File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 5/markSceme-SL-paper1html
File size: 1.13 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. The line with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
</div>
<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1</strong></em><em><strong> mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>6</mn><mo>×</mo><mn>4</mn><mo>-</mo><mn>1</mn><mo>=</mo><mn>23</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1</strong></em><em><strong> mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mn>4</mn></mfenced></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><msup><mn>4</mn><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>×</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mn>4</mn></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mn>23</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use chain rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>×</mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></mrow></mfenced><mo>'</mo><mo>×</mo><mi>f</mi><mo>'</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mn>4</mn></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>×</mo><mn>4</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mi>f</mi><mo>'</mo><mfenced><mrow><msup><mn>4</mn><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>×</mo><mn>4</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>30</mn></math> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>23</mn><mo>=</mo><mn>30</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>30</mn><mi>x</mi><mo>-</mo><mn>97</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {p^x} + q">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>p</mi>
<mi>x</mi>
</msup>
</mrow>
<mo>+</mo>
<mi>q</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x{\text{, }}p{\text{, }}q \in \mathbb{R}{\text{, }}p > 1">
<mi>x</mi>
<mrow>
<mtext>, </mtext>
</mrow>
<mi>p</mi>
<mrow>
<mtext>, </mtext>
</mrow>
<mi>q</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mrow>
<mtext>, </mtext>
</mrow>
<mi>p</mi>
<mo>></mo>
<mn>1</mn>
</math></span>. The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( {0{\text{, }}a} \right)">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mrow>
<mtext>, </mtext>
</mrow>
<mi>a</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>.</p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {g^{ - 1}}\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>. The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
<mrow>
<mtext>B</mtext>
</mrow>
</math></span> lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and is the reflection of point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
<mrow>
<mtext>A</mtext>
</mrow>
</math></span> in the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
<mrow>
<mtext>B</mtext>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( a \right) = \frac{1}{{{\text{ln}}\,p}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> </math></span>, find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> <strong>in terms of</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> and has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left( {{\text{ln}}\,p} \right)x + q + 1"> <mi>y</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span>.</p>
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 2{\text{, }} - 2} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>The gradient of the normal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>.</p>
<p> </p>
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {a{\text{, }}0} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mrow> <mtext>, </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {q + 1{\text{, }}0} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mrow> <mtext>, </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>) <em><strong>A2</strong></em><em><strong> N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may work with the equation of the line before finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span></strong></p>
<p>valid attempt to find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( 0 \right) = a{\text{, }}\,{p^0} + q = a"> <mi>g</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mi>p</mi> <mn>0</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mi>a</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = q + 1"> <mi>a</mi> <mo>=</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>FINDING THE EQUATION OF</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span></p>
<p style="padding-left:30px;"><strong>EITHER</strong></p>
<p style="padding-left:30px;">attempt to substitute tangent gradient and coordinates into equation of straight line <em><strong>(M1)</strong></em></p>
<p style="padding-left:30px;"><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = f'\left( a \right)\left( {x - a} \right){\text{, }}\,y = f'\left( a \right)\left( {x - \left( {q + 1} \right)} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="padding-left:30px;">correct equation in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> <em><strong>(A1)</strong></em></p>
<p style="padding-left:30px;"><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = \frac{1}{{{\text{ln}}\left( p \right)}}\left( {x - a} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="padding-left:30px;"><strong>OR</strong></p>
<p style="padding-left:30px;">attempt to substitute tangent gradient and coordinates to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span></p>
<p style="padding-left:30px;"><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = \frac{1}{{{\text{ln}}\left( p \right)}}\left( a \right) + b"> <mn>0</mn> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> </math></span></p>
<p style="padding-left:30px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{ - a}}{{{\text{ln}}\left( p \right)}}"> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mi>a</mi> </mrow> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><strong>THEN</strong> (must be in terms of <strong>both</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{{\text{ln}}\,p}}\left( {x - q - 1} \right){\text{, }}\,y = \frac{1}{{{\text{ln}}\,p}}x - \frac{{q + 1}}{{{\text{ln}}\,p}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> <mi>x</mi> <mo>−</mo> <mfrac> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em><em><strong> N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for final answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1} = \frac{1}{{{\text{ln}}\,p}}\left( {x - q - 1} \right)"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> before finding a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span></strong></p>
<p>valid approach to find the gradient of the tangent <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_1}{m_2} = - 1{\text{, }}\,\, - \frac{1}{{\frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}}}{\text{, }}\,\, - {\text{ln}}\left( {\frac{1}{3}} \right){\text{, }}\,\, - \frac{1}{{{\text{ln}}\,p}} = \frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}"><msub><mi>m</mi><mn>1</mn></msub><msub><mi>m</mi><mn>2</mn></msub><mo>=</mo><mo>−</mo><mn>1</mn><mtext>, </mtext><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo><mfrac><mn>1</mn><mfrac><mn>1</mn><mrow><mtext>ln</mtext><mrow><mo>(</mo><mstyle displaystyle="true"><mfrac bevelled="true"><mn>1</mn><mn>3</mn></mfrac></mstyle><mo>)</mo></mrow></mrow></mfrac></mfrac><mtext>, </mtext><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo><mtext>ln</mtext><mrow><mo>(</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>)</mo></mrow><mtext>, </mtext><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo><mfrac><mn>1</mn><mrow><mtext>ln</mtext><mspace width="thinmathspace"></mspace><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mtext>ln</mtext><mrow><mo>(</mo><mstyle displaystyle="true"><mfrac bevelled="true"><mn>1</mn><mn>3</mn></mfrac></mstyle><mo>)</mo></mrow></mrow></mfrac></math></span></p>
<p>correct application of log rule (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}{\left( {\frac{1}{3}} \right)^{ - 1}}{\text{, }}\,\, - \left( {{\text{ln}}\left( 1 \right) - {\text{ln}}\left( 3 \right)} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct equation (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,p = {\text{ln}}\,3{\text{, }}\,\,p = 3"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>=</mo> <mn>3</mn> </math></span></p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span></strong></p>
<p>correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 2{\text{, }} - 2} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 = \left( {{\text{ln}}\,p} \right)\left( { - 2} \right) + q + 1"> <mo>−</mo> <mn>2</mn> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 2\,{\text{ln}}\,p - 3{\text{, }}\,\,q = 2\,{\text{ln}}\,3 - 3"> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>−</mo> <mn>3</mn> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>−</mo> <mn>3</mn> </math></span> (seen anywhere) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span></strong></p>
<p>correct substitution of <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> into <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{{\text{ln}}\,3}}\left( {x - \left( {2\,{\text{ln}}\,3 - 3} \right) - 1} \right)"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{{\text{ln}}\,3}}\left( {x - 2\,{\text{ln}}\,3 + 2} \right){\text{, }}\,\,y = \frac{1}{{{\text{ln}}\,3}}x - \frac{{2\,{\text{ln}}\,3 - 2}}{{{\text{ln}}\,3}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mi>x</mi> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em><em><strong> N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for final answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1} = \frac{1}{{{\text{ln}}\,3}}\left( {x - 2\,{\text{ln}}\,3 + 2} \right)"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mn>4</mn></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>3</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>The following diagram shows the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> intersect at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>. The coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>In the following diagram, the shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The area of the shaded region can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>+</mo><mn>8</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mi>x</mi><mo>-</mo><mn>3</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>15</mn><mo>=</mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> <strong><em>(A1)</em></strong></p>
<p>valid attempt to solve <strong>their</strong> quadratic <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>±</mo><msqrt><msup><mn>8</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mn>15</mn></mfenced></msqrt></mrow><mrow><mn>2</mn><mfenced><mn>1</mn></mfenced></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mo>±</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>x</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>5</mn></mrow></mfenced></math> (may be seen in answer) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>2</mn></mrow></mfenced></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>2</mn></math>) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing two correct regions from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> and from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math> <strong><em>(R1)</em></strong></p>
<p>triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><munderover><mo>∫</mo><mn>5</mn><mi>k</mi></munderover><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>3</mn><mn>5</mn></munderover><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><munderover><mo>∫</mo><mn>5</mn><mi>k</mi></munderover><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>3</mn><mn>5</mn></munderover><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><munderover><mo>∫</mo><mn>5</mn><mi>k</mi></munderover><mfenced><mrow><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p>area of triangle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>·</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><msup><mn>5</mn><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mn>3</mn><mfenced><mn>5</mn></mfenced></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><msup><mn>3</mn><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mn>3</mn><mfenced><mn>3</mn></mfenced></mrow></mfenced></math> <strong><em>(A1)</em></strong></p>
<p>correct integration <strong><em>(A1)</em></strong><strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>x</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.<br><strong>Note:</strong> The first three <em><strong>A</strong></em> marks may be awarded independently of the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p>substitution of <strong>their</strong> limits (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>) into <strong>their</strong> integrated function (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>) <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo>-</mo><mfenced><mrow><mi>ln</mi><mo> </mo><mn>1</mn><mo>+</mo><mn>5</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>x</mi></mrow></mfenced><mn>5</mn><mi>k</mi></msubsup><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo>-</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p>adding <strong>their</strong> two areas (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>) and equating to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>p</mi><mo>+</mo><mn>8</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo>-</mo><mn>5</mn><mo>=</mo><mi>ln</mi><mo> </mo><mi>p</mi><mo>+</mo><mn>8</mn></math></p>
<p>equating <strong>their</strong> non-log terms to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> (equation must be in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>) <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>8</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>11</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn><mo>-</mo><mn>4</mn><mo>=</mo><mi>p</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>7</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Nearly all candidates knew to set up an equation with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> in order to find the intersection of the two graphs, and most were able to solve the resulting quadratic equation. Candidates were not as successful in part (b), however. While some candidates recognized that there were two regions to be added together, very few were able to determine the correct boundaries of these regions, with many candidates integrating one or both functions from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>. While a good number of candidates were able to correctly integrate the function(s), without the correct bounds the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> were unattainable.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{3}{4}"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta > 0"> <mi>tan</mi> <mo></mo> <mi>θ</mi> <mo>></mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}"> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of summing to 1 <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {p = 1} "> <mo>∑</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </math></span></p>
<p>correct equation <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta + 2\cos 2\theta = 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mo></mo> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo></mo> <mi>θ</mi> </math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta + 2(2{\cos ^2}\theta - 1) = 1,{\text{ }}4{\cos ^2}\theta + \cos \theta - 3 = 0"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>+</mo> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>evidence of valid approach to solve quadratic <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>factorizing equation set equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0,{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4 \times 4 \times ( - 3)} }}{8}"> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct working, clearly leading to required answer <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4\cos \theta - 3)(\cos \theta + 1),{\text{ }}\frac{{ - 1 \pm 7}}{8}"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <mn>7</mn> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct reason for rejecting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta \ne - 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo></mo> <mi>θ</mi> </math></span> is a probability (value must lie between 0 and 1), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta > 0"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>></mo> <mn>0</mn> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>R0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta \ne - 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> without a reason.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{3}{4}"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>AG N0</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>sketch of right triangle with sides 3 and 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sin ^2}x + {\cos ^2}x = 1"> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working </p>
<p><strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>missing side <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt 7 ,{\text{ }}\frac{{\frac{{\sqrt 7 }}{4}}}{{\frac{3}{4}}}"> <mo>=</mo> <msqrt> <mn>7</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta = \frac{{\sqrt 7 }}{3}"> <mi>tan</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}"> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{f^2},{\text{ }}\int {{{\left( {\frac{1}{{\cos x}}} \right)}^2}} } "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mrow> </math></span></p>
<p>correct substitution of both limits and function <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{{\left( {\frac{1}{{\cos x}}} \right)}^2}{\text{d}}x} "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p>correct integration <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x"> <mi>tan</mi> <mo></mo> <mi>x</mi> </math></span></p>
<p>substituting <strong>their </strong>limits into <strong>their </strong>integrated function and subtracting <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} - \tan \theta "> <mi>tan</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if they substitute into original or differentiated function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} = 1"> <mi>tan</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \tan \theta "> <mn>1</mn> <mo>−</mo> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi - \frac{{\pi \sqrt 7 }}{3}"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mfrac> <mrow> <mi>π</mi> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be an <strong>obtuse</strong> angle such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \frac{3}{5}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ<!-- θ --></mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{sin}}\,x - \frac{{3x}}{4}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> passes through the origin and has a gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>. Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 3. Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is a tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at point P.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> sketch of triangle with sides 3 and 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^2}\,\theta = 1 - {\text{si}}{{\text{n}}^2}\,\theta "> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> missing side is 4 (may be seen in sketch), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = - \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - \frac{3}{4}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>A2 N4</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of either gradient <strong>or</strong> origin into equation of line <em><strong>(A1)</strong></em></p>
<p>(do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + b"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </math></span>)</p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x\,{\text{tan}}\,\theta "> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = m\left( {x - 0} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{3}{4}x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span> <em><strong>A2 N4</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = - \frac{3}{4}x"> <mi>L</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to equate <strong>their</strong> gradients <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = {\text{tan}}\,\theta "> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = - \frac{3}{4}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,{\text{cos}}\,x + {{\text{e}}^x}\,{\text{sin}}\,x - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right) - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span></p>
<p>correct equation without <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = - {\text{cos}}\,x"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x + {\text{sin}}\,x = 0"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {\text{sin}}\,x}}{{{\text{cos}}\,x}} = 1"> <mfrac> <mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - 1"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 135^\circ "> <mi>x</mi> <mo>=</mo> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span> (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="135^\circ "> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span>) <em><strong>A1 N1</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if additional answers are given.</p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A school café sells three flavours of smoothies: mango (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span>), kiwi fruit (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="K">
<mi>K</mi>
</math></span>) and banana (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>).<br>85 students were surveyed about which of these three flavours they like.</p>
<p style="padding-left: 210px;">35 students liked mango, 37 liked banana, and 26 liked kiwi fruit<br>2 liked all three flavours<br>20 liked both mango and banana<br>14 liked mango and kiwi fruit<br>3 liked banana and kiwi fruit</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the given information, complete the following Venn diagram.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of surveyed students who did not like any of the three flavours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student is chosen at random from the surveyed students.</p>
<p>Find the probability that this student likes kiwi fruit smoothies given that they like mango smoothies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em><strong><img src=""> (A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 18, 12 and 1 in correct place on Venn diagram, <em><strong>(A1)</strong></em> for 3, 16 and 11 in correct place on Venn diagram.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>85 − (3 + 16 + 11 + 18 + 12 + 1 + 2)<em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting the sum of their values from 85.</p>
<p>22 <em><strong>(A1)</strong></em><strong>(ft) </strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their Venn diagram in part (a).<br>If any numbers that are being subtracted are negative award <em><strong>(M1)(A0)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{14}}{{35}}\,\,\,\left( {\frac{2}{5}{\text{,}}\,\,0.4{\text{,}}\,\,40{\text{% }}} \right)">
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.4</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>40</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span><em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><strong> </strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator; <em><strong>(A1)</strong></em> for correct denominator. Follow through from their Venn diagram.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a circular horizontal board divided into six equal sectors. The sectors are labelled white (W), yellow (Y) and blue (B).</p>
<p style="text-align: center;"><img src=""></p>
<p>A pointer is pinned to the centre of the board. The pointer is to be spun and when it stops the colour of the sector on which the pointer stops is recorded. The pointer is equally likely to stop on any of the six sectors.</p>
<p>Eva will spin the pointer twice. The following tree diagram shows all the possible outcomes.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both spins are yellow.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the spins is yellow.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the second spin is yellow, given that the first spin is blue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3} \times \frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{1}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying correct probabilities.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{9}">
