File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 5/markSceme-HL-paper2html
File size: 1.09 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2\,{\text{ln}}\,x + 1}}{{x - 3}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span>, 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> < 3.</p>
</div>
<div class="specification">
<p>Draw a set of axes showing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> values between −3 and 3. On these axes</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the coordinates of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f^{ - 1}}\left( x \right)"> <mi>y</mi> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) > {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>></mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>finding turning point of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> or finding root of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f''\left( x \right)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.899"> <mi>x</mi> <mo>=</mo> <mn>0.899</mn> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {0.899048 \ldots } \right) = - 0.375"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mn>0.899048</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.375</mn> </math></span> <em><strong>(M1)A1</strong></em></p>
<p>(0.899, −0.375)</p>
<p><strong>Note:</strong> Do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.9"> <mi>x</mi> <mo>=</mo> <mn>0.9</mn> </math></span>. Accept <em>y</em>-coordinates rounding to −0.37 or −0.375 but not −0.38.<br> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>smooth curve over the correct domain which does not cross the <em>y</em>-axis</p>
<p>and is concave down for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> > 1 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercept at 0.607 <em><strong>A1</strong></em></p>
<p>equations of asymptotes given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 3 (the latter must be drawn) <em><strong>A1A1</strong></em><br> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>attempt to reflect graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p>smooth curve over the correct domain which does not cross the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and is concave down for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> > 1 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept at 0.607 <em><strong>A1</strong></em></p>
<p>equations of asymptotes given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 3 (the latter must be drawn) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> For <em><strong>FT</strong></em> from (i) to (ii) award max <em><strong>M1A0A1A0</strong></em>.</p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = x"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </math></span> to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0.372 <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p>0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 0.372 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>FT</strong> </em>marks.</p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mi>D</mi>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mo>]</mo>
<mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi mathvariant="normal">∞<!-- ∞ --></mi>
</mrow>
<mo>[</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1 > 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>></mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < - 1">
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 1">
<mi>x</mi>
<mo>></mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_15.40.09.png" alt="M17/5/MATHL/HP2/ENG/TZ1/12.b/M"></p>
<p>shape <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercepts <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is symmetrical about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f( - x) = f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>R1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is not one-to-one function <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>horizontal line cuts twice <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept any equivalent correct statement.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1 + \ln \left( {\sqrt {{y^2} - 1} } \right)">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = {y^2} - 1">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}(x) = \sqrt {{{\text{e}}^{2x + 2}} + 1} ,{\text{ }}x \in \mathbb{R}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> <strong><em>A1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{1}{{\sqrt {{x^2} - 1} }} \times \frac{{2x}}{{2\sqrt {{x^2} - 1} }}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}} = 0 \Rightarrow x = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p>which is not in the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> (hence no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>) <strong><em>R1</em></strong></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = \frac{{{{\text{e}}^{2x + 2}}}}{{\sqrt {{{\text{e}}^{2x + 2}} + 1} }}">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} > 0 \Rightarrow ({g^{ - 1}})'(x) > 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>></mo>
<mn>0</mn>
</math></span> so no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept: equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> has no solutions.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species. He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>B</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
</div>
<div class="specification">
<p>Use the scientist’s models to find the initial height of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, prove that Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math> (cm) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>sin</mi><mfenced><mn>6</mn></mfenced><mo>+</mo><mn>27</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7205</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7</mn></math> (cm) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>0074</mn><mo>…</mo><mo>,</mo><mn>4</mn><mo>.</mo><mn>7034</mn><mo>…</mo><mo>,</mo><mn>5</mn><mo>.</mo><mn>88332</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>01</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>70</mn><mo>,</mo><mn>5</mn><mo>.</mo><mn>88</mn></math> (weeks) <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>+</mo><mi>t</mi><mo>-</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn><mo>,</mo><mo> </mo><mi>t</mi><mo>-</mo><mn>5</mn><mo>></mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>and as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>≥</mo><mo>-</mo><mn>1</mn><mo>⇒</mo><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>></mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p>so for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>t</mi><mo>-</mo><mn>6</mn><mo>></mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>hence for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> are required <em><strong>(M1)</strong></em></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award full marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfenced><mrow><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo> </mo><mfrac><mrow><mn>10</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>11</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><em>Award</em> subsequent marks for correct use of these exact values.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>attempts to calculate the total amount of time <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mrow><mn>2</mn><mo>.</mo><mn>2359</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>1887</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>14</mn><mo> </mo><mfenced><mrow><mo>=</mo><mi mathvariant="normal">π</mi></mrow></mfenced></math> (weeks) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) In general, very well done, most students scored full marks. Some though had an incorrect answer for part(a)(ii) because they had their GDC in degrees.</p>
<p>Part (b) Well attempted. Some accuracy errors and not all candidates listed all three values.</p>
<p>Part (c) Most students tried a graphical approach (but this would only get them one out of three marks) and only some provided a convincing algebraic justification. Many candidates tried to explain in words without a convincing mathematical justification or used numerical calculations with specific time values. Some arrived at the correct simplified equation for the difference in heights but could not do much with it. Then only a few provided a correct mathematical proof.</p>
<p>Part (d) In general, well attempted by many candidates. The common error was giving the answer as 3.15 due to the pre-mature rounding. Some candidates only provided the values of time when the rates are equal, some intervals rather than the total time.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in seconds.</p>
</div>
<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>×<!-- × --></mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The average power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
<mi>t</mi>
<mo>=</mo>
<mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>0</mn>
<mi>T</mi>
</msubsup>
<mrow>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
<mi>T</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> ≥ 3.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span>(0.007).</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</math></span> > 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> > 0.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>d</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> > 0, use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3, −3 <em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis invariant), scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 0.003} \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>0.003</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (shift to the left by 0.003) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Can be done in either order.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape over correct domain with correct endpoints <em><strong>A1</strong></em><br>first maximum at (0.0035, 4.76) <em><strong>A1</strong></em><br>first minimum at (0.0085, −1.24) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> ≥ 3 between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.0016762 and 0.0053238 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.011676 and 0.015324 <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for either interval.</p>
<p>= 0.00730 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}} = \frac{1}{{0.007}}\int_0^{0.007} {6\,{\text{sin}}\left( {100\pi t} \right)} {\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right){\text{d}}t">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</mfrac>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</msubsup>
<mrow>
<mn>6</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 2.87 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in each cycle the area under the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis is smaller than area above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis <em><strong>R1</strong></em></p>
<p>the curve begins with the positive part of the cycle <em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{4.76 - \left( { - 1.24} \right)}}{2}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3.00">
<mi>a</mi>
<mo>=</mo>
<mn>3.00</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = \frac{{4.76 + \left( { - 1.24} \right)}}{2}">
<mi>d</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = 1.76">
<mi>d</mi>
<mo>=</mo>
<mn>1.76</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{0.01}}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>0.01</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 628\left( { = 200\pi } \right)">
<mi>b</mi>
<mo>=</mo>
<mn>628</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>200</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.0035 - \frac{{0.01}}{4}">
<mi>c</mi>
<mo>=</mo>
<mn>0.0035</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>0.01</mn>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.00100">
<mi>c</mi>
<mo>=</mo>
<mn>0.00100</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>Find the coordinates where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> crosses the</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The oblique asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>30</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>30</mn></math>, clearly indicating the points of intersection with each axis and any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfrac></math> in partial fractions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>3</mn></munderover><mfrac><mn>1</mn><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfrac><mo>d</mo><mi>x</mi></math>, expressing your answer as a single logarithm.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In part (a), penalise once only, if correct values are given instead of correct coordinates.</p>
<p><br>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In part (a), penalise once only, if correct values are given instead of correct coordinates.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mfrac><mn>4</mn><mn>5</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math>.<br> Award <em><strong>A1</strong></em> in part (b), if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math> is seen on their graph in part (d).<br><br></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced><mo>≡</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></math></p>
<p>attempts to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>15</mn><mi>a</mi><mi>x</mi><mo>+</mo><mn>2</mn><mi>b</mi><mi>x</mi><mo>-</mo><mn>15</mn><mi>b</mi><mo>≡</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>equates coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>=</mo><mo>-</mo><mfrac><mn>15</mn><mn>2</mn></mfrac><mo>+</mo><mn>2</mn><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts division on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac><mo>+</mo><mo>…</mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>≡</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mi>b</mi><mo>+</mo><mfrac><mi>c</mi><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn><mo>≡</mo><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced><mi>x</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced><mi>b</mi><mo>+</mo><mi>c</mi></math></p>
<p>equates coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> : <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>=</mo><mo>-</mo><mfrac><mn>15</mn><mn>2</mn></mfrac><mo>+</mo><mn>2</mn><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p>attempts division on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>13</mn><mi>x</mi></mrow><mn>2</mn></mfrac></mstyle><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>13</mn><mi>x</mi></mrow><mn>2</mn></mfrac></mstyle><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac><mo>+</mo><mo>…</mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> <img src=""></p>
<p>two branches with approximately correct shape (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>30</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>30</mn></math>) <em><strong>A1</strong></em></p>
<p>their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes <em><strong>A1</strong></em></p>
<p>their axes intercepts in approximately the correct positions <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Points of intersection with the axes and the equations of asymptotes are not required to be labelled.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to split into partial fractions: <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mi>B</mi><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn><mo>≡</mo><mi>A</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>B</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>3</mn></munderover><mfenced><mrow><mfrac><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p>attempts to integrate and obtains two terms involving ‘ln’ <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mn>3</mn><mo> </mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></mrow></mfenced><mn>0</mn><mn>3</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>6</mn><mo>-</mo><mi>ln</mi><mo> </mo><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>3</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>4</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><mn>8</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>4</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>ln</mi><mo> </mo><mn>32</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The final <em><strong>A1</strong></em> is dependent on the previous two <em><strong>A</strong></em> marks.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{sec}}\,x + 2">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>sec</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span>, stating its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> ≥ 3 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{sec}}\,y + 2"> <mi>x</mi> <mo>=</mo> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>+</mo> <mn>2</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Exchange of variables can take place at any point.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,y = \frac{1}{{x - 2}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = {\text{arccos}}\left( {\frac{1}{{x - 2}}} \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≥ 3 <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Allow follow through from (a) for last <em><strong>A1</strong></em> mark which is independent of earlier marks in (b).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The population, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, of a particular species of marsupial on a small remote island can be modelled by the logistic differential equation</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time measured in years and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>,</mo><mo> </mo><mi>N</mi></math> are positive constants.</p>
<p>The constant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> represents the maximum population of this species of marsupial that the island can sustain indefinitely.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> be the initial population of marsupials.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the population model, interpret the meaning of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the population of marsupials will increase at its maximum rate when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math>. Justify your answer.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the logistic differential equation, show that its solution can be expressed in the form</p>
<p style="padding-left:150px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years, the population of marsupials is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msub><mi>P</mi><mn>0</mn></msub></math>. It is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> for this population model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>rate of growth (change) of the (marsupial) population (with respect to time) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark] </strong></em></p>
<p><strong><br>Note:</strong> Do not accept growth (change) in the (marsupials) population per year.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts implicit differentiation on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>P</mi><mn>2</mn></msup></mrow><mi>N</mi></mfrac></math> be expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>k</mi><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mi>k</mi><mi>P</mi></mrow><mi>N</mi></mfrac><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>k</mi><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts implicit differentiation (product rule) on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>k</mi><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>+</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mo>-</mo><mfenced><mfrac><mn>1</mn><mi>N</mi></mfrac></mfenced><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> into their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mrow><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>+</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mo>-</mo><mfenced><mfrac><mn>1</mn><mi>N</mi></mfrac></mfenced><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mfrac><mi>P</mi><mi>N</mi></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks] </strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mo>⇒</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfrac><mi>N</mi><mn>2</mn></mfrac><mo>,</mo><mi>N</mi></math> <em><strong>A2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> only.</p>
<p>uses the second derivative to show that concavity changes at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> or the first derivative to show a local maximum at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> <em><strong>M1</strong></em><br><br><strong>EITHER</strong></p>
<p>a clearly labelled correct sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math> versus <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> showing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> corresponding to a local maximum point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>R1</strong></em></p>
<p><img src=""></p>
<p><br><strong>OR</strong></p>
<p>a correct and clearly labelled sign diagram (table) showing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> corresponding to a local maximum point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mi>N</mi></mrow><mn>32</mn></mfrac><mfenced><mrow><mo>></mo><mn>0</mn></mrow></mfenced></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>4</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mi>N</mi></mrow><mn>32</mn></mfrac><mfenced><mrow><mo><</mo><mn>0</mn></mrow></mfenced></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi>N</mi></mrow><mn>4</mn></mfrac></math> showing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> corresponds to a local maximum point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>R1</strong></em></p>
<p>so the population is increasing at its maximum rate when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks] </strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mfrac><mi>N</mi><mn>2</mn></mfrac></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mstyle displaystyle="true"><mfrac><mi>N</mi><mn>2</mn></mfrac></mstyle><mi>N</mi></mfrac></mrow></mfenced></math></p>
<p>the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>N</mi></mrow><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to separate variables <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p>attempts to write <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac></math> in partial fractions form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mi>P</mi></mfrac><mo>+</mo><mfrac><mi>B</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mfrac><mo>⇒</mo><mi>N</mi><mo>≡</mo><mi>A</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced><mo>+</mo><mi>B</mi><mi>P</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mfrac></mrow></mfenced><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>P</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math>. Absolute value signs are not required.</p>
<p> </p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>ln</mi><mo> </mo><msub><mi>P</mi><mn>0</mn></msub><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>-</mo><mi>ln</mi><mfenced><mfrac><msub><mi>P</mi><mn>0</mn></msub><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mi>o</mi></msub></mrow></mfrac></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mfenced><mfrac><mstyle displaystyle="true"><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><msub><mi>P</mi><mn>0</mn></msub><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mstyle></mfrac></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to separate variables <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p>attempts to write <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac></math> in partial fractions form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mi>P</mi></mfrac><mo>+</mo><mfrac><mi>B</mi><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfrac><mo>⇒</mo><mn>1</mn><mo>≡</mo><mi>A</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>+</mo><mi>B</mi><mi>P</mi></math> </p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac></math></strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math> A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math></strong></em> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>P</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math>. Absolute value signs are not required.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mi>P</mi><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfrac></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mo>+</mo><mi>C</mi><mo>⇒</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><mi>P</mi></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mo>+</mo><mi>C</mi></math></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><mi>P</mi></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>-</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mfrac><mstyle displaystyle="true"><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><msub><mi>P</mi><mn>0</mn></msub><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mstyle></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>lets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mfrac><mn>1</mn><mi>P</mi></mfrac></math> and forms <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p>multiplies both sides of the differential equation by <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac></math> and makes the above substitutions <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mrow><mfrac><mn>1</mn><mi>N</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><mi>P</mi></mfrac></mrow></mfenced><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mrow><mfrac><mn>1</mn><mi>N</mi></mfrac><mo>-</mo><mi>u</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>k</mi><mi>u</mi><mo>=</mo><mfrac><mi>k</mi><mi>N</mi></mfrac></math> (linear first-order DE)<em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IF</mtext><mo>=</mo><msup><mtext>e</mtext><mrow><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></mrow></msup><mo>=</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mo>⇒</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>k</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mi>u</mi><mo>=</mo><mfrac><mi>k</mi><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mo>d</mo><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mfenced><mrow><mi>u</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></mrow></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mi>P</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></math><em><strong> A1</strong></em></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mfrac><mn>1</mn><msub><mi>P</mi><mn>0</mn></msub></mfrac></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><msub><mi>P</mi><mn>0</mn></msub></mfrac><mo>-</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow><mrow><mi>N</mi><mi>P</mi></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mtext>=</mtext><mfenced><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><msub><mi>P</mi><mn>0</mn></msub></mfrac></mfenced></math><em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>3</mn><msub><mi>P</mi><mn>0</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mi>k</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>3</mn><mfenced><mfrac><mrow><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub><mo>-</mo><mn>3</mn><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><mn>9</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>220</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mo> </mo><mn>9</mn><mo>,</mo><mo>=</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mi>ln</mi><mo> </mo><mn>3</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>An extremely tricky question even for the strong candidates. Many struggled to understand what was expected in parts (b) and (c). As the question was set all with pronumerals instead of numbers many candidates found it challenging, thrown at deep water for parts (b), (c) and (e). It definitely was the question to show their skills for the Level 7 candidates provided that they did not run out of time.</p>
