File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 4/markSceme-SL-paper2html
File size: 2.31 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>
<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
<mn>0.5</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>
<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
<mn>2000</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(A = ){\text{ }}\pi {r^2} + 2\pi rh"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi rh"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Units <strong>not </strong>required.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000 = \pi {r^2}h"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> equating to their part (b).</p>
<p>Do not accept unless <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi {r^2}h"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> is explicitly defined as their part (b).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> into a <strong>correct </strong>part (a).</p>
<p>Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh = \frac{{500\,000}}{r}"> <mi>π</mi> <mi>r</mi> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span> and substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh"> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> in expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span> <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>The conclusion, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>, must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{10^6}"> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </math></span> as equivalent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1\,000\,000}"> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r"> <mn>2</mn> <mi>π</mi> <mi>r</mi> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{r^2}}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^{ - 2}}"> <mrow> <msup> <mi>r</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{1}}\,{\text{000}}\,{\text{000}}"> <mo>−</mo> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{1\,000\,000}}{{2\pi }}"> <mrow> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}"> <mi>r</mi> <mo>=</mo> <mroot> <mrow> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </mrow> <mn>3</mn> </mroot> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch of derivative function <strong><em>(M1)</em></strong></p>
<p>with its zero indicated <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>54.2</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}"> <mi>π</mi> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )"> <mo>=</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>700</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27\,679.0 \ldots }}{{2000}}"> <mfrac> <mrow> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> </mrow> <mrow> <mn>2000</mn> </mrow> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by 2000.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 13.8395 \ldots "> <mo>=</mo> <mn>13.8395</mn> <mo>…</mo> </math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes: </strong>Follow through from part (g).</p>
<p> </p>
<p>14 (cans) <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13.8395 \ldots "> <mn>13.8395</mn> <mo>…</mo> </math></span> to the next integer.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
<mrow>
<mtext>E</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>
<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability of drawing three blue marbles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the probability of drawing three white marbles is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{6}"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bag contains a total of ten marbles of which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> are white. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jill plays the game nine times. Find the probability that she wins exactly two prizes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Grant plays the game until he wins two prizes. Find the probability that he wins his second prize on his eighth attempt.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X)"> <mrow> <mtext>E</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </math></span> formula <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0(p) + 1(0.5) + 2(0.3) + 3(q) = 1.2"> <mn>0</mn> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">(</mo> <mn>0.5</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>0.3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>3</mn> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.2</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = \frac{1}{{30}}"> <mi>q</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>30</mn> </mrow> </mfrac> </math></span>, 0.0333 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of summing probabilities to 1 <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + 0.5 + 0.3 + q = 1"> <mi>p</mi> <mo>+</mo> <mn>0.5</mn> <mo>+</mo> <mn>0.3</mn> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{1}{6},{\text{ }}0.167"> <mi>p</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.167</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P (3 blue)}} = \frac{1}{{30}},{\text{ }}0.0333"> <mrow> <mtext>P (3 blue)</mtext> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>30</mn> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.0333</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid reasoning <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P (3 white)}} = {\text{P(0 blue)}}"> <mrow> <mtext>P (3 white)</mtext> </mrow> <mo>=</mo> <mrow> <mtext>P(0 blue)</mtext> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(3 white)}} = \frac{1}{6}"> <mrow> <mtext>P(3 white)</mtext> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span> <strong><em>AG</em></strong> <strong><em>N0</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid method <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(3 white)}} = \frac{w}{{10}} \times \frac{{w - 1}}{9} \times \frac{{w - 2}}{8},{\text{ }}\frac{{_w{C_3}}}{{_{10}{C_3}}}"> <mrow> <mtext>P(3 white)</mtext> </mrow> <mo>=</mo> <mfrac> <mi>w</mi> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>9</mn> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>2</mn> </mrow> <mn>8</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <msub> <mi></mi> <mi>w</mi> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> <mrow> <msub> <mi></mi> <mrow> <mn>10</mn> </mrow> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct equation <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{w}{{10}} \times \frac{{w - 1}}{9} \times \frac{{w - 2}}{8} = \frac{1}{6},{\text{ }}\frac{{_w{C_3}}}{{_{10}{C_3}}} = 0.167"> <mfrac> <mi>w</mi> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>9</mn> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>2</mn> </mrow> <mn>8</mn> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <msub> <mi></mi> <mi>w</mi> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> <mrow> <msub> <mi></mi> <mrow> <mn>10</mn> </mrow> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0.167</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 6"> <mi>w</mi> <mo>=</mo> <mn>6</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(n,{\text{ }}p),{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{q^{n - r}},{\text{ }}{(0.167)^2}{(0.833)^7},{\text{ }}\left( {\begin{array}{*{20}{c}} 9 \\ 2 \end{array}} \right)"> <mrow> <mtext>B</mtext> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mi>p</mi> <mi>r</mi> </msup> </mrow> <mrow> <msup> <mi>q</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>r</mi> </mrow> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>0.167</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>0.833</mn> <msup> <mo stretchy="false">)</mo> <mn>7</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>0.279081</p>
<p>0.279 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing one prize in first seven attempts <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right),{\text{ }}{\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6}"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>6</mn> </msup> </mrow> </math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right){\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6},{\text{ }}0.390714"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>6</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.390714</mn> </math></span></p>
<p>correct approach <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right){\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6} \times \frac{1}{6}"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>6</mn> </msup> </mrow> <mo>×</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span></p>
<p>0.065119</p>
<p>0.0651 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \geqslant 0">
<mi>a</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \geqslant 0">
<mi>b</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 0.3 - a"> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the greatest possible expected value and the least possible expected value.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct approach <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A1</span></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 0.5 + b + a = 1"> <mn>0.2</mn> <mo>+</mo> <mn>0.5</mn> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.7 + a + b = 1"> <mn>0.7</mn> <mo>+</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 0.3 - a"> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </math></span> <em><strong>AG</strong></em><em><strong> N0</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 4 \times 0.5 + a \times b + \left( {a + b - 0.5} \right) \times a"> <mn>0.2</mn> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> <mo>+</mo> <mi>a</mi> <mo>×</mo> <mi>b</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−</mo> <mn>0.5</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 2 + a \times b - 0.2a"> <mn>0.2</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mi>a</mi> <mo>×</mo> <mi>b</mi> <mo>−</mo> <mn>0.2</mn> <mi>a</mi> </math></span></p>
<p>valid attempt to express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> in one variable <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 4 \times 0.5 + a \times \left( {0.3 - a} \right) + \left( { - 0.2} \right) \times a"> <mn>0.2</mn> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> <mo>+</mo> <mi>a</mi> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>0.2</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.2 + 0.1a - {a^2}"> <mn>2.2</mn> <mo>+</mo> <mn>0.1</mn> <mi>a</mi> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </math>,</span></p>
<p><em> </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 4 \times 0.5 + \left( {0.3 - b} \right) \times b + \left( { - 0.2} \right) \times \left( {0.3 - b} \right)"> <mn>0.2</mn> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>−</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>b</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>0.2</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>−</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.14 + 0.5b - {b^2}"> <mn>2.14</mn> <mo>+</mo> <mn>0.5</mn> <mi>b</mi> <mo>−</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>correct value of greatest <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.2025"> <mn>2.2025</mn> </math></span> (exact)</p>
<p>valid attempt to find least value <em><strong>(M1)</strong></em></p>
<p><em>eg</em> graph with minimum indicated, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( 0 \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </math></span> <strong>and </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( {0.3} \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><em> </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0{\text{, }}2.2} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mrow> <mtext>, </mtext> </mrow> <mn>2.2</mn> </mrow> <mo>)</mo> </mrow> </math></span> <strong>and</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.3{\text{, }}2.14} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mrow> <mtext>, </mtext> </mrow> <mn>2.14</mn> </mrow> <mo>)</mo> </mrow> </math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span></p>
<p><em> </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0{\text{, }}2.14} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mrow> <mtext>, </mtext> </mrow> <mn>2.14</mn> </mrow> <mo>)</mo> </mrow> </math></span> <strong>and</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.3{\text{, }}2.2} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mrow> <mtext>, </mtext> </mrow> <mn>2.2</mn> </mrow> <mo>)</mo> </mrow> </math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span></p>
<p>correct value of least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.14"> <mn>2.14</mn> </math></span> (exact)</p>
<p>difference <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="= 0.0625"> <mo>=</mo> <mn>0.0625</mn> </math></span> (exact) <em><strong>A1</strong></em><em><strong> N2</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The time it takes Suzi to drive from home to work each morning is normally distributed with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> minutes and a standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> minutes.</p>
<p>On <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math> of days, it takes Suzi longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math> minutes to drive to work.</p>
</div>
<div class="specification">
<p>Suzi will be late to work if it takes her longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes to drive to work. The time it takes to drive to work each day is independent of any other day.</p>
<p>Suzi will work five days next week.</p>
</div>
<div class="specification">
<p>Suzi will work <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> days this month. She will receive a bonus if she is on time at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> of those days.</p>
<p>So far this month, she has worked <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> days and been on time <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> of those days.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On a randomly selected day, find the probability that Suzi’s drive to work will take longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that she will be late to work at least one day next week.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Suzi will be late to work at least one day next week, find the probability that she will be late less than three times.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Suzi will receive a bonus.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>35</mn><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>40</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>25</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>40</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></math> <em><strong>(M1)</strong></em></p>
<p>attempt to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> graphically or numerically using the GDC <em><strong>(M1)</strong></em></p>