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
</math></span> (0.111, 0.111111…, 11.1%) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{2} \times \frac{1}{3}} \right) + \left( {\frac{1}{6} \times \frac{1}{3}} \right) + \frac{1}{3}">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{2} \times \frac{1}{3}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{6} \times \frac{1}{3}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> or equivalent, and <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong>and </strong>adding only the three correct probabilities.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\left( {\frac{2}{3}} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{2}{3}}">
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</math></span> seen and <em><strong>(M1)</strong></em> for subtracting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{2}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> from 1. This may be shown in a tree diagram with “yellow” and “not yellow” branches.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{9}">
<mfrac>
<mn>5</mn>
<mn>9</mn>
</mfrac>
</math></span> (0.556, 0.555555…, 55.6%) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note: </strong>Follow through marks may be awarded if their answer to part (a) is used in a correct calculation.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> (0.333, 0.333333…, 33.3%) <em><strong>(A1)</strong></em><em><strong> (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> moves along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo> </mo><mi mathvariant="normal">m</mi><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>3</mn></math>. When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi></math> is at the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> reaches its maximum velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math> at this time is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>88</mn><mn>27</mn></mfrac></math> metres.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, clearly showing any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find turning point (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>'</mo><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>, average of roots) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>4</mn><mrow><mn>2</mn><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>2</mn><mn>3</mn></mfrac></mstyle><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> (s) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi><mo>=</mo><mo>∫</mo><mfenced><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi><mo>=</mo><mn>4</mn><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><msup><mi>t</mi><mn>3</mn></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup></math>, <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mi>t</mi><mn>3</mn></msup></math>.</p>
<p><br>attempt to substitute their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> into their solution for the integral <em><strong>(M1)</strong></em></p>
<p>distance<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mn>4</mn><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mo>+</mo><mn>2</mn><msup><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mn>3</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>8</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>8</mn><mn>9</mn></mfrac><mo>-</mo><mfrac><mn>8</mn><mn>27</mn></mfrac></math> (or equivalent) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>88</mn><mn>27</mn></mfrac></math> (m) <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>valid approach to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math> (may be seen in part (a)) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>-</mo><mi>t</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mi>t</mi></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>4</mn><mo>±</mo><msqrt><mn>16</mn><mo>+</mo><mn>48</mn></msqrt></mrow><mrow><mo>-</mo><mn>6</mn></mrow></mfrac></math></p>
<p>correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>- intercept on the graph at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The following two <em><strong>A</strong></em> marks may only be awarded if the shape is a concave down parabola. These two marks are independent of each other and the <em><strong>(M1)</strong></em>.</p>
<p><br>correct domain from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> must be clearly indicated.</p>
<p><br>vertex in approximately correct place for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>></mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognising to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>3</mn></munderover><mfenced open="|" close="|"><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>2</mn></munderover><mfenced><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>2</mn><mn>3</mn></munderover><mfenced><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p>valid approach to sum the two areas (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>2</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi><mo>-</mo><munderover><mo>∫</mo><mn>2</mn><mn>3</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>2</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi><mo>+</mo><mfenced open="|" close="|"><mrow><munderover><mo>∫</mo><mn>2</mn><mn>3</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi></mrow></mfenced></math></p>
<p>total distance travelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>13</mn></math> (m) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosewood College has 120 students. The students can join the sports club (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span>) and the music club (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span>).</p>
<p>For a student chosen at random from these 120, the probability that they joined both clubs is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> and the probability that they joined the music club is<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<p>There are 20 students that did not join either club.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram for these students.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_08.15.35.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the students who joined the sports club is chosen at random. Find the probability that this student joined both clubs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2018-02-13_om_08.19.04.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a/M"> <strong><em>(A1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for 30 in correct area, <strong><em>(A1) </em></strong>for 60 and 10 in the correct areas.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{90}}{\text{ }}\left( {\frac{1}{3},{\text{ }}0.333333 \ldots ,{\text{ }}33.3333 \ldots \% } \right)">
<mfrac>
<mrow>
<mn>30</mn>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.333333</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>33.3333</mn>
<mo>…</mo>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct numerator of 30, <strong><em>(A1)</em>(ft) </strong>for correct denominator of 90. Follow through from their Venn diagram.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(S) \times {\text{P}}(M) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>S</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>M</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(R1) </em></strong>for multiplying their by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<p> </p>
<p>therefore the events are independent <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{as P}}(S \cap M) = \frac{1}{4}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>as P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>S</mi>
<mo>∩</mo>
<mi>M</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(R1)(A1)</em>(ft) </strong>for an answer which is consistent with their Venn diagram.</p>
<p>Do not award <strong><em>(R0)(A1)</em>(ft)</strong>.</p>
<p>Do not award final <strong><em>(A1) </em></strong>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(S) \times {\text{P}}(M)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>S</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>M</mi>
<mo stretchy="false">)</mo>
</math></span> is not calculated. Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand and simplify <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>a</mi><mo>)</mo></mrow><mn>3</mn></msup></math> in ascending powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable substitution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mi>m</mi></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is a positive real constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;">attempt to use binomial expansion <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mmultiscripts><mi>C</mi><mn>1</mn><mprescripts></mprescripts><mn>3</mn></mmultiscripts><mo>×</mo><mn>1</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>2</mn><mprescripts></mprescripts><mn>3</mn></mmultiscripts><mo>×</mo><mn>1</mn><mo>×</mo><msup><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mn>3</mn></msup></math></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi>a</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mn>3</mn><mi>a</mi><mo>+</mo><mn>3</mn><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><msup><mi>a</mi><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p style="text-align:left;">So, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;">attempt to substitute any double angle rule for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></math> <em><strong>AG</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> Allow working RHS to LHS.</p>
<p style="text-align:left;"> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">recognizing to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>×</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>EITHER</strong></p>
<p style="text-align:left;">applies integration by inspection <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn><mo>∫</mo><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>×</mo><msup><mfenced><mrow><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mn>6</mn></msup></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>0</mn><mi>m</mi></msubsup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>cos</mi><mo> </mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mn>32</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo> </mo><mfenced><mrow><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mo>∫</mo><mn>32</mn><msup><mi>u</mi><mn>6</mn></msup><mo> </mo><mo>d</mo><mi>u</mi></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>u</mi><mn>7</mn></msup><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>0</mn><mi>m</mi></msubsup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>u</mi><mn>7</mn></msup></mrow></mfenced><mn>0</mn><mrow><mi>sin</mi><mo> </mo><mi>m</mi></mrow></msubsup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math> <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mfenced><mrow><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup></mrow></mfenced><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math> <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>7</mn></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></mrow></mfenced><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>m</mi></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>7</mn></mfrac><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>+</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>=</mo><mfrac><mn>1</mn><mn>128</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><msup><mn>2</mn><mn>7</mn></msup></mfrac></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>m</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates successfully expanded the binomial, with the most common error being to omit the negative sign with a. The connection between (a)(i) and (ii) was often noted but not fully utilised with candidates embarking on unnecessary complex algebraic expansions of expressions involving double angle rules. Candidates often struggled to apply inspection or substitution when integrating. As a 'show that' question, b(i) provided a useful result to be utilised in (ii). So even without successfully completing (i) candidates could apply it in part (ii). Not many managed to do so.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A boy is chosen at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>20 <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{43}}\,\,\,\left( {0.11627 \ldots ,\,\,11.6279 \ldots {\text{% }}} \right)">
<mfrac>
<mn>5</mn>
<mrow>
<mn>43</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.11627</mn>
<mo>…</mo>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>11.6279</mn>
<mo>…</mo>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{37}} \times \frac{{12}}{{36}} + \frac{{12}}{{37}} \times \frac{7}{{36}}">
<mfrac>
<mn>7</mn>
<mrow>
<mn>37</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>37</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for first or second correct product seen, <em><strong>(M1)</strong></em> for adding their two products or for multiplying their product by two.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{14}}{{111}}\,\,\left( {\,0.12612 \ldots ,\,\,12.6126\,{\text{% }}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>111</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mspace width="thinmathspace"></mspace>
<mn>0.12612</mn>
<mo>…</mo>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>12.6126</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A small cuboid box has a rectangular base of length <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x">
<mn>3</mn>
<mi>x</mi>
</math></span> cm and width <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> cm, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
<mi>x</mi>
<mo>></mo>
<mn>0</mn>
</math></span>. The height is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> cm, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y > 0">
<mi>y</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The sum of the length, width and height is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12">
<mn>12</mn>
</math></span> cm.</p>
</div>
<div class="specification">
<p>The volume of the box is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V">
<mi>V</mi>
</math></span> cm<sup>3</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V"> <mi>V</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}x}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>V</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V"> <mi>V</mi> </math></span> is a maximum.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum volume.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 12 - 4x"> <mi>y</mi> <mo>=</mo> <mn>12</mn> <mo>−</mo> <mn>4</mn> <mi>x</mi> </math></span> <em><strong>A1</strong></em><em><strong> N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into volume formula <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x \times x \times y{\text{, }}x \times 3x \times \left( {12 - x - 3x} \right){\text{, }}\left( {12 - 4x} \right)\left( x \right)\left( {3x} \right)"> <mn>3</mn> <mi>x</mi> <mo>×</mo> <mi>x</mi> <mo>×</mo> <mi>y</mi> <mrow> <mtext>, </mtext> </mrow> <mi>x</mi> <mo>×</mo> <mn>3</mn> <mi>x</mi> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mn>12</mn> <mo>−</mo> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>12</mn> <mo>−</mo> <mn>4</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = 3{x^2}\left( {12 - 4x} \right)\,\,\left( { = 36{x^2} - 12{x^3}} \right)"> <mi>V</mi> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>12</mn> <mo>−</mo> <mn>4</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>36</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>12</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em><em><strong> N2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for unfinished answers such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2}\left( {12 - x - 3x} \right)"> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>12</mn> <mo>−</mo> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}x}} = 72x - 36{x^2}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>V</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>72</mn> <mi>x</mi> <mo>−</mo> <mn>36</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>A1A1</strong></em><em><strong> N2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="72x"> <mn>72</mn> <mi>x</mi> </math></span> and <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 36{x^2}"> <mo>−</mo> <mn>36</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find maximum <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V' = 0{\text{, }}72x - 36{x^2} = 0"> <msup> <mi>V</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> <mrow> <mtext>, </mtext> </mrow> <mn>72</mn> <mi>x</mi> <mo>−</mo> <mn>36</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( {72 - 36x} \right){\text{, }}\frac{{ - 72 \pm \sqrt {{{72}^2} - 4 \cdot \left( { - 36} \right) \cdot 0} }}{{2\left( { - 36} \right)}}{\text{, }}36x = 72{\text{, }}36x\left( {2 - x} \right) = 0"> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>72</mn> <mo>−</mo> <mn>36</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>72</mn> <mo>±</mo> <msqrt> <mrow> <msup> <mrow> <mn>72</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mo>⋅</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>36</mn> </mrow> <mo>)</mo> </mrow> <mo>⋅</mo> <mn>0</mn> </msqrt> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>36</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mn>36</mn> <mi>x</mi> <mo>=</mo> <mn>72</mn> <mrow> <mtext>, </mtext> </mrow> <mn>36</mn> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>A2</strong></em><em><strong> N2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to explain that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V"> <mi>V</mi> </math></span> is maximum when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{V''}"> <mrow> <msup> <mi>V</mi> <mo>″</mo> </msup> </mrow> </math></span>, sign chart (must be labelled <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{V'}"> <mrow> <msup> <mi>V</mi> <mo>′</mo> </msup> </mrow> </math></span>)</p>
<p>correct value/s <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V''\left( 2 \right) = 72 - 72 \times 2"> <msup> <mi>V</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>72</mn> <mo>−</mo> <mn>72</mn> <mo>×</mo> <mn>2</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V'\left( a \right)"> <msup> <mi>V</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < 2"> <mi>a</mi> <mo><</mo> <mn>2</mn> </math></span> <strong>and </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V'\left( b \right)"> <msup> <mi>V</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>b</mi> <mo>)</mo> </mrow> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b > 2"> <mi>b</mi> <mo>></mo> <mn>2</mn> </math></span></p>
<p>correct reasoning <em><strong>R1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V''\left( 2 \right) < 0"> <msup> <mi>V</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo><</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{V'}"> <mrow> <msup> <mi>V</mi> <mo>′</mo> </msup> </mrow> </math></span> is positive for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < 2"> <mi>x</mi> <mo><</mo> <mn>2</mn> </math></span> <strong>and</strong> negative for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 2"> <mi>x</mi> <mo>></mo> <mn>2</mn> </math></span></p>
<p><strong>Note:</strong> Do not award <em><strong>R1</strong></em> unless <em><strong>A1</strong></em> has been awarded.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V"> <mi>V</mi> </math></span> is maximum when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>AG</strong></em><em><strong> N0</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <strong>their</strong> expression for volume <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 \times {2^2}\left( {12 - 4 \times 2} \right)"> <mn>3</mn> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>12</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="36\left( {{2^2}} \right) - 12\left( {{2^3}} \right)"> <mn>36</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>12</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mn>3</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = 48"> <mi>V</mi> <mo>=</mo> <mn>48</mn> </math></span> (cm<sup>3</sup>) <em><strong>A1</strong></em><em><strong> N1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{3}{x^3} + {x^2} - 15x + 17">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>15</mn>
<mi>x</mi>
<mo>+</mo>
<mn>17</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has horizontal tangents at the points where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence explain why the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has a local maximum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( b \right)">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>b</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, use your answer to part (d)(i) to show that the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has a local minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
<mi>x</mi>
<mo>=</mo>
<mi>b</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The normal to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
</math></span> and the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
<mi>x</mi>
<mo>=</mo>
<mi>b</mi>
</math></span> intersect at the point (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span>) .</p>
<p> </p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = {x^2} + 2x - 15">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>15</mn>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct reasoning that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 2x - 15 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>15</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>valid approach to solve quadratic <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 3} \right)\left( {x + 5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, quadratic formula</p>
<p>correct values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span></p>
<p>3, −5</p>
<p>correct values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = −5 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> = 3 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>first derivative changes from positive to negative at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>so local maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
</math></span> <em><strong>A</strong><strong>G</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 2x + 2">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> into <strong>their</strong> second derivative <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( 3 \right) = 2 \times 3 + 2">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mo>×</mo>
<mn>3</mn>
<mo>+</mo>
<mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( b \right) = 8">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>b</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>8</mn>
</math></span> <em><strong>(A</strong><strong>1)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( b \right)">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>b</mi>
<mo>)</mo>
</mrow>
</math></span> is positive so graph is concave up <em><strong>R1</strong></em></p>
<p>so local minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
<mi>x</mi>
<mo>=</mo>
<mi>b</mi>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>normal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = −5 (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-coordinate at their value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 3 \right) = ">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
</math></span> −10 <em><strong> (A1)</strong></em></p>
<p>tangent at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
<mi>x</mi>
<mo>=</mo>
<mi>b</mi>
</math></span> has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> = −10 (seen anywhere) <em><strong> A1</strong></em></p>
<p>intersection at (−5, −10)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = −5 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> = −10 <em><strong> A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of a quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has its vertex at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>)</mo></math>, and it passes through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The function can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>h</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>.</p>
</div>
<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
</div>