<p>Part (a) Very well answered, mostly correctly referring to the rate of change. Some candidates did not gain this mark because their sentence did not include the reference to the rate of change. Worded explanations continue being problematic to many candidates.</p>
<p>Part (b) Many candidates were confused how to approach this question and did not realise that they<br>needed to differentiate implicitly. Some tried but with errors, some did not fully show what was required.</p>
<p>Part (c) Most candidates started with equating the second derivative to zero. Most gave the answer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math>omitting the other two possibilities. Most stopped here. Only a small number of candidates provided the correct mathematical argument to show it is a local maximum.</p>
<p>Part (d) Well done by those candidates who got that far. Most got the correct answer, sometimes not fully simplified.</p>
<p>Part (e) Most candidates separated the variables, but some were not able to do much more. Some candidates knew to resolve into partial fractions and attempted to do so, mainly successfully. Then they integrated, again, mainly successfully and continued to substitute the initial condition and manipulate the equation accordingly.</p>
<p>Part (f) Algebraic manipulation of the logarithmic expression was too much for some candidates with a common error of 0.33 given as the answer. The strong candidates provided the correct exact or rounded value.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>sin</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>7</mn>
<mi>sin</mi>
<mo><!-- --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \tan x">
<mi>u</mi>
<mo>=</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate(s) of the point(s) of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, labelling these clearly on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x"> <mi>sin</mi> <mo></mo> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu "><mi>u</mi></math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0"> <mrow> <msup> <mi>u</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>15</mn> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span>, giving your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arctan k"> <mi>arctan</mi> <mo></mo> <mi>k</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 4\sin x\cos x + 14\cos 2x + {\sec ^2}x"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>+</mo> <mn>14</mn> <mi>cos</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mi>sec</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> </math></span> (or equivalent) <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.47.49.png" alt="N17/5/MATHL/HP2/ENG/TZ0/11.a.ii/M"> <strong><em>A1A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct behaviour at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <strong><em>A1 </em></strong>for correct domain and correct behaviour for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \frac{\pi }{2}"> <mi>x</mi> <mo stretchy="false">→</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, <strong><em>A1 </em></strong>for two clear intersections with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and minimum point, <strong><em>A1 </em></strong>for clear maximum point.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.0736"> <mi>x</mi> <mo>=</mo> <mn>0.0736</mn> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.13"> <mi>x</mi> <mo>=</mo> <mn>1.13</mn> </math></span> <strong><em>A1</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to write <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x"> <mi>sin</mi> <mo></mo> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span> only <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x = \frac{u}{{\sqrt {1 + {u^2}} }}"> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mfrac> <mi>u</mi> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos x = \frac{1}{{\sqrt {1 + {u^2}} }}"> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = 2\sin x\cos x{\text{ }}\left( { = 2\frac{u}{{\sqrt {1 + {u^2}} }}\frac{1}{{\sqrt {1 + {u^2}} }}} \right)"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>2</mn> <mfrac> <mi>u</mi> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = \frac{{2u}}{{1 + {u^2}}}"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>u</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\sin ^2}x + 7\sin 2x + \tan x - 9 = 0"> <mn>2</mn> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mn>7</mn> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>tan</mi> <mo></mo> <mi>x</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{u^2}}}{{1 + {u^2}}} + \frac{{14u}}{{1 + {u^2}}} + u - 9{\text{ }}( = 0)"> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>14</mn> <mi>u</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{u^2} + 14u + u(1 + {u^2}) - 9(1 + {u^2})}}{{1 + {u^2}}} = 0"> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>14</mn> <mi>u</mi> <mo>+</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>−</mo> <mn>9</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> (or equivalent) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0"> <mrow> <msup> <mi>u</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>15</mn> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 1"> <mi>u</mi> <mo>=</mo> <mn>1</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 3"> <mi>u</mi> <mo>=</mo> <mn>3</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \arctan (1)"> <mi>x</mi> <mo>=</mo> <mi>arctan</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \arctan (3)"> <mi>x</mi> <mo>=</mo> <mi>arctan</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Only accept answers given the required form.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( z \right) \equiv {z^4} - 6{z^3} - 2{z^2} + 58z - 51,\,\,z \in \mathbb{C}">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>≡<!-- ≡ --></mo>
<mrow>
<msup>
<mi>z</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>6</mn>
<mrow>
<msup>
<mi>z</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mrow>
<msup>
<mi>z</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>58</mn>
<mi>z</mi>
<mo>−<!-- − --></mo>
<mn>51</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>z</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">C</mi>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {x^4} - 6{x^3} - 2{x^2} + 58x - 51"> <mi>y</mi> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>58</mn> <mi>x</mi> <mo>−</mo> <mn>51</mn> </math></span>, stating clearly the coordinates of any maximum and minimum points and intersections with axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, state the condition on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span> such that all roots of the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( z \right) = k"> <mi>P</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>k</mi> </math></span> are real.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>shape <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis intercepts at (−3, 0), (1, 0) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis intercept at (0, −51) <em><strong> A1A1</strong></em></p>
<p>minimum points at (−1.62, −118) and (3.72, 19.7) <em><strong> A1A1</strong></em></p>
<p>maximum point at (2.40, 26.9) <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Coordinates may be seen on the graph or elsewhere.</p>
<p><strong>Note</strong>: Accept −3, 1 and −51 marked on the axes.</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from graph, 19.7 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> ≤ 26.9 <em><strong> A1A1</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> A1</strong></em> for correct endpoints and <em><strong>A1</strong></em> for correct inequalities.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A curve <em>C</em> is given by the implicit equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y - {\text{cos}}\left( {xy} \right) = 0">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−<!-- − --></mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy = - \frac{\pi }{2}">
<mi>x</mi>
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span> intersects <em>C</em> at P and Q.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradients of the tangents to <em>C</em> at P and Q are <em>m</em><sub>1</sub> and <em>m</em><sub>2</sub> respectively, show that <em>m</em><sub>1</sub> × <em>m</em><sub>2</sub> = 1.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the three points on <em>C</em>, nearest the origin, where the tangent is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mi>x</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt at implicit differentiation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + \frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{sin}}\left( {xy} \right) = 0"> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>y</mi> <mo>+</mo> <mi>x</mi> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>A1M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for first two terms. Award <em><strong>M1</strong> </em>for an attempt at chain rule <em><strong>A1</strong> </em>for last term.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 + x\,{\text{sin}}\left( {xy} \right)} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 1 - y\,{\text{sin}}\left( {xy} \right)"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy = - \frac{\pi }{2},\,\,{\text{cos}}\,xy = 0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x + y = 0"> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - \frac{\pi }{{2x}} - {\text{cos}}\left( {\frac{{ - \pi }}{2}} \right) = 0"> <mi>x</mi> <mo>−</mo> <mfrac> <mi>π</mi> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mo>−</mo> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> or equivalent <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - \frac{\pi }{{2x}} = 0"> <mi>x</mi> <mo>−</mo> <mfrac> <mi>π</mi> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p>therefore <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = \frac{\pi }{2}\left( {x = \pm \sqrt {\frac{\pi }{2}} } \right)\left( {x = \pm 1.25} \right)"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>=</mo> <mo>±</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>=</mo> <mo>±</mo> <mn>1.25</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\sqrt {\frac{\pi }{2}} ,\, - \sqrt {\frac{\pi }{2}} } \right),\,\,{\text{Q}}\left( { - \sqrt {\frac{\pi }{2}} ,\,\sqrt {\frac{\pi }{2}} } \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mo>−</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>Q</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> <mo>,</mo> <mspace width="thinmathspace"></mspace> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span> <strong>or</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {1.25,\, - 1.25} \right),\,Q\left( { - 1.25,\,1.25} \right)"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mn>1.25</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>1.25</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mi>Q</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1.25</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mn>1.25</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em><sub>1 </sub>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \left( {\frac{{1 - \sqrt {\frac{\pi }{2}} \times - 1}}{{1 + \sqrt {\frac{\pi }{2}} \times - 1}}} \right)"> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> <mo>×</mo> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> <mo>×</mo> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1A1</strong></em></p>
<p><em>m</em><sub>2 </sub>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \left( {\frac{{1 + \sqrt {\frac{\pi }{2}} \times - 1}}{{1 - \sqrt {\frac{\pi }{2}} \times - 1}}} \right)"> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> <mo>×</mo> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <msqrt> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </msqrt> <mo>×</mo> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em>m</em><sub>1 </sub><em>m</em><sub>2 </sub>= 1 <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0A0</strong> </em>if decimal approximations are used.<br><strong>Note:</strong> No <strong>FT</strong> applies.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equate derivative to −1 <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {y - x} \right){\text{sin}}\left( {xy} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mi>y</mi> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x,\,{\text{sin}}\left( {xy} \right) = 0"> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>R1</strong></em></p>
<p>in the first case, attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = {\text{cos}}\left( {{x^2}} \right)"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p>(0.486,0.486) <strong>A1</strong></p>
<p>in the second case, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\left( {xy} \right) = 0 \Rightarrow xy = 0"> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y = 1"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p>(0,1), (1,0) <em><strong> A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A large tank initially contains pure water. Water containing salt begins to flow into the tank The solution is kept uniform by stirring and leaves the tank through an outlet at its base. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> grams represent the amount of salt in the tank and let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> minutes represent the time since the salt water began flowing into the tank.</p>
<p>The rate of change of the amount of salt in the tank, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span>, is described by the differential equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 10{{\text{e}}^{- \frac{t}{4}}} - \frac{x}{{t + 1}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>10</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mfrac>
<mi>x</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> + 1 is an integrating factor for this differential equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, by solving this differential equation, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( t \right) = \frac{{200 - 40{{\text{e}}^{ - \frac{t}{4}}}\left( {t + 5} \right)}}{{t + 1}}">
<mi>x</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>200</mn>
<mo>−</mo>
<mn>40</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> versus <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 60 and hence find the maximum amount of salt in the tank and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> at which this occurs.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> at which the amount of salt in the tank is decreasing most rapidly.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The rate of change of the amount of salt leaving the tank is equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{{t + 1}}">
<mfrac>
<mi>x</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p>Find the amount of salt that left the tank during the first 60 minutes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="I(t) = {{\text{e}}^{\int {P\left( t \right)} \,{\text{d}}t}}">
<mi>I</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>∫</mo>
<mrow>
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{\int {\frac{1}{{t + 1}}} \,{\text{d}}t}}">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>∫</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{{\text{ln}}\left( {t + 1} \right)}}">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = t + 1">
<mo>=</mo>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>attempting product rule differentiation on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{d}}}{{{\text{d}}t}}\left( {x\left( {t + 1} \right)} \right)">
<mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{d}}}{{{\text{d}}t}}\left( {x\left( {t + 1} \right)} \right) = \frac{{{\text{d}}x}}{{{\text{d}}t}}\left( {t + 1} \right) + x">
<mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>x</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {t + 1} \right)\left( {\frac{{{\text{d}}x}}{{{\text{d}}t}} + \frac{x}{{t + 1}}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t + 1">
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</math></span> is an integrating factor for this differential equation <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p>attempting to multiply through by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {t + 1} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and rearrange to give <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {t + 1} \right)\frac{{{\text{d}}x}}{{{\text{d}}t}} + x = 10\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}}">
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mi>x</mi>
<mo>=</mo>
<mn>10</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{d}}}{{{\text{d}}t}}\left( {x\left( {t + 1} \right)} \right) = 10\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}}">
<mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>10</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( {t + 1} \right) = \int {10\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}}} {\text{d}}t">
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mn>10</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to integrate the RHS by parts <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 40\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}} + 40\int {{{\text{e}}^{ - \frac{t}{4}}}} \,{\text{d}}t">
<mo>=</mo>
<mo>−</mo>
<mn>40</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>40</mn>
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 40\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}} - 160{{\text{e}}^{ - \frac{t}{4}}} + C">
<mo>=</mo>
<mo>−</mo>
<mn>40</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>160</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> </span><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone the absence of <em>C</em>.</p>
<p> </p>
<p><em><strong>EITHER</strong></em></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0,\,\,x = 0 \Rightarrow C = 200">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>C</mi>
<mo>=</mo>
<mn>200</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{- 40\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}} - 160{{\text{e}}^{ - \frac{t}{4}}} + 200}}{{t + 1}}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>40</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>160</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>200</mn>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40{{\text{e}}^{ - \frac{t}{4}}}">
<mo>−</mo>
<mn>40</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> as the highest common factor of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}}">
<mo>−</mo>
<mn>40</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 160{{\text{e}}^{ - \frac{t}{4}}}">
<mo>−</mo>
<mn>160</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p> </p>
<p><em><strong>OR</strong></em></p>
<p>using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40{{\text{e}}^{ - \frac{t}{4}}}">
<mo>−</mo>
<mn>40</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> as the highest common factor of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40\left( {t + 1} \right){{\text{e}}^{ - \frac{t}{4}}}">
<mo>−</mo>
<mn>40</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 160{{\text{e}}^{ - \frac{t}{4}}}">
<mo>−</mo>
<mn>160</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> giving</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( {t + 1} \right) = - 40{{\text{e}}^{ - \frac{t}{4}}}\left( {t + 5} \right) + C">
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>40</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>C</mi>
</math></span> (or equivalent) <em><strong>M1A1</strong></em></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0,\,\,x = 0 \Rightarrow C = 200">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>C</mi>
<mo>=</mo>
<mn>200</mn>
</math></span> <em><strong>M1</strong></em></p>
<p> </p>
<p><em><strong>THEN</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x\left( t \right) = \frac{{200 - 40{{\text{e}}^{ - \frac{t}{4}}}\left( {t + 5} \right)}}{{t + 1}}">
<mi>x</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>200</mn>
<mo>−</mo>
<mn>40</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><img src=""></p>
<p>graph starts at the origin and has a local maximum (coordinates not required) <em><strong>A1</strong></em></p>
<p>sketched for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 60 <em><strong>A1</strong></em></p>
<p>correct concavity for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 60 <em><strong>A1</strong></em></p>
<p>maximum amount of salt is 14.6 (grams) at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 6.60 (minutes) <em><strong>A1A1 </strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>using an appropriate graph or equation (first or second derivative) <strong>M1</strong></p>
<p>amount of salt is decreasing most rapidly at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 12.9 (minutes) <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempting to form an integral representing the amount of salt that left the tank <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{60} {\frac{{x\left( t \right)}}{{t + 1}}{\text{d}}t} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>60</mn>
</mrow>
</munderover>
<mrow>
<mfrac>
<mrow>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{60} {\frac{{200 - 40{{\text{e}}^{ - \frac{t}{4}}}\left( {t + 5} \right)}}{{{{\left( {t + 1} \right)}^2}}}{\text{d}}t} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>60</mn>
</mrow>
</munderover>
<mrow>
<mfrac>
<mrow>
<mn>200</mn>
<mo>−</mo>
<mn>40</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempting to form an integral representing the amount of salt that entered the tank minus the amount of salt in the tank at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 60(minutes)</p>
<p>amount of salt that left the tank is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{60} {10} {{\text{e}}^{ - \frac{t}{4}}}\,{\text{d}}t - x\left( {60} \right)">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>60</mn>
</mrow>
</munderover>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mi>t</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
<mo>−</mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>60</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>= 36.7 (grams) <em><strong>A2</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>></mo><mn>2</mn><mi>x</mi></math>. It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>3</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method, with a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1</mn></math>, to find an approximate value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>v</mi><mi>x</mi></math> to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>v</mi><mn>2</mn></msup><mo>-</mo><mi>v</mi><mo>-</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>4</mn></msup></mrow><mrow><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfrac></math>.</p>
<div class="marks">[10]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the actual value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>4</mn></msup></mrow><mrow><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfrac></math>, suggest a reason why the approximation given by Euler’s method in part (a) is not a good estimate to the actual value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use Euler’s method <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>;</mo><mo> </mo><mo> </mo><msub><mi>y</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>y</mi><mi>n</mi></msub><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math></p>
<p>correct intermediate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-values <em><strong>(A1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>7</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>63140</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>5</mn><mo>.</mo><mn>92098</mn><mo>,</mo><mo> </mo><mn>7</mn><mo>.</mo><mn>79542</mn><mo>…</mo></math></p>
<p> </p>