<p>graph of normal curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>35</mn><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>40</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>25</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>40</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></math><br>OR table of values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>40</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>40</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>413011</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>41</mn></math> (min) <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>35</mn><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>40</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>25</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>40</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>75</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>674489</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>valid equation using their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-score (clearly identified as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-score and not a probability) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>40</mn><mo>-</mo><mn>35</mn></mrow><mi>σ</mi></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>674489</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>674489</mn><mo>…</mo><mi>σ</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>413011</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>41</mn></math> (min) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>45</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0886718</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0887</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial probability <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0886718</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>≥</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>≥</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>3</mn></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>5</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>371400</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>≥</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>371</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing conditional probability in context <em><strong>(M1)</strong></em></p>
<p>finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close="}"><mrow><mi>L</mi><mo><</mo><mn>3</mn></mrow></mfenced><mo>∩</mo><mfenced open="{" close="}"><mrow><mi>L</mi><mo>≥</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mfenced open="{" close="}"><mrow><mi>L</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>L</mi><mo>=</mo><mn>2</mn></mrow></mfenced></math> (may be seen in conditional probability) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>L</mi><mo>=</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>36532</mn><mo>…</mo></math> (may be seen in conditional probability) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mi>L</mi><mo><</mo><mn>3</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>L</mi><mo>≥</mo><mn>1</mn></menclose></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>36532</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>37140</mn><mo>…</mo></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>983636</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>984</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognizing that Suzi can be late no more than once (in the remaining six days) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>6</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0886718</mn><mo>…</mo></mrow></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is the number of days late <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>0</mn></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>907294</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mtext>Suzi gets a bonus</mtext></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>907</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The first two marks may be awarded independently.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>recognizing that Suzi must be on time at least five times (of the remaining six days) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>6</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>911328</mn><mo>…</mo></mrow></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is the number of days on time <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>4</mn></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>0927052</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>5</mn></mrow></mfenced><mtext>+</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>6</mn></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>334434</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>572860</mn><mo>…</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>907294</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mtext>Suzi gets a bonus</mtext></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>907</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The first two marks may be awarded independently.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a) many candidates did not know to use inverse normal to find a <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math> value. Some did find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, then rounded it to 3 sf and got an incorrect value for sigma.</p>
<p>Part (b) was mostly well done.</p>
<p>In (c) most recognised the binomial and handled 'at least one' correctly.</p>
<p>In (d) many recognised conditional probability, but most candidates were not able to find the intersection of the events as P(1) + P(2).</p>
<p>In part (e), those candidates who did understand what to do often misunderstood that they needed to look at 1 or no more lates and just considered one more late. Something similar happened to those who approached the question by considering the times Suzi was on time. </p>
<p>This question was only correctly answered by a few, and students tended to perform either very well or very poorly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of ln <em>x</em> and ln <em>y</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between ln <em>x</em> and ln <em>y</em> can be modelled by the regression equation ln <em>y</em> = <em>a</em> ln <em>x</em> + <em>b</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the value of <em>y</em> when<em> x</em> = 3.57.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between <em>x</em> and <em>y</em> can be modelled using the formula <em>y</em> = <em>kx<sup>n</sup></em>, where <em>k</em> ≠ 0 , <em>n</em> ≠ 0 , <em>n</em> ≠ 1.</p>
<p>By expressing ln <em>y</em> in terms of ln <em>x</em>, find the value of <em>n</em> and of <em>k</em>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> one correct value</p>
<p>−0.453620, 6.14210</p>
<p><em>a</em> = −0.454, <em>b</em> = 6.14 <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution <em><strong> (A1)</strong></em></p>
<p><em>eg </em>−0.454 ln 3.57 + 6.14</p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> ln <em>y</em> = 5.56484</p>
<p>261.083 (260.409 from 3 sf)</p>
<p><em>y</em> = 261, (<em>y</em> = 260 from 3sf) <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> If no working shown, award <em><strong>N1</strong></em> for 5.56484.<br>If no working shown, award <em><strong>N2</strong> </em>for ln <em>y</em> = 5.56484.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach for expressing ln <em>y</em> in terms of ln <em>x</em> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = {\text{ln}}\,\left( {k{x^n}} \right),\,\,{\text{ln}}\,\left( {k{x^n}} \right) = a\,{\text{ln}}\,x + b">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>n</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>n</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span></p>
<p>correct application of addition rule for logs <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,k + {\text{ln}}\,\left( {{x^n}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mi>n</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct application of exponent rule for logs <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,k + n\,{\text{ln}}\,x">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>+</mo>
<mi>n</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span></p>
<p>comparing one term with regression equation (check <em><strong>FT</strong></em>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = a,\,\,b = {\text{ln}}\,k">
<mi>n</mi>
<mo>=</mo>
<mi>a</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</math></span></p>
<p>correct working for <em>k</em> <strong>(A1)</strong></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,k = 6.14210,\,\,\,k = {e^{6.14210}}">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>=</mo>
<mn>6.14210</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mn>6.14210</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>465.030</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = - 0.454,\,\,k = 465">
<mi>n</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.454</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>=</mo>
<mn>465</mn>
</math></span> (464 from 3sf) <em><strong>A1A1 N2N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{{\text{ln}}\,y}} = {e^{a\,{\text{ln}}\,x + b}}">
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>correct use of exponent laws for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{a\,{\text{ln}}\,x + b}}">
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{e^{a\,{\text{ln}}\,x}} \times {e^b}">
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mi>e</mi>
<mi>b</mi>
</msup>
</mrow>
</math></span></p>
<p>correct application of exponent rule for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\,{\text{ln}}\,x">
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,{x^a}">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>x</mi>
<mi>a</mi>
</msup>
</mrow>
</math></span></p>
<p>correct equation in<em> y</em> <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {x^a} \times {e^b}">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mi>a</mi>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mi>e</mi>
<mi>b</mi>
</msup>
</mrow>
</math></span></p>
<p>comparing one term with equation of model (check <em><strong>FT</strong></em>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = {e^b},\,\,n = a">
<mi>k</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mi>b</mi>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>n</mi>
<mo>=</mo>
<mi>a</mi>
</math></span></p>
<p>465.030</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = - 0.454,\,\,k = 465">
<mi>n</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.454</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>=</mo>
<mn>465</mn>
</math></span> (464 from 3sf) <em><strong>A1A1 N2N2</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>valid approach for expressing ln <em>y</em> in terms of ln <em>x</em> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = {\text{ln}}\,\left( {k{x^n}} \right),\,\,{\text{ln}}\,\left( {k{x^n}} \right) = a\,{\text{ln}}\,x + b">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>n</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>x</mi>
<mi>n</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span></p>
<p>correct application of exponent rule for logs (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,\left( {{x^a}} \right) + b">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mi>a</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
</math></span></p>
<p>correct working for <em>b</em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = {\text{ln}}\,\left( {{e^b}} \right)">
<mi>b</mi>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>e</mi>
<mi>b</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct application of addition rule for logs <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,\left( {{e^b}{x^a}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>e</mi>
<mi>b</mi>
</msup>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mi>a</mi>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>comparing one term with equation of model (check <em><strong>FT</strong></em>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = {e^b},\,\,n = a">
<mi>k</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mi>b</mi>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>n</mi>
<mo>=</mo>
<mi>a</mi>
</math></span></p>
<p>465.030</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = - 0.454,\,\,k = 465">
<mi>n</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.454</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
<mo>=</mo>
<mn>465</mn>
</math></span> (464 from 3sf) <em><strong>A1A1 N2N2</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a group of 35 students, some take art class (<em>A</em>) and some take music class (<em>M</em>). 5 of these students do not take either class. This information is shown in the following Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>One student from the group is chosen at random. Find the probability that</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of students in the group who take art class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the student does not take art class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the student takes either art class or music class, but not both.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {A \cap M'} \right) + \left( {A \cap M} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<msup>
<mi>M</mi>
<mo>′</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>M</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{17}}{{35}}">
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
</math></span>, 11 + 6</p>
<p>number of students taking art class = 17 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p>13 + 5, 35 − 17, 18, 1 − P(<em>A</em>)</p>
<p>0.514285</p>
<p>P(<em>A'</em>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{18}}{{35}}">
<mfrac>
<mrow>
<mn>18</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
</math></span> (exact), 0.514 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p>11 + 13, 35 − 6 − 5, 24</p>
<p>0.685714</p>
<p>P(<em>A</em> or <em>M</em> but not both) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24}}{{35}}">
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
</math></span> (exact), 0.686 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The marks obtained by nine Mathematical Studies SL students in their projects (<em>x</em>) and their final IB examination scores (<em>y</em>) were recorded. These data were used to determine whether the project mark is a good predictor of the examination score. The results are shown in the table.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The equation of the regression line <em>y</em> on <em>x</em> is <em>y</em> = <em>mx</em> + <em>c</em>.</p>
</div>
<div class="specification">
<p>A tenth student, Jerome, obtained a project mark of 17.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
<mrow>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean project mark.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
<mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean examination score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <em>r </em>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <em>m</em> and of <em>c</em> for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the point M (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
<mrow>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
<mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>) lies on the regression line <em>y</em> on <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression line <em>y</em> on <em>x</em> to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether it is valid to use the regression line y on x to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In his final IB examination Jerome scored 65.</p>
<p>Calculate the percentage error in Jerome’s estimated examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>14 <em><strong>(G1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>54 <em><strong>(G1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.5 <em><strong>(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em> = 0.875, <em>c</em> = 41.75 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {m = \frac{7}{8}{\text{,}}\,\,c = \frac{{167}}{4}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>m</mi>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>8</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>c</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>167</mn>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 0.875 seen. Award <em><strong>(A1)</strong></em> for 41.75 seen. If 41.75 is rounded to 41.8 do not award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = 0.875(14) + 41.75 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into their regression line. Follow through from parts (a)(i) and (b)(i).</p>
<p> </p>
<p>= 54</p>
<p>and so the mean point lies on the regression line <em><strong>(A1)</strong></em></p>
<p>(accept 54 is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
<mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean value of the <em>y</em> data)</p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)</strong></em> unless the conclusion is explicitly stated and the 54 seen. The <em><strong>(A1)</strong></em> can be awarded only if their conclusion is consistent with their equation and it lies on the line.</p>
<p>The use of 41.8 as their <em>c</em> value precludes awarding <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>54 = 0.875(14) + 41.75 <em><strong>(M1)</strong></em></p>
<p>54 = 54</p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into their regression line. Follow through from parts (a)(i) and (b)(i).</p>
<p> </p>
<p>and so the mean point lies on the regression line <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)</strong></em> unless the conclusion is explicitly stated. Follow through from part (a). </p>
<p>The use of 41.8 as their <em>c</em> value precludes the awarding of <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = 0.875(17) + 41.75 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong> </em>for correct substitution into their regression line.</p>
<p> </p>
<p>= 56.6 (56.625) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the estimate is valid <em><strong>(A1)</strong></em></p>
<p>since this is interpolation <strong>and</strong> the correlation coefficient is large enough <em><strong>(R1)</strong></em></p>
<p><strong>OR</strong></p>
<p>the estimate is not valid <em><strong>(A1)</strong></em></p>
<p>since the correlation coefficient is not large enough <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)(R0)</strong></em>. The <em><strong>(R1)</strong></em> may be awarded for reasoning based on strength of correlation, but do not accept “correlation coefficient is not strong enough” or “correlation is not large enough”.</p>
<p>Award <em><strong>(A0)</strong></em><em><strong>(R0)</strong></em> for this method if no numerical answer to part (a)(iii) is seen.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{56.6 - 65}}{{65}}} \right| \times 100">
<mrow>
<mo>|</mo>
<mrow>
<mfrac>
<mrow>
<mn>56.6</mn>
<mo>−</mo>
<mn>65</mn>
</mrow>
<mrow>
<mn>65</mn>
</mrow>
</mfrac>
</mrow>
<mo>|</mo>
</mrow>
<mo>×</mo>
<mn>100</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into percentage error formula. Follow through from part (c)(i).</p>
<p> </p>
<p>= 12.9 (%)(12.9230…) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (c)(i). Condone use of percentage symbol.<br>Award <em><strong>(G0)</strong></em> for an answer of −12.9 with no working.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Emlyn plays many games of basketball for his school team. The number of minutes he plays in each game follows a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes.</p>
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn><mo> </mo><mtext>minutes</mtext></math>.</p>
</div>
<div class="specification">
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>minutes</mtext></math>.</p>
</div>
<div class="specification">
<p>The standard deviation of the number of minutes Emlyn plays in any game is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
</div>
<div class="specification">
<p>There is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mo>%</mo></math> chance Emlyn plays less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> minutes in a game.</p>
</div>
<div class="specification">
<p>Emlyn will play in two basketball games today.</p>
</div>
<div class="specification">
<p>Emlyn and his teammate Johan each practise shooting the basketball multiple times from a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>. A record of their performance over the weekend is shown in the table below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>On Monday, Emlyn and Johan will practise and each will shoot <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math> times from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram to represent this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>7</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability he plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in one game and more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in the other game.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of successful shots Emlyn will make on Monday, based on the results from Saturday and Sunday.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Emlyn claims the results from Saturday and Sunday show that his expected number of successful shots will be more than Johan’s.</p>
<p>Determine if Emlyn’s claim is correct. Justify your reasoning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong><img src=""> </strong> <strong><em>(A1)(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for bell shaped curve with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> <strong>or</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn></math> indicated. Award <em><strong>(A1)</strong></em> for approximately correct shaded region.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math><strong> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation using <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>3</mn></math> <strong>OR</strong> correctly shaded diagram indicating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn></math>. Strict or weak inequalities are accepted in parts (b), (c) and (d).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow><mn>2</mn></mfrac></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math><strong> </strong> <strong><em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M0)(M1)</strong></em> for unsupported <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow><mn>2</mn></mfrac></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>13</mn><mo>.</mo><mn>6</mn><mo>+</mo><mfrac><mrow><mn>17</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <strong>OR</strong> the midpoint of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn></math>. <br>Award at most <em><strong>(M1)(M0)</strong></em> if the final answer is not seen. Award <em><strong>(M0)(M0)</strong></em> for using known values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>7</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>4</mn></math> to validate <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>17</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>13</mn><mo>.</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo>.</mo><mn>7</mn></math><strong> </strong> <strong><em>(AG)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>13</mn><mo>≤</mo><mi>T</mi><mo>≤</mo><mn>18</mn></mrow></mfenced></math><strong> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation <strong>OR</strong> correctly shaded diagram indicating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math>.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>468</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>46</mn><mo>.</mo><mn>8</mn><mo>%</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo></mrow></mfenced></math> </strong> <strong><em>(A1)(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>≥</mo><mn>20</mn></mrow></mfenced></math><strong> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation <strong>OR</strong> correctly shaded diagram indicating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math>.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>141</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>14</mn><mo>.</mo><mn>1</mn><mo>%</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo></mrow></mfenced></math> </strong> <strong><em>(A1)(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math><strong> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><strong><img src=""> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability equation <strong>OR</strong> for a correctly shaded region with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> indicated to the right-hand side of the mean.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>.</mo><mn>7</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>16</mn><mo>.</mo><mn>7133</mn><mo>…</mo></mrow></mfenced></math> </strong> <strong><em>(A1)(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo><mo>×</mo><mn>2</mn></math><strong> </strong> <strong><em>(M1)(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>141187</mn><mo>…</mo><mo>×</mo><mn>0</mn><mo>.</mo><mn>467516</mn><mo>…</mo></mrow></mfenced></math> <strong><em>(M1)(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for the multiplication of their parts (c)(i) and (c)(ii), <em><strong>(M1)</strong></em> for multiplying their product by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> or for adding their products twice. Follow through from part (c).</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>132</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>13</mn><mo>.</mo><mn>2</mn><mo>%</mo><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>132014</mn><mo>…</mo></mrow></mfenced></math> </strong> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(G0)</strong></em> for an unsupported final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>066007</mn><mo>…</mo></math></p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>69</mn><mn>102</mn></mfrac><mo>×</mo><mn>200</mn></math><strong> </strong> <strong><em>(M1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability multiplied by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math>.</p>
<p><br><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>135</mn><mo>.</mo><mn>294</mn><mo>…</mo></mrow></mfenced></math> </strong> <strong><em>(A1)</em><em>(G2)</em></strong></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>67</mn><mn>98</mn></mfrac><mo>×</mo><mn>200</mn><mo>=</mo></mrow></mfenced><mo> </mo><mn>136</mn><mo>.</mo><mn>734</mn><mo>…</mo></math><strong> </strong> <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>137</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>136</mn><mo>.</mo><mn>734</mn><mo>…</mo></math> seen.</p>
<p><br>Emlyn is incorrect,<strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo><</mo><mn>137</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>135</mn><mo>.</mo><mn>294</mn><mo>…</mo><mo><</mo><mn>136</mn><mo>.</mo><mn>734</mn><mo>…</mo></mrow></mfenced></math> </strong> <strong><em>(R1)</em></strong></p>
<p><strong><br>Note:</strong> To award the final <em><strong>(R1)</strong></em>, both the conclusion and the comparison must be seen. Award at most <em><strong>(A0)(R1)</strong></em><strong>(ft)</strong> for consistent incorrect methods in parts (f) and (g).</p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>67</mn><mn>98</mn></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>684</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>683673</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>69</mn><mn>102</mn></mfrac><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>676</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>676470</mn><mo>…</mo></mrow></mfenced></math><strong> </strong> <strong><em>(A1)</em></strong></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for both correct probabilities seen.</p>
<p><br>Emlyn is incorrect,<strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>676</mn><mo><</mo><mn>0</mn><mo>.</mo><mn>684</mn></math> </strong> <strong><em>(R1)</em></strong></p>
<p><strong><br>Note:</strong> To award the final <em><strong>(R1)</strong></em>, both the conclusion and the comparison must be seen. Award at most <em><strong>(A0)(R1)</strong></em><strong>(ft)</strong> for consistent incorrect methods in parts (f) and (g).</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>On a school excursion, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> students visited an amusement park. The amusement park’s main attractions are rollercoasters (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">R</mtext></math>), water slides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">W</mtext></math>), and virtual reality rides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">V</mtext></math>).</p>
<p>The students were asked which main attractions they visited. The results are shown in the Venn diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> students visited the rollercoasters or the water slides.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students who visited at least two types of main attraction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>(</mo><mo> </mo><mi>R</mi><mo>∩</mo><mi>W</mi><mo>)</mo><mo> </mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the rollercoasters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the virtual reality rides.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine whether the events in <strong>parts (d)(i)</strong> and <strong>(d)(ii)</strong> are independent. Justify your reasoning. </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn><mo>-</mo><mfenced><mrow><mn>32</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>5</mn></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn><mo>-</mo><mn>68</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong><br></strong><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up a correct expression.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>6</mn></math> <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mfenced><mrow><mn>74</mn><mo>+</mo><mn>18</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mn>92</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>-</mo><mfenced><mrow><mn>32</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>5</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn><mo>+</mo><mn>18</mn><mo>+</mo><mn>6</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up a correct expression. Follow through from part (a)(i) but only for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>b</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>8</mn></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong><br>Note:</strong> Follow through from part(a)(i). The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> must be greater or equal to zero for the <em><strong>(A1)</strong></em><strong>(ft)</strong> to be awarded.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>+</mo><mn>5</mn><mo>+</mo><mn>12</mn><mo>+</mo><mn>10</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for adding <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>12</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn></math> <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math> <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>58</mn><mn>100</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>29</mn><mn>50</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>58</mn><mo>,</mo><mo> </mo><mn>58</mn><mo>%</mo></mrow></mfenced></math> <em><strong>(A1)(A1)(G2)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator. Award<em><strong>(A1)</strong></em> for the correct denominator. Award <em><strong>(A0)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>58</mn></math> only.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>45</mn><mn>100</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>9</mn><mn>20</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>45</mn><mo>,</mo><mo> </mo><mn>45</mn><mo>%</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Follow through from their denominator from part (d)(i).</p>