<div class="specification">
<p>Now consider another function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>. The derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>-</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the axis of symmetry.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>12</mn><mo>)</mo></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is an increasing function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is concave-up.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Must be an equation in the form “ <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ”. Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>=</mo><mn>3</mn></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>4</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn></math>) <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mn>5</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mo> </mo><mn>4</mn><mi>a</mi><mo>+</mo><mn>4</mn><mo>=</mo><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize need to find derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mn>5</mn></mfenced><mo>=</mo><mn>8</mn></math> (may be seen as gradient in their equation) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>8</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>28</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>8</mn><mi>x</mi><mo>−</mo><mn>28</mn></math>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>Recognizing that for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> to be increasing, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>-</mo><mi>d</mi><mo>></mo><mn>0</mn></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>></mo><mn>0</mn></math> <strong><em>(M1)</em></strong></p>
<p>The vertex must be above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mi>d</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>d</mi><mo>-</mo><mn>4</mn><mo><</mo><mn>0</mn></math> <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo><</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempting to find discriminant of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>12</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>2</mn></mfenced><mfenced><mrow><mn>22</mn><mo>-</mo><mi>d</mi></mrow></mfenced></math></p>
<p>recognizing discriminant must be negative <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>32</mn><mo>+</mo><mn>8</mn><mi>d</mi><mo><</mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo><</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo><</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> to be concave up, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mo>></mo><mn>0</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mo>></mo><mn>0</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>-</mo><mn>3</mn><mo>></mo><mn>0</mn></math> <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In parts (a) and (b) of this question, a majority of candidates recognized the connection between the coordinates of the vertex and the axis of symmetry and the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, and most candidates were able to successfully substitute the coordinates of point Q to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>. In part (c), the candidates who recognized the need to use the derivative to find the gradient of the tangent were generally successful in finding the equation of the line, although many did not give their equation in the proper form in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>, and instead wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>28</mn></math>, thus losing the final mark. Parts (d) and (e) were much more challenging for candidates. Although a good number of candidates recognized that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>></mo><mn>0</mn></math> in part (d), and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>></mo><mn>0</mn></math> in part (e), very few were able to proceed beyond this point and find the correct inequalities for their final answers.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, has its derivative given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mi>p</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math> has an axis of symmetry <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi></math>.</p>
</div>
<div class="specification">
<p>The vertex of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
</div>
<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>a</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the discriminant of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the gradient of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>″</mo></math>, the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Indicate clearly the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is concave-down. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mo>×</mo><mn>3</mn></mrow></mfrac></math></p>
<p><br><strong>OR</strong></p>
<p>attempt to complete the square <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>12</mn><mo>+</mo><mi>p</mi></math></p>
<p><br><strong>OR</strong></p>
<p>attempt to differentiate and equate to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>discriminant <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to substitute into <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>12</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>3</mn><mo>×</mo><mi>p</mi><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>12</mn><mo>+</mo><mi>p</mi><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mn>0</mn></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mo>×</mo><mn>0</mn><mo>-</mo><mn>12</mn></math></p>
<p>gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;padding-left:120px;"><img src=""> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for line with positive gradient, <em><strong>A1</strong> </em>for correct intercepts.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo><</mo><mn>0</mn></math> (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>2</mn></math>) OR the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math> is below the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>2</mn></math>)</p>
<p style="text-align:left;">OR <img src=""> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math> (sign diagram must be labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math>) <em><strong>R1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates did score well on this question. As always, candidates are encouraged to read the questions carefully for key words such as 'value' as opposed to 'expression'. So, if asked for the value of the discriminant, their answer should be a number and not an expression found from <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi></math>. As such the value of the discriminant in (b)(i) was often seen in (b)(ii). Please ask students to use a straight edge when sketching a straight line! Overall, the reasoning mark for determining where the graph of <em>f</em> is concave-down, was an improvement on previous years. Sign diagrams were typically well labelled, and the description contained clarity regarding which function was being referred to.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \log k(6x - 3{x^2})">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>log</mi>
<mo></mo>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < 2">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>2</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k > 0">
<mi>k</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
</math></span> has exactly one solution. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1 – using discriminant</strong></p>
<p>correct equation without logs <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - 3{x^2} = {k^2}">
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3{x^2} + 6x - {k^2} = 0,{\text{ }}3{x^2} - 6x + {k^2} = 0">
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>recognizing discriminant must be zero (seen anywhere) <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta = 0">
<mi mathvariant="normal">Δ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct discriminant <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{6^2} - 4( - 3)( - {k^2}),{\text{ }}36 - 12{k^2} = 0">
<mrow>
<msup>
<mn>6</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>36</mn>
<mo>−</mo>
<mn>12</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12{k^2} = 36,{\text{ }}{k^2} = 3">
<mn>12</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>36</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \sqrt 3 ">
<mi>k</mi>
<mo>=</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <strong><em>A2 N2</em></strong></p>
<p><strong>METHOD 2 – completing the square</strong></p>
<p>correct equation without logs <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - 3{x^2} = {k^2}">
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>valid approach to complete the square <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3({x^2} - 2x + 1) = - {k^2} + 3,{\text{ }}{x^2} - 2x + 1 - 1 + \frac{{{k^2}}}{3} = 0">
<mn>3</mn>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{(x - 1)^2} = - {k^2} + 3,{\text{ }}{(x - 1)^2} - 1 + \frac{{{k^2}}}{3} = 0">
<mn>3</mn>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>recognizing conditions for one solution <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x - 1)^2} = 0,{\text{ }} - 1 + \frac{{{k^2}}}{3} = 0">
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{k^2}}}{3} = 1,{\text{ }}{k^2} = 3">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \sqrt 3 ">
<mi>k</mi>
<mo>=</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <strong> <em>A2 N2</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A factory produces shirts. The cost, <em>C</em>, in Fijian dollars (FJD), of producing<em> x</em> shirts can be modelled by</p>
<p style="text-align: center;"><em>C</em>(<em>x</em>) = (<em>x</em> − 75)<sup>2</sup> + 100.</p>
</div>
<div class="specification">
<p>The cost of production should not exceed 500 FJD. To do this the factory needs to produce at least 55 shirts and at most <em>s</em> shirts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of producing 70 shirts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>s</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of shirts produced when the cost of production is lowest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(70 − 75)<sup>2</sup> + 100 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting in <em>x</em> = 70.</p>
<p>125 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>s</em> − 75)<sup>2</sup> + 100 = 500 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <em>C</em>(<em>x</em>) to 500. Accept an inequality instead of =.</p>
<p><strong>OR</strong></p>
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for sketching correct graph(s).</p>
<p>(<em>s</em> =) 95 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt at finding the minimum point using graph.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{95 + 55}}{2}">
<mfrac>
<mrow>
<mn>95</mn>
<mo>+</mo>
<mn>55</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for attempting to find the mid-point between their part (b) and 55.</p>
<p><strong>OR</strong></p>
<p>(<em>C'</em>(<em>x</em>) =) 2<em>x</em> − 150 = 0 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt at differentiation that is correctly equated to zero.</p>
<p>75 <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The equation of a curve is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}{x^4} - \frac{3}{2}{x^2} + 7">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The gradient of the tangent to the curve at a point P is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 10">
<mo>−<!-- − --></mo>
<mn>10</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - 3x">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span> <strong><em>(A1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3}">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span>, award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3x">
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</math></span>.</p>
<p>Award at most <strong><em>(A1)(A0) </em></strong>if there are any extra terms.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - 3x = - 10">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>10</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their answer to part (a) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 10">
<mo>−</mo>
<mn>10</mn>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a). Award <strong><em>(M0)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2">
<mo>−</mo>
<mn>2</mn>
</math></span> seen without working.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}{( - 2)^4} - \frac{3}{2}{( - 2)^2} + 7">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>substituting their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2">
<mo>−</mo>
<mn>2</mn>
</math></span> into the original function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 9">
<mi>y</mi>
<mo>=</mo>
<mn>9</mn>
</math></span> <strong><em>(A1)</em>(ft) <em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}9)">
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>9</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> with domain <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo><</mo><mi>x</mi><mo><</mo><mi>b</mi></math>. The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>, the derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>, the derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, has <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>t</mi></math> . There are local maximum points at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>t</mi></math> and a local minimum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find all the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is increasing. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a local maximum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a local minimum. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has points of inflexion. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total area of the region enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>, the derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>p</mi></mfenced><mo>+</mo><mi>f</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>4</mn></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Special note:</strong> In this question if candidates use the word 'gradient' in their reasoning. e.g. gradient is positive, it must be clear whether this is the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> or the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> to earn the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> increases when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo><</mo><mi>x</mi><mo><</mo><mn>0</mn></math><strong> <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> increases when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>></mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> is above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis<strong> <em>R1</em></strong></p>
<p><br><strong>Note:</strong> Do not award <em><strong>A0R1</strong></em>.</p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Special note:</strong> In this question if candidates use the word 'gradient' in their reasoning. e.g. gradient is positive, it must be clear whether this is the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> or the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> to earn the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1</strong></em><em><strong> mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Special note:</strong> In this question if candidates use the word 'gradient' in their reasoning. e.g. gradient is positive, it must be clear whether this is the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> or the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> to earn the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is minimum when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> <strong><em>A1</em></strong></p>
<p>because <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo><</mo><mn>0</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>></mo><mn>0</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mi>p</mi></math></p>
<p>(may be seen in a sign diagram clearly labelled as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>)</p>
<p>OR because <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> changes from negative to positive at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math></p>
<p>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced><mo>=</mo><mn>0</mn></math> and slope of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> is positive at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Do not award<em><strong> A0 R1</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Special note:</strong> In this question if candidates use the word 'gradient' in their reasoning. e.g. gradient is positive, it must be clear whether this is the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> or the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> to earn the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has points of inflexion when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>t</mi></math> <strong><em>A2</em></strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> has turning points at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>t</mi></math></p>
<p>OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>q</mi></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>f</mi><mo>''</mo><mfenced><mi>r</mi></mfenced><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> changes from increasing to decreasing or vice versa at each of these <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-values (may be seen in a sign diagram clearly labelled as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>) <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <em><strong>A0</strong></em> if any incorrect answers are given. Do not award<em><strong> A0R1</strong></em></p>
<p> </p>
<p><em><strong>[3</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Special note:</strong> In this question if candidates use the word 'gradient' in their reasoning. e.g. gradient is positive, it must be clear whether this is the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> or the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> to earn the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p>recognizing area from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> (seen anywhere) <strong><em>M1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>p</mi><mi>t</mi></munderover><mfenced open="|" close="|"><mrow><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p>recognizing to negate integral for area below <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>p</mi><mn>0</mn></munderover><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>-</mo><munderover><mo>∫</mo><mn>0</mn><mi>t</mi></munderover><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>p</mi><mn>0</mn></munderover><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><munderover><mo>∫</mo><mi>t</mi><mn>0</mn></munderover><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>m</mi><mi>n</mi></munderover><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mi>f</mi><mfenced><mi>n</mi></mfenced><mo>-</mo><mi>f</mi><mfenced><mi>m</mi></mfenced></math> (for any integral) <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>-</mo><mi>f</mi><mfenced><mi>p</mi></mfenced><mo>-</mo><mfenced open="[" close="]"><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced><mo>-</mo><mi>f</mi><mfenced><mn>0</mn></mfenced></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>-</mo><mi>f</mi><mfenced><mi>p</mi></mfenced><mo>+</mo><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>-</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math> <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>-</mo><mfenced open="[" close="]"><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced><mo>+</mo><mi>f</mi><mfenced><mi>p</mi></mfenced></mrow></mfenced><mo>=</mo><mn>20</mn><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>-</mo><mn>4</mn><mo>=</mo><mn>20</mn></math> <strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>12</mn></math> <strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[6</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - x">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mi>x</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.25.10.png" alt="N17/5/MATME/SP1/ENG/TZ0/08"></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at the origin and at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(1,{\text{ }}0)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at another point Q, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.27.48.png" alt="N17/5/MATME/SP1/ENG/TZ0/08.c.d"></p>
</div>
<div class="question">
<p>Find the area of the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {L - f,{\text{ }}\int_{ - 1}^1 {(1 - {x^2}){\text{d}}x} } "> <mo>∫</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>f</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </math></span>, splitting area into triangles and integrals</p>
<p>correct integration <strong><em>(A1)(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {x - \frac{{{x^3}}}{3}} \right]_{ - 1}^1,{\text{ }} - \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} + \frac{{{x^2}}}{2} + x"> <msubsup> <mrow> <mo>[</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>x</mi> </math></span></p>
<p>substituting <strong>their</strong> limits into <strong>their</strong> integrated function and subtracting (in any order) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{1}{3} - \left( { - 1 - \frac{{ - 1}}{3}} \right)"> <mn>1</mn> <mo>−</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>for substituting into original or differentiated function.</p>
<p> </p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{4}{3}"> <mo>=</mo> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span> <strong><em>A2 N3</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > \frac{1}{2}">
<mi>x</mi>
<mo>></mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\left( {f\left( x \right)} \right)}^2}{\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Part of the graph of <em>f</em> is shown in the following diagram.</p>
<p><img src=""></p>
<p>The shaded region <em>R</em> is enclosed by the graph of <em>f</em>, the <em>x</em>-axis, and the lines <em>x</em> = 1 and <em>x</em> = 9 . Find the volume of the solid formed when <em>R</em> is revolved 360° about the <em>x</em>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct working <em><strong>(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{2x - 1}}{\text{d}}x,\,\,\int {{{\left( {2x - 1} \right)}^{ - 1}},\,\,\frac{1}{{2x - 1}},\,\,\int {{{\left( {\frac{1}{{\sqrt u }}} \right)}^2}\frac{{{\text{d}}u}}{2}} } } ">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\int {\left( {f\left( x \right)} \right)} ^2}{\text{d}}x = \frac{1}{2}{\text{ln}}\left( {2x - 1} \right) + c">
<mrow>
<mo>∫</mo>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>A2 N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{ln}}\left( {2x - 1} \right)">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula involving <em>f </em><sup>2</sup> (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> / d<em>x</em>) <strong><em>(M1)</em></strong></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_1^9 {{y^2}{\text{d}}x,\,\,} \pi {\int {\left( {\frac{1}{{\sqrt {2x - 1} }}} \right)} ^2}{\text{d}}x,\,\,\left[ {\frac{1}{2}{\text{ln}}\left( {2x - 1} \right)} \right]_1^9">
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>9</mn>
</msubsup>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</mrow>
<mi>π</mi>
<mrow>
<mo>∫</mo>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>1</mn>
<mn>9</mn>
</msubsup>
</math></span></p>
<p>substituting limits into <strong>their</strong> integral and subtracting (in any order) <strong><em>(M1)</em></strong></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}\left( {{\text{ln}}\left( {17} \right) - {\text{ln}}\left( 1 \right)} \right),\,\,\pi \left( {0 - \frac{1}{2}{\text{ln}}\left( {2 \times 9 - 1} \right)} \right)">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>17</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>π</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mn>9</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working involving calculating a log value or using log law <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( 1 \right) = 0,\,\,{\text{ln}}\left( {\frac{{17}}{1}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mn>1</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}{\text{ln}}17\,\,\,\,\left( {{\text{accept }}\pi {\text{ln}}\sqrt {17} } \right)">