<p><strong>Note:</strong> <em><strong>A1</strong> </em>for any two correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-values seen</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>6958</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>7</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> For the final <em><strong>A1</strong></em>, the value <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>7</mn></math> must be the last value in a table or a list, or be given as a final answer, not just embedded in a table which has further lines.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>v</mi><mi>x</mi><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p>replacing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>⇒</mo><msup><mi>x</mi><mn>2</mn></msup><mfenced><mrow><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mrow></mfenced><mo>=</mo><msup><mi>v</mi><mn>2</mn></msup><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>v</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>v</mi><mn>2</mn></msup><mo>-</mo><mi>v</mi><mo>-</mo><mn>2</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to separate variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>-</mo><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mi>x</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mfenced><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mi>x</mi></mfrac></math> <em><strong>(A1)</strong></em></p>
<p>attempt to express in partial fraction form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mi>B</mi><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mfenced><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mfrac><mn>1</mn><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mo>d</mo><mi>v</mi><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mi>x</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>ln</mi><mfenced open="|" close="|"><mi>x</mi></mfenced><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p style="text-align:left;"><strong>Note:</strong> Condone absence of modulus signs throughout.</p>
<p style="text-align:left;"><strong><br>EITHER</strong></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>v</mi><mo>=</mo><mn>3</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mfrac><mn>1</mn><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>ln</mi><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mfrac><mn>1</mn><mn>4</mn></mfrac></math></p>
<p>expressing both sides as a single logarithm <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced open="|" close="|"><mfrac><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mi>ln</mi><mfenced><mfrac><msup><mfenced open="|" close="|"><mi>x</mi></mfenced><mn>3</mn></msup><mn>4</mn></mfrac></mfenced></math></p>
<p><strong><br>OR</strong></p>
<p>expressing both sides as a single logarithm <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced open="|" close="|"><mfrac><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>A</mi><msup><mfenced open="|" close="|"><mi>x</mi></mfenced><mn>3</mn></msup></mrow></mfenced></math></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>v</mi><mo>=</mo><mn>3</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math></p>
<p><strong><br>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfrac><mrow><mi>v</mi><mo>-</mo><mn>2</mn></mrow><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>)</p>
<p>substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mi>y</mi><mi>x</mi></mfrac></math> (seen anywhere) <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mstyle displaystyle="true"><mfrac><mi>y</mi><mi>x</mi></mfrac></mstyle><mo>-</mo><mn>2</mn></mrow><mrow><mstyle displaystyle="true"><mfrac><mi>y</mi><mi>x</mi></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>></mo><mn>2</mn><mi>x</mi></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>⇒</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math></p>
<p>attempt to make <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> the subject <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mrow><msup><mi>x</mi><mn>3</mn></msup><mi>y</mi></mrow><mn>4</mn></mfrac><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfrac><msup><mi>x</mi><mn>4</mn></msup><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>4</mn></msup></mrow><mrow><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>actual value at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>27</mn><mo>.</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient changes rapidly (during the interval considered) OR</p>
<p>the curve has a vertical asymptote at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mroot><mn>4</mn><mn>3</mn></mroot><mo> </mo><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>5874</mn><mo>…</mo></mrow></mfenced></math> <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates showed evidence of an attempt to use Euler's method in part a), although very few explicitly wrote down the formulae, they used in order to calculate successive <em>y</em>-value. In addition, many seemed to take a step-by-step approach rather than using the recursive capabilities of the graphical display calculator.</p>
<p>There were many good attempts at part b), but not all candidates recognised that this would help them to solve part c).</p>
<p>Part c) was done very well by many candidates, although there were a significant number who failed to recognise the need for partial fractions and could not make further progress. A common error was to integrate without a constant of integration, which meant that the initial condition could not be used. The reasoning given for the estimate being poor was often too vague and did not address the specific nature of the function given clearly enough.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>The curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>π</mi></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis to form a solid of revolution that is used to model a water container.</p>
</div>
<div class="specification">
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, the container is empty. Water is then added to the container at a constant rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, clearly indicating the coordinates of the endpoints.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the inverse function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain and range of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup></math>, of water in the container when it is filled to a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi>π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, determine the maximum volume of the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time it takes to fill the container to its maximum volume.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the rate of change of the height of the water when the container is filled to half its maximum volume.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape (concave down) within the given domain <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced><mfenced><mrow><mo>=</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>73</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The coordinates of endpoints may be seen on the graph or marked on the axes.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (seen anywhere) <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><msqrt><mn>3</mn></msqrt></math> OR domain <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced><mfenced><mrow><mo>=</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>73</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>2</mn></math> OR range <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math> into the correct volume formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi>π</mi><munderover><mo>∫</mo><mn>0</mn><mi>h</mi></munderover><msup><mfenced><msqrt><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></mfenced><mn>2</mn></msup><mo>d</mo><mi>y</mi><mo> </mo><mfenced><mrow><mo>=</mo><mi>π</mi><munderover><mo>∫</mo><mn>0</mn><mi>h</mi></munderover><mfenced><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>y</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>π</mi><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>y</mi><mn>3</mn></msup><mo>+</mo><mi>y</mi></mrow></mfenced><mn>0</mn><mi>h</mi></msubsup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Award marks as appropriate for correct work using a different variable e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><munderover><mo>∫</mo><mn>0</mn><mi>h</mi></munderover><msup><mfenced><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><msqrt><mn>3</mn></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>732</mn><mo>…</mo></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>8828</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>10</mn><mo>.</mo><mn>8828</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>2</mn><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>27</mn><mo>.</mo><mn>207</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>27</mn><mo>.</mo><mn>2</mn><mfenced><mrow><mo>=</mo><mn>5</mn><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced><mfenced><mi>s</mi></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the height of the tank when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>4414</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced><mo>=</mo><mn>5</mn><mo>.</mo><mn>4414</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>1818</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>attempt to use the chain rule or differentiate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>V</mi></mrow></mfrac><mo>×</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="normal">π</mi><mfenced><mrow><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>×</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p>attempt to substitute <strong>their </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow><mrow><mi mathvariant="normal">π</mi><mfenced><mrow><mn>1</mn><mo>.</mo><mn>1818</mn><msup><mo>…</mo><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>053124</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0531</mn><mo> </mo><mfenced><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part a) was generally well done, with the most common errors being to use an incorrect domain or not to give the coordinates of the endpoints. Some graphs appeared to be straight lines; some candidates drew sketches which were too small which made it more difficult for them to show the curvature.</p>
<p>Most candidates were able to show the steps to find an inverse function in part b), although occasionally a candidate did not explicitly swop the <em>x</em> and <em>y</em> variables before writing down the inverse function, which was given in the question. Many candidates struggled to identify the domain and range of the inverse, despite having a correct graph.</p>
<p>Part c) required a rotation around the <em>y</em>-axis, but a number of candidates attempted to rotate around the <em>x</em>-axis or failed to include limits. In the same vein, many substituted 2 into the formula instead of the square root of 3 when answering the second part. Many subsequently gained follow through marks on part d).</p>
<p>There were a number of good attempts at related rates in part e), with the majority differentiating <em>V</em> with respect to <em>t</em>, using implicit differentiation. However, many did not find the value of <em>h</em> which corresponded to halving the volume, and a number did not differentiate with respect to <em>t</em>, only with respect to <em>h</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>36</mn></mfrac><mo>+</mo><mfrac><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mn>16</mn></mfrac><mo>=</mo><mn>1</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>4</mn></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The curve from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis to form the interior surface of a bowl. The rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OPQR</mtext></math>, of height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo> </mo><mtext>cm</mtext></math>, is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis to form a solid base.</p>
<p>The bowl is assumed to have negligible thickness.</p>
<p>Given that the interior volume of the bowl is to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>285</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup></math>, determine the height of the base.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mi>h</mi><mn>4</mn></munderover><mn>36</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mn>16</mn></mfrac></mrow></mfenced><mo>d</mo><mi>y</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Correct limits are required.</p>
<p> </p>
<p>Attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mi>h</mi><mn>4</mn></munderover><mn>36</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mn>16</mn></mfrac></mrow></mfenced><mo>d</mo><mi>y</mi><mo>=</mo><mn>285</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn><mi>π</mi><mfenced><mrow><mfrac><msup><mi>h</mi><mn>3</mn></msup><mn>48</mn></mfrac><mo>-</mo><mfrac><msup><mi>h</mi><mn>2</mn></msup><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>8</mn><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mn>285</mn></math> or equivalent for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7926</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>793</mn></math> (cm) <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was a struggle for many candidates. To start with, many candidates had difficulty understanding the diagram. Some candidates tried to include the base in their equation. </p>
<p>Because of this confusion, the question was poorly attempted. Some only received one mark for rearranging the equation to make <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> the subject but were unable to set the correct definite integral with correct terminals. Again, many candidates tried to solve by hand instead of using their GDC. The correct answer was not seen that often.</p>
<p>Those candidates who recognised that the volume was around the y -axis and used their GDC to solve, usually achieved full marks for this question.</p>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{sec}}\,x + 2">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>sec</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question">
<p>Use integration by parts to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\left( {{\text{ln}}\,x} \right)}^2}} {\text{d}}x">
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>write as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {1 \times {{\left( {{\text{ln}}\,x} \right)}^2}} {\text{d}}x">
<mo>∫</mo>
<mrow>
<mn>1</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x{\left( {{\text{ln}}\,x} \right)^2} - \int {x \times \frac{{2\left( {{\text{ln}}\,x} \right)}}{x}} {\text{d}}x\left( { = x{{\left( {{\text{ln}}\,x} \right)}^2} - \int {2\,{\text{ln}}\,x} } \right)">
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mo>∫</mo>
<mrow>
<mi>x</mi>
<mo>×</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x{\left( {{\text{ln}}\,x} \right)^2} - 2x\,{\text{ln}}\,x + \int 2 \,{\text{d}}x">
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mo>∫</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span> <em><strong>(M1)</strong></em><em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x{\left( {{\text{ln}}\,x} \right)^2} - 2x\,{\text{ln}}\,x + 2x + c">
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {\text{ln}}\,x">
<mi>u</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>x</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{u^2}{{\text{e}}^u}} {\text{d}}u">
<mo>∫</mo>
<mrow>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span> <em><strong>A</strong><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {u^2}{{\text{e}}^u} - \int {2u{{\text{e}}^u}} {\text{d}}u">
<mo>=</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mo>−</mo>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mi>u</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {u^2}{{\text{e}}^u} - 2u{{\text{e}}^u} + \int {2{{\text{e}}^u}} {\text{d}}u">
<mo>=</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>u</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mo>+</mo>
<mo>∫</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {u^2}{{\text{e}}^u} - 2u{{\text{e}}^u} + 2{{\text{e}}^u} + c">
<mo>=</mo>
<mrow>
<msup>
<mi>u</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>u</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>u</mi>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x{\left( {{\text{ln}}\,x} \right)^2} - 2x\,{\text{ln}}\,x + 2x + c">
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>Setting up <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {\text{ln}}\,x">
<mi>u</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}v}}{{{\text{d}}x}} = {\text{ln}}\,x">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>v</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,x\left( {x\,{\text{ln}}\,x - x} \right) - \int {\left( {{\text{ln}}\,x - 1} \right)} {\text{d}}x">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x{\left( {{\text{ln}}\,x} \right)^2} - x\,{\text{ln}}\,x - \left( {x\,{\text{ln}}\,x - x} \right) + x + c">
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x{\left( {{\text{ln}}\,x} \right)^2} - 2x\,{\text{ln}}\,x + 2x + c">
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Two airplanes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, have position vectors with respect to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> given respectively by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mtext mathvariant="bold-italic">A</mtext></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>19</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> represents the time in minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Entries in each column vector give the displacement east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, the displacement north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the distance above sea level, all measured in kilometres.</p>
</div>
<div class="specification">
<p>The two airplanes’ lines of flight cross at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the three-figure bearing on which airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is travelling.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between the two airplanes’ lines of flight. Give your answer in degrees.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the length of time between the first airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and the second airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> represent the distance between airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Find the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi></math> be the required angle (bearing)</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mn>90</mn><mo>°</mo><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for a labelled sketch.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>ϕ</mi><mo>=</mo><mfrac><mrow><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></mrow><mrow><msqrt><mn>1</mn></msqrt><mo>×</mo><msqrt><mn>20</mn></msqrt></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>4472</mn><mo>…</mo><mo>,</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>5</mn></msqrt></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mtext>arccos</mtext><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4472</mn><mo>…</mo></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>.</mo><mn>6</mn><mo>°</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>63</mn><mo>.</mo><mn>4</mn><mo>°</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><msup><mn>10</mn><mi>c</mi></msup></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced></math> be the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced></math> be the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></p>
<p>attempts to find the speed of one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>19</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>0</mn><mn>2</mn></msup><mo>+</mo><msup><mn>12</mn><mn>2</mn></msup></msqrt></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><mn>7</mn><mo>.</mo><mn>48</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>56</mn></msqrt></mrow></mfenced></math> (km min<sup>-1</sup>) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><mn>4</mn><mo>.</mo><mn>89</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>24</mn></msqrt></mrow></mfenced></math> (km min<sup>-1</sup>) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>></mo><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>speed</mtext><mo>=</mo><mfrac><mtext>distance</mtext><mtext>time</mtext></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>A</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced><mo>-</mo><msub><mi>r</mi><mi>A</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced></mrow></mfenced><mrow><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>B</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced><mo>-</mo><msub><mi>r</mi><mi>B</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced></mrow></mfenced><mrow><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p>for example:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>A</mi></msub><mfenced><mn>1</mn></mfenced><mo>-</mo><msub><mi>r</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced></mrow></mfenced><mn>1</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>B</mi></msub><mfenced><mn>1</mn></mfenced><mo>-</mo><msub><mi>r</mi><mi>B</mi></msub><mfenced><mn>0</mn></mfenced></mrow></mfenced><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mn>1</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup></msqrt><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mn>7</mn><mo>.</mo><mn>48</mn><mo>…</mo><mfenced><mrow><mn>2</mn><msqrt><mn>14</mn></msqrt></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>89</mn><mo>…</mo><mfenced><msqrt><mn>24</mn></msqrt></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>></mo><msub><mtext>speed</mtext><mi>B</mi></msub></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to use the angle between two direction vectors formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mfenced><mn>4</mn></mfenced><mo>+</mo><mfenced><mn>2</mn></mfenced><mfenced><mn>2</mn></mfenced><mo>+</mo><mfenced><mn>4</mn></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mrow><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>7637</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><msqrt><mn>84</mn></msqrt></mfrac></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mtext>arccos</mtext><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7637</mn><mo>…</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>4399</mn><mo>…</mo></mrow></mfenced></math></p>
<p>attempts to find the acute angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo><mo>-</mo><mi>θ</mi></math> using their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>40</mn><mo>.</mo><mn>2</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example, sets <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced><mo>=</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced></math> and forms at least two equations <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn><mo>-</mo><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>12</mn><mo>-</mo><mn>2</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for equations involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> only.</p>
<p><br><strong>EITHER</strong></p>
<p>attempts to solve the system of equations for one of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts to solve the system of equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> value into the corresponding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>7</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>9</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OP</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd></mtr></mtable></mfenced></math>. Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> km east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> km north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> km above sea level.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> minutes (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> seconds) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>18</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><msup><mfenced><mrow><mn>10</mn><mi>t</mi><mo>-</mo><mn>18</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>+</mo><msup><mfenced><mrow><mn>11</mn><mo>-</mo><mn>6</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>18</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>11</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><msup><mfenced><mrow><mn>18</mn><mo>-</mo><mn>10</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>11</mn><mo>+</mo><mn>6</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0M0A0</strong></em> for expressions using two different time parameters.</p>
<p><br><strong>THEN</strong></p>
<p>either attempts to find the local minimum point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> or attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>'</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> (or equivalent) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>8088</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>123</mn><mn>68</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>01459</mn><mo>…</mo></math></p>
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>01</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><msqrt><mn>1190</mn></msqrt><mn>34</mn></mfrac></mrow></mfenced></math> (km) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for attempts at the shortest distance between two lines.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>General comment about this question: many candidates were not exposed to this setting of vectors question and were rather lost.</p>
<p>Part (a) Probably the least answered question on the whole paper. Many candidates left it blank, others tried using 3D vectors. Out of those who calculated the angle correctly, only a small percentage were able to provide the correct true bearing as a 3-digit figure.</p>
<p>Part (b) Well done by many candidates who used the direction vectors to calculate and compare the speeds. A number of candidates tried to use the average rate of change but mostly unsuccessfully.</p>
<p>Part (c) Most candidates used the correct vectors and the formula to obtain the obtuse angle. Then only some read the question properly to give the acute angle in degrees, as requested.</p>
<p>Part (d) Well done by many candidates who used two different parameters. They were able to solve and obtain two values for time, the difference in minutes and the correct point of intersection. A number of candidates only had one parameter, thus scoring no marks in part (d) (i). The frequent error in part (d)(ii) was providing incorrect units.</p>
<p>Part (e) Many correct answers were seen with an efficient way of setting the question and using their GDC to obtain the answer, graphically or numerically. Some gave time only instead of actually giving the minimal distance. A number of candidates tried to find the distance between two skew lines ignoring the fact that the lines intersect.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Xavier, the parachutist, jumps out of a plane at a height of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> metres above the ground. After free falling for 10 seconds his parachute opens. His velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\,{\text{m}}{{\text{s}}^{ - 1}}">