<p><em><strong><br></strong></em><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>they are not independent <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>58</mn><mn>100</mn></mfrac><mo>×</mo><mfrac><mn>45</mn><mn>100</mn></mfrac><mo>≠</mo><mfrac><mn>17</mn><mn>100</mn></mfrac></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>261</mn><mo>≠</mo><mn>0</mn><mo>.</mo><mn>17</mn></math> <em><strong>(R1)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Comparison of numerical values must be seen for <em><strong>(R1)</strong></em> to be awarded.<br>Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from parts (d)(i) and (d)(ii).</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>At a school, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo>%</mo></math> of the students play a sport and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo>%</mo></math> of the students are involved in theatre. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo>%</mo></math> of the students do neither activity.</p>
<p>A student is selected at random.</p>
</div>
<div class="specification">
<p>At the school <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>48</mn><mo>%</mo></math> of the students are girls, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math> of the girls are involved in theatre.</p>
<p>A student is selected at random. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> be the event “the student is a girl” and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the event “the student is involved in theatre”.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student plays a sport and is involved in theatre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student is involved in theatre, but does not play a sport.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>G</mi><mo>∩</mo><mi>T</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine if the events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> are independent. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>S</mi></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mi>T</mi></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>'</mo><mo>∩</mo><mi>T</mi><mo>'</mo></mrow></mfenced><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>∩</mo><mi>T</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>∪</mo><mi>T</mi></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mfenced><mrow><mi>S</mi><mo>'</mo><mo>∩</mo><mi>T</mi><mo>'</mo></mrow></mfenced><mi mathvariant="normal">'</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>7</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>18</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>∩</mo><mi>T</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>∪</mo><mi>T</mi></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>18</mn></math></p>
<p><br><strong>OR</strong></p>
<p>a clearly labelled Venn diagram <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mi>S</mi><mo>∩</mo><mi>T</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>08</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>%</mo></math>) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> To obtain the <em><strong>M1</strong></em> for the Venn diagram all labels must be correct and in the correct sections. For example, do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>7</mn></math> in the area corresponding to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>∩</mo><mi>T</mi><mo>'</mo></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>∩</mo><mi>S</mi><mo>'</mo></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mi>T</mi></mfenced><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>∩</mo><mi>S</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>08</mn></mrow></mfenced></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>∩</mo><mi>S</mi><mo>'</mo></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>∪</mo><mi>S</mi></mrow></mfenced><mo>-</mo><mtext>P</mtext><mfenced><mi>S</mi></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>82</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p> <br><strong>OR</strong></p>
<p>a clearly labelled Venn diagram including <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>S</mi></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>T</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>∩</mo><mi>T</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>12</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>%</mo></math>) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>G</mi><mo>∩</mo><mi>T</mi></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>/</mo><mi>G</mi></mrow></mfenced><mtext>P</mtext><mfenced><mi>G</mi></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>25</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>48</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>12</mn></math> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>G</mi></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mi>T</mi></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>48</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>096</mn></math><strong> <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>G</mi></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mi>T</mi></mfenced><mi mathvariant="normal">≠</mi><mtext>P</mtext><mfenced><mrow><mi>G</mi><mo>∩</mo><mi>T</mi></mrow></mfenced><mi mathvariant="normal">⇒</mi></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> are not independent<strong> <em>R1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo> </mo><menclose notation="left"><mo> </mo><mi>G</mi></menclose></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>25</mn></math><strong> <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo> </mo><menclose notation="left"><mo> </mo><mi>G</mi></menclose></mrow></mfenced><mo>≠</mo><mtext>P</mtext><mfenced><mi>T</mi></mfenced><mi mathvariant="normal">⇒</mi></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> are not independent<strong> <em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <em><strong>A0R1</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The heights of adult males in a country are normally distributed with a mean of 180 cm and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma {\text{ cm}}">
<mi>σ</mi>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>. 17% of these men are shorter than 168 cm. 80% of them have heights between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(192 - h){\text{ cm}}">
<mo stretchy="false">(</mo>
<mn>192</mn>
<mo>−</mo>
<mi>h</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and 192 cm.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>finding the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span>-value for 0.17 <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = - 0.95416">
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.95416</mn>
</math></span></p>
<p>setting up equation to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ</mi>
</math></span><em>, <strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = \frac{{168 - 180}}{\sigma },{\text{ }} - 0.954 = \frac{{ - 12}}{\sigma }">
<mi>z</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>168</mn>
<mo>−</mo>
<mn>180</mn>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>0.954</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>12</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = 12.5765">
<mi>σ</mi>
<mo>=</mo>
<mn>12.5765</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong>EITHER (Properties of the Normal curve)</strong></p>
<p>correct value (seen anywhere) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 192) = 0.83,{\text{ P}}(X > 192) = 0.17">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mn>192</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.83</mn>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>192</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.17</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 192 - h) = 0.83 - 0.8,{\text{ P}}(X < 192 - h) = 1 - 0.8 - 0.17,">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mn>192</mn>
<mo>−</mo>
<mi>h</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.83</mn>
<mo>−</mo>
<mn>0.8</mn>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mn>192</mn>
<mo>−</mo>
<mi>h</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mn>0.8</mn>
<mo>−</mo>
<mn>0.17</mn>
<mo>,</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 192 - h) = 0.8 + 0.17">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>192</mn>
<mo>−</mo>
<mi>h</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.8</mn>
<mo>+</mo>
<mn>0.17</mn>
</math></span></p>
<p>correct equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(192 - h) - 180}}{{12.576}} = - 1.88079,{\text{ }}192 - h = 156.346">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>192</mn>
<mo>−</mo>
<mi>h</mi>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>180</mn>
</mrow>
<mrow>
<mn>12.576</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>1.88079</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>192</mn>
<mo>−</mo>
<mi>h</mi>
<mo>=</mo>
<mn>156.346</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p>35.6536</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 35.7">
<mi>h</mi>
<mo>=</mo>
<mn>35.7</mn>
</math></span> <strong><em>A1 N3</em></strong></p>
<p><strong>OR (Trial and error using different values of <em>h</em>)</strong></p>
<p><strong>two</strong> correct probabilities whose 2 sf will round up <strong>and</strong> down, respectively, to 0.8 <strong><em>A2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(192 - 35.6 < X < 192) = 0.799706,{\text{ P}}(157 < X < 192) = 0.796284,">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>192</mn>
<mo>−</mo>
<mn>35.6</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>192</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.799706</mn>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>157</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>192</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.796284</mn>
<mo>,</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(192 - 36 < X < 192) = 0.801824">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>192</mn>
<mo>−</mo>
<mn>36</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>192</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.801824</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 35.7">
<mi>h</mi>
<mo>=</mo>
<mn>35.7</mn>
</math></span> <strong><em>A2</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, and the average weight of the brain, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>, of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>
<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>
<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>
<div class="specification">
<p>The average body weight of mice is 0.023 kg.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it is valid to use the regression line to estimate the average weight of the brain of mice. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="529 - 3">
<mn>529</mn>
<mo>−</mo>
<mn>3</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 526{\text{ (kg)}}">
<mo>=</mo>
<mn>526</mn>
<mrow>
<mtext> (kg)</mtext>
</mrow>
</math></span> <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.922{\text{ }}(0.921857 \ldots )">
<mn>0.922</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.921857</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(very) strong, positive <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0.000986x + 0.0923{\text{ }}(y = 0.000985837 \ldots x + 0.0923391…)">
<mi>y</mi>
<mo>=</mo>
<mn>0.000986</mn>
<mi>x</mi>
<mo>+</mo>
<mn>0.0923</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>=</mo>
<mn>0.000985837</mn>
<mo>…</mo>
<mi>x</mi>
<mo>+</mo>
<mn>0.0923391</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.000986x">
<mn>0.000986</mn>
<mi>x</mi>
</math></span>, <strong><em>(A1) </em></strong>for 0.0923.</p>
<p>Award a maximum of <strong><em>(A1)(A0) </em></strong>if the answer is not an equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.000985837 \ldots (36) + 0.0923391 \ldots ">
<mn>0.000985837</mn>
<mo>…</mo>
<mo stretchy="false">(</mo>
<mn>36</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>0.0923391</mn>
<mo>…</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substituting 36 into their equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.128{\text{ (kg) }}\left( {0.127829 \ldots {\text{ (kg)}}} \right)">
<mn>0.128</mn>
<mrow>
<mtext> (kg) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.127829</mn>
<mo>…</mo>
<mrow>
<mtext> (kg)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(</em></strong><strong><em>A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (c). The final <strong><em>(A1) </em></strong>is awarded only if their answer is positive.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{0.127829 \ldots - 0.120}}{{0.120}}} \right| \times 100">
<mrow>
<mo>|</mo>
<mrow>
<mfrac>
<mrow>
<mn>0.127829</mn>
<mo>…</mo>
<mo>−</mo>
<mn>0.120</mn>
</mrow>
<mrow>
<mn>0.120</mn>
</mrow>
</mfrac>
</mrow>
<mo>|</mo>
</mrow>
<mo>×</mo>
<mn>100</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for their correct substitution into percentage error formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.52{\text{ }}(\% ){\text{ }}\left( {6.52442...{\text{ }}(\% )} \right)">
<mn>6.52</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">%</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>6.52442...</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">%</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (d). Do not accept a negative answer.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not valid <strong><em>(A1)</em></strong></p>