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mn>17</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept </mtext>
</mrow>
<mi>π</mi>
<mrow>
<mtext>ln</mtext>
</mrow>
<msqrt>
<mn>17</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> Full <em><strong>FT</strong></em> may be awarded as normal, from their incorrect answer in part (a), however, do not award the final two <em><strong>A</strong></em> marks unless they involve logarithms.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left( {{x^3} + x} \right)^{\frac{3}{2}}}">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \sqrt {{x^3} + x} ">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 6 - 3{x^2}\sqrt {{x^3} + x} ">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>6</mn>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> are shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The shaded region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> is enclosed by the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\left( {3{x^2} + 1} \right)\sqrt {{x^3} + x} } \,{\text{d}}x">
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>integrating by inspection from (a) or by substitution <em><strong>(M1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}\int {\frac{3}{2}} \left( {3{x^2} + 1} \right)\sqrt {{x^3} + x} \,{\text{d}}x">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {x^3} + x">
<mi>u</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</math></span>, <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = 3{x^2} + 1">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</math></span></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{u^{\frac{1}{2}}}} ">
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{u^{\frac{3}{2}}}}}{{1.5}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.5</mn>
</mrow>
</mfrac>
</math></span></p>
<p>correct integrated expression in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> <em><strong>A2 N3</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}{\left( {{x^3} + x} \right)^{\frac{3}{2}}} + C">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {{x^3} + x} \right)}^{1.5}}}}{{1.5}} + C">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>1.5</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.5</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>integrating and subtracting functions (in any order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {g - f} ">
<mo>∫</mo>
<mrow>
<mi>g</mi>
<mo>−</mo>
<mi>f</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f - \int g } ">
<mo>∫</mo>
<mrow>
<mi>f</mi>
<mo>−</mo>
<mo>∫</mo>
<mi>g</mi>
</mrow>
</math></span></p>
<p>correct integral (including limits, accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{d}}x}">
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>) <em><strong>A1 N2</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {\left( {g - f} \right)} \,{\text{d}}x">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>g</mi>
<mo>−</mo>
<mi>f</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {6 - 3{x^2}\sqrt {{x^3} + x} - \sqrt {{x^3} + x} } \,{\text{d}}x">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
<mo>−</mo>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {g\left( x \right) - } \int_0^1 {f\left( x \right)} ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>−</mo>
</mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</msubsup>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
</math></span></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{x^3} + x} ">
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span> is a common factor (seen anywhere, may be seen in part (c)) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 3{x^2} - 1} \right)\sqrt {{x^3} + x} ">
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {6 - \left( {3{x^2} + 1} \right)} \sqrt {{x^3} + x} ">
<mo>∫</mo>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3{x^2} - 1} \right)\sqrt {{x^3} + x} ">
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</msqrt>
</math></span></p>
<p>correct integration <em><strong>(A1)(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x - \frac{2}{3}{\left( {{x^3} + x} \right)^{\frac{3}{2}}}">
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6x">
<mn>6</mn>
<mi>x</mi>
</math></span> and award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{\left( {{x^3} + x} \right)^{\frac{3}{2}}}">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<p>substituting limits into <strong>their</strong> integrated function and subtracting (in any order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - \frac{2}{3}{\left( {{1^3} + 1} \right)^{\frac{3}{2}}}">
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>1</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 - \left[ {6 - \frac{2}{3}{{\left( {{1^3} + 1} \right)}^{\frac{3}{2}}}} \right]">
<mn>0</mn>
<mo>−</mo>
<mrow>
<mo>[</mo>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mn>1</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</math></span></p>
<p>correct working <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - \frac{2}{3} \times 2\sqrt 2 ">
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mn>2</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - \frac{2}{3} \times \sqrt 4 \times \sqrt 2 ">
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<msqrt>
<mn>4</mn>
</msqrt>
<mo>×</mo>
<msqrt>
<mn>2</mn>
</msqrt>
</math></span></p>
<p>area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R = 6 - \frac{{4\sqrt 2 }}{3}\,\,\,\left( { = 6 - \frac{2}{3}\sqrt 8 {\text{,}}\,\,\,6 - \frac{2}{3} \times {2^{\frac{3}{2}}}{\text{,}}\,\,\,\frac{{18 - 4\sqrt 2 }}{3}} \right)">
<mi>R</mi>
<mo>=</mo>
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>4</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<msqrt>
<mn>8</mn>
</msqrt>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>18</mn>
<mo>−</mo>
<mn>4</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 2{x^2} + ax + 6">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span>. Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis at the point P. The line <em>L</em> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> at P.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the equation of <em>L</em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a local minimum at the point Q. The line <em>L</em> passes through Q.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = 3{x^2} - 4x + a"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>x</mi> <mo>+</mo> <mi>a</mi> </math></span> <em><strong> A2 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 0 \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{\left( 0 \right)^2} - 4\left( 0 \right) + a"> <mn>3</mn> <mrow> <msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>a</mi> </math></span>, slope = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 0 \right) = a"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> </math></span></p>
<p>attempt to substitute gradient and coordinates into linear equation <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 6 = a\left( {x - 0} \right)"> <mi>y</mi> <mo>−</mo> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = a\left( {x - 6} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 = a\left( 0 \right) + c"> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> </math></span>, <em>L</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ax + 6"> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mn>6</mn> </math></span></p>
<p>correct equation <em><strong>A1 N3</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + 6"> <mi>y</mi> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mn>6</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 6 = ax"> <mi>y</mi> <mo>−</mo> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 6 = a\left( {x - 0} \right)"> <mi>y</mi> <mo>−</mo> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find intersection <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = L"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>L</mi> </math></span></p>
<p>correct equation<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} - 2{x^2} + ax + 6 = ax + 6"> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mn>6</mn> </math></span></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^3} - 2{x^2} = 0"> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}(x - 2) = 0"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span> at Q <em><strong>(A1)</strong></em></p>
<p> </p>
<p>valid approach to find minimum<em><strong> (M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} - 4x + a = 0"> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>substitution of <strong>their</strong> value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> at Q into <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> equation<em><strong> (M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{\left( 2 \right)^2} - 4\left( 2 \right) + a = 0"> <mn>3</mn> <mrow> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12 - 8 + a = 0"> <mn>12</mn> <mo>−</mo> <mn>8</mn> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = −4 <em><strong>A1 N0</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A closed cylindrical can with radius r centimetres and height h centimetres has a volume of 20<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π<!-- π --></mi>
</math></span> cm<sup>3</sup>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The material for the base and top of the can costs 10 cents per cm<sup>2</sup> and the material for the curved side costs 8 cents per cm<sup>2</sup>. The total cost of the material, in cents, is <em>C</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <em>h</em> in terms of <em>r.</em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20\pi {r^2} + \frac{{320\pi }}{r}">
<mi>C</mi>
<mo>=</mo>
<mn>20</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mi>r</mi>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that there is a minimum value for <em>C</em>, find this minimum value in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct equation for volume <strong><em>(A1)</em></strong><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h = 20\pi ">
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>h</mi>
<mo>=</mo>
<mn>20</mn>
<mi>π</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{20}}{{{r^2}}}">
<mi>h</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>20</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find formula for cost of parts <em><strong> (M1)</strong></em><br><em>eg </em> 10 × two circles, 8 × curved side</p>
<p>correct expression for cost of two circles in terms of <em>r</em> (seen anywhere) <em><strong>A1</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi {r^2} \times 10">
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p>correct expression for cost of curved side (seen anywhere) <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r \times h \times 8">
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mo>×</mo>
<mi>h</mi>
<mo>×</mo>
<mn>8</mn>
</math></span></p>
<p>correct expression for cost of curved side in terms of <em>r </em> <em><strong>A1</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 \times 2\pi r \times \frac{{20}}{{{r^2}}},\,\,\frac{{320\pi }}{{{r^2}}}">
<mn>8</mn>
<mo>×</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mo>×</mo>
<mfrac>
<mrow>
<mn>20</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20\pi {r^2} + \frac{{320\pi }}{r}">
<mi>C</mi>
<mo>=</mo>
<mn>20</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mi>r</mi>
</mfrac>
</math></span> <em><strong>AG N0</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C' = 0">
<msup>
<mi>C</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>0</mn>
</math></span> at minimum <em><strong>(R1)</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C' = 0,\,\,\frac{{{\text{d}}C}}{{{\text{d}}r}} = 0">
<msup>
<mi>C</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>C</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct differentiation (may be seen in equation)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C' = 40\pi r - \frac{{320\pi }}{{{r^2}}}">
<msup>
<mi>C</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mn>40</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>A1A1</strong></em></p>
<p>correct equation <em><strong>A1</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40\pi r - \frac{{320\pi }}{{{r^2}}} = 0,\,\,40\pi r\frac{{320\pi }}{{{r^2}}}">
<mn>40</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>40</mn>
<mi>π</mi>
<mi>r</mi>
<mfrac>
<mrow>
<mn>320</mn>
<mi>π</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40{r^3} = 320,\,\,{r^3} = 8">
<mn>40</mn>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>320</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>8</mn>
</math></span></p>
<p><em>r</em> = 2 (m) <em><strong>A1</strong></em></p>
<p>attempt to substitute <strong>their</strong> value of <em>r</em> into <em>C</em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20\pi \times 4 + 320 \times \frac{\pi }{2}">
<mn>20</mn>
<mi>π</mi>
<mo>×</mo>
<mn>4</mn>
<mo>+</mo>
<mn>320</mn>
<mo>×</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p>correct working<br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="80\pi + 160\pi ">
<mn>80</mn>
<mi>π</mi>
<mo>+</mo>
<mn>160</mn>
<mi>π</mi>
</math></span> <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="240\pi ">
<mn>240</mn>
<mi>π</mi>
</math></span> (cents) <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> Do not accept 753.6, 753.98 or 754, even if 240<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> is seen.</p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \cos x">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>cos</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^k}">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mi>k</mi>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 21">
<mi>k</mi>
<mo>=</mo>
<mn>21</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(x) = \left( {{f^{(19)}}(x) \times {g^{(19)}}(x)} \right)">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find the first four derivatives of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>(ii) Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(x)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find the first three derivatives of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>(ii) Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{(19)}}(x) = \frac{{k!}}{{(k - p)!}}({x^{k - 19}})">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(x)">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>(ii) Hence, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(\pi ) = \frac{{ - 21!}}{2}{\pi ^2}">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x) = - \sin x,{\text{ }}f''(x) = - \cos x,{\text{ }}{f^{(3)}}(x) = \sin x,{\text{ }}{f^{(4)}}(x) = \cos x">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</math></span> <strong><em>A2 N2</em></strong></p>
<p>(ii) valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>recognizing that 19 is one less than a multiple of 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(x) = {f^{(3)}}(x)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(x) = \sin x">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = k{x^{k - 1}}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g''(x) = k(k - 1){x^{k - 2}},{\text{ }}{g^{(3)}}(x) = k(k - 1)(k - 2){x^{k - 3}}">
<msup>
<mi>g</mi>
<mo>″</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span> <strong><em>A1A1 N2</em></strong></p>
<p>(ii) <strong>METHOD 1</strong></p>
<p>correct working that leads to the correct answer, involving the correct expression for the 19th derivative <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k(k - 1)(k - 2) \ldots (k - 18) \times \frac{{(k - 19)!}}{{(k - 19)!}},{{\text{ }}_k}{P_{19}}">
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>…</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>18</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<msub>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mn>19</mn>
</mrow>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 19">
<mi>p</mi>
<mo>=</mo>
<mn>19</mn>
</math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{k!}}{{(k - 19)!}}{x^{k - 19}}">
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</math></span>) <strong><em>A1 N1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>correct working involving recognizing patterns in coefficients of first three derivatives (may be seen in part (b)(i)) leading to a general rule for 19th coefficient <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'' = 2!\left( {\begin{array}{*{20}{c}} k \\ 2 \end{array}} \right),{\text{ }}k(k - 1)(k - 2) = \frac{{k!}}{{(k - 3)!}},{\text{ }}{g^{(3)}}(x){ = _k}{P_3}({x^{k - 3}})">
<msup>
<mi>g</mi>
<mo>″</mo>
</msup>
<mo>=</mo>
<mn>2</mn>
<mo>!</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<msub>
<mo>=</mo>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{(19)}}(x) = 19!\left( {\begin{array}{*{20}{c}} k \\ {19} \end{array}} \right),{\text{ }}19! \times \frac{{k!}}{{(k - 19)! \times 19!}},{{\text{ }}_k}{P_{19}}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>19</mn>
<mo>!</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>19</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>19</mn>
<mo>!</mo>
<mo>×</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
<mo>×</mo>
<mn>19</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<msub>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
</msub>
</mrow>
<mrow>
<msub>
<mi>P</mi>
<mrow>
<mn>19</mn>
</mrow>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 19">
<mi>p</mi>
<mo>=</mo>
<mn>19</mn>
</math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{k!}}{{(k - 19)!}}{x^{k - 19}}">
<mfrac>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mn>19</mn>
</mrow>
</msup>
</mrow>
</math></span>) <strong><em>A1 N1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) valid approach using product rule <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv' + vu',{\text{ }}{f^{(19)}}{g^{(20)}} + {f^{(20)}}{g^{(19)}}">
<mi>u</mi>
<msup>
<mi>v</mi>
<mo>′</mo>
</msup>
<mo>+</mo>
<mi>v</mi>
<msup>
<mi>u</mi>
<mo>′</mo>
</msup>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>correct 20th derivatives (must be seen in product rule) <strong><em>(A1)(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{(20)}}(x) = \frac{{21!}}{{(21 - 20)!}}x,{\text{ }}{f^{(20)}}(x) = \cos x">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>−</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(x) = \sin x(21!x) + \cos x\left( {\frac{{21!}}{2}{x^2}} \right){\text{ }}\left( {{\text{accept }}\sin x\left( {\frac{{21!}}{{1!}}x} \right) + \cos x\left( {\frac{{21!}}{{2!}}{x^2}} \right)} \right)">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>!</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept </mtext>
</mrow>
<mi>sin</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>2</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1 N3</em></strong></p>
<p>(ii) substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi ">
<mi>x</mi>
<mo>=</mo>
<mi>π</mi>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{(19)}}(\pi ){g^{(20)}}(\pi ) + {f^{(20)}}(\pi ){g^{(19)}}(\pi ),{\text{ }}\sin \pi \frac{{21!}}{{1!}}\pi + \cos \pi \frac{{21!}}{{2!}}{\pi ^2}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>20</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>19</mn>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>sin</mi>
<mo></mo>
<mi>π</mi>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mi>π</mi>
<mo>+</mo>
<mi>cos</mi>
<mo></mo>
<mi>π</mi>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mrow>
<mn>2</mn>
<mo>!</mo>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>evidence of one correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \pi ">
<mi>sin</mi>
<mo></mo>
<mi>π</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \pi ">
<mi>cos</mi>
<mo></mo>
<mi>π</mi>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \pi = 0,{\text{ }}\cos \pi = - 1">
<mi>sin</mi>
<mo></mo>
<mi>π</mi>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>cos</mi>
<mo></mo>
<mi>π</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p>evidence of correct values substituted into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'(\pi )">
<msup>
<mi>h</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="21!(\pi )\left( {0 - \frac{\pi }{{2!}}} \right),{\text{ }}21!(\pi )\left( { - \frac{\pi }{2}} \right),{\text{ }}0 + ( - 1)\frac{{21!}}{2}{\pi ^2}">
<mn>21</mn>
<mo>!</mo>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>0</mn>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>2</mn>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>21</mn>
<mo>!</mo>
<mo stretchy="false">(</mo>
<mi>π</mi>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mfrac>
<mrow>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p> </p>
<p><strong>Note: </strong>If candidates write only the first line followed by the answer, award <strong><em>A1A0A0</em></strong>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 21!}}{2}{\pi ^2}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>21</mn>
<mo>!</mo>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>AG N0</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The expression <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><msqrt><mi>x</mi></msqrt><mo>-</mo><mn>5</mn></mrow><msqrt><mi>x</mi></msqrt></mfrac></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>-</mo><mn>5</mn><msup><mi>x</mi><mi>p</mi></msup></math>. Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>1</mn><mn>9</mn></msubsup><mfenced><mfrac><mrow><mn>3</mn><msqrt><mi>x</mi></msqrt><mo>-</mo><mn>5</mn></mrow><msqrt><mi>x</mi></msqrt></mfrac></mfenced><mo>d</mo><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><msqrt><mi>x</mi></msqrt><mo>-</mo><mn>5</mn></mrow><msqrt><mi>x</mi></msqrt></mfrac><mo>=</mo><mn>3</mn><mo>-</mo><mn>5</mn><msup><mi>x</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mn>3</mn><msqrt><mi>x</mi></msqrt><mo>-</mo><mn>5</mn></mrow><msqrt><mi>x</mi></msqrt></mfrac><mo>d</mo><mi>x</mi><mo>=</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>10</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p>substituting limits into their integrated function and subtracting <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mn>9</mn></mfenced><mo>-</mo><mn>10</mn><msup><mfenced><mn>9</mn></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>-</mo><mfenced><mrow><mn>3</mn><mfenced><mn>1</mn></mfenced><mo>-</mo><mn>10</mn><msup><mfenced><mn>1</mn></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>-</mo><mn>10</mn><mo>×</mo><mn>3</mn><mo>-</mo><mfenced><mrow><mn>3</mn><mo>-</mo><mn>10</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates could give the value of <em>p</em> correctly. However, many did struggle with the integration, including substituting limits into the integrand, without integrating at all. An incorrect value of <em>p</em> often resulted in arithmetic of greater complexity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, all lengths are in metres and time is in seconds.</strong></p>
<p>Consider two particles, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math>, which start to move at the same time.</p>
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> moves in a straight line such that its displacement from a fixed-point is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> also moves in a straight line. The position of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>.</p>
<p>The speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> is greater than the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mi>q</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing velocity is derivative of displacement <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mtext>d</mtext><mi>s</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mtext>d</mtext><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>14</mn><mn>4</mn></mfrac><mi>t</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></mfenced><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> , velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p>correct speed <em><strong>(A1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>recognizing relationship between speed and velocity (may be seen in inequality/equation) <em><strong>R1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> , speed = | velocity | , graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed , <img src=""> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi><mo> </mo><mo>,</mo><mo> </mo><msub><mi>P</mi><mn>2</mn></msub></math> velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>5</mn></math></p>