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds after jumping from the plane, can be modelled by the function</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(t) = \left\{ {\begin{array}{*{20}{l}} {9.8t{\text{,}}}&{0 \leqslant t \leqslant 10} \\ {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }},}&{t > 10} \end{array}} \right.">
<mi>v</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>{</mo>
<mrow>
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>9.8</mn>
<mi>t</mi>
<mrow>
<mtext>,</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>−<!-- − --></mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mi>t</mi>
<mo>></mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>His velocity when he reaches the ground is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.8{\text{ m}}{{\text{s}}^{ - 1}}">
<mn>2.8</mn>
<mrow>
<mtext> m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find his velocity when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 15">
<mi>t</mi>
<mo>=</mo>
<mn>15</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the vertical distance Xavier travelled in the first 10 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(15) = \frac{{98}}{{\sqrt {1 + {{(15 - 10)}^2}} }}">
<mi>v</mi>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v(15) = 19.2{\text{ }}({\text{m}}{{\text{s}}^{ - 1}})">
<mi>v</mi>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>19.2</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{10} {9.8t\,{\text{d}}t} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>10</mn>
</mrow>
</munderover>
<mrow>
<mn>9.8</mn>
<mi>t</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 490{\text{ }}({\text{m}})">
<mo>=</mo>
<mn>490</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>m</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }} = 2.8">
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2.8</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 44.985 \ldots {\text{ }}({\text{s}})">
<mi>t</mi>
<mo>=</mo>
<mn>44.985</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>s</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 490 + \int\limits_{10}^{44.9...} {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }}{\text{d}}t} ">
<mi>h</mi>
<mo>=</mo>
<mn>490</mn>
<mo>+</mo>
<munderover>
<mo>∫</mo>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>44.9...</mn>
</mrow>
</munderover>
<mrow>
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 906{\text{ (m}})">
<mi>h</mi>
<mo>=</mo>
<mn>906</mn>
<mrow>
<mtext> (m</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>k</mi></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a finite limit only exists for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using l’Hôpital’s rule, show algebraically that the value of the limit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(as <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>, the indeterminate form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>0</mn><mn>0</mn></mfrac></math> is required for the limit to exist)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mn>1</mn><mo>-</mo><mi>k</mi><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>k</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>M1A0</strong></em> for using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> to show the limit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>0</mn><mn>0</mn></mfrac></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mstyle displaystyle="true"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mstyle></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>0</mn><mn>0</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfrac></mstyle><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for a correct numerator and <em><strong>A1</strong> </em>for a correct denominator.</p>
<p><br>recognises to apply l’Hôpital’s rule again <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfrac></mstyle><mrow><mn>2</mn><mi>x</mi></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>0</mn><mn>0</mn></mfrac></mrow></mfenced></math></p>
<p><strong><br>Note:</strong> Award <em><strong>M0</strong></em> if their limit is not the indeterminate form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>0</mn><mn>0</mn></mfrac></math>.</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>cos</mi><mo> </mo><mi>x</mi><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></mfrac></mstyle><mn>2</mn></mfrac><mo> </mo></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for a correct first term in the numerator and <em><strong>A1</strong> </em>for a correct second term in the numerator.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>-</mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>2</mn><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>4</mn><mi>x</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfrac><mo> </mo></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for a correct numerator and <em><strong>A1</strong> </em>for a correct denominator.</p>
<p><strong><br>THEN</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> into the correct expression to evaluate the limit <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> The final <em><strong>A1</strong> </em>is dependent on all previous marks.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) Many candidates recognised the indeterminate form and provided a nice algebraic proof. Some verified by substituting the given value. Therefore, there is a need to teach the candidates the difference between proof and verification. Only a few candidates were able to give a complete 'show that' proof.</p>
<p>Part (b) Many candidates realised that they needed to apply the L'Hôpital's rule twice. There were many mistakes in differentiation using the chain rule. Not all candidates clearly showed the final substitution.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> moves in a straight line such that after time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, its velocity, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>−</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mo> </mo><mi>t</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> has displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>; at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>At successive times when the acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mn>0</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo> </mo></math>, the velocities of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> form a geometric sequence. The acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is zero at times <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>3</mn></msub></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><msub><mi>t</mi><mn>2</mn></msub><mo><</mo><msub><mi>t</mi><mn>3</mn></msub></math> and the respective velocities are <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>v</mi><mn>3</mn></msub></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> comes to instantaneous rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum displacement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, in metres, from its initial position.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> seconds of its motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, at these times, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mn>2</mn></msub><msub><mi>v</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>v</mi><mn>3</mn></msub><msub><mi>v</mi><mn>2</mn></msub></mfrac><mo>=</mo><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>524</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>05</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use integration by parts <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mo>∫</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math></p>
<p><strong><br>EITHER</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mo>∫</mo><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mo>∫</mo><mo>-</mo><mn>4</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>+</mo><mn>4</mn><mi>s</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>s</mi><mo>=</mo><mfrac><mrow><mo>-3</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>-</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>9</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>6</mn></mfrac><mo>-</mo><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>6</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mo>∫</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>6</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mi>s</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>4</mn></mfrac><mi>s</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>12</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mfenced><mrow><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow></mfenced></mrow><mn>15</mn></mfrac><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>s</mi><mo>=</mo><mn>0</mn><mo>⇒</mo><mn>0</mn><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mo>+</mo><mi>c</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mfenced><mrow><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow></mfenced></mrow><mn>15</mn></mfrac></math></p>
<p><em><strong><br>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>s</mi><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle></mrow></msup><mtext> </mtext><mfenced><mrow><mtext> sin</mtext><mo> </mo><mi mathvariant="normal">π</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>cos</mtext><mo> </mo><mi mathvariant="normal">π</mi></mrow></mfenced></mrow><mn>15</mn></mfrac></mrow></mfenced></math></p>
<p><br><strong>OR</strong><br><br></p>
<p>using GDC to find maximum value <em><strong>(M1)</strong></em><br><br></p>
<p><strong>OR</strong></p>
<p>evaluating <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></msubsup><mi>v</mi><mtext>d</mtext><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>161</mn><mfenced><mrow><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle></mrow></msup></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 </strong></p>
<p><strong><br>EITHER</strong></p>
<p>distance required <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></munderover><mfenced open="|" close="|"><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow></mfenced><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>distance required <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></munderover><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi><mo>+</mo><mfenced open="|" close="|"><mrow><munderover><mo>∫</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></munderover><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></mrow></mfenced><mo>+</mo><munderover><mo>∫</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></munderover><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>16105</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>033479</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>006806</mn><mo>…</mo></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>201</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><br>using successive minimum and maximum values on the displacement graph <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>16105</mn><mo>…</mo><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16105</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>12757</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>13453</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>12757</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>201</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac></math> using product rule and set <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to evaluate <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>3</mn></msub></math> in exact form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mfenced><mrow><mo>⇒</mo><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo> </mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mi mathvariant="normal">π</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mfenced><mrow><mo>⇒</mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo> </mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>3</mn></msub><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mfenced><mrow><mo>⇒</mo><msub><mi>t</mi><mn>3</mn></msub><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo> </mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>A1</strong></em> is for any two consecutive correct, or showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>3</mn></msub><mo>=</mo><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><msub><mi>t</mi><mn>2</mn></msub></math>.</p>
<p><br>showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>6</mn><msub><mi>t</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>-</mo><mi>sin</mi><mo> </mo><mn>6</mn><msub><mi>t</mi><mi>n</mi></msub></math></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn><mo>⇒</mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mo>±</mo><mfrac><mn>2</mn><msqrt><mn>5</mn></msqrt></mfrac></math> <em><strong>M1A1</strong></em></p>
<p>showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><msub><mi>t</mi><mrow><mi>n</mi><mo>+1</mo></mrow></msub></mrow></msup><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><msub><mi>t</mi><mi>n</mi></msub></mrow></msup></mfrac><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math> <em><strong>M1</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>+</mo><mi>k</mi></mrow></mfenced></mrow></msup><mo>÷</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>k</mi></mrow></msup><mo>=</mo><msup><mtext>e</mtext><mrow><mi>-</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math></p>
<p><br><strong>Note:</strong> Award the <em><strong>A1</strong></em> for any two consecutive terms.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mn>3</mn></msub><msub><mi>v</mi><mn>2</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>v</mi><mn>2</mn></msub><msub><mi>v</mi><mn>1</mn></msub></mfrac><mo>=</mo><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^2} = {\text{si}}{{\text{n}}^3}\,y">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant y \leqslant \pi ">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>y</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The shaded region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> is the area bounded by the curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \pi ">
<mi>y</mi>
<mo>=</mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using implicit differentiation, find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to the curve at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{4}{\text{, }}\frac{{5\pi }}{6}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span> is now rotated about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis, through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi "> <mn>2</mn> <mi>π</mi> </math></span> radians, to form a solid.</p>
<p>By writing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{si}}{{\text{n}}^3}\,y}"> <mrow> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </mrow> </math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - {\text{co}}{{\text{s}}^2}\,y} \right){\text{sin}}\,y"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </math></span>, show that the volume of the solid formed is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{3}"> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to differentiate implicitly <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x = 3\,{\text{si}}{{\text{n}}^2}\,y\,{\text{cos}}\,y\frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mn>4</mn> <mi>x</mi> <mo>=</mo> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4x}}{{3\,{\text{si}}{{\text{n}}^2}\,y\,{\text{cos}}\,y}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <mi>x</mi> </mrow> <mrow> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{4}{\text{, }}\frac{{5\pi }}{6}} \right){\text{, }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4x}}{{3\,{\text{si}}{{\text{n}}^2}\,y\,{\text{cos}}\,y}} = \frac{1}{{3{{\left( {\frac{1}{2}} \right)}^2}\left( { - \frac{{\sqrt 3 }}{2}} \right)}}"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <mi>x</mi> </mrow> <mrow> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{8}{{3\sqrt 3 }}\left( { = - 1.54} \right)"> <mo stretchy="false">⇒</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>8</mn> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mn>1.54</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>hence equation of tangent is</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - \frac{{5\pi }}{6} = - 1.54\left( {x - \frac{1}{4}} \right)"> <mi>y</mi> <mo>−</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mn>1.54</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 1.54x + 3.00"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1.54</mn> <mi>x</mi> <mo>+</mo> <mn>3.00</mn> </math></span> <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 1.54x + 3"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1.54</mn> <mi>x</mi> <mo>+</mo> <mn>3</mn> </math></span>. </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt {\frac{1}{2}{\text{si}}{{\text{n}}^3}\,y} "> <mi>x</mi> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </msqrt> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^\pi {\sqrt {\frac{1}{2}{\text{si}}{{\text{n}}^3}\,y\,{\text{d}}y} } "> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <msqrt> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </msqrt> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.24"> <mo>=</mo> <mn>1.24</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int {\pi {x^2}} \,{\text{d}}y"> <mo>=</mo> <mo>∫</mo> <mrow> <mi>π</mi> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int_0^\pi {\frac{1}{2}} \pi \,{\text{si}}{{\text{n}}^3}\,y\,{\text{d}}y"> <mo>=</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>π</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\pi \int_0^\pi {\left( {{\text{sin}}\,y - {\text{sin}}\,y\,{\text{co}}{{\text{s}}^2}\,y} \right){\text{d}}y} "> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>π</mi> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>π</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> </math></span></p>
<p><strong>Note:</strong> Condone absence of limits up to this point.</p>
<p>reasonable attempt to integrate <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\pi \left[ { - {\text{cos}}\,y + \frac{1}{3}{\text{co}}{{\text{s}}^3}\,y} \right]_0^\pi "> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>π</mi> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mi>π</mi> </msubsup> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct limits (not to be awarded if previous <em><strong>M1</strong></em> has not been awarded) and <em><strong>A1</strong></em> for correct integrand.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\pi \left( {1 - \frac{1}{3}} \right) - \frac{1}{2}\pi \left( { - 1 + \frac{1}{3}} \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>π</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>π</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math> <em><strong>A1</strong></em></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{2\pi }}{3}"> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span> <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Do not accept decimal answer equivalent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{3}"> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span>.</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo> </mo><mi>sin</mi><mo> </mo><mo>(</mo><mi>r</mi><mi>x</mi><mo>)</mo></math> . The graph has a local maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mfrac><mrow><mn>9</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mn>5</mn></mrow></mfenced></math> and a local minimum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the area of the shaded region.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>the principal axis is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>5</mn><mo>+</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mn>2</mn></mrow></mfenced></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>the amplitude is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>5</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mn>3</mn></mrow></mfenced></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p>one period is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced><mrow><mo>-</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mo>-</mo><mfenced><mrow><mo>-</mo><mfrac><mrow><mn>9</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></mrow></mfenced></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>r</mi></mfrac><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi></math></p>
<p><strong><br>OR</strong></p>
<p>Substituting a point eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo>+</mo><mi>sin</mi><mo> </mo><mfenced><mrow><mo>-</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mi>r</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mfenced><mrow><mo>-</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mi>r</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>1</mn><mo>⇒</mo><mo>-</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mi>r</mi><mo>=</mo><mo>…</mo><mo>-</mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mo>…</mo></math></p>
<p>Choice of correct solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mi>r</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>r</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>⇒</mo><mi>y</mi><mo>=</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo> </mo><mi>sin</mi><mo> </mo><mfenced><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mn>3</mn></mfrac></mfenced></mrow></mfenced></math></p>
<p><strong><br>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> can be both given as negatives for full marks</p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>roots are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>09459</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>.</mo><mn>617797</mn><mo>…</mo></math><em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mo>-</mo><mn>3</mn><mo>.</mo><mn>617797</mn><mo>…</mo></mrow><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>09459</mn><mo>…</mo></mrow></msubsup><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mo> </mo><mi>sin</mi><mo> </mo><mfenced><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mn>3</mn></mfrac></mfenced></mrow></mfenced><mtext>d</mtext><mi>x</mi></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>66</mn><mfenced><mrow><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>66179</mn><mo>…</mo></mrow></mfenced></math><em><strong> (A1)</strong></em></p>
<p>so area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>66</mn><mo> </mo><mo> </mo><mfenced><msup><mtext>units</mtext><mn>2</mn></msup></mfenced></math><em><strong> A1</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> satisfies the conditions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = - 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) = 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> and its second derivative is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 15\sqrt x + \frac{1}{{{{\left( {x + 1} \right)}^2}}}">
<msup>
<mi>f</mi>
<mo>″</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>15</mn>
<msqrt>
<mi>x</mi>
</msqrt>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \int {\left( {15\sqrt x + \frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right)} \,{\text{d}}x = 10{x^{\frac{3}{2}}} - \frac{1}{{x + 1}}\left( { + c} \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>15</mn>
<msqrt>
<mi>x</mi>
</msqrt>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1A1</strong></em></p>
<p><strong>Note:</strong> <em><strong>A1</strong></em> for first term, <em><strong>A1</strong></em> for second term. Withhold one <em><strong>A1</strong></em> if extra terms are seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \int {\left( {10{x^{\frac{3}{2}}} - \frac{1}{{x + 1}} + c} \right)} \,{\text{d}}x = 4{x^{\frac{5}{2}}} - {\text{ln}}\left( {x + 1} \right) + cx + d">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mi>x</mi>
<mo>+</mo>
<mi>d</mi>
</math></span> <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Allow FT from incorrect <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> if it is of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = A{x^{\frac{3}{2}}} + \frac{B}{{x + 1}} + c">
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>A</mi>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mi>B</mi>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left| {x + 1} \right|">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>|</mo>
</mrow>
</math></span>.</p>
<p> </p>
<p>attempt to use at least one boundary condition in their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 4">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = - 4">
<mi>d</mi>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = 4 - {\text{ln}}\,2 + c - 4">
<mn>0</mn>
<mo>=</mo>
<mn>4</mn>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mo>+</mo>
<mi>c</mi>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = {\text{ln}}\,2\left( { = 0.693} \right)">
<mi>c</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>0.693</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4{x^{\frac{5}{2}}} - {\text{ln}}\left( {x + 1} \right) + x\,{\text{ln}}\,2 - 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mrow>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A point P moves in a straight line with velocity <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> ms<sup>−1</sup> given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = {{\text{e}}^{ - t}} - 8{t^2}{{\text{e}}^{ - 2t}}">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>8</mn>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> at time <em>t</em> seconds, where <em>t</em> ≥ 0.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the first time <em>t</em><sub>1</sub> at which P has zero velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of P at time <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the acceleration of P at time <em>t</em><sub>1</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 0">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> for <em>t</em> or equivalent <em><strong>(M1)</strong></em></p>