<p>the mouse is smaller/lighter/weighs less than the cat (lightest mammal) <strong><em>(R1)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>as it would mean the mouse’s brain is heavier than the whole mouse <strong><em>(R1)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>0.023 kg is outside the given data range. <strong><em>(R1)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>Extrapolation <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong><em>(A1)(R0)</em></strong>. Do not accept percentage error as a reason for validity.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>At Penna Airport the probability, P(<em>A</em>), that all passengers arrive on time for a flight is 0.70. The probability, P(<em>D</em>), that a flight departs on time is 0.85. The probability that all passengers arrive on time for a flight and it departs on time is 0.65.</p>
</div>
<div class="specification">
<p>The number of hours that pilots fly per week is normally distributed with a mean of 25 hours and a standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ<!-- σ --></mi>
</math></span>. 90 % of pilots fly less than 28 hours in a week.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that event <em>A</em> and event <em>D</em> are <strong>not</strong> independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap D'} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<msup>
<mi>D</mi>
<mo>′</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> Given that all passengers for a flight arrive on time, find the probability that the flight does <strong>not</strong> depart on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>All flights have two pilots. Find the percentage of flights where <strong>both</strong> pilots flew more than 30 hours last week.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>multiplication of P(<em>A</em>) and P(<em>D</em>) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.70 × 0.85, 0.595</p>
<p>correct reasoning for their probabilities <em><strong>R1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.595 \ne 0.65">
<mn>0.595</mn>
<mo>≠</mo>
<mn>0.65</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.70 \times 0.85 \ne {\text{P}}\left( {A \cap D} \right)">
<mn>0.70</mn>
<mo>×</mo>
<mn>0.85</mn>
<mo>≠</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>D</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><em>A</em> and <em>D</em> are not independent <em><strong>AG N0</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>calculation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {D\left| A \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>D</mi>
<mrow>
<mo>|</mo>
<mi>A</mi>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{13}}{{14}}">
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
</mfrac>
</math></span>, 0.928</p>
<p>correct reasoning for their probabilities <em><strong>R1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.928 \ne 0.85">
<mn>0.928</mn>
<mo>≠</mo>
<mn>0.85</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.65}}{{0.7}}{\text{P}}\left( D \right)">
<mfrac>
<mrow>
<mn>0.65</mn>
</mrow>
<mrow>
<mn>0.7</mn>
</mrow>
</mfrac>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>D</mi>
<mo>)</mo>
</mrow>
</math></span></p>
<p><em>A</em> and <em>D</em> are not independent <em><strong>AG N0</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) - {\text{P}}\left( {A \cap D} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>D</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span> , 0.7 − 0.65 , correct shading and/or value on Venn diagram</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap D'} \right) = 0.05">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<msup>
<mi>D</mi>
<mo>′</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.05</mn>
</math></span> <em><strong>A1 N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">recognizing conditional probability (seen anywhere) <strong><em><span style="font-family: 'Verdana',sans-serif;">(M1)</span></em></strong></span></p>
<p><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">eg</span></em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {D' \cap A} \right)}}{{{\text{P}}\left( A \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>D</mi>
<mo>′</mo>
</msup>
<mo>∩</mo>
<mi>A</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A\left| B \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mrow>
<mo>|</mo>
<mi>B</mi>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">correct working <strong><em><span style="font-family: 'Verdana',sans-serif;">(A1)</span></em></strong></span></p>
<p><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">eg</span></em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.05}}{{0.7}}">
<mfrac>
<mrow>
<mn>0.05</mn>
</mrow>
<mrow>
<mn>0.7</mn>
</mrow>
</mfrac>
</math></span></span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">0.071428</span></p>
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {D'\left| A \right.} \right) = \frac{1}{{14}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>D</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>|</mo>
<mi>A</mi>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>14</mn>
</mrow>
</mfrac>
</math></span> , 0.0714 <strong><em><span style="font-family: 'Verdana',sans-serif;">A1 N2</span></em></strong></span></p>
<p><em><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding standardized value for 28 hours (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 1.28155">
<mi>z</mi>
<mo>=</mo>
<mn>1.28155</mn>
</math></span></p>
<p style="text-align: start;"><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">correct working to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ</mi>
</math></span> <em><strong>(A1)</strong></em><br></span></p>
<p style="text-align: start;"><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.28155 = \frac{{28 - 25}}{\sigma }">
<mn>1.28155</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>28</mn>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{28 - 25}}{{1.28155}}">
<mfrac>
<mrow>
<mn>28</mn>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mrow>
<mn>1.28155</mn>
</mrow>
</mfrac>
</math></span></span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">2.34091</span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = 2.34">
<mi>σ</mi>
<mo>=</mo>
<mn>2.34</mn>
</math></span> <strong><em><span style="font-family: 'Verdana',sans-serif;">A1 N2</span></em></strong></span></p>
<p style="text-align: start;"><em><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > 30} \right) = 0.0163429">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mn>30</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.0163429</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p>valid approach (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left[ {{\text{P}}\left( {X > 30} \right)} \right]^2}">
<mrow>
<msup>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mn>30</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> , (0.01634)<sup>2</sup> , B(2, 0.0163429) , 2.67E-4 , 2.66E-4</p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">0.0267090</span></p>
<p style="text-align: start;"><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">0.0267 % <strong><em><span style="font-family: 'Verdana',sans-serif;">A2 N3</span></em></strong></span></p>
<p style="text-align: start;"><em><strong><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[4 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The table below shows the distribution of test grades for 50 IB students at Greendale School.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.25.22.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05"></p>
</div>
<div class="specification">
<p>A student is chosen at random from these 50 students.</p>
</div>
<div class="specification">
<p>A second student is chosen at random from these 50 students.</p>
</div>
<div class="specification">
<p>The number of minutes that the 50 students spent preparing for the test was normally distributed with a mean of 105 minutes and a standard deviation of 20 minutes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean test grade of the students;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median test grade of the students.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student scored a grade 5 or higher.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the first student chosen at random scored a grade 5 or higher, find the probability that both students scored a grade 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that a student chosen at random spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of students that spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1(1) + 3(2) + 7(3) + 13(4) + 11(5) + 10(6) + 5(7)}}{{50}} = \frac{{230}}{{50}}">
<mfrac>
<mrow>
<mn>1</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>7</mn>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>13</mn>
<mo stretchy="false">(</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>11</mn>
<mo stretchy="false">(</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>10</mn>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>5</mn>
<mo stretchy="false">(</mo>
<mn>7</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>230</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into mean formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.6">
<mo>=</mo>
<mn>4.6</mn>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.46{\text{ }}(1.45602 \ldots )">
<mn>1.46</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1.45602</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>5 <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 4">
<mn>6</mn>
<mo>−</mo>
<mn>4</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for 6 and 4 seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2">
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{11 + 10 + 5}}{{50}}">
<mfrac>
<mrow>
<mn>11</mn>
<mo>+</mo>
<mn>10</mn>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11 + 10 + 5">
<mn>11</mn>
<mo>+</mo>
<mn>10</mn>
<mo>+</mo>
<mn>5</mn>
</math></span> seen.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{26}}{{50}}{\text{ }}\left( {\frac{{13}}{{25}},{\text{ }}0.52,{\text{ }}52\% } \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>26</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.52</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>52</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10}}{{{\text{their }}26}} \times \frac{9}{{49}}">
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mrow>
<mtext>their </mtext>
</mrow>
<mn>26</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>49</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10}}{{{\text{their }}26}}">
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mrow>
<mtext>their </mtext>
</mrow>
<mn>26</mn>
</mrow>
</mfrac>
</math></span> seen, <strong><em>(M1) </em></strong>for multiplying their first probability by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{9}{{49}}">
<mfrac>
<mn>9</mn>
<mrow>
<mn>49</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\frac{{10}}{{50}} \times \frac{9}{{49}}}}{{\frac{{26}}{{50}}}}">
<mfrac>
<mrow>
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>49</mn>
</mrow>
</mfrac>
</mrow>
<mrow>
<mfrac>
<mrow>
<mn>26</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
</mrow>
</mfrac>
</math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{10}}{{50}} \times \frac{9}{{49}}}">
<mrow>
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>49</mn>
</mrow>
</mfrac>
</mrow>
</math></span> seen, <strong><em>(M1) </em></strong>for dividing their first probability by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{their }}26}}{{50}}">
<mfrac>
<mrow>
<mrow>
<mtext>their </mtext>
</mrow>
<mn>26</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{45}}{{637}}{\text{ (}}0.0706,{\text{ }}0.0706436 \ldots ,{\text{ }}7.06436 \ldots \% )">
<mo>=</mo>
<mfrac>
<mrow>
<mn>45</mn>
</mrow>
<mrow>
<mn>637</mn>
</mrow>
</mfrac>
<mrow>
<mtext> (</mtext>
</mrow>
<mn>0.0706</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.0706436</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>7.06436</mn>
<mo>…</mo>
<mi mathvariant="normal">%</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (d).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X \geqslant 90)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>⩾</mo>
<mn>90</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-08-16_om_15.40.38.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05.f.i/M"> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for a diagram showing the correct shaded region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( > 0.5)">
<mo stretchy="false">(</mo>
<mo>></mo>
<mn>0.5</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.773{\text{ }}(0.773372 \ldots ){\text{ }}0.773{\text{ }}(0.773372 \ldots ,{\text{ }}77.3372 \ldots \% )">
<mn>0.773</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.773372</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.773</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.773372</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>77.3372</mn>
<mo>…</mo>
<mi mathvariant="normal">%</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.773372 \ldots \times 50">
<mn>0.773372</mn>
<mo>…</mo>
<mo>×</mo>
<mn>50</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 38.7{\text{ }}(38.6686 \ldots )">
<mo>=</mo>
<mn>38.7</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>38.6686</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (f)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p>For each student, the number of hours spent on social media (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>) and the number of IB Diploma points obtained (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>) are shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p>Use your graphic display calculator to find</p>
</div>
<div class="specification">
<p>Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between 3 and 30 hours on social media.</p>
<p>The equation of the regression line <em>y </em>on <em>x </em>for these ten female students is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="y = - \frac{2}{3}x + \frac{{125}}{3}.">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mrow>
<mn>125</mn>
</mrow>
<mn>3</mn>
</mfrac>
<mo>.</mo>
</math></span></p>
<p>An eleventh girl spent 34 hours on social media in the month before her IB Diploma examinations.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw a scatter diagram for these data. Use a scale of 2 cm to represent 5 hours on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and 2 cm to represent 10 points on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
<mrow>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean number of hours spent on social media;</p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
<mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
<mo stretchy="false">(</mo>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo stretchy="false">)</mo>
</math></span> on your scatter diagram and label this point M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for these eight male students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the given equation of the regression line to estimate the number of IB Diploma points that this girl obtained.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-07_om_08.41.53.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01.a/M"> <strong><em>(A4)</em></strong></p>
<p> </p>
<p><strong>Notes</strong>: Award <strong><em>(A1) </em></strong>for correct scale and labelled axes.</p>
<p>Award <strong><em>(A3) </em></strong>for 7 or 8 points correctly plotted,</p>
<p><strong><em>(A2) </em></strong>for 5 or 6 points correctly plotted,</p>