<p>correct inequality or equation that compares speed or velocity (accept any variable for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>) <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo><</mo><mo>-</mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>=</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> (seconds) (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> , do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math>) <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the last two <em><strong>A1</strong></em> marks without the <em><strong>R1</strong></em>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>k</mi><mo>></mo><mn>0</mn></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>p</mi><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac></mrow></mfenced></math> be any point on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at point B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math> to give the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.<br>In the following diagram:</p>
<ul>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> lie on the vertical asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> lie on the horizontal asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FG</mtext></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DC</mtext></math>.</li>
</ul>
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>, and passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<p><img src=""></p>
<p>Given that triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EDF</mtext></math> and rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext></math> have equal areas, find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong> A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use point and gradient to find equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> <em><strong>M1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>p</mi></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mfenced><mi>p</mi></mfenced><mo>+</mo><mi>b</mi></math></p>
<p>correct working leading to answer <em><strong> A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mi>k</mi><mi>p</mi><mo>=</mo><mo>-</mo><mi>k</mi><mi>x</mi><mo>+</mo><mi>k</mi><mi>p</mi><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math> <em><strong> AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – area of a triangle</strong></p>
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> <em><strong>(M1)</strong></em></p>
<p>correct working to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math> (may be seen in area formula) <em><strong> A1</strong></em></p>
<p>correct substitution to find area of triangle<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced><mo>,</mo><mo> </mo><mo> </mo><mi>p</mi><mo>×</mo><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math> <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – integration</strong></p>
<p>recognizing to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><msub><mi>L</mi><mrow><mn>1</mn><mo> </mo></mrow></msub><mo>d</mo><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct integration of <strong>both</strong> terms <em><strong> A1</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mi>x</mi></mrow><mi>p</mi></mfrac><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi><mo>+</mo><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi></mrow></mfenced><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup></math></p>
<p>substituting limits into <strong>their</strong> integrated function and subtracting (in either order) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac><mo>-</mo><mfenced><mn>0</mn></mfenced><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>4</mn><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>k</mi><mi>p</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>4</mn><mi>k</mi></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math> <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, the second <em><strong>M</strong></em> mark may be awarded independently of the other marks, so it is possible to award <em><strong>(M0)(A0)M1(A0)(A0)A0</strong></em>.</p>
<p> </p>
<p>recognizing use of transformation <em><strong>(M1)</strong></em></p>
<p><em>eg</em> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> = area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mo>,</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mtext>, 2p+4, </mtext></math> one correct shift</p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext><mo>=</mo><mn>2</mn><mi>k</mi><mo>,</mo><mo> </mo><mtext>CD</mtext><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mtext>DF</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>CG</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>F</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>Q</mtext><mfenced><mrow><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo></math> </p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>,</mo></math> area of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>ED</mtext><mo>×</mo><mtext>DF</mtext></mrow><mn>2</mn></mfrac><mo>=</mo><mtext>CD</mtext><mo>×</mo><mtext>DF</mtext><mo>,</mo><mo> </mo><mn>2</mn><mi>p</mi><mo>·</mo><mn>3</mn><mo>=</mo><mn>2</mn><mi>k</mi><mo> </mo><mo>,</mo><mo> </mo><mtext>ED</mtext><mo>=</mo><mn>2</mn><mtext>CD</mtext><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></msubsup><msub><mi>L</mi><mn>2</mn></msub><mo> </mo><mtext>d</mtext><mi>x</mi><mo>=</mo><mn>4</mn><mi>k</mi></math></p>
<p>correct working<em> <strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ED</mtext><mo>=</mo><mn>6</mn><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>9</mn></mrow></mfenced><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>3</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>gradient</mtext><mo>=</mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>-</mo><mn>4</mn></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mfenced><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mn>3</mn></mfrac></mstyle></mfenced></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mi>k</mi></mfrac></math></p>
<p>correct expression for gradient (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>)<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mrow><mn>2</mn><mi>p</mi></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>9</mn><mo>-</mo><mn>3</mn></mrow><mrow><mn>4</mn><mo>-</mo><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mfenced><mrow><mn>3</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mstyle displaystyle="true"><mo>-</mo></mstyle><mstyle displaystyle="true"><mn>4</mn></mstyle></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mrow><mn>3</mn><mi>p</mi></mrow></mfrac></math></p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>3</mn><mi>p</mi></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>3</mn><msup><mi>p</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong> A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn></math> and rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math>. The rectangle has a vertex at the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math>, a vertex on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">R</mi><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mi>y</mi></mrow></mfenced></math>, a vertex on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">T</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and a vertex at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">S</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi></mrow></mfenced></math> on the graph.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> represent the perimeter of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math>.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> represent the area of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>8</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the dimensions of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math> that has maximum perimeter and determine the value of the maximum perimeter.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the dimensions of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math> that has maximum area.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum area of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi></math> <strong>(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mfenced><mrow><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>8</mn></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p>uses the axis of symmetry of a quadratic <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><mrow><mn>2</mn><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfrac></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>forms <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p>substitutes their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>15</mn><mn>4</mn></mfrac></math> <strong>A1</strong></p>
<p>so the dimensions of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math> of maximum perimeter are <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>15</mn><mn>4</mn></mfrac></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>substitutes their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>8</mn></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>8</mn></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>substitutes their values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>2</mn><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>2</mn><mfenced><mfrac><mn>15</mn><mn>4</mn></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mn>17</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p>so the maximum perimeter is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>17</mn><mn>2</mn></mfrac></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to complete the square <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mo>-</mo><mn>2</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mfrac><mn>17</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p>substitutes their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>15</mn><mn>4</mn></mfrac></math> <strong>A1</strong></p>
<p>so the dimensions of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ORST</mi></math> of maximum perimeter are <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>15</mn><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mn>17</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p>so the maximum perimeter is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>17</mn><mn>2</mn></mfrac></math> </p>
<p> </p>
<p><strong>[6 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>x</mi><mi>y</mi></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>x</mi><mfenced><mrow><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>A</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></math> <strong>A1</strong></p>
<p>attempts to solve their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>A</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><msqrt><mn>3</mn></msqrt></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>2</mn><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac></mrow></mfenced><mo> </mo><mfenced><mrow><mi>x</mi><mo>></mo><mn>0</mn></mrow></mfenced></math> <strong>A1</strong></p>
<p>substitutes their (positive) value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mfenced><mfrac><mn>2</mn><msqrt><mn>3</mn></msqrt></mfrac></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>8</mn><mn>3</mn></mfrac></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>16</mn><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>16</mn><msqrt><mn>3</mn></msqrt></mrow><mn>9</mn></mfrac></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi></msqrt><mo>,</mo><mo> </mo><mi>x</mi><mo>≤</mo><mi>a</mi></math>. The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the solid formed when the shaded region is revolved <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognize <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi></msqrt><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>12</mn></math> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>6</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>6</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>6</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either <strong>their</strong> limits or the function into volume formula (must involve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><msup><mo> </mo><mn>2</mn></msup></math>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mn>6</mn></msubsup><mi>f</mi><msup><mo> </mo><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><mi mathvariant="normal">π</mi><mo>∫</mo><msup><mfenced><msqrt><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi></msqrt></mfenced><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>0</mn><mn>6</mn></msubsup><mn>12</mn><mo>-</mo><mn>2</mn><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi></math> </p>
<p>correct integration of each term <em><strong>A1 A1</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><mn>12</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mfenced open="[" close="]"><mrow><mn>12</mn><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mn>0</mn><mn>6</mn></msubsup></math></p>
<p>substituting limits into <strong>their integrated</strong> function and subtracting (in any order) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mn>12</mn><mfenced><mn>6</mn></mfenced><mo>-</mo><msup><mfenced><mn>6</mn></mfenced><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mi mathvariant="normal">π</mi><mfenced><mn>0</mn></mfenced><mo> </mo><mo>,</mo><mo> </mo><mn>72</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>36</mn><mi mathvariant="normal">π</mi><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mn>12</mn><mfenced><mn>6</mn></mfenced><mo>-</mo><msup><mfenced><mn>6</mn></mfenced><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mfenced><mn>0</mn></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> if candidate has substituted into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>,</mo><mo> </mo><mi>f</mi><msup><mo> </mo><mn>2</mn></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math>.</p>
<p> </p>
<p>volume<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>36</mn><mi mathvariant="normal">π</mi></math> <em><strong>A1 N2</strong></em> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The graph of a function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>ln</mi><mo> </mo><mn>4</mn><mo>,</mo><mo> </mo><mn>20</mn></mrow></mfenced></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of integration <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo> </mo><mtext>d</mtext><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><mo>∫</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup></math></p>
<p>correct integration (accept missing <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo> </mo><mo>,</mo><mo> </mo><mn>3</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo>+</mo><mi>c</mi></math></p>
<p>substituting initial condition into <strong>their</strong> integrated expression (must have <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>) <em><strong>M1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mo>×</mo><mi>ln</mi><mo> </mo><mn>4</mn></mrow></msup><mo>+</mo><mi>c</mi><mo>=</mo><mn>20</mn></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> if candidate has substituted into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math>.</p>
<p> </p>
<p>correct application of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>log</mi><mfenced><msup><mi>a</mi><mi>b</mi></msup></mfenced><mo>=</mo><mi>b</mi><mo> </mo><mi>log</mi><mo> </mo><mi>a</mi></math> rule (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>4</mn><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></msup><mo> </mo><mo>,</mo><mo> </mo><mi>ln</mi><mo> </mo><msup><mn>4</mn><mn>2</mn></msup></math></p>
<p>correct application of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mi>a</mi></mrow></msup><mtext>=</mtext><mtext mathvariant="italic">a</mtext></math> rule (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></msup><mo>=</mo><mn>16</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mfenced><msup><mtext>e</mtext><mrow><mi>ln</mi><mo> </mo><mn>4</mn></mrow></msup></mfenced><mn>2</mn></msup><mo>=</mo><msup><mn>4</mn><mn>2</mn></msup></math></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><mn>16</mn><mo>+</mo><mi>c</mi><mo>=</mo><mn>20</mn><mo> </mo><mo>,</mo><mo> </mo><mn>3</mn><mo>×</mo><msup><mfenced><mn>4</mn></mfenced><mn>2</mn></msup><mo>+</mo><mi>c</mi><mo>=</mo><mn>20</mn><mo> </mo><mo>,</mo><mo> </mo><mi>c</mi><mo>=</mo><mo>-</mo><mn>28</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo>-</mo><mn>28</mn></math> <em><strong>A1 N4</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>h</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>k</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> have a common tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mfrac><mrow><mtext>e</mtext><mo>+</mo><mn>6</mn></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mtext>e</mtext><mo>+</mo><mfrac><msup><mtext>e</mtext><mn>2</mn></msup><mn>4</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>h</mi></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mn>3</mn></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mrow><mn>3</mn><mo>-</mo><mn>2</mn></mrow></msup></math> (may be seen anywhere) <em><strong> A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> must be explicitly seen, either in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
<p> </p>
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mn>3</mn></mfenced><mo>=</mo><mi>g</mi><mo>'</mo><mfenced><mn>3</mn></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mfenced><mrow><mn>3</mn><mo>-</mo><mi>h</mi></mrow></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mrow><mn>3</mn><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>e</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>6</mn><mo>+</mo><mn>2</mn><mi>h</mi><mo>=</mo><mtext>e</mtext></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>-</mo><mi>h</mi><mo>=</mo><mo>-</mo><mfrac><mtext>e</mtext><mn>2</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The final<em><strong> A1</strong></em> is dependent on one of the previous marks being awarded.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mfrac><mrow><mtext>e</mtext><mo>+</mo><mn>6</mn></mrow><mn>2</mn></mfrac></math> <em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>3</mn></mfenced><mo>=</mo><mi>g</mi><mfenced><mn>3</mn></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mi>h</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mn>3</mn><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>k</mi></math></p>
<p>correct equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mfrac><mrow><mtext>e</mtext><mo>+</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mn>3</mn><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>k</mi></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mtext>e</mtext><mo>+</mo><msup><mfenced><mfrac><mrow><mn>6</mn><mo>-</mo><mtext>e</mtext><mo>-</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo> </mo><mfenced><mrow><mo>=</mo><mtext>e</mtext><mo>+</mo><msup><mfenced><mfrac><mrow><mo>-</mo><mtext>e</mtext></mrow><mn>2</mn></mfrac></mfenced><mn>2</mn></msup></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mtext>e</mtext><mo>+</mo><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mfrac><mrow><mtext>e</mtext><mo>+</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced><mn>2</mn></msup></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mtext>e</mtext><mo>+</mo><mn>9</mn><mo>-</mo><mn>3</mn><mtext>e</mtext><mo>-</mo><mn>18</mn><mo>+</mo><mfrac><mrow><msup><mtext>e</mtext><mn>2</mn></msup><mo>+</mo><mn>12</mn><mtext>e</mtext><mo>+</mo><mn>36</mn></mrow><mn>4</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mtext>e</mtext><mo>+</mo><mfrac><msup><mtext>e</mtext><mn>2</mn></msup><mn>4</mn></mfrac></math> <em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>4</mn></msup></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Consider the function defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>4</mn></msup></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math> and its graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a horizontal tangent at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>. Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>20</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>9</mn></mrow><msup><mi>x</mi><mn>6</mn></msup></mfrac></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is a local maximum point.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>></mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, showing clearly the value of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept and the approximate position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient or product rule<em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>4</mn></msup><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mi>x</mi></mfrac></mstyle></mfenced><mo>-</mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></mrow><msup><mfenced><msup><mi>x</mi><mn>4</mn></msup></mfenced><mn>2</mn></msup></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>4</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></mfenced><mo>+</mo><mfenced><msup><mi>x</mi><mrow><mo>-</mo><mn>4</mn></mrow></msup></mfenced><mfenced><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced></math> <em><strong> A1</strong></em></p>
<p>correct working <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>3</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow><msup><mi>x</mi><mn>8</mn></msup></mfrac></math> OR cancelling <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac></math> <em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math><em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></math> <em><strong> A1</strong></em></p>
<p>substitution of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>4</mn></mfrac></mstyle></msup></mrow><msup><mfenced><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></mfenced><mn>4</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mtext>e</mtext></mrow></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup><mo>,</mo><mo> </mo><mfrac><mn>1</mn><mrow><mn>4</mn><mtext>e</mtext></mrow></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></mfenced><mo>=</mo><mfrac><mrow><mn>20</mn><mo> </mo><mi>ln</mi><mo> </mo><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>4</mn></mfrac></mstyle></msup><mo>-</mo><mn>9</mn></mrow><msup><mfenced><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></mfenced><mn>6</mn></msup></mfrac></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>5</mn><mo>-</mo><mn>9</mn></mrow><msup><mtext>e</mtext><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>4</mn><msup><mtext>e</mtext><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup></mfrac></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p>which is negative <em><strong> R1</strong></em></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is a local maximum <em><strong> AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The <em><strong>R1</strong></em> is dependent on the previous <em><strong>A1</strong></em> being awarded.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>></mo><mn>0</mn></math><em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>1</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:90px;"><img src=""> <em><strong> A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p> </p>
<p><strong>Note: </strong>Award <em><strong>A1</strong></em> for one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept only, located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math></p>
<p><em><strong> A1</strong></em> for local maximum, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, in approximately correct position<br><em><strong> A1</strong></em> for curve approaching <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>∞</mo></math> (including change in concavity).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = \frac{{3{x^2}}}{{{{({x^3} + 1)}^5}}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(0) = 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f'{\text{d}}x,{\text{ }}\int {\frac{{3{x^2}}}{{{{({x^3} + 1)}^5}}}{\text{d}}x} } ">
<mo>∫</mo>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mrow>
</math></span></p>
<p>correct integration by substitution/inspection <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - \frac{1}{4}{({x^3} + 1)^{ - 4}} + c,{\text{ }}\frac{{ - 1}}{{4{{({x^3} + 1)}^4}}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>correct substitution into <strong>their </strong>integrated function (must include <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>) <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \frac{{ - 1}}{{4{{({0^3} + 1)}^4}}} + c,{\text{ }} - \frac{1}{4} + c = 1">
<mn>1</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mn>0</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if candidates substitute into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = \frac{5}{4}">