<p><em>t</em><sub>1</sub> = 0.441(s) <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( t \right) = \frac{{{\text{d}}v}}{{{\text{d}}t}} = - {{\text{e}}^{ - t}} - 16t{{\text{e}}^{ - 2t}} + 16{t^2}{{\text{e}}^{ - 2t}}">
<mi>a</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>v</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>−</mo>
<mn>16</mn>
<mi>t</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>16</mn>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<mi>t</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to differentiate using the product rule.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( {{t_1}} \right) = - 2.28">
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2.28</mn>
</math></span> (ms<sup>−2</sup>) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l">
<mi>l</mi>
</math></span> be the tangent to the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x{{\text{e}}^{2x}}">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span> at the point (1, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^2}">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>).</p>
<p>Find the coordinates of the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l">
<mi>l</mi>
</math></span> meets the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>equation of tangent is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 22.167 \ldots x - 14.778 \ldots ">
<mi>y</mi>
<mo>=</mo>
<mn>22.167</mn>
<mo>…</mo>
<mi>x</mi>
<mo>−</mo>
<mn>14.778</mn>
<mo>…</mo>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 7.389 \ldots = 22.167 \ldots \left( {x - 1} \right)">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>7.389</mn>
<mo>…</mo>
<mo>=</mo>
<mn>22.167</mn>
<mo>…</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p>meets the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.667">
<mi>x</mi>
<mo>=</mo>
<mn>0.667</mn>
</math></span></p>
<p>meets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at (0.667, 0)<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \left( {\frac{2}{3},\,\,0} \right)} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.667">
<mi>x</mi>
<mo>=</mo>
<mn>0.667</mn>
</math></span> seen and <em><strong>A1</strong></em> for coordinates (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, 0) given.</p>
<p> </p>
<p><strong>METHOD 1</strong></p>
<p>Attempt to differentiate <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^{2x}} + 2x{{\text{e}}^{2x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 3{{\text{e}}^2}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p>equation of the tangent is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - {{\text{e}}^2} = 3{{\text{e}}^2}\left( {x - 1} \right)">
<mi>y</mi>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3{{\text{e}}^2}x - 2{{\text{e}}^2}">
<mi>y</mi>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>meets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{2}{3},\,\,0} \right)}">
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{2}{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.667">
<mi>x</mi>
<mo>=</mo>
<mn>0.667</mn>
</math></span> seen and <em><strong>A1</strong></em> for coordinates (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, 0) given.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A body moves in a straight line such that its velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\,{\text{m}}{{\text{s}}^{ - 1}}">
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 2\,{\text{sin}}\left( {\frac{t}{{10}} + \frac{\pi }{5}} \right)\csc \left( {\frac{t}{{30}} + \frac{\pi }{4}} \right)">
<mi>v</mi>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>t</mi>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>5</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>csc</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>t</mi>
<mrow>
<mn>30</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 60">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>t</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>60</mn>
</math></span>.</p>
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>. Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
<mrow>
<mtext>A</mtext>
</mrow>
</math></span> is a local maximum and point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
<mrow>
<mtext>B</mtext>
</mrow>
</math></span> is a local minimum.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The body first comes to rest at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {t_1}">
<mi>t</mi>
<mo>=</mo>
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>. Find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the coordinates of point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> and the coordinates of point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the maximum speed of the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_1}"> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the distance travelled between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {t_1}"> <mi>t</mi> <mo>=</mo> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the acceleration when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {t_1}"> <mi>t</mi> <mo>=</mo> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance travelled in the first 30 seconds.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( {7.47{\text{, }}2.28} \right)"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>7.47</mn> <mrow> <mtext>, </mtext> </mrow> <mn>2.28</mn> </mrow> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {43.4{\text{,}} - 2.45} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>43.4</mn> <mrow> <mtext>,</mtext> </mrow> <mo>−</mo> <mn>2.45</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>maximum speed is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.45\,\left( {{\text{m}}{{\text{s}}^{ - 1}}} \right)"> <mn>2.45</mn> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>m</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 0 \Rightarrow {t_1} = 25.1\,\left( {\text{s}} \right)"> <mi>v</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>25.1</mn> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mtext>s</mtext> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{{t_1}} {v\,{\text{d}}t} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mrow> </msubsup> <mrow> <mi>v</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 41.0\,\left( {\text{m}} \right)"> <mo>=</mo> <mn>41.0</mn> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mtext>m</mtext> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{{\text{d}}v}}{{{\text{d}}t}}"> <mi>a</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {t_1} = 25.1"> <mi>t</mi> <mo>=</mo> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>25.1</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - 0.200\,\,\left( {{\text{m}}{{\text{s}}^{ - 2}}} \right)"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.200</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>m</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - 0.2"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate between 0 and 30 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> An unsupported answer of 38.6 can imply integrating from 0 to 30.</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{30} {\left| v \right|} \,{\text{d}}t"> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mn>30</mn> </mrow> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </math></span> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="41.0 - \int_{{t_1}}^{30} {v\,{\text{d}}t} "> <mn>41.0</mn> <mo>−</mo> <msubsup> <mo>∫</mo> <mrow> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mrow> <mrow> <mn>30</mn> </mrow> </msubsup> <mrow> <mi>v</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 43.3\,\left( {\text{m}} \right)"> <mo>=</mo> <mn>43.3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mtext>m</mtext> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The volume of water is increasing at a constant rate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}">
<mn>0.0008</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}({{\text{m}}^3})">
<mi>V</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> in the trough in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{3}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>area of segment <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times {0.5^2} \times (\theta - \sin \theta )">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = {\text{area of segment}} \times 10">
<mi>V</mi>
<mo>=</mo>
<mrow>
<mtext>area of segment</mtext>
</mrow>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \frac{5}{4}(\theta - \sin \theta )">
<mi>V</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{5}{4}(1 - \cos \theta )\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008 = \frac{5}{4}\left( {1 - \cos \frac{\pi }{3}} \right)\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mn>0.0008</mn>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128{\text{ }}({\text{rad}}\,{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}\theta }} = \frac{5}{4}(1 - \cos \theta )">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{4 \times 0.0008}}{{5\left( {1 - \cos \frac{\pi }{3}} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>0.0008</mn>
</mrow>
<mrow>
<mn>5</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128\left( {\frac{4}{{3125}}} \right)({\text{rad }}{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mrow>
<mn>3125</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad </mtext>
</mrow>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mi>p</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mi>q</mi></math>.</p>
</div>
<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has exactly one point of inflexion.</p>
</div>
<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the point of inflexion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>3</mn></math>, showing the values of any axes intercepts, the coordinates of any local maxima and local minima, and giving the equations of any asymptotes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equations of all the asymptotes on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>-</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, or otherwise, solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo><</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> e.g. by factorising <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> or vice versa <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>3</mn><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>8</mn><mi>x</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each term in the numerator with correct signs, provided correct denominator is seen.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>8</mn><mi>x</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each term.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the local min point on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> OR solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>60</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1A1A1A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for both vertical asymptotes with their equations, award <em><strong>A1</strong></em> for horizontal asymptote with equation, award <em><strong>A1</strong></em> for each correct branch including asymptotic behaviour, coordinates of minimum and maximum points (may be seen next to the graph) and values of axes intercepts.<br>If vertical asymptotes are absent (or not vertical) and the branches overlap as a consequence, award maximum <em><strong>A0A1A0A1A1</strong></em>.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>667</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p>(oblique asymptote has) gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>33</mn></mrow></mfenced></math> <em><strong> (A1)</strong></em></p>
<p>appropriate method to find complete equation of oblique asymptote <em><strong> M1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn><mover><menclose><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>0</mn><mi>x</mi><mo>-</mo><mn>1</mn></menclose><mrow><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>8</mn><mn>9</mn></mfrac></mrow></mover></math></p>
<p style="padding-left:60px;"> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mstyle displaystyle="true"><mfrac><mn>8</mn><mn>3</mn></mfrac></mstyle><mi>x</mi></mrow><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>8</mn><mn>3</mn></mfrac></mstyle><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math></p>
<p style="padding-left:60px;"> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>8</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>16</mn><mstyle displaystyle="true"><mfrac><mn>9</mn><mstyle displaystyle="true"><mfrac><mn>7</mn><mn>9</mn></mfrac></mstyle></mfrac></mstyle></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>8</mn><mn>9</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>33</mn><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>889</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Do not award the final<em><strong> A1</strong></em> if the answer is not given as an equation.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find at least one critical value <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>568729</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>31872</mn><mo>…</mo></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo><</mo><mi>x</mi><mo><</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>569</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo><</mo><mi>x</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>1</mn><mo>.</mo><mn>32</mn></math> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only penalize once for use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≤</mo></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML"><mo><</mo></math>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2\arcsin (x - 1) - \frac{\pi }{4}">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
<mi>arcsin</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{\pi }{4}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a definite integral to represent the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\arcsin (x - 1) - \frac{\pi }{4} = \frac{\pi }{4}">
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1 + \frac{1}{{\sqrt 2 }}\,\,\,( = 1.707 \ldots )">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>1.707</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^{1 + \frac{1}{{\sqrt 2 }}} {\frac{\pi }{4} - \left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} ">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</munderover>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1 </em></strong>for an attempt to find the difference between two functions, <strong><em>A1 </em></strong>for all correct.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0,{\text{ }}y = \frac{{ - 5\pi }}{4}\,\,\,( = - 3.93)">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mi>π</mi>
</mrow>
<mn>4</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mo>−</mo>
<mn>3.93</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>y</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mn>8</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1 </em></strong>for an attempt to find the inverse function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{\frac{{ - 5\pi }}{4}}^{\frac{\pi }{4}} {\left( {1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)} \right){\text{d}}y} ">
<msubsup>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mn>5</mn>
<mi>π</mi>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>4</mn>
<mi>y</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mn>8</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{1.38...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right){\text{d}}x} \left| + \right.\int\limits_0^{1.71...} {\frac{\pi }{4}{\text{d}}x - \int\limits_{1.38...}^{1.71...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} } ">
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1.38...</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mo>|</mo>
<mo>+</mo>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>1.71...</mn>
</mrow>
</munderover>
<mrow>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>−</mo>
<munderover>
<mo>∫</mo>
<mrow>
<mn>1.38...</mn>
</mrow>
<mrow>
<mn>1.71...</mn>
</mrow>
</munderover>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</mrow>
</math></span> <strong><em>M1A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1 </em></strong>for considering the area below the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and <strong><em>A1 </em></strong>for each correct integral.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = 3.30{\text{ (square units)}}">
<mrow>
<mtext>area</mtext>
</mrow>
<mo>=</mo>
<mn>3.30</mn>
<mrow>
<mtext> (square units)</mtext>
</mrow>
</math></span> <strong><em>A2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following graph shows the two parts of the curve defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}y = 5 - {y^4}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>5</mn>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>y</mi>
<mn>4</mn>
</msup>
</mrow>
</math></span>, and the normal to the curve at the point P(2 , 1).</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there are exactly two points on the curve where the gradient is zero.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve at the point P.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The normal at P cuts the curve again at the point Q. Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of Q.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shaded region is rotated by 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>differentiating implicitly: <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2xy + {x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mn>2</mn> <mi>x</mi> <mi>y</mi> <mo>+</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mrow> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each side.</p>
<p>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> then either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> <em><strong> M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0 \Rightarrow "> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> </math></span> two solutions for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y\left( {y = \pm \sqrt[4]{5}} \right)"> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mi>y</mi> <mo>=</mo> <mo>±</mo> <mroot> <mn>5</mn> <mn>4</mn> </mroot> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong> R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> not possible (as 0 ≠ 5) <em><strong>R1</strong></em></p>
<p>hence exactly two points <strong><em>AG</em></strong></p>
<p><strong>Note:</strong> For a solution that only refers to the graph giving two solutions at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and no solutions for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span> award <strong><em>R1</em></strong> only.</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at (2, 1) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 + 4\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 4\frac{{{\text{d}}y}}{{{\text{d}}x}}"> <mn>4</mn> <mo>+</mo> <mn>4</mn> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span> <em><strong> M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{1}{2}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p>gradient of normal is 2 <em><strong>M1</strong></em></p>
<p>1 = 4 + <em>c</em> <em><strong> (M1)</strong></em></p>
<p>equation of normal is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2x - 3"> <mi>y</mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}\left( {2x - 3} \right) = 5 - {\left( {2x - 3} \right)^4}"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>5</mn> <mo>−</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mn>4</mn> </msup> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{y + 3}}{2}} \right)^2}\,y = 5 - {y^4}"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>y</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mn>5</mn> <mo>−</mo> <mrow> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.724"> <mi>x</mi> <mo>=</mo> <mn>0.724</mn> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of two volumes <em><strong>(M1)</strong></em></p>
<p>volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 = \pi \int_1^{\sqrt[4]{5}} {\frac{{5 - {y^4}}}{y}} {\text{d}}y\left( { = 101\pi = 3.178 \ldots } \right)"> <mn>1</mn> <mo>=</mo> <mi>π</mi> <msubsup> <mo>∫</mo> <mn>1</mn> <mrow> <mroot> <mn>5</mn> <mn>4</mn> </mroot> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mrow> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </mrow> <mi>y</mi> </mfrac> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>101</mn> <mi>π</mi> <mo>=</mo> <mn>3.178</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong> M1A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int {{x^2}} {\text{d}}y"> <mi>π</mi> <mo>∫</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </math></span>, <em><strong>A1</strong></em> for limits, <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{5 - {y^4}}}{y}}"> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mrow> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </mrow> <mi>y</mi> </mfrac> </mrow> </math></span> Condone omission of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> at this stage.</p>
<p>volume 2</p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{3}\pi \times {2^2} \times 4\left( { = 16.75 \ldots } \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>π</mi> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mo>×</mo> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>16.75</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <strong> <em>(M1)(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \pi \int_{ - 3}^1 {{{\left( {\frac{{y + 3}}{2}} \right)}^2}} {\text{d}}y\left( { = \frac{{16\pi }}{3} = 16.75 \ldots } \right)"> <mo>=</mo> <mi>π</mi> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>3</mn> </mrow> <mn>1</mn> </msubsup> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>y</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>=</mo> <mn>16.75</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p>total volume = 19.9 <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a derivative given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mi>o</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mi>k</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is a positive constant.</p>
</div>
<div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, the population of a colony of ants, which has an initial value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn></math>.</p>
<p>The rate of change of the population can be modelled by the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow><mrow><mn>5</mn><mi>k</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time measured in days, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is the upper bound for the population.</p>
</div>
<div class="specification">
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math> the population of the colony has doubled in size from its initial value.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mi>x</mi></mfrac><mo>+</mo><mfrac><mi>b</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mn>1200</mn><mi>k</mi></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfrac></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, giving your answer correct to four significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when the rate of change of the population is at its maximum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>a</mi><mi>x</mi></mfrac><mo>+</mo><mfrac><mi>b</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>+</mo><mi>b</mi><mi>x</mi><mo>=</mo><mn>1</mn></math> <em><strong> (A1)</strong></em></p>
<p>attempt to compare coefficients OR substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> and solve <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mi>k</mi><mi>x</mi></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>k</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mi>x</mi></mfrac><mo>+</mo><mfrac><mi>b</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mfrac><mn>1</mn><mi>k</mi></mfrac><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mi>x</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac><mfenced><mrow><mi>ln</mi><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>-</mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac><mi>ln</mi><mfenced open="|" close="|"><mfrac><mi>x</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></mfenced><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct term. Award <em><strong>A1A0</strong></em> for a correct answer without modulus signs. Condone the absence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to separate variables and integrate both sides <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>k</mi><mo>∫</mo><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mn>1</mn><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>t</mi><mo>+</mo><mi>c</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> There are variations on this which should be accepted, such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>k</mi></mfrac><mfenced><mrow><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mn>5</mn><mi>k</mi></mrow></mfrac><mi>t</mi><mo>+</mo><mi>c</mi></math>. Subsequent marks for these variations should be awarded as appropriate.</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>1200</mn></math> into an equation involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mn>1200</mn><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>5</mn><mo> </mo><mi>ln</mi><mfenced><mfrac><mn>1200</mn><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfrac></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>t</mi><mo>+</mo><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mn>1200</mn><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow><mrow><mn>1200</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac></mfenced><mo>=</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow><mrow><mn>1200</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>=</mo><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mi>P</mi><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mi>t</mi><mo>+</mo><mi>c</mi></mrow><mn>5</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfrac><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> <em><strong>A1</strong></em></p>
