use of a correct trigonometric method to find an appropriate angle and then <em><strong>A1</strong> </em>for the correct answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding area of triangle</p>
<p><strong>EITHER</strong></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>×</mo><mi>sin</mi><mfenced><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct substitution into formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>2</mn><mo>×</mo><msqrt><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mo>=</mo><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo></math></p>
<p>area triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mo>.</mo><mn>1231</mn><mo>…</mo><mo>×</mo><mn>4</mn></mrow><mn>2</mn></mfrac></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo><mo>≈</mo><mn>8</mn><mo>.</mo><mn>25</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p> </p>
<p>finding area of sector</p>
<p><strong>EITHER</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p>area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>9517641</mn><mo>…</mo><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>≈</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>        <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>area of segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>.</mo><mn>63661</mn><mo>…</mo><mo>-</mo><mn>8</mn><mo>.</mo><mn>24621</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>39</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>39040</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>63</mn><mo>.</mo><mn>6</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>63</mn><mo>.</mo><mn>6172</mn><mo>…</mo><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></mrow></mfenced></math>        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p style="padding-left:90px;"><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>39040</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo> </mo><mo> </mo><mo> </mo><mo>(</mo><mn>5</mn><mo>.</mo><mn>56160</mn><mo>)</mo></math>         <em><strong>(A1)</strong></em></p>
<p>subtraction of four segments from area of circle         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math>       <em><strong>A1</strong> </em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo>×</mo><mi>sin</mi><mo> </mo><mn>54</mn><mo>.</mo><mn>532</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mn>4</mn><mfenced><mrow><mfrac><mrow><mn>35</mn><mo>.</mo><mn>4679</mn></mrow><mn>360</mn></mfrac><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><mn>4</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup></mrow></mfenced></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mo> </mo><mn>32</mn><mo>.</mo><mn>9845</mn><mo>…</mo><mo>+</mo><mn>25</mn><mo>.</mo><mn>0707</mn></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>58</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>58</mn><mo>.</mo><mn>055</mn><mo>…</mo><mo> </mo></mrow></mfenced></math>       <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>   <strong>OR</strong>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>110363</mn><mo>…</mo></math>   <strong>OR   </strong>attempt to find where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>V</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn></math> hour        <em><strong>A1</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a)(i) proved to be difficult for many candidates. About half of the candidates managed to correctly find the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math>. A variety of methods were used: cosine to find half of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> then double it; sine to find angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> , then find half of A<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> and double it; Pythagoras to find half of AB and then sine rule to find half of angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> then double it; Pythagoras to find half of AB, then double it and use cosine rule to find angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mi>O</mi><mo>^</mo></mover><mi>B</mi></math> . Many candidates lost a mark here due to premature rounding of an intermediate value and hence the final answer was not correct (to three significant figures).</p>
<p>In part (a)(ii) very few candidates managed to find the correct area of the shaded segment and include the correct units. Some only found the area of the triangle or the area of the sector and then stopped.</p>
<p>In part (b)(i), nearly all candidates managed to find the area of a circle.</p>
<p>In part (b)(ii), finding the area of the field reached by the goat proved troublesome for most of the candidates. It appeared as if the candidates did not fully understand the problem. Very few candidates realized the connection to part (a)(ii).</p>
<p>Part (c) was accessed by only a handful of candidates. The candidates could simply have graphed the function on their GDC to find the greatest value, but most did not realize this.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Eddie decides to construct a path across his rectangular grass lawn using pairs of tiles.</p>
<p>Each tile is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>&#8202;</mo><mtext>cm</mtext></math> wide and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo>&#8202;</mo><mtext>cm</mtext></math> long. The following diagrams show the path after Eddie has laid one pair and three pairs of tiles. This pattern continues until Eddie reaches the other side of his lawn. When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> pairs of tiles are laid, the path has a width of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mi>n</mi></msub></math> centimetres and a length <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mi>n</mi></msub></math> centimetres.</p>
<p>The following diagrams show this pattern for one pair of tiles and for three pairs of tiles, where the white space around each diagram represents Eddie&rsquo;s lawn.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The following table shows the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mi>n</mi></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mi>n</mi></msub></math> for the first three values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>Find the value of</p>
</div>

<div class="specification">
<p>Write down an expression in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> for</p>
</div>