<mi>c</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - \frac{1}{4}{({x^3} + 1)^{ - 4}} + \frac{5}{4}{\text{ }}\left( { = \frac{{ - 1}}{{4{{({x^3} + 1)}^4}}} + \frac{5}{4},{\text{ }}\frac{{5{{({x^3} + 1)}^4} - 1}}{{4{{({x^3} + 1)}^4}}}} \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>5</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong> <strong><em>N4</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A particle P starts from point O and moves along a straight line. The graph of its velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> ms<sup>−1</sup> after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds, for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 6 , is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>-intercepts when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0, 2 and 4.</p>
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( t \right)">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> represents the displacement of P from O after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds.</p>
<p>It is known that P travels a distance of 15 metres in the first 2 seconds. It is also known that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 2 \right) = s\left( 5 \right)">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^4 {v\,{\text{d}}t} = 9">
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
<mo>=</mo>
<mn>9</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 4 \right) - s\left( 2 \right)">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled in the first 5 seconds.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {v = s} ">
<mo>∫</mo>
<mrow>
<mi>v</mi>
<mo>=</mo>
<mi>s</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s' = v">
<msup>
<mi>s</mi>
<mo>′</mo>
</msup>
<mo>=</mo>
<mi>v</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 4 \right) - s\left( 2 \right) = 9">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>9</mn>
</math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correctly interpreting distance travelled in first 2 seconds (seen anywhere, including part (a) or the area of 15 indicated on diagram) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^2 {v = 15} ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>2</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mo>=</mo>
<mn>15</mn>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 2 \right) = 15">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>15</mn>
</math></span></p>
<p>valid approach to find total distance travelled <em><strong>(M1)</strong></em></p>
<p><em>eg</em> sum of 3 areas, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^4 {v + } \int_4^5 v ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mo>+</mo>
</mrow>
<msubsup>
<mo>∫</mo>
<mn>4</mn>
<mn>5</mn>
</msubsup>
<mi>v</mi>
</math></span>, shaded areas in diagram between 0 and 5</p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^5 {\left| v \right|} ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>5</mn>
</msubsup>
<mrow>
<mrow>
<mo>|</mo>
<mi>v</mi>
<mo>|</mo>
</mrow>
</mrow>
</math></span> is seen.</p>
<p>correct working towards finding distance travelled between 2 and 5 (seen anywhere including within total area expression or on diagram) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^4 {v - } \int_4^5 v ">
<msubsup>
<mo>∫</mo>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mo>−</mo>
</mrow>
<msubsup>
<mo>∫</mo>
<mn>4</mn>
<mn>5</mn>
</msubsup>
<mi>v</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_2^4 {v = } \int_4^5 {\left| v \right|} ">
<msubsup>
<mo>∫</mo>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mo>=</mo>
</mrow>
<msubsup>
<mo>∫</mo>
<mn>4</mn>
<mn>5</mn>
</msubsup>
<mrow>
<mrow>
<mo>|</mo>
<mi>v</mi>
<mo>|</mo>
</mrow>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_4^5 {v\,{\text{d}}t} = - 9">
<msubsup>
<mo>∫</mo>
<mn>4</mn>
<mn>5</mn>
</msubsup>
<mrow>
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>9</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 4 \right) - s\left( 2 \right) - \left[ {s\left( 5 \right) - s\left( 4 \right)} \right]">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</math></span>,</p>
<p>equal areas <img src=""></p>
<p>correct working using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s\left( 5 \right) = s\left( 2 \right)">
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 + 9 - \left( { - 9} \right)">
<mn>15</mn>
<mo>+</mo>
<mn>9</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 + 2\left[ {s\left( 4 \right) - s\left( 2 \right)} \right]">
<mn>15</mn>
<mo>+</mo>
<mn>2</mn>
<mrow>
<mo>[</mo>
<mrow>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 + 2\left( 9 \right)">
<mn>15</mn>
<mo>+</mo>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mn>9</mn>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times s\left( 4 \right) - s\left( 2 \right)">
<mn>2</mn>
<mo>×</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="48 - 15">
<mn>48</mn>
<mo>−</mo>
<mn>15</mn>
</math></span></p>
<p>total distance travelled = 33 (m) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x) = {\sin ^3}(2x)\cos (2x)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>sin</mi>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mi>cos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\frac{\pi }{4}} \right) = 1">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of integration <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f'(x){\text{d}}x} ">
<mo>∫</mo>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span></p>
<p>correct integration (accept missing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) <strong><em>(A2)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \frac{{{{\sin }^4}(2x)}}{4},{\text{ }}\frac{1}{8}{\sin ^4}(2x) + C">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mi>sin</mi>
</mrow>
<mn>4</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<msup>
<mi>sin</mi>
<mn>4</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p>substituting initial condition into their integrated expression (must have <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + C">
<mo>+</mo>
<mi>C</mi>
</math></span>) <strong><em>M1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \frac{1}{8}{\sin ^4}\left( {\frac{\pi }{2}} \right) + C">
<mn>1</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<msup>
<mi>sin</mi>
<mn>4</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M0 </em></strong>if they substitute into the original or differentiated function.</p>
<p> </p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \left( {\frac{\pi }{2}} \right) = 1">
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \frac{1}{8}{(1)^4} + C">
<mn>1</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = \frac{7}{8}">
<mi>C</mi>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{8}{\sin ^4}(2x) + \frac{7}{8}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
<mrow>
<msup>
<mi>sin</mi>
<mn>4</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mfrac>
<mn>7</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>A1 N5</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a{x^2} + bx + c">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>. The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 4,{\text{ }}5)">
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-coordinate of the minimum of the graph is 3.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the axis of symmetry of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = ">
<mi>x</mi>
<mo>=</mo>
</math></span> (a constant) and <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2">
<mo>−</mo>
<mn>2</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(c = ){\text{ }}5">
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
</math></span> <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{b}{{2a}} = - 2">
<mo>−</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{( - 2)^2} - 2b + 5 = 3">
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>3</mn>
</math></span> or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{( - 4)^2} - 4b + 5 = 5">
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>4</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mi>b</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>5</mn>
</math></span> or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2a( - 2) + b = 0">
<mn>2</mn>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for two of the above equations.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 0.5">
<mi>a</mi>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 2">
<mi>b</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award at most <strong><em>(M1)(A1)</em>(ft)<em>(A0) </em></strong>if the answers are reversed.</p>
<p>Follow through from parts (a) and (b).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{6 - 2x}}{{\sqrt {16 + 6x - {x^2}} }}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p>The region <em>R</em> is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis. Find the area of <em>R</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong> (limits in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>)</p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 - 2x}}{{\sqrt {16 + 6x - {x^2}} }} = 0">
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 2x = 0">
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept is 3 <em><strong>(A1)</strong></em></p>
<p>valid approach using substitution or inspection <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 16 + 6x - {x^2}">
<mi>u</mi>
<mo>=</mo>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^3 {\frac{{6 - 2x}}{{\sqrt u }}} {\text{d}}x">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}u = 6 - 2x">
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{\sqrt u }}} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{u^{\frac{1}{2}}}">
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \sqrt {16 + 6x - {x^2}} ">
<mi>u</mi>
<mo>=</mo>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = \left( {6 - 2x} \right)\frac{1}{2}{\left( {16 + 6x - {x^2}} \right)^{ - \frac{1}{2}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int 2 \,{\text{d}}u">
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2u">
<mn>2</mn>
<mi>u</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f\left( x \right)} \,{\text{d}}x = 2\sqrt {16 + 6x - {x^2}} ">
<mo>∫</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong>(A2)</strong></em></p>
<p>substituting <strong>both</strong> of <strong>their</strong> limits into <strong>their</strong> integrated function and subtracting <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {16 + 6\left( 3 \right) - {3^2}} - 2\sqrt {16 + 6{{\left( 0 \right)}^2} - {0^2}} ">
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mn>3</mn>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mn>0</mn>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {16 + 18 - 9} - 2\sqrt {16} ">
<mn>2</mn>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>18</mn>
<mo>−</mo>
<mn>9</mn>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
</msqrt>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> if they substitute into original or differentiated function. Do not accept only “– 0” as evidence of substituting lower limit.</p>
<p> </p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {25} - 2\sqrt {16} ">
<mn>2</mn>
<msqrt>
<mn>25</mn>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 8">
<mn>10</mn>
<mo>−</mo>
<mn>8</mn>
</math></span></p>
<p>area = 2 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong> (limits in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>)</p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 - 2x}}{{\sqrt {16 + 6x - {x^2}} }} = 0">
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 2x = 0">
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept is 3 <em><strong>(A1)</strong></em></p>
<p>valid approach using substitution or inspection <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 16 + 6x - {x^2}">
<mi>u</mi>
<mo>=</mo>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^3 {\frac{{6 - 2x}}{{\sqrt u }}} {\text{d}}x">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>3</mn>
</msubsup>
<mrow>
<mfrac>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}u = 6 - 2x">
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{\sqrt u }}} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span>, </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \sqrt {16 + 6x - {x^2}} ">
<mi>u</mi>
<mo>=</mo>
<msqrt>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = \left( {6 - 2x} \right)\frac{1}{2}{\left( {16 + 6x - {x^2}} \right)^{ - \frac{1}{2}}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>16</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int 2 \,{\text{d}}u">
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span></p>
<p>correct integration <em><strong>(A2)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{\sqrt u }}} \,{\text{d}}u = 2{u^{\frac{1}{2}}}">
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int 2 \,{\text{d}}u = 2u">
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mi>u</mi>
</math></span></p>
<p>both correct limits for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 16 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 25, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{16}^{25} {\frac{1}{{\sqrt u }}{\text{d}}u} ">
<msubsup>
<mo>∫</mo>
<mrow>
<mn>16</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</msubsup>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {2{u^{\frac{1}{2}}}} \right]_{16}^{25}">
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>u</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</msubsup>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 4 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> = 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_4^5 2 \,{\text{d}}u">
<msubsup>
<mo>∫</mo>
<mn>4</mn>
<mn>5</mn>
</msubsup>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {2u} \right]_4^5">
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mn>2</mn>
<mi>u</mi>
</mrow>
<mo>]</mo>
</mrow>
<mn>4</mn>
<mn>5</mn>
</msubsup>
</math></span></p>
<p>substituting <strong>both</strong> of <strong>their</strong> limits for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span> (do not accept 0 and 3) into <strong>their</strong> integrated function and subtracting <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sqrt {25} - 2\sqrt {16} ">
<mn>2</mn>
<msqrt>
<mn>25</mn>
</msqrt>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>16</mn>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 8">
<mn>10</mn>
<mo>−</mo>
<mn>8</mn>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if they substitute into original or differentiated function, or if they have not attempted to find limits for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>.</p>
<p> </p>
<p>area = 2 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>.</p>
</div>
<div class="specification">
<p>The equation of the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>=</mo><mn>4</mn><mo>-</mo><mn>5</mn><mi>x</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of this tangent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> <em><strong>(A1)(A1)(A1) (C3)<br></strong></em></p>
<p><strong><br></strong><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math>, <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>k</mi></math>, and <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>.<br>Award at most <em><strong>(A1)(A1)(A0)</strong></em> if additional terms are seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo> </mo><mo> </mo><mfenced><mfrac><mrow><mo>-</mo><mn>5</mn></mrow><mn>2</mn></mfrac></mfenced></math> <em><strong>(A1) (C1)<br></strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>=</mo><mn>2</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfrac><mi>k</mi><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math> <em><strong>(M1)<br></strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their gradient from part (b) to their substituted derivative from part (a).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>6</mn></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong><br>Note:</strong> Follow through from parts (a) and (b).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the curve with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>x</mi></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<p>The tangent to the curve at the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> is parallel to the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn><msup><mtext>e</mtext><mi>k</mi></msup><mi>x</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>evidence of using product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mi>k</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>x</mi></mrow></msup></mrow></mfenced><mo>+</mo><mn>2</mn><mo>×</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>x</mi></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>x</mi></mrow></msup><mfenced><mrow><mn>2</mn><mi>k</mi><mi>x</mi><mo>-</mo><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>correct working for one of (seen anywhere) <em><strong>A1</strong></em></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>⇒</mo><mi>k</mi><msup><mtext>e</mtext><mi>k</mi></msup><mo>+</mo><mn>2</mn><msup><mtext>e</mtext><mi>k</mi></msup></math></p>
<p style="padding-left:30px;"><br><strong>OR</strong></p>
<p style="padding-left:30px;">slope of tangent is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><msup><mtext>e</mtext><mi>k</mi></msup></math></p>
<p><br>their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> equals the <em>slope</em> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn><msup><mtext>e</mtext><mi>k</mi></msup><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><msup><mtext>e</mtext><mi>k</mi></msup></mrow></mfenced></math> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><msup><mtext>e</mtext><mi>k</mi></msup><mo>+</mo><mn>2</mn><msup><mtext>e</mtext><mi>k</mi></msup><mo>=</mo><mn>5</mn><msup><mtext>e</mtext><mi>k</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The product rule was well recognised and used with 𝑥=1 properly substituted into this expression. Although the majority of the candidates tried equating the derivative to the slope of the tangent line, the slope of the tangent line was not correctly identified; many candidates incorrectly substituted 𝑥=1 into the tangent equation, thus finding the <em>y</em>-coordinate instead of the slope.</p>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{\text{ln}}\,5x}}{{kx}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>k</mi>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
<mi>x</mi>
<mo>></mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{R}^ + }">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has exactly one maximum point P.</p>
</div>
<div class="specification">
<p>The second derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = \frac{{2\,{\text{ln}}\,5x - 3}}{{k{x^3}}}">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has exactly one point of inflexion Q.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{1 - {\text{ln}}\,5x}}{{k{x^2}}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <em>x</em>-coordinate of P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <em>x</em>-coordinate of Q is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{1}}}{5}{{\text{e}}^{\frac{3}{2}}}">
<mfrac>
<mrow>
<mtext>1</mtext>
</mrow>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region <em>R</em> is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, the <em>x</em>-axis, and the vertical lines through the maximum point P and the point of inflexion Q.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that the area of <em>R</em> is 3, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule <em><strong> (M1)</strong></em></p>
<p>correct substitution into quotient rule</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{5kx\left( {\frac{1}{{5x}}} \right) - k\,{\text{ln}}\,5x}}{{{{\left( {kx} \right)}^2}}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>k</mi>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mn>5</mn>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>k</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>k</mi>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> (or equivalent) <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{k - k\,{\text{ln}}\,5x}}{{{k^2}{x^2}}}">
<mo>=</mo>
<mfrac>
<mrow>
<mi>k</mi>
<mo>−</mo>
<mi>k</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>, <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k \in {\mathbb{R}^ + }} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>k</mi>
<mo>∈</mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{1 - {\text{ln}}\,5x}}{{k{x^2}}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong> M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - {\text{ln}}\,5x}}{{k{x^2}}} = 0">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,5x = 1">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{\text{e}}}{5}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>5</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 0">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong> M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\,{\text{ln}}\,5x - 3}}{{k{x^3}}} = 0">
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,5x = \frac{3}{2}">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5x = {{\text{e}}^{\frac{3}{2}}}">
<mn>5</mn>
<mi>x</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>so the point of inflexion occurs at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{\text{1}}}{5}{{\text{e}}^{\frac{3}{2}}}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mtext>1</mtext>
</mrow>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {\text{ln}}\,5x \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}">
<mi>u</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
<mo stretchy="false">⇒</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>x</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{{\text{ln}}\,5x}}{{kx}}} {\text{d}}x = \frac{1}{k}\int {u\,} {\text{d}}u">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>k</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>k</mi>
</mfrac>
<mo>∫</mo>
<mrow>
<mi>u</mi>
<mspace width="thinmathspace"></mspace>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span> <em><strong>(</strong><strong>A1)</strong></em></p>
<p><em><strong>EITHER</strong></em></p>
<p>=<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{u^2}}}{{2k}}">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mi>k</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{k}\int\limits_1^{\frac{3}{2}} {u\,{\text{d}}u = } \left[ {\frac{{{u^2}}}{{2k}}} \right]_1^{\frac{3}{2}}">
<mfrac>
<mn>1</mn>
<mi>k</mi>
</mfrac>
<munderover>
<mo>∫</mo>
<mn>1</mn>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</munderover>
<mrow>
<mi>u</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
</mrow>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mi>k</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mn>1</mn>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msubsup>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{{\left( {{\text{ln}}\,5x} \right)}^2}}}{{2k}}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mi>k</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_{\frac{{\text{e}}}{5}}^{\frac{{\text{1}}}{5}{{\text{e}}^{\frac{3}{2}}}} {\frac{{{\text{ln}}\,5x}}{{kx}}} {\text{d}}x = \left[ {\frac{{{{\left( {{\text{ln}}\,5x} \right)}^2}}}{{2k}}} \right]_{\frac{{\text{e}}}{5}}^{\frac{{\text{1}}}{5}{{\text{e}}^{\frac{3}{2}}}}">
<munderover>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>5</mn>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mrow>
<mtext>1</mtext>
</mrow>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</munderover>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mi>k</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mi>k</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mrow>
<mfrac>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>5</mn>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mrow>
<mtext>1</mtext>
</mrow>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
</msubsup>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>THEN</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{2k}}\left( {\frac{9}{4} - 1} \right)">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>2</mn>
<mi>k</mi>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>9</mn>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{5}{{8k}}">
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>8</mn>
<mi>k</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>setting <strong>their</strong> expression for area equal to 3 <em><strong>M</strong><strong>1</strong></em> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{8k}} = 3">
<mfrac>
<mn>5</mn>
<mrow>
<mn>8</mn>