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>1200</mn></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1200</mn><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfrac><mo>=</mo><mi>A</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1200</mn><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></msup></mrow><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>attempt to rearrange and isolate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mi>k</mi><mo>-</mo><mn>1200</mn><mi>P</mi><mo>=</mo><mn>1200</mn><mi>k</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup><mo>-</mo><mn>1200</mn><mi>P</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mi>k</mi><msup><mtext>e</mtext><mrow><mi>-</mi><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo>-</mo><mn>1200</mn><mi>P</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo> </mo><mi mathvariant="normal">=</mi><mn>1200</mn><mi>k</mi><mo>-</mo><mn>1200</mn><mi>P</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>k</mi><mi>P</mi></mfrac><mo>-</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow><mrow><mn>1200</mn><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></msup></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn><mo>+</mo><mn>1200</mn><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></mrow></mfenced><mo>=</mo><mn>1200</mn><mi>k</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mi>k</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo>-</mo><mn>1200</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfenced><mo>=</mo><mn>1200</mn><mi>k</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mn>1200</mn><mi>k</mi></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>2400</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2400</mn><mo>=</mo><mfrac><mrow><mn>1200</mn><mi>k</mi></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2845</mn><mo>.</mo><mn>34</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2845</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)A0</strong></em> for any other value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> which rounds to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2850</mn></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the maximum of the first derivative graph OR zero of the second derivative graph OR that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>k</mi><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1422</mn><mo>.</mo><mn>67</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57814</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>58</mn></math> (days) <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept any value which rounds to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>6</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the first three terms of the binomial expansion of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><msup><mo>)</mo><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> in ascending powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi></math> and the result from part (a), show that the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sec</mtext><mo> </mo><mi>x</mi></math> up to and including the term in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mn>5</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>24</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>x</mi></math> and the result from part (b), find <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mfrac><mrow><mi>x</mi><mtext> arctan</mtext><mo> </mo><mn>2</mn><mi>x</mi></mrow><mrow><mtext>sec</mtext><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mi>t</mi><mo>+</mo><msup><mi>t</mi><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>t</mi><mn>2</mn></msup></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sec</mtext><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo>!</mo></mrow></mfrac></mstyle><mo>+</mo><mstyle displaystyle="true"><mfrac><msup><mi>x</mi><mn>4</mn></msup><mrow><mn>4</mn><mo>!</mo></mrow></mfrac></mstyle><mfenced><mrow><mo>-</mo><mo>…</mo></mrow></mfenced></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mo>+</mo><mfenced><mrow><mfrac><msup><mi>x</mi><mn>4</mn></msup><mrow><mn>4</mn><mo>!</mo></mrow></mfrac><mfenced><mrow><mo>-</mo><mo>…</mo></mrow></mfenced></mrow></mfenced></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sec</mtext><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mo>+</mo><mfrac><msup><mi>x</mi><mn>4</mn></msup><mrow><mn>4</mn><mo>!</mo></mrow></mfrac><mfenced><mrow><mo>-</mo><mo>…</mo></mrow></mfenced></mrow></mfenced><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mo>+</mo><mfrac><msup><mi>x</mi><mn>4</mn></msup><mrow><mn>4</mn><mo>!</mo></mrow></mfrac><mfenced><mrow><mo>-</mo><mo>…</mo></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mfrac><msup><mi>x</mi><mn>4</mn></msup><mn>24</mn></mfrac><mo>+</mo><mfrac><msup><mi>x</mi><mn>4</mn></msup><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>so the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sec</mtext><mo> </mo><mi>x</mi></math> up to and including the term in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mn>5</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>24</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Condone the absence of ‘…’ </p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo>-</mo><mfrac><msup><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mn>3</mn></msup><mn>3</mn></mfrac><mo>+</mo><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mfrac><mrow><mi>x</mi><mtext> arctan</mtext><mo> </mo><mn>2</mn><mi>x</mi></mrow><mrow><mtext>sec</mtext><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mfrac><mrow><mi>x</mi><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mstyle displaystyle="true"><mfrac><msup><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mn>3</mn></msup><mn>3</mn></mfrac></mstyle><mo>+</mo><mo>…</mo></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>1</mn><mo>+</mo><mstyle displaystyle="true"><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac></mstyle><mo>+</mo><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>24</mn></mfrac></mstyle></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mstyle displaystyle="true"><mfrac><mrow><mn>8</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>3</mn></mfrac></mstyle><mo>+</mo><mo>…</mo></mrow><mrow><mstyle displaystyle="true"><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac></mstyle><mo>+</mo><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>24</mn></mfrac></mstyle></mrow></mfrac></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>3</mn></mfrac></mstyle></mrow></mfenced></mrow><mstyle displaystyle="true"><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mrow><mn>5</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mn>12</mn></mfrac></mrow></mfenced></mstyle></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Condone missing ‘lim’ and errors in higher derivatives.<br>Do not award <em><strong>M1</strong></em> unless <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is replaced by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<p>The region enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn></math> is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to form a solid of revolution.</p>
</div>
<div class="specification">
<p>Pedro wants to make a small bowl with a volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup></math> based on the result from part (a). Pedro’s design is shown in the following diagrams.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The vertical height of the bowl, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BO</mtext></math>, is measured along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The radius of the bowl’s top is <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext></math> and the radius of the bowl’s base is <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext></math>. All lengths are measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cm</mtext></math>.</p>
</div>
<div class="specification">
<p>For design purposes, Pedro investigates how the cross-sectional radius of the bowl changes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of the solid formed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>15</mn><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi></mrow><mn>34</mn></mfrac></math> cubic units.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> that satisfies the requirements of Pedro’s design.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By sketching the graph of a suitable derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, find where the cross-sectional radius of the bowl is decreasing most rapidly.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the cross-sectional radius of the bowl at this point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mi>a</mi><mi>b</mi></munderover><msup><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>0</mn><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></munderover><msup><mfenced><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfrac></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mi>V</mi><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>0</mn><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></munderover><mfrac><msup><mtext>e</mtext><mi>x</mi></msup><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mn>2</mn></msup></mfrac><mo>d</mo><mi>x</mi></mrow></mfenced></math></p>
<p><br><strong>EITHER</strong></p>
<p>applying integration by recognition <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfrac></mrow></mfenced><mn>0</mn><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></msubsup></math> <em><strong>A3</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>⇒</mo><mo>d</mo><mi>u</mi><mo>=</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>attempt to express the integral in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math> <em><strong>(M1)</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>2</mn></math> and when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>17</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>2</mn><mn>17</mn></munderover><mfrac><mn>1</mn><msup><mi>u</mi><mn>2</mn></msup></mfrac><mo>d</mo><mi>u</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mi>u</mi></mfrac></mrow></mfenced><mn>2</mn><mn>17</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>⇒</mo><mo>d</mo><mi>u</mi><mo>=</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>attempt to express the integral in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math> <em><strong>(M1)</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>1</mn></math> and when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>16</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>1</mn><mn>16</mn></munderover><mfrac><mn>1</mn><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>u</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mo>d</mo><mi>u</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><mi>u</mi></mrow></mfrac></mrow></mfenced><mn>1</mn><mn>16</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent working with indefinite integrals and original limits for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>17</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so the volume of the solid formed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>15</mn><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi></mrow><mn>34</mn></mfrac></math> cubic units <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)(A0)(M0)(A0)(A0)(A1)</strong></em> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>15</mn><mn>34</mn></mfrac></math> is obtained from GDC</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a valid algebraic or graphical attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>300</mn><mo>×</mo><mn>34</mn></mrow><mrow><mn>15</mn><mi mathvariant="normal">π</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>14</mn><mo>.</mo><mn>7</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><msqrt><mfrac><mn>680</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Candidates may use their GDC numerical solve feature.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext><mo>=</mo><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mi>k</mi><mn>2</mn></mfrac></math></p>
<p>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>14</mn><mo>.</mo><mn>712</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><msqrt><mfrac><mn>680</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext><mo>=</mo><mn>7</mn><mo>.</mo><mn>36</mn><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mi>f</mi><mfenced><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>4</mn><mi>k</mi></mrow><mn>17</mn></mfrac></math></p>
<p>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>14</mn><mo>.</mo><mn>712</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><msqrt><mfrac><mn>680</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>3</mn><mo>.</mo><mn>46</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>8</mn><mn>17</mn></mfrac><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>8</mn><msqrt><mn>10</mn></msqrt></mrow><msqrt><mn>17</mn><mi mathvariant="normal">π</mi></msqrt></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>recognising to graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong>M1</strong> for attempting to use quotient rule or product rule differentiation. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced></mrow><mrow><mn>2</mn><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></math></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""><br>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math> graph decreasing to the local minimum <em><strong>A1</strong></em></p>
<p>before increasing towards the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>recognising to graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo mathvariant="italic">=</mo><mi>f</mi><mo mathvariant="italic">''</mo><mfenced><mi mathvariant="italic">x</mi></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempting to use quotient rule or product rule differentiation. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup><mfenced><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo>-</mo><mn>6</mn><msup><mtext>e</mtext><mi>x</mi></msup><mi>+1</mi></mrow></mfenced></mrow><mrow><mn>4</mn><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mn>3</mn></msup></mrow></mfrac></math></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="">for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>, graph increasing towards and beyond the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept <em><strong>A1</strong></em></p>
<p>recognising <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> for maximum rate <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>76</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mfenced><mrow><mn>2</mn><msqrt><mn>2</mn></msqrt><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note</strong>: Only award <em><strong>A</strong> </em>marks if either graph is seen.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>1</mn><mo>.</mo><mn>76</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p>the cross-sectional radius at this point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>20</mn><mo> </mo><mfenced><msqrt><mfrac><mn>85</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mfenced><mo> </mo><mfenced><mtext>cm</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="question">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\left( {x - 1} \right)^2}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 1 and the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^2} + 1">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≥ 0.</p>
<p>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> is bounded by the curves <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
<mi>y</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 9">
<mi>y</mi>
<mo>=</mo>
<mn>9</mn>
</math></span> as shown on the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The shape of a clay vase can be modelled by rotating the region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> through 360˚ about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<p style="text-align: left;">Find the volume of clay used to make the vase.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \pi {\int_0^9 {\left( {{y^{\frac{1}{2}}} + 1} \right)} ^2}{\text{d}}y - \pi \int_1^9 {\left( {y - 1} \right)} {\text{d}}y">
<mo>=</mo>
<mi>π</mi>
<mrow>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mn>9</mn>
</msubsup>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
<mo>−</mo>
<mi>π</mi>
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mn>9</mn>
</msubsup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>y</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</math></span> <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for use of formula for rotating about <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis, <em><strong>(M1)</strong></em> for finding at least one inverse, <em><strong>(M1)</strong></em> for subtracting volumes, <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em>for each correct expression, including limits.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 268.6 \ldots - 100.5 \ldots \left( {85.5\pi - 32\pi } \right)">
<mo>=</mo>
<mn>268.6</mn>
<mo>…</mo>
<mo>−</mo>
<mn>100.5</mn>
<mo>…</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>85.5</mn>
<mi>π</mi>
<mo>−</mo>
<mn>32</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 168\left( { = 53.5\pi } \right)">
<mo>=</mo>
<mn>168</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>53.5</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A2</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi ">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mi>x</mi>
</msqrt>
</mrow>
<mrow>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the region bounded by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>6</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of the minimum point on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> satisfies the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x"> <mi>tan</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> where the normal to the graph is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mi>x</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi "> <mn>2</mn> <mi>π</mi> </math></span> radians about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{2\sqrt x \sin x}}"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </math></span> or equivalent and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}"> <mo>−</mo> <mfrac> <mrow> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span> or equivalent.</p>
<p> </p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} - \sqrt x \cos x = 0"> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> </mrow> </mfrac> <mo>−</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x"> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> </mrow> </mfrac> <mo>=</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </math></span> or equivalent <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x"> <mi>tan</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.17"> <mi>x</mi> <mo>=</mo> <mn>1.17</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x \leqslant 1.17"> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo>⩽</mo> <mn>1.17</mn> </math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x"> <mn>0</mn> <mo><</mo> <mi>x</mi> </math></span> and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \leqslant 1.17"> <mi>x</mi> <mo>⩽</mo> <mn>1.17</mn> </math></span>. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < 1.17"> <mi>x</mi> <mo><</mo> <mn>1.17</mn> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.19.25.png" alt="N17/5/MATHL/HP2/ENG/TZ0/10.b/M"></p>
<p>concave up curve over correct domain with one minimum point above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> asymptotically <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi "> <mi>x</mi> <mo>=</mo> <mi>π</mi> </math></span> asymptotically <strong><em>A1</em></strong></p>
<p> </p>
<p>Note: For the final <strong><em>A1 </em></strong>an asymptote must be seen, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> must be seen on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis or in an equation.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.96"> <mi>x</mi> <mo>=</mo> <mn>1.96</mn> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(1.96 \ldots )"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1.96</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.51"> <mo>=</mo> <mn>1.51</mn> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} "> <mi>V</mi> <mo>=</mo> <mi>π</mi> <msubsup> <mo>∫</mo> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>M1 </em></strong>is for an integral of the correct squared function (with or without limits and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span>).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2.68{\text{ }}( = 0.852\pi )"> <mo>=</mo> <mn>2.68</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>0.852</mn> <mi>π</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>f</mi><mfenced><mfrac><mi>y</mi><mi>x</mi></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>></mo><mn>0</mn></math></p>
</div>
<div class="specification">
<p>The curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math> has a gradient function given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>x</mi><mi>y</mi><mo>+</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>.</p>
<p>The curve passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>v</mi><mi>x</mi></math> to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mi>f</mi><mfenced><mi>v</mi></mfenced><mo>-</mo><mi>v</mi></mrow></mfrac><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>C</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is an arbitrary constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the result from part (a) or otherwise, solve the differential equation and hence show that the curve has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mfenced><mrow><mi>tan</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></mfenced></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The curve has a point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>1</mn></msub></mrow></mfenced></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup><mo><</mo><msub><mi>x</mi><mn>1</mn></msub><mo><</mo><msup><mtext>e</mtext><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msup></math>. Determine the coordinates of this point of inflexion.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>x</mi><mi>y</mi><mo>+</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> to show that the points of zero gradient on the curve lie on two straight lines of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi></math> where the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> are to be determined.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>v</mi><mi>x</mi><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>f</mi><mfenced><mi>v</mi></mfenced></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mi>f</mi><mfenced><mi>v</mi></mfenced><mo>-</mo><mi>v</mi></mrow></mfrac><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mi>x</mi></mfrac></math> <strong>A1</strong></p>
<p>integrating the RHS, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mi>f</mi><mfenced><mi>v</mi></mfenced><mo>-</mo><mi>v</mi></mrow></mfrac><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>C</mi></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>v</mi></mfenced></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>v</mi></mfenced><mo>=</mo><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>v</mi><mo>+</mo><mn>2</mn></math> <strong>(A1)</strong></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>v</mi></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mi>f</mi><mfenced><mi>v</mi></mfenced><mo>-</mo><mi>v</mi></mrow></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mi>f</mi><mfenced><mi>v</mi></mfenced><mo>-</mo><mi>v</mi></mrow></mfrac><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>v</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></p>
<p>attempts to complete the square <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><msup><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>C</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>v</mi></mfenced></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>v</mi><mo>+</mo><mn>2</mn></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>v</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mi>x</mi></mfrac></math> <strong>M1</strong></p>
<p>attempts to complete the square <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><msup><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mfenced><mrow><mo>=</mo><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mi>x</mi></mfrac></mrow></mfenced></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mfenced><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>C</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>) and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>0</mn></math> <strong>M1</strong></p>
<p>substitutes for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> into their expression <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mfenced><mrow><mfrac><mi>y</mi><mi>x</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>y</mi><mi>x</mi></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mi>tan</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mfenced><mrow><mi>tan</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></mfenced></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[9 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p>a correct graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> (for approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup><mo><</mo><mi>x</mi><mo><</mo><msup><mtext>e</mtext><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msup></math>) with a local minimum point below the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis <strong>A2</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>tan</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>+</mo><msup><mtext>sec</mtext><mn>2</mn></msup><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>1</mn></math>.</p>
<p> </p>
<p>attempts to find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the local minimum point on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> <strong>(M1)</strong></p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;"><strong>OR</strong></p>