<p><strong><em>(A1) </em></strong>for 3 or 4 points correctly plotted.</p>
<p>Award at most <strong><em>(A0)(A3) </em></strong>if axes reversed.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> sufficient for labelling.</p>
<p>If graph paper is not used, award <strong><em>(A0)</em></strong>.</p>
<p>If an inconsistent scale is used, award <strong><em>(A0)</em></strong><em>. </em>Candidates’ points should be read from this scale <strong>where possible </strong>and awarded accordingly.</p>
<p>A scale which is too small to be meaningful (ie mm instead of cm) earns <strong><em>(A0) </em></strong>for plotted points.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x = 21">
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>=</mo>
<mn>21</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y = 31">
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>=</mo>
<mn>31</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
<mo stretchy="false">(</mo>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo stretchy="false">)</mo>
</math></span> correctly plotted on graph <strong><em>(A1)</em>(ft)</strong></p>
<p>this point labelled M <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from parts (b)(i) and (b)(ii).</p>
<p>Only accept M for labelling.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.973{\text{ }}( - 0.973388 \ldots )">
<mo>−</mo>
<mn>0.973</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>0.973388</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(G1) </em></strong>for 0.973, without minus sign.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 0.761x + 47.0{\text{ }}(y = - 0.760638 \ldots x + 46.9734 \ldots )">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.761</mn>
<mi>x</mi>
<mo>+</mo>
<mn>47.0</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.760638</mn>
<mo>…</mo>
<mi>x</mi>
<mo>+</mo>
<mn>46.9734</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.761x">
<mo>−</mo>
<mn>0.761</mn>
<mi>x</mi>
</math></span> and <strong><em>(A1)</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 47.0">
<mo>+</mo>
<mn>47.0</mn>
</math></span>. Award a maximum of <strong><em>(A1)(A0) </em></strong>if answer is not an equation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line on graph <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for <strong>straight line </strong>that passes through their M, <strong><em>(A1)</em>(ft) </strong>for line (extrapolated if necessary) that passes through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}47.0)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>47.0</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p>If M is not plotted or labelled, follow through from part (e).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{2}{3}(34) + \frac{{125}}{3}">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>34</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mfrac>
<mrow>
<mn>125</mn>
</mrow>
<mn>3</mn>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution.</p>
<p> </p>
<p>19 (points) <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>extrapolation <strong><em>(R1)</em></strong></p>
<p><strong>OR</strong></p>
<p>34 hours is outside the given range of data <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Do not accept ‘outlier’.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer produces 1500 boxes of breakfast cereal every day.</p>
<p>The weights of these boxes are normally distributed with a mean of 502 grams and a standard deviation of 2 grams.</p>
</div>
<div class="specification">
<p>All boxes of cereal with a weight between 497.5 grams and 505 grams are sold. The manufacturer’s income from the sale of each box of cereal is $2.00.</p>
</div>
<div class="specification">
<p>The manufacturer recycles any box of cereal with a weight <strong>not </strong>between 497.5 grams and 505 grams. The manufacturer’s recycling cost is $0.16 per box.</p>
</div>
<div class="specification">
<p>A <strong>different </strong>manufacturer produces boxes of cereal with weights that are normally distributed with a mean of 350 grams and a standard deviation of 1.8 grams.</p>
<p>This manufacturer sells all boxes of cereal that are above a minimum weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span>.</p>
<p>They sell 97% of the cereal boxes produced.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram that shows this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Find the probability that a box of cereal, chosen at random, is sold.</p>
<p>(ii) Calculate the manufacturer’s expected daily income from these sales.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the manufacturer’s expected daily recycling cost.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-08_om_11.51.39.png" alt="N16/5/MATSD/SP2/ENG/TZ0/04.a/M"></p>
<p><strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for bell shape with mean of 502.</p>
<p>Award <strong><em>(A1) </em></strong>for an indication of standard deviation <em>eg </em>500 and 504.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.921{\text{ }}(0.920968 \ldots ,{\text{ }}92.0968 \ldots \% )">
<mn>0.921</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.920968</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>92.0968</mn>
<mo>…</mo>
<mi mathvariant="normal">%</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for a diagram showing the correct shaded region.</p>
<p> </p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1500 \times 2 \times 0.920968 \ldots ">
<mn>1500</mn>
<mo>×</mo>
<mn>2</mn>
<mo>×</mo>
<mn>0.920968</mn>
<mo>…</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ }}(\$ ){\text{ }}2760{\text{ }}(2762.90 \ldots )">
<mo>=</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">$</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2760</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>2762.90</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from their answer to part (b)(i).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1500 \times 0.16 \times 0.079031 \ldots ">
<mn>1500</mn>
<mo>×</mo>
<mn>0.16</mn>
<mo>×</mo>
<mn>0.079031</mn>
<mo>…</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1500 \times 0.16 \times {\text{ their }}(1 - 0.920968 \ldots )">
<mn>1500</mn>
<mo>×</mo>
<mn>0.16</mn>
<mo>×</mo>
<mrow>
<mtext> their </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mn>0.920968</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1500 - 1381.45) \times 0.16">
<mo stretchy="false">(</mo>
<mn>1500</mn>
<mo>−</mo>
<mn>1381.45</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mn>0.16</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1500 - {\text{their }}1381.45) \times 0.16">
<mo stretchy="false">(</mo>
<mn>1500</mn>
<mo>−</mo>
<mrow>
<mtext>their </mtext>
</mrow>
<mn>1381.45</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mn>0.16</mn>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = (\$ )19.0{\text{ (}}18.9676 \ldots )">
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">$</mi>
<mo stretchy="false">)</mo>
<mn>19.0</mn>
<mrow>
<mtext> (</mtext>
</mrow>
<mn>18.9676</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="347{\text{ }}({\text{grams}}){\text{ }}(346.614 \ldots )">
<mn>347</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>grams</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>346.614</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(G2) </em></strong>for an answer that rounds to 346.</p>
<p>Award <strong><em>(G1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="353.385 \ldots ">
<mn>353.385</mn>
<mo>…</mo>
</math></span> seen without working (for finding the top 3%).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The final examination results obtained by a group of 3200 Biology students are summarized on the cumulative frequency graph.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>350 of the group obtained the highest possible grade in the examination.</p>
</div>
<div class="specification">
<p>The grouped frequency table summarizes the examination results of this group of students.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median of the examination results.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the final examination result required to obtain the highest possible grade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate an estimate of the mean examination result.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate an estimate of the standard deviation, giving your answer correct to <strong>three decimal places</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The teacher sets a grade boundary that is one standard deviation below the mean.</p>
<p>Use the cumulative frequency graph to estimate the number of students whose final examination result was below this grade boundary.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>60 <em><strong> (A2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>68 − 48 <em><strong> (A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for two correct quartiles seen, <em><strong>(M1)</strong></em> for finding the difference between their two quartiles.</p>
<p> </p>
<p>= 20 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3200 − 350 = 2850 <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 2850 seen. Follow through from their 3200.</p>
<p> </p>
<p>(Top grade boundary =) 76 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60 < <em>x</em> ≤ 80 <em><strong> (A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 60, 80 seen, <em><strong>(A1)</strong></em> for correct strict and weak inequalities.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>70 <em><strong> (A1)</strong></em><strong>(</strong><strong>ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c)(i).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>57.2 (57.1875) <em><strong> (A2)</strong></em><strong>(</strong><strong>ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c)(ii).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>18.496 <em><strong> (A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for 18.499.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>57.2 − 18.5 <em><strong> (M1)</strong></em></p>
<p>= 38.7 (38.6918…) <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting their standard deviation from their mean. Follow through from part (d) even if no working is shown.</p>
<p> </p>
<p>450 (students) <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Accept any answer within the range of 450 to 475, inclusive. Follow through from part (d), adjusting the acceptable range as necessary.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company performs an experiment on the efficiency of a liquid that is used to detect a nut allergy.</p>
<p>A group of 60 people took part in the experiment. In this group 26 are allergic to nuts. One person from the group is chosen at random.</p>
</div>
<div class="specification">
<p>A second person is chosen from the group.</p>
</div>
<div class="specification">
<p>When the liquid is added to a person’s blood sample, it is expected to turn blue if the person is allergic to nuts and to turn red if the person is not allergic to nuts.</p>
<p>The company claims that the probability that the test result is correct is 98% for people who are allergic to nuts and 95% for people who are not allergic to nuts.</p>
<p>It is known that 6 in every 1000 adults are allergic to nuts.</p>
<p>This information can be represented in a tree diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.31.34.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c.d.e.f.g"></p>
</div>
<div class="specification">
<p>An adult, who was not part of the original group of 60, is chosen at random and tested using this liquid.</p>
</div>
<div class="specification">
<p>The liquid is used in an office to identify employees who might be allergic to nuts. The liquid turned blue for <strong>38 </strong><strong>employees</strong>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both people chosen are <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy </strong>and complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this adult is allergic to nuts and the liquid turns blue.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the liquid turns blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the tested adult is allergic to nuts given that the liquid turned blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of employees, from this 38, who are allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34}}{{60}} \times \frac{{33}}{{59}}">
<mfrac>
<mrow>
<mn>34</mn>
</mrow>
<mrow>
<mn>60</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>33</mn>
</mrow>
<mrow>
<mn>59</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for their correct product.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.317{\text{ }}\left( {\frac{{187}}{{590}},{\text{ }}0.316949 \ldots ,{\text{ }}31.7\% } \right)">
<mo>=</mo>
<mn>0.317</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>187</mn>
</mrow>
<mrow>
<mn>590</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.316949</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>31.7</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-14_om_05.54.09.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c/M"> <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each correct pair of branches.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.006 \times 0.98">
<mn>0.006</mn>
<mo>×</mo>
<mn>0.98</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying 0.006 by 0.98.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.00588{\text{ }}\left( {\frac{{147}}{{25000}},{\text{ }}0.588\% } \right)">
<mo>=</mo>
<mn>0.00588</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>147</mn>
</mrow>
<mrow>
<mn>25000</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.588</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.006 \times 0.98 + 0.994 \times 0.05{\text{ }}(0.00588 + 0.994 \times 0.05)">
<mn>0.006</mn>
<mo>×</mo>
<mn>0.98</mn>
<mo>+</mo>
<mn>0.994</mn>
<mo>×</mo>
<mn>0.05</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.00588</mn>
<mo>+</mo>
<mn>0.994</mn>
<mo>×</mo>
<mn>0.05</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for their two correct products, <strong><em>(M1) </em></strong>for adding two products.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.0556{\text{ }}\left( {0.05558,{\text{ }}5.56\% ,{\text{ }}\frac{{2779}}{{50000}}} \right)">
<mo>=</mo>
<mn>0.0556</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.05558</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5.56</mn>
<mi mathvariant="normal">%</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>2779</mn>
</mrow>
<mrow>
<mn>50000</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from parts (c) and (d).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.006 \times 0.98}}{{0.05558}}">
<mfrac>
<mrow>
<mn>0.006</mn>
<mo>×</mo>
<mn>0.98</mn>
</mrow>
<mrow>
<mn>0.05558</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for their correct numerator, <strong><em>(M1) </em></strong>for their correct denominator.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.106{\text{ }}\left( {0.105793 \ldots ,{\text{ }}10.6\% ,{\text{ }}\frac{{42}}{{397}}} \right)">
<mo>=</mo>
<mn>0.106</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.105793</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>10.6</mn>
<mi mathvariant="normal">%</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>397</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from parts (d) and (e).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.105793 \ldots \times 38">