<div class="specification">
<p>Eddie&rsquo;s lawn has a length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>740</mn><mo>&#8202;</mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>The tiles cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>24</mn><mo>.</mo><mn>50</mn></math> per square metre and are sold in packs of five tiles.</p>
</div>

<div class="specification">
<p>To allow for breakages Eddie wants to have at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>%</mo></math> more tiles than he needs.</p>
</div>

<div class="specification">
<p>There is a fixed delivery cost of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>35</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mi>n</mi></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mi>n</mi></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Eddie needs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>144</mn></math> tiles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mi>n</mi></msub></math> for this path.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total area of the tiles in Eddie’s path. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>×</mo><msup><mn>10</mn><mi>k</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>a</mi><mo>&lt;</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is an integer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of a single pack of five tiles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum number of packs of tiles Eddie will need to order.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total cost for Eddie’s order.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arithmetic formula chosen         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mi>n</mi></msub><mo>=</mo><mn>20</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>10</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>10</mn><mo>+</mo><mn>10</mn><mi>n</mi></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arithmetic formula chosen</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mi>n</mi></msub><mo>=</mo><mn>30</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>10</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>20</mn><mo>+</mo><mn>10</mn><mi>n</mi></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>740</mn><mo>=</mo><mn>30</mn><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>10</mn></math>   <strong>OR   </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>740</mn><mo>=</mo><mn>20</mn><mo>-</mo><mn>10</mn><mi>n</mi></math>            <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>72</mn></math>            <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>144</mn></math> tiles            <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>AG</strong> </em>line must be stated for the final <em><strong>A1</strong> </em>to be awarded.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mn>72</mn></msub><mo>=</mo><mn>730</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>10</mn><mo>×</mo><mn>20</mn></mrow></mfenced><mo>×</mo><mn>144</mn></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>28800</mn></math>          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>88</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo> </mo><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>         <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Follow through within the question for correctly converting <em>their</em> intermediate value into standard form (but only if the pre-conversion value is seen).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> square metre <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>100</mn><mo> </mo><mtext>cm</mtext><mo>×</mo><mn>100</mn><mo> </mo><mtext>cm</mtext></math>          <em><strong>(M1)</strong></em></p>
<p>(so, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> tiles) and hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> packs of tiles in a square metre          <em><strong>(A1)</strong></em></p>
<p>(so each pack is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>$</mo><mn>24</mn><mo>.</mo><mn>50</mn></mrow><mrow><mn>10</mn><mo> </mo><mtext>packs</mtext></mrow></mfrac></math>)</p>
<p><br><strong>OR</strong></p>
<p>area covered by one pack of tiles is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext><mo>×</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo> </mo><mtext>m</mtext><mo>×</mo><mn>5</mn><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>0</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>1</mn></math>          <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2</mn><mo>.</mo><mn>45</mn></math> per pack (of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> tiles)         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>08</mn><mo>×</mo><mn>144</mn></mrow><mn>5</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>31</mn><mo>.</mo><mn>104</mn></mrow></mfenced></math>          <em><strong>(M1)(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct numerator, <em><strong>M1</strong> </em>for correct denominator.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math> (packs of tiles)         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn><mo>+</mo><mfenced><mrow><mn>32</mn><mo>×</mo><mn>2</mn><mo>.</mo><mn>45</mn></mrow></mfenced></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>113</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>113</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a), most candidates were able to find the correct values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<p>In part (b), most candidates were able to write down the correct expressions for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>w</mi><mi>n</mi></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mi>n</mi></msub></math>.</p>
<p>In part (c)(i), candidates continued to struggle with “show that” questions. Some substituted 144 for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and worked backwards, however this is never the intention of the question; candidates should progress towards (not “away from”) the given result. Part (ii) was well answered by many candidates.</p>
<p>Part (d) was poorly answered with many candidates multiplying 720 with 730 instead of 10 with 20. However, the majority managed to convert their answer correctly to standard form which gained them a mark for that particular skill.</p>
<p>Part (e) saw very few candidates find the cost of one packet of tiles. The main reason was the failure to convert cm<sup>2</sup> to m<sup>2</sup>.</p>
<p>In part (f), about half of the candidates managed to find the correct number of packets. Some gained a mark for finding 8% or dividing by 5.</p>
<p>In part (g), most candidates could use their answers to parts (e) and (f) to score “follow through” marks and find the total cost of their order.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br>