<p style="text-align:left;">a correct graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced></math> (for approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup><mo><</mo><mi>x</mi><mo><</mo><msup><mtext>e</mtext><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msup></math>) showing the location of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept <strong>A2</strong></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Award <strong>M1A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mtext>sec</mtext><mn>2</mn></msup><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow><mi>x</mi></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mo> </mo><msup><mtext>sec</mtext><mn>2</mn></msup><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo> </mo><mi>tan</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow><mi>x</mi></mfrac></math>.</p>
<p> </p>
<p>attempts to find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept <strong>(M1)</strong></p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;"><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>629</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>629</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mi>f</mi><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mfenced></mrow></mfenced></math> <strong>(M1)</strong></p>
<p>the coordinates are <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>629</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>943</mn></mrow></mfenced><mo> </mo><mfenced><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mi>,</mi><mo> </mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts implicit differentiation on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>y</mi><mo>+</mo><mn>3</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mstyle displaystyle="true"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mstyle><mo>-</mo><mi>y</mi></mrow></mfenced></mrow><msup><mi>x</mi><mn>3</mn></msup></mfrac></math> (or equivalent)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>3</mn><mi>x</mi></mrow><mn>2</mn></mfrac></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>≠</mo><mfrac><mi>y</mi><mi>x</mi></mfrac></math>) <strong>A1</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mn>3</mn><mi>x</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mi>x</mi><mfenced><mrow><mi>tan</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup><mo><</mo><mi>x</mi><mo><</mo><msup><mtext>e</mtext><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msup></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>629</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>0</mn><mo>.</mo><mn>629</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mi>f</mi><mfenced><mrow><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced></mrow></mfenced></math> <strong>(M1)</strong></p>
<p>the coordinates are <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>629</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>943</mn></mrow></mfenced><mo> </mo><mfenced><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mi>,</mi><mo> </mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo> </mo><msup><mtext>e</mtext><mrow><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[6 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>⇒</mo><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>x</mi><mi>y</mi><mo>+</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math> <strong>M1</strong> </p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>x</mi><mi>y</mi><mo>+</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <strong>M1</strong> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>+</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>3</mn><mi>x</mi><mo>±</mo><msqrt><msup><mfenced><mrow><mn>3</mn><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>3</mn><mi>x</mi><mo>±</mo><mi>x</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfenced><mrow><mi>x</mi><mo>></mo><mn>0</mn></mrow></mfenced></mrow></mfenced></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi><mo> </mo><mfenced><mrow><mi>m</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for stating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math>, <strong>M1</strong> for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math>, <strong>A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>m</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> and <strong>A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>⇒</mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi></math>.</p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4{x^2} + {y^2} = 7">
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>7</mn>
</math></span>.</p>
</div>
<div class="question">
<p>Find the volume of the solid formed when the region bounded by the curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \geqslant 0"> <mi>x</mi> <mo>⩾</mo> <mn>0</mn> </math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \geqslant 0"> <mi>y</mi> <mo>⩾</mo> <mn>0</mn> </math></span> is rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi "> <mn>2</mn> <mi>π</mi> </math></span> about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>Use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi \int\limits_0^{\frac{{\sqrt 7 }}{2}} {{y^2}{\text{d}}x} "> <mi>V</mi> <mo>=</mo> <mi>π</mi> <munderover> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mrow> </munderover> <mrow> <mrow> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi \int\limits_0^{\frac{{\sqrt 7 }}{2}} {\left( {7 - 4{x^2}} \right){\text{d}}x} "> <mi>V</mi> <mo>=</mo> <mi>π</mi> <munderover> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mrow> </munderover> <mrow> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mo>−</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Condone absence of limits or incorrect limits for <strong><em>M </em></strong>mark.</p>
<p>Do not condone absence of or multiples of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 19.4\,\,\,\left( { = \frac{{7\sqrt 7 \pi }}{3}} \right)"> <mo>=</mo> <mn>19.4</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>7</mn> <msqrt> <mn>7</mn> </msqrt> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering limits, show that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a horizontal asymptote and state its equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> and the result <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfenced open="|" close="|"><mi>x</mi></mfenced></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math>.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, justifying your answer.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>a sketch graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> with line symmetry in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis indicated <em><strong>R1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> is an even function. <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>±</mo><mo>∞</mo><mo>,</mo><mo> </mo><mo> </mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>→</mo><mtext>arcsin</mtext><mo> </mo><mn>1</mn><mfenced><mrow><mo>→</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so the horizontal asymptote is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to use the quotient rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>2</mn><mi>x</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempting to use the chain rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arcsin</mtext><mo> </mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>u</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mi>u</mi><mn>2</mn></msup></msqrt></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mfenced><mstyle displaystyle="true"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mn>1</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mn>1</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><mfenced open="|" close="|"><mi>x</mi></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math></p>
<p><br><strong>EITHER</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn><mo>,</mo><mo> </mo><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>></mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo><</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo><</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo><</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>R1</strong></em> for stating that in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>, the numerator is negative, and the denominator is positive.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Do not accept a graphical solution</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⇒</mo><msup><mi>y</mi><mn>2</mn></msup><mo> </mo><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p>domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math> and so the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>≥</mo><mn>0</mn></math></p>
<p>hence the positive root is taken (or the negative root is rejected) <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong></em> is dependent on the above<em><strong> A1</strong></em>.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><msqrt><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow></mfrac></msqrt></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The final <em><strong>A1</strong></em> is not dependent on <em><strong>R1</strong></em> mark.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>≤</mo><mi>x</mi><mo><</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept correct alternative notations, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⌊</mo><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>,</mo><mo> </mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>⌊</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⌊</mo><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>,</mo><mo> </mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>)</mo></mstyle></math>.<br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>57</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>57</mn><mo>[</mo></math> if correct to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> s.f.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:<em> A1</em></strong> for correct domain and correct range and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn></math><br><em><strong> A1</strong></em> for asymptotic behaviour <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math><br><em><strong> A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math><br> Coordinates are not required. <br> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57</mn></math> or other inexact values.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> is defined by equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="xy - \ln y = 1,{\text{ }}y > 0">
<mi>x</mi>
<mi>y</mi>
<mo>−<!-- − --></mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mi>y</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of the tangent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{2}{{\text{e}}},{\text{ e}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> e</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + x\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0">
<mi>y</mi>
<mo>+</mo>
<mi>x</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mi>y</mi>
</mfrac>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for the first two terms, <strong><em>A1 </em></strong>for the third term and the 0.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{y^2}}}{{1 - xy}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
<mi>y</mi>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {y^2}}}{{\ln y}}">
<mfrac>
<mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>ln</mi>
<mo></mo>
<mi>y</mi>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - y}}{{x - \frac{1}{y}}}">
<mfrac>
<mrow>
<mo>−</mo>
<mi>y</mi>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mi>y</mi>
</mfrac>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_T} = \frac{{{{\text{e}}^2}}}{{1 - {\text{e}} \times \frac{2}{{\text{e}}}}}">
<mrow>
<msub>
<mi>m</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</mfrac>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_T} = - {{\text{e}}^2}">
<mrow>
<msub>
<mi>m</mi>
<mi>T</mi>
</msub>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - {\text{e}} = - {{\text{e}}^2}x + 2{\text{e}}">
<mi>y</mi>
<mo>−</mo>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mrow>
<mtext>e</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {{\text{e}}^2}x - y + 3{\text{e}} = 0">
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>+</mo>
<mn>3</mn>
<mrow>
<mtext>e</mtext>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> or equivalent <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 7.39x + 8.15">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>7.39</mn>
<mi>x</mi>
<mo>+</mo>
<mn>8.15</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Differentiate from first principles the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 3{x^3} - x">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>x</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}">
<mfrac>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mi>h</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\left( {3{{\left( {x + h} \right)}^3} - \left( {x + h} \right)} \right) - \left( {3{x^3} - x} \right)}}{h}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mi>h</mi>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3\left( {{x^3} + 3{x^2}h + 3x{h^2} + {h^3}} \right) - x - h - {3x^3} + x}}{h}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>h</mi>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>h</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>x</mi>
<mo>−</mo>
<mi>h</mi>
<mo>−</mo>
<mrow>
<mn>3</mn>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mi>h</mi>
</mfrac>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{9{x^2}h + 9x{h^2} + 3{h^3} - h}}{h}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>h</mi>
<mo>+</mo>
<mn>9</mn>
<mi>x</mi>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>h</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>h</mi>
</mrow>
<mi>h</mi>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>cancelling <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 9{x^2} + 9xh + 3{h^2} - 1">
<mo>=</mo>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>9</mn>
<mi>x</mi>
<mi>h</mi>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p>then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{h \to 0} \left( {9{x^2} + 9xh + 3{h^2} - 1} \right)">
<munder>
<mrow>
<mrow>
<mtext>lim</mtext>
</mrow>
</mrow>
<mrow>
<mi>h</mi>
<mo stretchy="false">→</mo>
<mn>0</mn>
</mrow>
</munder>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>9</mn>
<mi>x</mi>
<mi>h</mi>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 9{x^2} - 1">
<mo>=</mo>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Final <em><strong>A1</strong> </em>dependent on all previous marks.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}">
<mfrac>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mi>h</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\left( {3{{\left( {x + h} \right)}^3} - \left( {x + h} \right)} \right) - \left( {3{x^3} - x} \right)}}{h}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mi>h</mi>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3\left( {{{\left( {x + h} \right)}^3} - {x^3}} \right) + \left( {x - \left( {x + h} \right)} \right)}}{h}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mi>h</mi>
</mfrac>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3h\left( {{{\left( {x + h} \right)}^2} + x\left( {x + h} \right) + {x^2}} \right) - h}}{h}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>h</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mi>h</mi>
</mrow>
<mi>h</mi>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>cancelling <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\left( {{{\left( {x + h} \right)}^2} + x\left( {x + h} \right) + {x^2}} \right) - 1">
<mo>=</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p>then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{h \to 0} \left( {3\left( {{{\left( {x + h} \right)}^2} + x\left( {x + h} \right) + {x^2}} \right) - 1} \right)">
<munder>
<mrow>
<mrow>
<mtext>lim</mtext>
</mrow>
</mrow>
<mrow>
<mi>h</mi>
<mo stretchy="false">→</mo>
<mn>0</mn>
</mrow>
</munder>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>h</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 9{x^2} - 1">
<mo>=</mo>
<mn>9</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Final <em><strong>A1</strong> </em>dependent on all previous marks.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>By using the substitution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = 2\sec \theta ">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
</math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }} = \frac{1}{4}\arccos \left( {\frac{2}{{{x^2}}}} \right) + c} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mi>arccos</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = 2\sec \theta ">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = 2\sec \theta \tan \theta ">
<mn>2</mn>
<mi>x</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }}} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int {\frac{{\sec \theta \tan \theta {\text{d}}\theta }}{{2\sec \theta \sqrt {4{{\sec }^2}\theta - 4} }}} ">
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<msqrt>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mi>sec</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
<mo>−</mo>
<mn>4</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt 2 {(\sec \theta )^{\frac{1}{2}}}{\text{ }}\left( { = \sqrt 2 {{(\cos \theta )}^{ - \frac{1}{2}}}} \right)">
<mi>x</mi>
<mo>=</mo>
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<mo stretchy="false">(</mo>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = \frac{{\sqrt 2 }}{2}{(\sec \theta )^{\frac{1}{2}}}\tan \theta {\text{ }}\left( { = \frac{{\sqrt 2 }}{2}{{(\cos \theta )}^{ - \frac{3}{2}}}\sin \theta } \right)">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }}} ">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mi>x</mi>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int {\frac{{\sqrt 2 {{(\sec \theta )}^{\frac{1}{2}}}\tan \theta {\text{d}}\theta }}{{2\sqrt 2 {{(\sec \theta )}^{\frac{1}{2}}}\sqrt {4{{\sec }^2}\theta - 4} }}{\text{ }}\left( { = \int {\frac{{\sqrt 2 {{(\cos \theta )}^{ - \frac{3}{2}}}\sin \theta {\text{d}}\theta }}{{2\sqrt 2 {{(\cos \theta )}^{ - \frac{1}{2}}}\sqrt {4{{\sec }^2}\theta - 4} }}} } \right)} ">
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<msqrt>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mi>sec</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
<mo>−</mo>
<mn>4</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mn>2</mn>
</msqrt>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
<msqrt>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mi>sec</mi>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
<mo>−</mo>
<mn>4</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\int {\frac{{\tan \theta {\text{d}}\theta }}{{2\tan \theta }}} ">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{4}\int {{\text{d}}\theta } ">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>∫</mo>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\theta }{4} + c">
<mo>=</mo>
<mfrac>
<mi>θ</mi>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = 2\sec \theta \Rightarrow \cos \theta = \frac{2}{{{x^2}}}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mi>sec</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">⇒</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>This <strong><em>M1 </em></strong>may be seen anywhere, including a sketch of an appropriate triangle.</p>
<p> </p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\theta }{4} + c = \frac{1}{4}\arccos \left( {\frac{2}{{{x^2}}}} \right) + c">
<mfrac>
<mi>θ</mi>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mi>arccos</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>c</mi>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the probability density function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> given by</p>
<p style="padding-left: 210px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable columnalign="left"><mtr><mtd><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt><mo>-</mo><msqrt><mi>k</mi></msqrt><mo>=</mo><msqrt><mi>k</mi></msqrt><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognition of the need to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>x</mi></math> (or equivalent) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∫</mo><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></msup><mo>d</mo><mi>u</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∫</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>attempt to use correct limits for their integrand and set equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced><mi>k</mi><mrow><mn>16</mn><mo>+</mo><mi>k</mi></mrow></msubsup><mo>=</mo><mn>1</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced><mn>0</mn><mn>4</mn></msubsup><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mfenced><mrow><mn>16</mn><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>+</mo><msup><mi>k</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>=</mo><mn>1</mn><mfenced><mrow><mo>⇒</mo><mfrac><mn>1</mn><msqrt><mi>k</mi></msqrt></mfrac><mo>-</mo><mfrac><mn>1</mn><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></mfrac><mo>=</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt><mo>-</mo><msqrt><mi>k</mi></msqrt><mo>=</mo><msqrt><mi>k</mi></msqrt><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt><mo>-</mo><msqrt><mi>k</mi></msqrt><mo>=</mo><msqrt><mi>k</mi></msqrt><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>645038</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>645</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>y</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mo>-</mo><mn>1</mn></mrow></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> at the point Ρ is parallel to the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of Ρ.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>attempts implicit differentiation on both sides of the equation <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></math> <strong>A1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mo>-</mo><mn>1</mn></mrow></mfrac></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>346</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced></math> <strong>A1</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mn>2</mn><mi>y</mi></mrow></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>y</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> given their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>946</mn><mo> </mo><mfenced><mrow><mo>=</mo><msup><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><mi>ln</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced></mrow></mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - 3x + 1">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</math></span> can be expressed in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Ax\left( {{x^2} + 1} \right) + Bx + C">
<mi>A</mi>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>B</mi>
<mi>x</mi>
<mo>+</mo>
<mi>C</mi>
</math></span>, find the values of the constants <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^3} - 3x + 1 = Ax\left( {{x^2} + 1} \right) + Bx + C">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mi>A</mi>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>B</mi>
<mi>x</mi>
<mo>+</mo>
<mi>C</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2,\,\,C = 1,">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>C</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
</math></span><em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A + B = - 3 \Rightarrow B = - 5">
<mi>A</mi>
<mo>+</mo>
<mi>B</mi>
<mo>=</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">⇒</mo>
<mi>B</mi>
<mo>=</mo>
<mo>−</mo>
<mn>5</mn>
</math></span><em><strong> A1</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x = \int {\left( {2x - \frac{{5x}}{{{x^2} + 1}} + \frac{1}{{{x^2} + 1}}} \right)} {\text{d}}x">
<mo>∫</mo>
<mrow>
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</math></span> <em><strong>M1M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for dividing by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{x^2} + 1} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x">
<mn>2</mn>
<mi>x</mi>
</math></span>,<em><strong> M1</strong></em> for separating the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5x">
<mn>5</mn>
<mi>x</mi>
</math></span> and 1.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^2} - \frac{5}{2}{\text{ln}}\left( {{x^2} + 1} \right) + {\text{arctan}}\,x\left( { + c} \right)">
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)A1</strong></em> for integrating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{5x}}{{{x^2} + 1}}}">
<mrow>
<mfrac>
<mrow>
<mn>5</mn>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
</math></span>, <em><strong>A1</strong></em> for the other two terms.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A particle moves along a horizontal line such that at time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≥ 0, its acceleration <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> − 1. When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 6 , its displacement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> from a fixed origin O is 18.25 m. When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 15, its displacement from O is 922.75 m. Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to integrate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \int {a\,{\text{d}}t = \int {\left( {2t - 1} \right)} } \,{\text{d}}t">
<mi>v</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>t</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {t^2} - t + c">
<mo>=</mo>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>t</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \int {v\,{\text{d}}t = \int {\left( {{t^2} - t + c} \right)} } \,{\text{d}}t">
<mi>s</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
<mo>=</mo>
<mo>∫</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>t</mi>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} + ct + d">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>c</mi>
<mi>t</mi>
<mo>+</mo>
<mi>d</mi>
</math></span> <em><strong>A1</strong></em></p>
<p>attempt at substitution of given values <em><strong>(M1)</strong></em></p>
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 6{\text{,}}\,\,\,18.25 = 72 - 18 + 6c + d">
<mi>t</mi>
<mo>=</mo>
<mn>6</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>18.25</mn>
<mo>=</mo>
<mn>72</mn>
<mo>−</mo>
<mn>18</mn>
<mo>+</mo>
<mn>6</mn>
<mi>c</mi>
<mo>+</mo>
<mi>d</mi>
</math></span></p>
<p>at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 15{\text{,}}\,\,\,922.75 = 1125 - 112.5 + 15c + d">
<mi>t</mi>
<mo>=</mo>
<mn>15</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>922.75</mn>