<mn>0.105793</mn>
<mo>…</mo>
<mo>×</mo>
<mn>38</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying 38 by their answer to part (f).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4.02{\text{ }}(4.02015 \ldots )">
<mo>=</mo>
<mn>4.02</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>4.02015</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Follow through from part (f). Use of 3 sf result from part (f) results in an answer of 4.03 (4.028).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>In a company it is found that 25 % of the employees encountered traffic on their way to work. From those who encountered traffic the probability of being late for work is 80 %.</p>
<p>From those who did not encounter traffic, the probability of being late for work is 15 %.</p>
<p>The tree diagram illustrates the information.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The company investigates the different means of transport used by their employees in the past year to travel to work. It was found that the three most common means of transport used to travel to work were public transportation (<em>P </em>), car (<em>C </em>) and bicycle (<em>B </em>).</p>
<p>The company finds that 20 employees travelled by car, 28 travelled by bicycle and 19 travelled by public transportation in the last year.</p>
<p>Some of the information is shown in the Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>There are 54 employees in the company.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>a</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee encountered traffic and was late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee was late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee encountered traffic given that they were late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who, in the last year, did not travel to work by car, bicycle or public transportation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {\left( {C \cup B} \right) \cap P'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>∩</mo> <msup> <mi>P</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = 0.2 <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>b</em> = 0.85 <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.25 × 0.8 <em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>(M1)</strong></em> for a correct product.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.2\,\,\,\left( {\,\frac{1}{5},\,\,\,20\% } \right)"> <mo>=</mo> <mn>0.2</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>20</mn> <mi mathvariant="normal">%</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.25 × 0.8 + 0.75 × 0.15 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their (0.25 × 0.8) and (0.75 × 0.15), <em><strong>(M1)</strong></em> for adding two products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.313\,\,\,\left( {0.3125,\,\,\,\frac{5}{{16}},\,\,\,31.3\% } \right)"> <mo>=</mo> <mn>0.313</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>0.3125</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>5</mn> <mrow> <mn>16</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>31.3</mn> <mi mathvariant="normal">%</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em><strong>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> only if answer does not exceed 1. Follow through from part (b)(i).</p>
<p><strong><em>[3 marks]</em></strong></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.25 \times 0.8}}{{0.25 \times 0.8 + 0.75 \times 0.15}}"> <mfrac> <mrow> <mn>0.25</mn> <mo>×</mo> <mn>0.8</mn> </mrow> <mrow> <mn>0.25</mn> <mo>×</mo> <mn>0.8</mn> <mo>+</mo> <mn>0.75</mn> <mo>×</mo> <mn>0.15</mn> </mrow> </mfrac> </math></span> <strong><em>(A1)</em>(ft)</strong><strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for a correct numerator (their part (b)(i)), <strong><em>(A1)</em>(ft)</strong> for a correct denominator (their part (b)(ii)). Follow through from parts (b)(i) and (b)(ii).</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.64\,\,\,\left( {\frac{{16}}{{25}},\,\,64{\text{% }}} \right)"> <mo>=</mo> <mn>0.64</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mn>25</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>64</mn> <mrow> <mtext>% </mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Award final <strong><em>(A1)</em>(ft)</strong> only if answer does not exceed 1.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>x</em> =) 3 <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(<em>y</em> =) 10 <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Following through from part (c)(i) but only if their <em>x</em> is less than or equal to 13.</p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>54 − (10 + 3 + 4 + 2 + 6 + 8 + 13) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting their correct sum from 54. Follow through from their part (c).</p>
<p>= 8 <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> only if their sum does not exceed 54. Follow through from their part (c).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 + 8 + 13 <em><strong>(M1)</strong></em></p>
<p><strong>Note</strong>: Award (M1) for summing 6, 8 and 13.</p>
<p>27 <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Adam is a beekeeper who collected data about monthly honey production in his bee hives. The data for six of his hives is shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.46.13.png" alt="N17/5/MATME/SP2/ENG/TZ0/08"></p>
<p>The relationship between the variables is modelled by the regression line with equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = aN + b">
<mi>P</mi>
<mo>=</mo>
<mi>a</mi>
<mi>N</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Adam has 200 hives in total. He collects data on the monthly honey production of all the hives. This data is shown in the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.49.33.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e"></p>
<p>Adam’s hives are labelled as low, regular or high production, as defined in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.51.25.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e_02"></p>
</div>
<div class="specification">
<p>Adam knows that 128 of his hives have a regular production.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this regression line to estimate the monthly honey production from a hive that has 270 bees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of low production hives.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of hives that have a high production.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adam decides to increase the number of bees in each low production hive. Research suggests that there is a probability of 0.75 that a low production hive becomes a regular production hive. Calculate the probability that 30 low production hives become regular production hives.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of setup <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 6.96103,{\text{ }}b = - 454.805">
<mi>a</mi>
<mo>=</mo>
<mn>6.96103</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>454.805</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 6.96,{\text{ }}b = - 455{\text{ (accept }}6.96x - 455)">
<mi>a</mi>
<mo>=</mo>
<mn>6.96</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>455</mn>
<mrow>
<mtext> (accept </mtext>
</mrow>
<mn>6.96</mn>
<mi>x</mi>
<mo>−</mo>
<mn>455</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1A1 N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = 270">
<mi>N</mi>
<mo>=</mo>
<mn>270</mn>
</math></span> into <strong>their</strong> equation <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6.96(270) - 455">
<mn>6.96</mn>
<mo stretchy="false">(</mo>
<mn>270</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>455</mn>
</math></span></p>
<p>1424.67</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 1420{\text{ (g)}}">
<mi>P</mi>
<mo>=</mo>
<mn>1420</mn>
<mrow>
<mtext> (g)</mtext>
</mrow>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>40 (hives) <strong><em>A1 N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="128 + 40">
<mn>128</mn>
<mo>+</mo>
<mn>40</mn>
</math></span></p>
<p>168 hives have a production less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1640">
<mi>k</mi>
<mo>=</mo>
<mn>1640</mn>
</math></span> <strong><em>A1 N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="200 - 168">
<mn>200</mn>
<mo>−</mo>
<mn>168</mn>
</math></span></p>
<p>32 (hives) <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize binomial distribution (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{B}}(n,{\text{ }}p),{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{(1 - p)^{n - r}}">
<mi>X</mi>
<mo>∼</mo>
<mrow>
<mtext>B</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>n</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>r</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mi>p</mi>
<mi>r</mi>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>p</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mi>r</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>correct values <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 40">
<mi>n</mi>
<mo>=</mo>
<mn>40</mn>
</math></span> (check <em><strong>FT</strong></em>) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.75">
<mi>p</mi>
<mo>=</mo>
<mn>0.75</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 30,{\text{ }}\left( {\begin{array}{*{20}{c}} {40} \\ {30} \end{array}} \right){0.75^{30}}{(1 - 0.75)^{10}}">
<mi>r</mi>
<mo>=</mo>
<mn>30</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>40</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>30</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mn>0.75</mn>
<mrow>
<mn>30</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mn>0.75</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow>
<mn>10</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>0.144364</p>
<p>0.144 <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following frequency table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_09.52.57.png" alt="M17/5/MATME/SP2/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mode.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the variance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{mode}} = 10">
<mrow>
<mtext>mode</mtext>
</mrow>
<mo>=</mo>
<mn>10</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x_{\max }} - {x_{\min }}">
<mrow>
<msub>
<mi>x</mi>
<mrow>
<mo movablelimits="true" form="prefix">max</mo>
</mrow>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>x</mi>
<mrow>
<mo movablelimits="true" form="prefix">min</mo>
</mrow>
</msub>
</mrow>
</math></span>, interval 2 to 11</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{range}} = 9">
<mrow>
<mtext>range</mtext>
</mrow>
<mo>=</mo>
<mn>9</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>7.14666</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{mean}} = 7.15">
<mrow>
<mtext>mean</mtext>
</mrow>
<mo>=</mo>
<mn>7.15</mn>
</math></span> <strong><em>A2</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that variance is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{({\text{sd}})^2}">
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>sd</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\operatorname{var} = {\sigma ^2},{\text{ 2.9060}}{{\text{5}}^2},{\text{ }}{2.92562^2}">
<mi>var</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> 2.9060</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>5</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mn>2.92562</mn>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2} = 8.44515">
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>8.44515</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2} = 8.45">
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>8.45</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, in grams, of oranges grown in an orchard, are normally distributed with a mean of 297 g. It is known that 79 % of the oranges weigh more than 289 g and 9.5 % of the oranges weigh more than 310 g.</p>
</div>
<div class="specification">
<p>The weights of the oranges have a standard deviation of σ.</p>
</div>
<div class="specification">
<p>The grocer at a local grocery store will buy the oranges whose weights exceed the 35th percentile.</p>
</div>
<div class="specification">
<p>The orchard packs oranges in boxes of 36.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that an orange weighs between 289 g and 310 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standardized value for 289 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of σ.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To the nearest gram, find the minimum weight of an orange that the grocer will buy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the grocer buys more than half the oranges in a box selected at random.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The grocer selects two boxes at random.</p>
<p>Find the probability that the grocer buys more than half the oranges in each box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct approach indicating subtraction <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.79 − 0.095, appropriate shading in diagram</p>
<p>P(289 < <em>w</em> < 310) = 0.695 (exact), 69.5 % <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p>eg 1 − <em>p</em>, 21</p>
<p>−0.806421</p>
<p><em>z</em> = −0.806 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>(i) & (ii)</p>
<p>correct expression for <em>z</em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{289 - u}}{\sigma }">
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mi>u</mi>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> 1 − <em>p</em>, 21</p>
<p>−0.806421</p>
<p><em>z</em> = −0.806 (seen anywhere) <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt to standardize <em><strong>(M1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = \frac{{289 - 297}}{z},\,\,\frac{{289 - 297}}{\sigma }">
<mi>σ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mn>297</mn>
</mrow>
<mi>z</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mn>297</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span></p>
<p>correct substitution with their <em>z</em> (do not accept a probability) <em><strong>A1</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.806 = \frac{{289 - 297}}{\sigma },\,\,\frac{{289 - 297}}{{ - 0.806}}">
<mo>−</mo>
<mn>0.806</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mn>297</mn>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mn>297</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>0.806</mn>
</mrow>
</mfrac>
</math></span></p>
<p>9.92037</p>
<p>σ = 9.92 <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>(i) & (ii)</p>
<p>correct expression for <em>z</em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{289 - u}}{\sigma }">
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mi>u</mi>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> 1 − <em>p</em>, 21</p>
<p>−0.806421</p>
<p><em>z</em> = −0.806 (seen anywhere) <em><strong>A1 N2</strong></em></p>
<p>valid attempt to set up an equation with <strong>their</strong> <em>z</em> (do not accept a probability) <em><strong>(M1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.806 = \frac{{289 - 297}}{\sigma },\,\,\frac{{289 - 297}}{{ - 0.806}}">
<mo>−</mo>
<mn>0.806</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mn>297</mn>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>289</mn>