<mi>k</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{5}{{24}}">
<mi>k</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {x{{\text{e}}^{{x^2} - 1}}{\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = x{{\text{e}}^{{x^2} - 1}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f( - 1) = 3">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach to set up integration by substitution/inspection <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {x^2} - 1,{\text{ d}}u = 2x,{\text{ }}\int {2x{{\text{e}}^{{x^2} - 1}}{\text{d}}x} ">
<mi>u</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span></p>
<p>correct expression <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\int {2x{{\text{e}}^{{x^2} - 1}}{\text{d}}x,{\text{ }}\frac{1}{2}\int {{{\text{e}}^u}{\text{d}}u} } ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{{\text{e}}^{{x^2} - 1}} + c">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span> <strong><em>A2</em></strong> <strong><em>N4</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>A1</em> </strong>if missing “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + c">
<mo>+</mo>
<mi>c</mi>
</math></span>”.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> into <strong>their </strong>answer from (a) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{{\text{e}}^0},{\text{ }}\frac{1}{2}{{\text{e}}^{1 - 1}} = 3">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>0</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} + c = 3,{\text{ }}c = 2.5">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>c</mi>
<mo>=</mo>
<mn>2.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{2}{{\text{e}}^{{x^2} - 1}} + 2.5">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>2.5</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylinder with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The sum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> for this cylinder is 12 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation for the area, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, of the <strong>curved</strong> surface in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> when the area of the curved surface is maximized.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(A1)(M1) (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r + h = 12">
<mi>r</mi>
<mo>+</mo>
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 12 - r">
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</math></span> seen. Award <em><strong>(M1)</strong></em> for correctly substituting into curved surface area of a cylinder. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi">
<mn>24</mn>
<mi>π</mi>
</math></span> and <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4\pi r">
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> . Follow through from part (a). Award at most <em><strong>(A1)</strong></em><strong>(ft)<em>(A0)</em></strong> if additional terms are seen.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r = 0">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting <em>their</em> part (b) equal to zero.</p>
<p style="text-align: left;">6 (cm) <strong><em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Follow through from part (b).</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a(x - p)(x - 3)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has axis of symmetry <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2.5">
<mi>x</mi>
<mo>=</mo>
<mn>2.5</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }} - 6)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>6</mn>
<mo stretchy="false">)</mo>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = kx - 5"> <mi>y</mi> <mo>=</mo> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> </math></span> is a tangent to the curve of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>. Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using <em>x</em>-intercept)</strong></p>
<p>determining that 3 is an <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercept <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 3 = 0"> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </math></span>, <img src="images/Schermafbeelding_2017-08-11_om_13.55.43.png" alt="M17/5/MATME/SP1/ENG/TZ1/09.a/M"></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 - 2.5,{\text{ }}\frac{{p + 3}}{2} = 2.5"> <mn>3</mn> <mo>−</mo> <mn>2.5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mi>p</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mn>2.5</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2"> <mi>p</mi> <mo>=</mo> <mn>2</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong>METHOD 2 (expanding <em>f </em>(<em>x</em>)) </strong></p>
<p>correct expansion (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{x^2} - a(3 + p)x + 3ap,{\text{ }}{x^2} - (3 + p)x + 3p"> <mi>a</mi> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>a</mi> <mi>p</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>p</mi> </math></span></p>
<p>valid approach involving equation of axis of symmetry <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - b}}{{2a}} = 2.5,{\text{ }}\frac{{a(3 + p)}}{{2a}} = \frac{5}{2},{\text{ }}\frac{{3 + p}}{2} = \frac{5}{2}"> <mfrac> <mrow> <mo>−</mo> <mi>b</mi> </mrow> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mo>+</mo> <mi>p</mi> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2"> <mi>p</mi> <mo>=</mo> <mn>2</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong>METHOD 3 (using derivative)</strong></p>
<p>correct derivative (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a(2x - 3 - p),{\text{ }}2x - 3 - p"> <mi>a</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>−</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>−</mo> <mi>p</mi> </math></span></p>
<p>valid approach <strong>(<em>M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(2.5) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>2.5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2"> <mi>p</mi> <mo>=</mo> <mn>2</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }} - 6)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>6</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 = a(0 - 2)(0 - 3),{\text{ }}0 = a( - 8)( - 9),{\text{ }}a{(0)^2} - 5a(0) + 6a = - 6"><mo>−</mo><mn>6</mn><mo>=</mo><mi>a</mi><mo>(</mo><mn>0</mn><mo>−</mo><mn>2</mn><mo>)</mo><mo>(</mo><mn>0</mn><mo>−</mo><mn>3</mn><mo>)</mo><mo>,</mo><mtext> </mtext><mi>a</mi><mrow><mo>(</mo><mn>0</mn><msup><mo>)</mo><mn>2</mn></msup></mrow><mo>−</mo><mn>5</mn><mi>a</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>+</mo><mn>6</mn><mi>a</mi><mo>=</mo><mo>−</mo><mn>6</mn></math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 = 6a"> <mo>−</mo> <mn>6</mn> <mo>=</mo> <mn>6</mn> <mi>a</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - 1"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using discriminant)</strong></p>
<p>recognizing tangent intersects curve once <strong><em>(M1)</em></strong></p>
<p>recognizing one solution when discriminant = 0 <strong><em>M1</em></strong></p>
<p>attempt to set up equation <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = f,{\text{ }}kx - 5 = - {x^2} + 5x - 6"> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> </math></span></p>
<p>rearranging their equation to equal zero <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 5x + kx + 1 = 0"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>5</mn> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct discriminant (if seen explicitly, not just in quadratic formula) <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(k - 5)^2} - 4,{\text{ }}25 - 10k + {k^2} - 4"> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>25</mn> <mo>−</mo> <mn>10</mn> <mi>k</mi> <mo>+</mo> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> </math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k - 5 = \pm 2,{\text{ }}(k - 3)(k - 7) = 0,{\text{ }}\frac{{10 \pm \sqrt {100 - 4 \times 21} }}{2}"> <mi>k</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>±</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>10</mn> <mo>±</mo> <msqrt> <mn>100</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>21</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3,{\text{ }}7"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7</mn> </math></span> <strong><em>A1A1</em></strong> <strong><em>N0</em></strong></p>
<p><strong>METHOD 2 (using derivatives)</strong></p>
<p>attempt to set up equation <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = f,{\text{ }}kx - 5 = - {x^2} + 5x - 6"> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> </math></span></p>
<p>recognizing derivative/slope are equal <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’ = {m_T},{\text{ }}f' = k"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <msub> <mi>m</mi> <mi>T</mi> </msub> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>k</mi> </math></span></p>
<p>correct derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2x + 5"> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>5</mn> </math></span></p>
<p>attempt to set up equation in terms of either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> <strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2x + 5)x - 5 = - {x^2} + 5x - 6,{\text{ }}k\left( {\frac{{5 - k}}{2}} \right) - 5 = - {\left( {\frac{{5 - k}}{2}} \right)^2} + 5\left( {\frac{{5 - k}}{2}} \right) - 6"> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>6</mn> </math></span></p>
<p>rearranging their equation to equal zero <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1 = 0,{\text{ }}{k^2} - 10k + 21 = 0"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>10</mn> <mi>k</mi> <mo>+</mo> <mn>21</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pm 1,{\text{ }}(k - 3)(k - 7) = 0,{\text{ }}\frac{{10 \pm \sqrt {100 - 4 \times 21} }}{2}"> <mi>x</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>10</mn> <mo>±</mo> <msqrt> <mn>100</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>21</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3,{\text{ }}7"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7</mn> </math></span> <strong><em>A1A1</em></strong> <strong><em>N0</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ln</mi><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>4</mn></math>.</p>
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> which crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac></math>, find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mn>0</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>17</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>±</mo><msqrt><mn>17</mn></msqrt></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msqrt><mn>17</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate (must include <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfrac></math>) <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p>setting their derivative <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mo>=</mo><mn>6</mn><mi>x</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>=</mo><mn>0</mn></math> (or equivalent) <em><strong>A1</strong></em></p>
<p>valid attempt to solve their quadratic <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>8</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> if the candidate’s final answer includes additional solutions (such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>8</mn></math>).</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Consider <em>f</em>(<em>x</em>), <em>g</em>(<em>x</em>) and <em>h</em>(<em>x</em>), for x∈<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R}"> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span> where <em>h</em>(<em>x</em>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ g} \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>g</mi> </mrow> <mo>)</mo> </mrow> </math></span>(<em>x</em>).</p>
<p>Given that <em>g</em>(3) = 7 , <em>g′</em> (3) = 4 and <em>f ′ </em>(7) = −5 , find the gradient of the normal to the curve of <em>h</em> at <em>x</em> = 3.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>recognizing the need to find <em>h′</em> <em><strong> (M1)</strong></em></p>
<p>recognizing the need to find <em>h′ </em>(3) (seen anywhere) <em><strong> (M1)</strong></em></p>
<p>evidence of choosing chain rule <em><strong> (M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}u}} \times \frac{{{\text{d}}u}}{{{\text{d}}x}},\,\,f'\left( {g\left( 3 \right)} \right) \times g'\left( 3 \right),\,\,f'\left( g \right) \times g'"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>g</mi> <mo>)</mo> </mrow> <mo>×</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( 7 \right) \times 4,\,\, - 5 \times 4"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>×</mo> <mn>4</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>5</mn> <mo>×</mo> <mn>4</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'\left( 3 \right) = - 20"> <msup> <mi>h</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>20</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>evidence of taking <strong>their</strong> negative reciprocal for normal <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{{h'\left( 3 \right)}},\,\,{m_1}{m_2} = - 1"> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>h</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>m</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> </mrow> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span></p>
<p>gradient of normal is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{20}}"> <mfrac> <mn>1</mn> <mrow> <mn>20</mn> </mrow> </mfrac> </math></span> <em><strong>A1 N4</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Particle A travels in a straight line such that its displacement, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> metres, from a fixed origin after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>-</mo><msup><mi>t</mi><mn>2</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>10</mn></math>, as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Particle A starts at the origin and passes through the origin again when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>p</mi></math>.</p>
</div>
<div class="specification">
<p>Particle A changes direction when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>q</mi></math>.</p>
</div>
<div class="specification">
<p>The total distance travelled by particle A is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the displacement of particle A from the origin when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance of particle A from the origin when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second particle, particle B, travels along the same straight line such that its velocity is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>14</mn><mo>-</mo><mn>2</mn><mi>t</mi></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>k</mi></math>, the distance travelled by particle B is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>setting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>t</mi><mo>-</mo><msup><mi>t</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mfenced><mrow><mn>8</mn><mo>-</mo><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>8</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>8</mn><mo>,</mo><mo> </mo><mfenced><mrow><mn>8</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> if the candidate’s final answer includes additional solutions (such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>8</mn></math>).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that when particle changes direction <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>0</mn></math> OR local maximum on graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> OR vertex of parabola <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>4</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn></math>) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced></math> OR integrating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mfenced><mi>t</mi></mfenced></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>displacement</mtext><mo>=</mo><mn>16</mn><mo> </mo><mo>(</mo><mtext>m</mtext><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mn>10</mn></mfenced><mo>=</mo><mo>-</mo><mn>20</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>distance</mtext><mo>=</mo><mfenced open="|" close="|"><mrow><mtext>s</mtext><mfenced><mi>t</mi></mfenced></mrow></mfenced></math> OR integrating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mfenced><mi>t</mi></mfenced></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>distance</mtext><mo>=</mo><mn>20</mn><mo> </mo><mo>(</mo><mtext>m</mtext><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> forward <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mo> </mo><mn>36</mn></math> backward OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>+</mo><mn>16</mn><mo>+</mo><mn>20</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>10</mn></munderover><mfenced open="|" close="|"><mrow><mi>v</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mo>d</mo><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>52</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>graphical method with triangles on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mfenced><mi>t</mi></mfenced></math> graph <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>49</mn><mo>+</mo><mfenced><mfrac><mrow><mi>x</mi><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>49</mn><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>52</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><msqrt><mn>3</mn></msqrt></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>7</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>recognition that distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>∫</mo><mfenced open="|" close="|"><mrow><mi>v</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mo>d</mo><mi>t</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>7</mn></munderover><mfenced><mrow><mn>14</mn><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mfenced><mo>d</mo><mi>t</mi><mo>+</mo><munderover><mo>∫</mo><mn>7</mn><mi>k</mi></munderover><mfenced><mrow><mn>2</mn><mi>t</mi><mo>-</mo><mn>14</mn></mrow></mfenced><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mn>14</mn><mi>t</mi><mo>-</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mn>0</mn><mn>7</mn></msubsup><mo>+</mo><msubsup><mfenced open="[" close="]"><mrow><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><mn>14</mn><mi>t</mi></mrow></mfenced><mn>7</mn><mi>k</mi></msubsup></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mfenced><mn>7</mn></mfenced><mo>-</mo><msup><mn>7</mn><mn>2</mn></msup><mo>+</mo><mfenced><mrow><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mn>14</mn><mi>k</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><msup><mn>7</mn><mn>2</mn></msup><mo>-</mo><mn>14</mn><mfenced><mn>7</mn></mfenced></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>52</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>7</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Maria owns a cheese factory. The amount of cheese, in kilograms, Maria sells in one week, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q">
<mi>Q</mi>
</math></span>, is given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q = 882 - 45p">
<mi>Q</mi>
<mo>=</mo>
<mn>882</mn>
<mo>−<!-- − --></mo>
<mn>45</mn>
<mi>p</mi>
</math></span>,</p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> is the price of a kilogram of cheese in euros (EUR).</p>
</div>
<div class="specification">
<p>Maria earns <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p - 6.80){\text{ EUR}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>−<!-- − --></mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
<mrow>
<mtext> EUR</mtext>
</mrow>
</math></span> for each kilogram of cheese sold.</p>
</div>
<div class="specification">
<p>To calculate her weekly profit <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>, in EUR, Maria multiplies the amount of cheese she sells by the amount she earns per kilogram.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down how many kilograms of cheese Maria sells in one week if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how much Maria earns in one week, from selling cheese, if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the price, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, that will give Maria the highest weekly profit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>522 (kg) <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="522(8 - 6.80)">
<mn>522</mn>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying their answer to part (a) by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(8 - 6.80)">
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p>626 (EUR) (626.40) <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(W = ){\text{ }}(882 - 45p)(p - 6.80)">
<mo stretchy="false">(</mo>
<mi>W</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>882</mn>
<mo>−</mo>
<mn>45</mn>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>−</mo>
<mn>6.80</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(W = ) - 45{p^2} + 1188p - 5997.6">
<mo stretchy="false">(</mo>
<mi>W</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>45</mn>
<mrow>
<msup>
<mi>p</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1188</mn>
<mi>p</mi>
<mo>−</mo>
<mn>5997.6</mn>
</math></span> <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span> with some indication of the maximum <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 90p + 1188 = 0">
<mo>−</mo>
<mn>90</mn>
<mi>p</mi>
<mo>+</mo>
<mn>1188</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating the correct derivative of their part (c) to zero.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}\frac{{ - 1188}}{{2 \times ( - 45)}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>1188</mn>
</mrow>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>45</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the formula for axis of symmetry.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}13.2{\text{ (EUR)}}">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13.2</mn>
<mrow>
<mtext> (EUR)</mtext>
</mrow>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from their part (c), if the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> is such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.80 < p < 19.6">
<mn>6.80</mn>
<mo><</mo>
<mi>p</mi>
<mo><</mo>
<mn>19.6</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The point A has coordinates (4 , −8) and the point B has coordinates (−2 , 4).</p>
</div>
<div class="specification">
<p>The point D has coordinates (−3 , 1).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of C, the midpoint of line segment AB.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the line DC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line DC. Write your answer in the form <em>ax</em> + <em>by</em> + <em>d</em> = 0 where <em>a</em> , <em>b</em> and <em>d</em> are integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(1, −2) <em><strong>(A1)(A1) (C2)</strong></em><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 1 and <em><strong>(A1)</strong></em> for −2, seen as a coordinate pair.</p>
<p>Accept <em>x</em> = 1, <em>y</em> = −2. Award <em><strong>(A1)(A0)</strong></em> if <em>x</em> and <em>y</em> coordinates are reversed.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - \left( { - 2} \right)}}{{ - 3 - 1}}">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution, of their part (a), into gradient formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - \frac{3}{4}\,\,\,\left( { - 0.75} \right)">
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>0.75</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 1 = - \frac{3}{4}\left( {x + 3} \right)">
<mi>y</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>OR </strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + 2 = - \frac{3}{4}\left( {x - 1} \right)">
<mi>y</mi>
<mo>+</mo>
<mn>2</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>OR</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{3}{4}x - \frac{5}{4}">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their part (b) and a given point.</p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = - \frac{3}{4} \times - 3 + c">
<mn>1</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mo>−</mo>
<mn>3</mn>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>OR</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 = - \frac{3}{4} \times 1 + c">
<mo>−</mo>
<mn>2</mn>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>(M1) </strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their part (b) and a given point.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x + 4y + 5 = 0">
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mi>y</mi>
<mo>+</mo>