<mo>=</mo>
<mn>1125</mn>
<mo>−</mo>
<mn>112.5</mn>
<mo>+</mo>
<mn>15</mn>
<mi>c</mi>
<mo>+</mo>
<mi>d</mi>
</math></span></p>
<p>solve simultaneously: <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = - 6{\text{,}}\,\,d = 0.25">
<mi>c</mi>
<mo>=</mo>
<mo>−</mo>
<mn>6</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>d</mi>
<mo>=</mo>
<mn>0.25</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow s = \frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} + - 6t + \frac{1}{4}">
<mo stretchy="false">⇒</mo>
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mo>−</mo>
<mn>6</mn>
<mi>t</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mi>x</mi><mi>y</mi><mo> </mo><mi>ln</mi><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of the tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> at the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to differentiate implicitly including at least one application of the product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>x</mi><mi>y</mi><mo>,</mo><mo> </mo><mi>v</mi><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>,</mo><mo> </mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi><mo>,</mo><mo> </mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfrac><mn>1</mn><mrow><mi>x</mi><mi>y</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced open="[" close="]"><mrow><mfrac><mrow><mi>x</mi><mi>y</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></mfrac><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)A1</strong></em> for implicitly differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mi>y</mi><mo> </mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced></math> and obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced open="[" close="]"><mrow><mfrac><mrow><mi>x</mi><mi>y</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></mfrac><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mi>y</mi><mo> </mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced open="[" close="]"><mrow><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mi>x</mi><mi>y</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>x</mi><mi>y</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>y</mi></math></p>
<p>attempts to differentiate implicitly including at least one application of the product rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mfrac><mrow><mi>x</mi><mi>y</mi></mrow><mi>x</mi></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><mrow><mi>x</mi><mi>y</mi></mrow><mi>y</mi></mfrac><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mi>ln</mi><mo> </mo><mi>y</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>or equivalent to the above, for example</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mi>x</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mi>y</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>y</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>y</mi><mo>+</mo><mi>x</mi><mfenced><mrow><mi>ln</mi><mo> </mo><mi>y</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>ln</mi><mo> </mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>y</mi><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>ln</mi><mo> </mo><mi>y</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>or equivalent to the above, for example</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mi>ln</mi><mo> </mo><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>y</mi><mfenced><mrow><mi>ln</mi><mo> </mo><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>attempt to differentiate implicitly including at least one application of the product rule <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>ln</mi><mo> </mo><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>,</mo><mo> </mo><mi>v</mi><mo>=</mo><mi>y</mi><mo>,</mo><mo> </mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mi>y</mi></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mi>y</mi><mo> </mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mfrac><mrow><mi>x</mi><mi>y</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></mfrac><mfenced><mrow><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>y</mi><mfenced><mrow><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p>lets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mo>=</mo><mi>x</mi><mi>y</mi></math> and attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mi>w</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>w</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>w</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>w</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mi>ln</mi><mo> </mo><mi>w</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mrow><mo>d</mo><mi>w</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mo> </mo><mi>w</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>w</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mi>y</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mi>x</mi><mi>y</mi><mo> </mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mi>y</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>y</mi><mo>⇒</mo><mi>y</mi><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> and their non-zero value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>equation of the tangent is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>x</mi><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mi>y</mi></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math></p>
<p><br><strong>EITHER</strong></p>
<p>correctly substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>y</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mi>y</mi></mrow><mi>y</mi></mfrac></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>y</mi></mfrac></mrow></mfenced><mo>=</mo><mn>0</mn><mo>⇒</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>=</mo><mn>0</mn><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>correctly substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>+</mo><mi>y</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>y</mi><mo>=</mo><mn>1</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mi>y</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mn>2</mn><mo>+</mo><mi>ln</mi><mo> </mo><mi>y</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>⇒</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>=</mo><mn>0</mn><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mi>x</mi><mi>y</mi><mo> </mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mi>y</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mi>y</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>y</mi><mo>⇒</mo><mi>y</mi><mo>=</mo><mn>1</mn></math></p>
<p>equation of the tangent is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>></mo><mn>0</mn></math>.</p>
<p>It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> has a local maximum between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>. Determine the coordinates of this local maximum.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there are no points of inflexion on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>puts <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>v</mi><mi>x</mi></math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>+</mo><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>v</mi><mi>x</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>v</mi><mi>x</mi><mo>+</mo><mi>x</mi></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mi>v</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> as a single rational fraction in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p>attempts to separate variables <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mi>v</mi><mo>+</mo><mn>1</mn></mrow><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>d</mo><mi>v</mi><mo>=</mo><mo>-</mo><mo>∫</mo><mfrac><mn>1</mn><mi>x</mi></mfrac><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mfenced><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>v</mi><mo>=</mo><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn></math> and attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mo> </mo><mn>5</mn><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>the solution is</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mfenced><mrow><mfrac><msup><mi>y</mi><mn>2</mn></msup><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mtext>arctan</mtext><mfenced><mfrac><mi>y</mi><mi>x</mi></mfrac></mfenced><mo>+</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mo> </mo><mn>5</mn><mo>-</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at a maximum, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p>attempts to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> into their solution <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mo> </mo><mn>2</mn><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn><mo>+</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ln</mi><mo> </mo><mn>5</mn><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></math></p>
<p>attempts to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>18</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>18</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mfrac><msqrt><mn>10</mn></msqrt><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mtext>arctan</mtext><mo> </mo><mn>2</mn><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></msup><mi>,</mi><mfrac><msqrt><mn>10</mn></msqrt><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mtext>arctan</mtext><mo> </mo><mn>2</mn><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></msup></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept all answers that round to the correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mtext>sf</mtext></math> answer.<br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>18</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>18</mn></math>.</p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts (quotient rule) implicit differentiation <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mfenced><mstyle displaystyle="true"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>-</mo><mn>1</mn></mstyle></mfenced><mstyle displaystyle="true"><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced></mstyle><mstyle displaystyle="true"><mo>-</mo></mstyle><mstyle displaystyle="true"><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mstyle><mstyle displaystyle="true"><mfenced><mrow><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced></mstyle></mrow><mstyle displaystyle="true"><msup><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></mstyle></mfrac></math></p>
<p>correctly substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfrac></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfrac></mstyle><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><msup><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow></mfenced></mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced><mn>3</mn></msup></mfrac></math> <em><strong>A1</strong></em></p>
<p>this expression can never be zero therefore no points of inflexion <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts implicit differentiation on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>y</mi><mo>-</mo><mi>x</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>+</mo><mi>x</mi></mrow></mfenced><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>-</mo><mn>1</mn><mo>-</mo><msup><mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msup><mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>-</mo><msup><mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo><</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mi>y</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>≠</mo><mn>0</mn></math> therefore no points of inflexion <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Accept putting <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math> and obtaining contradiction.</p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></math>, show that the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo></math> is</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>12</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></math></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating the series in part (a), show that the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> .</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo></math> as far as the term in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong> </p>
<p>attempts to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></math> into</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mo>…</mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mo>…</mo></mrow></mfenced><mn>4</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>A1</strong></em></p>
<p>attempts to expand the <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext></math> up to and including the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup></math> term <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>…</mo></mrow></mfenced><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>12</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mo>…</mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>4</mn></msup><mo>-</mo><mo>…</mo></math></p>
<p>attempts to find the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math> up to and including the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup></math> term <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mfrac><mn>11</mn><mn>12</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mo>…</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mfrac><mn>11</mn><mn>12</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mo>+</mo><mfrac><mn>1</mn><mn>24</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>12</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>AG</strong></em></p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>sin</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>×</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> <strong style="font-style:italic;">A1</strong><em><strong>A</strong><strong>1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>-</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced></math></p>
<p>attempts to expand the <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext></math> up to and including the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup></math> term <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> <em><strong>AG</strong></em></p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>=</mo><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msub><mi>a</mi><mn>3</mn></msub><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>=</mo><mi>cos</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>×</mo><mi>tan</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo></math> to form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo><mo>=</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mfenced><mrow><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msub><mi>a</mi><mn>3</mn></msub><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced></math> <strong style="font-style:italic;">A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><mfenced><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>a</mi><mn>0</mn></msub></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><msub><mi>a</mi><mn>3</mn></msub><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>a</mi><mn>0</mn></msub></mrow></mfenced><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> <strong style="font-style:italic;">(A1)</strong></p>
<p>attempts to equate coefficients,</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>a</mi><mn>0</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo> </mo><msub><mi>a</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><msub><mi>a</mi><mn>2</mn></msub><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>a</mi><mn>0</mn></msub><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo> </mo><msub><mi>a</mi><mn>3</mn></msub><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>a</mi><mn>0</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>a</mi><mn>0</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo> </mo><msub><mi>a</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><msub><mi>a</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo> </mo><msub><mi>a</mi><mn>3</mn></msub><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> <strong style="font-style:italic;">A1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo> </mo><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mi>sin</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>cos</mi><mo>(</mo><mi>ln</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow></mfrac></math> to form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <strong style="font-style:italic;">A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> <strong style="font-style:italic;">(A1)</strong></p>
<p>attempts to expand the <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext></math> up to and including the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup></math> term <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mo>…</mo></math> <strong style="font-style:italic;">A1</strong></p>
<p><br><strong>Note:</strong> Accept use of long division.</p>
<p><br><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two boats <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> travel due north.</p>
<p>Initially, boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is positioned <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> metres due east of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p>The distances travelled by boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> metres respectively. The angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is the radian measure of the bearing of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> from boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. This information is shown on the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>50</mn><mo> </mo><mtext>cot</mtext><mo> </mo><mi>θ</mi></math> .</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, the following conditions are true.</p>
<p style="padding-left:60px;">Boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has travelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> metres further than boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.<br>Boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is travelling at double the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.<br>The rate of change of the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> radians per second.</p>
<p>Find the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>50</mn><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mn>50</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>50</mn><mo> </mo><mtext>cot</mtext><mo> </mo><mi>θ</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mi>x</mi></math> may be identified as a length on a diagram, and not written explicitly.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>50</mn><msup><mfenced><mrow><mtext>cosec</mtext><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>θ</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p>attempt to set speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> equal to double the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>50</mn><msup><mfenced><mrow><mtext>cosec</mtext><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>θ</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>50</mn><msup><mfenced><mrow><mtext>cosec</mtext><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>θ</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>5</mn><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>373</mn><mo>…</mo><mo>=</mo><mn>78</mn><mo>.</mo><mn>69</mn><mo>…</mo><mo>°</mo></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cosec</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mfenced><mfrac><mn>1</mn><mn>5</mn></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mfrac><mn>26</mn><mn>25</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> This <em><strong>A1</strong></em> can be awarded independently of previous marks.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>50</mn><mfenced><mfrac><mn>26</mn><mn>25</mn></mfrac></mfenced><mo>×</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></p>
<p>So the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>2</mn><mo> </mo><mfenced><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>20</mn></math> from the use of inexact values.</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A small bead is free to move along a smooth wire in the shape of the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>10</mn><mrow><mn>3</mn><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>≥</mo><mn>0</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the point on the curve where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>, it is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>x</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac></math> at this exact same instant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid attempt to use chain rule or quotient rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>10</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></mrow><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>10</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup><mtext> </mtext><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math> <em><strong>A1A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<p><em><strong><br></strong></em><strong>Note: </strong>Award <em><strong>A1</strong></em> for numerator and <em><strong>A1</strong></em> for denominator, or <em><strong>A1</strong></em> for each part if the second alternative given.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to use chain rule <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>eg </mtext><mo> </mo><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mtext>d</mtext><mi>y</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac><mo>×</mo><mfrac><mrow><mtext>d</mtext><mi>x</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>x</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>÷</mo><mfrac><mrow><mo>-</mo><mn>10</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mfenced><mn>2</mn></msup></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>÷</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>181676</mn><mo>…</mo></mrow></mfenced></math> or equivalent <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>550428</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>x</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>550</mn><mo> </mo><mfenced><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>An earth satellite moves in a path that can be described by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="72.5{x^2} + 71.5{y^2} = 1">
<mn>72.5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>71.5</mn>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = x(t)">
<mi>x</mi>
<mo>=</mo>
<mi>x</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = y(t)">
<mi>y</mi>
<mo>=</mo>
<mi>y</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
</math></span> are in thousands of kilometres and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is time in seconds.</p>
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}} = 7.75 \times {10^{ - 5}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>7.75</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3.2 \times {10^{ - 3}}">
<mi>x</mi>
<mo>=</mo>
<mn>3.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span>.</p>
<p>Give your answers in standard form.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and attempting to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> (or vice versa) <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ( \pm )0.11821 \ldots ">
<mi>y</mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mo>±</mo>
<mo stretchy="false">)</mo>
<mn>0.11821</mn>
<mo>…</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="145x + 143y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{145x}}{{143y}}} \right)">
<mn>145</mn>
<mi>x</mi>
<mo>+</mo>
<mn>143</mn>
<mi>y</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mrow>
<mn>145</mn>
<mi>x</mi>
</mrow>
<mrow>
<mn>143</mn>
<mi>y</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="145x\frac{{{\text{d}}x}}{{{\text{d}}t}} + 143y\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0">
<mn>145</mn>
<mi>x</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mn>143</mn>
<mi>y</mi>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>attempting to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}x}}{{{\text{d}}t}}{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}t}} = - \frac{{145(3.2 \times {{10}^{ - 3}})}}{{143\left( {( \pm )0.11821 \ldots } \right)}} \times (7.75 \times {{10}^{ - 5}})} \right)">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mrow>
<mn>145</mn>
<mo stretchy="false">(</mo>
<mn>3.2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>143</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">(</mo>
<mo>±</mo>
<mo stretchy="false">)</mo>
<mn>0.11821</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mn>7.75</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = \pm 2.13 \times {10^{ - 6}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>±</mo>
<mn>2.13</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award all marks except the final <strong><em>A1 </em></strong>to candidates who do not consider ±.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ( \pm )\sqrt {\frac{{1 - 72.5{x^2}}}{{71.5}}} ">
<mi>y</mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mo>±</mo>
<mo stretchy="false">)</mo>
<msqrt>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>72.5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>71.5</mn>
</mrow>
</mfrac>
</msqrt>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = ( \pm )0.0274 \ldots ">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mo>±</mo>
<mo stretchy="false">)</mo>
<mn>0.0274</mn>
<mo>…</mo>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = ( \pm )0.0274 \ldots \times 7.75 \times {10^{ - 5}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mo>±</mo>
<mo stretchy="false">)</mo>
<mn>0.0274</mn>
<mo>…</mo>
<mo>×</mo>
<mn>7.75</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</msup>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}t}} = \pm 2.13 \times {10^{ - 6}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>y</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>±</mo>
<mn>2.13</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award all marks except the final <strong><em>A1 </em></strong>to candidates who do not consider ±.</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>