<mn>5</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> (accept any integer multiple, including negative multiples) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (a) and (b). Where the gradient in part (b) is found to be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{0}">
<mfrac>
<mn>5</mn>
<mn>0</mn>
</mfrac>
</math></span>, award at most <em><strong>(M1)(A0)</strong></em> for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 3">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 3 = 0">
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A potter sells <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> vases per month.</p>
<p>His monthly profit in Australian dollars (AUD) can be modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P\left( x \right) = - \frac{1}{5}{x^3} + 7{x^2} - 120{\text{,}}\,\,x \geqslant 0.">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>120</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0.</mn>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> if no vases are sold.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Differentiate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Hence</strong>, find the number of vases that will maximize the profit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>−120 (AUD) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{5}{x^2} + 14x">
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>14</mn>
<mi>x</mi>
</math></span> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award at most <em><strong>(A1)(A0)</strong></em> for extra terms seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{5}{x^2} + 14x = 0">
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>14</mn>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong></span></p>
<p style="text-align: start;"><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">Note:</span></strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"> Award <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong> for equating their derivative to zero.</span></p>
<p style="text-align: start;"><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">OR</span></strong></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">sketch of their derivative (approximately correct shape) with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercept seen <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong></span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="23\frac{1}{3}\,\,\,\left( {23.3{\text{,}}\,\,23.3333 \ldots {\text{,}}\,\,\frac{{70}}{3}} \right)">
<mn>23</mn>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>23.3</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>23.3333</mn>
<mo>…</mo>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>70</mn>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)</strong></span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><strong>Note:</strong> Award <em><strong>(C2)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="23\frac{1}{3}\,\,\,\left( {23.3{\text{,}}\,\,23.3333 \ldots {\text{,}}\,\,\frac{{70}}{3}} \right)">
<mn>23</mn>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>23.3</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>23.3333</mn>
<mo>…</mo>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>70</mn>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> seen without working.</span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">23 <strong><em>(A1)</em>(ft) <em><span style="font-family: 'Verdana',sans-serif;">(C3)</span></em> </strong> </span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><strong>Note:</strong> Follow through from part (b).</span></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 15 - {x^2}"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>15</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}"> <mi>x</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and the rectangle OABC, where A is on the negative <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis, B is on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, and C is on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_13.13.04.png" alt="N17/5/MATME/SP1/ENG/TZ0/06"></p>
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of A that gives the maximum area of OABC.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to find the area of OABC <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OA}} \times {\text{OC, }}x \times f(x),{\text{ }}f(x) \times ( - x)"> <mrow> <mtext>OA</mtext> </mrow> <mo>×</mo> <mrow> <mtext>OC, </mtext> </mrow> <mi>x</mi> <mo>×</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>×</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span></p>
<p>correct expression for area in one variable <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = x(15 - {x^2}),{\text{ }}15x - {x^3},{\text{ }}{x^3} - 15x"> <mrow> <mtext>area</mtext> </mrow> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>15</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>15</mn> <mi>x</mi> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>15</mn> <mi>x</mi> </math></span></p>
<p>valid approach to find maximum <strong>area</strong> (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A’(x) = 0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct derivative <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 - 3{x^2},{\text{ }}(15 - {x^2}) + x( - 2x) = 0,{\text{ }} - 15 + 3{x^2}"> <mn>15</mn> <mo>−</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>15</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>15</mn> <mo>+</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15 = 3{x^2},{\text{ }}{x^2} = 5,{\text{ }}x = \sqrt 5 "> <mn>15</mn> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>=</mo> <msqrt> <mn>5</mn> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \sqrt 5 {\text{ }}\left( {{\text{accept A}}\left( { - \sqrt 5 ,{\text{ }}0} \right)} \right)"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <msqrt> <mn>5</mn> </msqrt> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept A</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <msqrt> <mn>5</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A2 N3</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The derivative of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x) = 2{{\text{e}}^{ - 3x}}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> passes through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{3}{\text{,}}\,\,5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing to integrate <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f'} ">
<mo>∫</mo>
<mrow>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {2{{\text{e}}^{ - 3x}}{\text{d}}x} ">
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}u = - 3">
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p>correct integral (do not penalize for missing +<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) <em><strong>(A2)</strong><br></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{{\text{e}}^{ - 3x}} + C">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{3}{\text{,}}\,\,5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (in any order) into <strong>their</strong> integrated expression (must have +<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{{\text{e}}^{ - 3\left( {1/3} \right)}} + C = 5">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
<mo>=</mo>
<mn>5</mn>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if they substitute into original or differentiated function.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - \frac{2}{3}{{\text{e}}^{ - 3x}} + 5 + \frac{2}{3}{{\text{e}}^{ - 1}}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> (or <em>any</em> equivalent form, <em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{2}{3}{{\text{e}}^{ - 3x}} + 5 - \frac{2}{{ - 3{\text{e}}}}">
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>) <em><strong>A1 N4</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The diagram shows part of the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>. The graph passes through point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(1,{\text{ }}3)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.22.37.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13"></p>
</div>
<div class="specification">
<p>The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at A has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 2x + 5">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</math></span>. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> be the normal to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> at A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N"> <mi>N</mi> </math></span>. Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + d = 0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>y</mi> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mn>0</mn> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{Z}"> <mi>d</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N"> <mi>N</mi> </math></span> on the diagram above.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>3 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3"> <mi>y</mi> <mo>=</mo> <mn>3</mn> </math></span></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = 0.5(1) + c"> <mn>3</mn> <mo>=</mo> <mn>0.5</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> </math></span><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong>OR</strong><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 3 = 0.5(x - 1)"> <mi>y</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0.5</mn> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for correct gradient, <strong><em>(A1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(1,{\text{ }}3)"> <mrow> <mtext>A</mtext> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </math></span> in the equation of line.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 2y + 5 = 0"> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mi>y</mi> <mo>+</mo> <mn>5</mn> <mo>=</mo> <mn>0</mn> </math></span> or any integer multiple <strong><em>(A1)</em>(ft)</strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for their equation correctly rearranged in the indicated form.</p>
<p>The candidate’s answer <strong>must </strong>be an equation for this mark.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-16_om_08.26.38.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13.c/M"> <strong><em>(M1)(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1) </em></strong>for a straight line, with positive gradient, passing through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}3)"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </math></span>, <strong><em>(A1)</em>(ft) </strong>for line (or extension of their line) passing approximately through 2.5 or their intercept with the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn><mi>π</mi></math>.</p>
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> touches the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, as shown. The shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, between the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>
<div class="specification">
<p>The right cone in the following diagram has a total surface area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi mathvariant="normal">π</mi></math>, equal to the shaded area in the previous diagram.</p>
<p>The cone has a base radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>, height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, and slant height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area of the shaded region is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the volume of the cone.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math> (or setting their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi mathvariant="normal">π</mi><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow></munderover><mfenced><mrow><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mn>6</mn><mi>x</mi><mo>+</mo><mn>6</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mi mathvariant="normal">π</mi><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow></msubsup></math> <em><strong>A1A1</strong></em></p>
<p>substitute their limits into their integrated expression and subtract <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>18</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>3</mn><mi mathvariant="normal">π</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>6</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><mo> </mo><mi>sin</mi><mo> </mo><mi mathvariant="normal">π</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>6</mn><mfenced><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow></mfenced><mo>+</mo><mn>0</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>6</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>0</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>18</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>6</mn><mi mathvariant="normal">π</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>area<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mn>12</mn><mi mathvariant="normal">π</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into formula for surface area (including base) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><msup><mn>2</mn><mn>2</mn></msup></mfenced><mo>+</mo><mi mathvariant="normal">π</mi><mfenced><mn>2</mn></mfenced><mfenced><mi>l</mi></mfenced><mo>=</mo><mn>12</mn><mi mathvariant="normal">π</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>2</mn><mtext>π</mtext><mi>l</mi><mo>=</mo><mn>12</mn><mi mathvariant="normal">π</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mtext>π</mtext><mi>l</mi><mo>=</mo><mn>8</mn><mi mathvariant="normal">π</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find the height of the cone <em><strong>(M1)</strong></em></p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mtext>their</mtext><mo> </mo><mi>l</mi></mrow></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><msqrt><mn>12</mn></msqrt><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mn>3</mn></msqrt></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>π</mi><msup><mi>r</mi><mn>2</mn></msup><mi>h</mi></math> with their values substituted <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><mfenced><msup><mn>2</mn><mn>2</mn></msup></mfenced><mfenced><msqrt><mn>12</mn></msqrt></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>volume</mtext><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi><msqrt><mn>12</mn></msqrt></mrow><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mo>=</mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi></mrow><msqrt><mn>3</mn></msqrt></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a ball attached to the end of a spring, which is suspended from a ceiling.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of the ball above the ground at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after being released can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the ball above the ground when it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum height of the ball above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the ball takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> seconds to return to its initial height above the ground for the first time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the first 2 seconds of its motion, determine the amount of time that the ball is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math> metres above the ground.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the rate of change of the ball’s height above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi mathvariant="normal">π</mi><msqrt><mi>q</mi></msqrt><mo> </mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>0</mn></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mn>0</mn></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn></math> (m) (above the ground) <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>uses the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced></math> which is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> (m)</p>
<p> </p>
<p><strong>OR</strong></p>
<p>the amplitude of motion is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn></math> (m) and the mean position is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn></math> (m) <strong>M1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced></math>, attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and determines that the minimum height above the ground occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mo>…</mo></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> (m)</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>4</mn></math> (m) (above the ground) <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the ball is released from its maximum height and returns there a period later <strong>R1</strong></p>
<p>the period is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi mathvariant="normal">π</mi></mfrac><mfenced><mrow><mo>=</mo><mn>2</mn></mrow></mfenced><mo> </mo><mfenced><mi mathvariant="normal">s</mi></mfenced></math> <strong> A1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <strong> M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>…</mo></math> <strong> A1</strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>so it takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> seconds for the ball to return to its initial position for the first time <strong>AG</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math> (M1)</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></math> A1</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mi>t</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math> (A1)</strong></p>
<p> </p>
<p><strong>Note: </strong>Accept extra correct positive solutions for <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mi>t</mi></math></strong>.</p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>4</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn></mrow></mfenced></math> A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong>A1</strong> if solutions outside <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn></math> are also stated.</p>
<p>the ball is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math> metres above the ground for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo></math>(s)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo></math>(s) <strong>A1</strong></p>
<p> </p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER<br></strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></math> <strong> (M1)</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>recognizes that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></math> is required <strong> (M1)</strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p>attempts to evaluate their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi mathvariant="normal">π</mi><msqrt><mn>3</mn></msqrt><mo> </mo><mfenced><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent correct answer forms where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>. For example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mi mathvariant="normal">π</mi><msqrt><mn>3</mn></msqrt></math>.</p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>cos</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>∫</mo><mi>cos</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>substitute both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> values into their integrated expression including <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>+</mo><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>2</mn><mi>y</mi></munderover><mo>d</mo><mi>y</mi><mo>=</mo><munderover><mo>∫</mo><mfrac><mstyle displaystyle="true"><mn>3</mn><mi mathvariant="normal">π</mi></mstyle><mn>4</mn></mfrac><mi>x</mi></munderover><mi>cos</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>2</mn><mo>=</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced><mo>-</mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The derivative of a function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msqrt><mi>x</mi></msqrt></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>3</mn></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em>−5 + (8 − 1)(3)</p>
<p><em>u</em><sub>8</sub> = 16 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>∫</mo><mn>3</mn><msqrt><mi>x</mi></msqrt><mo> </mo><mi mathvariant="normal">d</mi><mi>x</mi></math> <strong>(A1)</strong></p>
<p>attempts to integrate <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><msup><mi>x</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mi>C</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mi>x</mi><msqrt><mi>x</mi></msqrt><mo>+</mo><mi>C</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>3</mn></math> to obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>=</mo><mn>2</mn><msup><mfenced><mn>1</mn></mfenced><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mi>C</mi></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>1</mn></math> <strong>M1</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> into their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> <strong>(M1)</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mn>17</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>1</mn><mn>4</mn></munderover><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo> </mo><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><munderover><mo>∫</mo><mn>1</mn><mn>4</mn></munderover><mn>3</mn><msqrt><mi>x</mi></msqrt><mo> </mo><mi mathvariant="normal">d</mi><mi>x</mi></math> <strong>(A1)</strong></p>
<p>attempts to integrate both sides <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mn>1</mn><mn>4</mn></msubsup><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mn>2</mn><msup><mi>x</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup></mrow></mfenced><mn>1</mn><mn>4</mn></msubsup></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced><mo>-</mo><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>16</mn><mo>-</mo><mn>2</mn></math> <strong>M1</strong></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>3</mn></math> to find their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced><mo>-</mo><mn>3</mn><mo>=</mo><mn>16</mn><mo>-</mo><mn>2</mn></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mn>17</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[6 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{8x}}{{\sqrt {2{x^2} + 1} }}">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>8</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = 5">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>5</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to integrate <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 2{x^2} + 1 \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = 4x">
<mi>u</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">⇒</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>4</mn>
<mi>x</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{8x}}{{\sqrt {2{x^2} + 1} }}} {\text{d}}x = \int {\frac{2}{{\sqrt u }}} {\text{d}}u">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mn>8</mn>
<mi>x</mi>
</mrow>
<mrow>
<msqrt>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mrow>
<msqrt>
<mi>u</mi>
</msqrt>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em><strong>EITHER</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\sqrt u \left( { + C} \right)">
<mo>=</mo>
<mn>4</mn>
<msqrt>
<mi>u</mi>
</msqrt>
<mrow>
<mo>(</mo>
<mrow>
<mo>+</mo>
<mi>C</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\sqrt {2{x^2} + 1} \left( { + C} \right)">
<mo>=</mo>
<mn>4</mn>
<msqrt>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
<mrow>
<mo>(</mo>
<mrow>
<mo>+</mo>
<mi>C</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>THEN</strong></em></p>
<p>correct substitution into <strong>their</strong> integrated function (must have <em>C</em>) <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 = 4 + C \Rightarrow C = 1">
<mn>5</mn>
<mo>=</mo>
<mn>4</mn>
<mo>+</mo>
<mi>C</mi>
<mo stretchy="false">⇒</mo>
<mi>C</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4\sqrt {2{x^2} + 1} + 1">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>4</mn>
<msqrt>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
<mo>+</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 5<em>x</em><sup>3 </sup>− 3<em>x</em>.</p>
</div>
<div class="specification">
<p>The curve has a tangent at the point P(−1, −2).</p>
</div>
<div class="question">
<p>Find the equation of this tangent. Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>(<em>y</em> − (−2)) = 12 (<em>x</em> − (−1)) <em><strong> (M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>−2 = 12(−1) + c <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong> (M1)</strong></em> for point <strong>and</strong> their gradient substituted into the equation of a line.</p>
<p> </p>
<p><em>y</em> = 12<em>x</em> + 10 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>