<mo>−</mo>
<mn>297</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>0.806</mn>
</mrow>
</mfrac>
</math></span></p>
<p>9.92037</p>
<p>σ = 9.92 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> P(<em>W</em> < <em>w</em>) = 0.35, −0.338520 (accept 0.385320), diagram showing values in a standard normal distribution</p>
<p>correct score at the 35th percentile <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 293.177</p>
<p>294 (g) <em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong> If working shown, award <em><strong>(M1)(A1)A0</strong></em> for 293.<br>If no working shown, award <em><strong>N1</strong></em> for 293.177, <em><strong>N1</strong></em> for 293.</p>
<p>Exception to the <em><strong>FT</strong> </em>rule: If the score is incorrect, and working shown, award <em><strong>A1FT</strong></em> for correctly finding their minimum weight (by rounding up)</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of recognizing binomial (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{B}}\left( {36,\,\,p} \right),\,\,{}_n{C_a} \times {p^a} \times {q^{n - a}}">
<mi>X</mi>
<mo>∼</mo>
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>36</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msub>
<mrow>
</mrow>
<mi>n</mi>
</msub>
<mrow>
<msub>
<mi>C</mi>
<mi>a</mi>
</msub>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mi>p</mi>
<mi>a</mi>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mi>q</mi>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mi>a</mi>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>correct probability (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.65</p>
<p><strong>EITHER</strong></p>
<p>finding P(<em>X</em> ≤ 18) from GDC <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.045720</p>
<p>evidence of using complement <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 1−P(<em>X</em> ≤ 18)</p>
<p>0.954279</p>
<p>P(<em>X</em> > 18) = 0.954 <em><strong>A1 N2</strong></em></p>
<p><strong>OR</strong></p>
<p>recognizing P(<em>X</em> > 18) = P(<em>X</em> ≥ 19) <em><strong>(M1)</strong></em></p>
<p>summing terms from 19 to 36 <em><strong>(A1)</strong></em></p>
<p><em>eg</em> P(<em>X</em> = 19) + P(<em>X</em> = 20) + … + P(<em>X</em> = 36)</p>
<p>0.954279</p>
<p>P(<em>X</em> > 18) = 0.954 <em><strong>A1 N2</strong></em></p>
<p><strong>[<em>5</em><em> marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct calculation <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{0.954^2},\,\,\left( \begin{gathered} 2 \hfill \\ 2 \hfill \\ \end{gathered} \right){0.954^2}{\left( {1 - 0.954} \right)^0}">
<mrow>
<msup>
<mn>0.954</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mn>0.954</mn>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>0.954</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>0</mn>
</msup>
</mrow>
</math></span></p>
<p>0.910650</p>
<p>0.911 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory manufactures lamps. It is known that the probability that a lamp is found to be defective is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>05</mn></math>. A random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> lamps is tested.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that there is at least one defective lamp in the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that there is at least one defective lamp in the sample, find the probability that there are at most two defective lamps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognize that the variable has a Binomial distribution <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>30</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></mfenced></math></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>1</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><msup><mn>95</mn><mn>30</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>214638</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>785361</mn><mo>…</mo></math></p>
<p><br><strong>Note:</strong> The two <em><strong>M</strong></em> marks are independent of each other.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>1</mn></mrow></mfenced><mtext>=0.785</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of conditional probability <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>2</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>X</mi><mo>≥</mo><mn>1</mn></menclose></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mtext>at most 2 defective</mtext><mo> </mo><mo>|</mo><mo> </mo><mtext>at least 1 defective</mtext></mrow></mfenced></math></p>
<p><br><strong>Note:</strong> Recognition must be shown in context either in words or symbols but not just <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi></menclose></mrow></mfenced></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mn>1</mn><mo>≤</mo><mi>X</mi><mo>≤</mo><mn>2</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>1</mn></mrow></mfenced><mi mathvariant="normal">+</mi><mtext>P</mtext><mfenced><mrow><mi mathvariant="normal">X</mi><mo>=</mo><mn>2</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>597540</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>785361</mn><mo>…</mo></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>812178</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>214638</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>785361</mn><mo>…</mo></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>338903</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>258636</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>785361</mn><mo>…</mo></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>760847</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>2</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>X</mi><mo>≥</mo><mn>1</mn></menclose></mrow></mfenced><mtext> </mtext><mi mathvariant="normal">=</mi><mo> </mo><mn>0</mn><mo>.</mo><mn>761</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weight, <em>W</em>, of basketball players in a tournament is found to be normally distributed with a mean of 65 kg and a standard deviation of 5 kg.</p>
</div>
<div class="specification">
<p>The probability that a basketball player has a weight that is within 1.5 standard deviations of the mean is <em>q</em>.</p>
</div>
<div class="specification">
<p>A basketball coach observed 60 of her players to determine whether their performance and their weight were independent of each other. Her observations were recorded as shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p>She decided to conduct a <em>χ </em><sup>2</sup> test for independence at the 5% significance level.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a basketball player has a weight that is less than 61 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a training session there are 40 basketball players.</p>
<p>Find the expected number of players with a weight less than 61 kg in this training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a normal curve to represent this probability.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>q</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P(<em>W</em> > <em>k</em>) = 0.225 , find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test state the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test find the<em> p</em>-value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a conclusion for this test. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>P(<em>W</em> < 61) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct probability statement.</p>
<p><strong>OR</strong></p>
<p><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct region labelled and shaded on diagram.</p>
<p>= 0.212 (0.21185…, 21.2%) <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>40 × 0.21185… <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for product of 40 and their 0.212.</p>
<p>= 8.47 (8.47421...) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their part (a)(i) provided their answer to part (a)(i) is less than 1.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><em><strong><img src=""> (A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for two correctly labelled vertical lines in approximately correct positions. The values 57.5 and 72.5, or <em>μ </em>− 1.5<em>σ</em> and <em>μ </em>+ 1.5<em>σ</em> are acceptable labels. Award <em><strong>(M1)</strong></em> for correctly shaded region marked by their two vertical lines.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.866 (0.86638…, 86.6%) <strong><em> (A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their part (b)(i) shaded region if their values are clear.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(<em>W</em> < <em>k</em>) = 0.775 <strong><em> (M1)</em></strong></p>
<p><strong>OR</strong></p>
<p><strong><img src=""> <em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct region labelled and shaded on diagram.</p>
<p>(<em>k</em> =) 68.8 (68.7770…) <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(H<sub>0</sub>:) performance (of players) and (their) weight are independent. <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “there is no association between performance (of players) and (their) weight”. Do not accept "not related" or "not correlated" or "not influenced".</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.287 (0.287436…) <em><strong>(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>accept/ do not reject null hypothesis/H<sub>0</sub> <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>performance (of players) and (their) weight are independent. <strong><em>(A1)</em>(ft)</strong></p>
<p>0.287 > 0.05 <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Accept <em>p</em>-value>significance level provided their <em>p</em>-value is seen in b(ii). Accept 28.7% > 5%. Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from part (d).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>, of newborn babies in Australia are normally distributed with a mean 3.41 kg and standard deviation 0.57 kg. A newborn baby has a low birth weight if it weighs less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> kg.</p>
</div>
<div class="question">
<p>Given that 5.3% of newborn babies have a low birth weight, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = - 1.61643">
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1.61643</mn>
</math></span>, <img src="images/Schermafbeelding_2017-03-06_om_06.21.13.png" alt="N16/5/MATME/SP2/ENG/TZ0/05.a/M"></p>
<p>2.48863</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 2.49{\text{ (kg)}}">
<mi>w</mi>
<mo>=</mo>
<mn>2.49</mn>
<mrow>
<mtext> (kg)</mtext>
</mrow>
</math></span> <strong><em>A2 N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>160 students attend a dual language school in which the students are taught only in Spanish or taught only in English.</p>
<p>A survey was conducted in order to analyse the number of students studying Biology or Mathematics. The results are shown in the Venn diagram.</p>
<p> </p>
<p style="padding-left: 240px;">Set <em>S</em> represents those students who are <strong>taught</strong> in Spanish.</p>
<p style="padding-left: 240px;">Set <em>B</em> represents those students who <strong>study</strong> Biology.</p>
<p style="padding-left: 240px;">Set <em>M</em> represents those students who <strong>study</strong> Mathematics.</p>
<p style="padding-left: 210px;"> </p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A student from the school is chosen at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that are taught in Spanish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study Mathematics in English.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study both Biology and Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {S \cap \left( {M \cup B} \right)} \right)">
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>S</mi>
<mo>∩</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>M</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {B \cap M \cap S'} \right)">
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>B</mi>
<mo>∩</mo>
<mi>M</mi>
<mo>∩</mo>
<msup>
<mi>S</mi>
<mo>′</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies neither Biology nor Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student is taught in Spanish, given that the student studies Biology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>10 + 40 + 28 + 17 <em><strong>(M1)</strong></em></p>
<p>= 95 <em><strong> (A1)(G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for each correct sum (for example: 10 + 40 + 28 + 17) seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>20 + 12 <em><strong>(M1)</strong></em></p>
<p>= 32 <em><strong> (A1)(G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for each correct sum (for example: 10 + 40 + 28 + 17) seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>12 + 40 <em><strong>(M1)</strong></em></p>
<p>= 52 <em><strong> (A1)(G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for each correct sum (for example: 10 + 40 + 28 + 17) seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>78 <em><strong>(A1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>12 <em><strong>(A1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100}}{{160}}">
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>160</mn>
</mrow>
</mfrac>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{5}{8}{\text{,}}\,\,0.625{\text{,}}\,\,62.5\,{\text{% }}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>8</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.625</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>62.5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Throughout part (c), award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator. All answers must be probabilities to award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{42}}{{160}}">
<mfrac>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>160</mn>
</mrow>
</mfrac>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{21}}{{80}}{\text{,}}\,\,0.263\,\,\left( {0.2625} \right){\text{,}}\,\,26.3\,{\text{% }}\,\,\left( {26.25\,{\text{% }}} \right)} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>21</mn>
</mrow>
<mrow>
<mn>80</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.263</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.2625</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>26.3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>26.25</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Throughout part (c), award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator. All answers must be probabilities to award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{50}}{{70}}">
<mfrac>
<mrow>
<mn>50</mn>
</mrow>
<mrow>
<mn>70</mn>
</mrow>
</mfrac>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{5}{7}{\text{,}}\,\,0.714\,\,\left( {0.714285 \ldots } \right){\text{,}}\,\,71.4\,{\text{% }}\,\,\left( {71.4285 \ldots \,{\text{% }}} \right)} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>7</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.714</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.714285</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>71.4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>71.4285</mn>
<mo>…</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (G2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Throughout part (c), award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator. All answers must be probabilities to award <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Lucy sells hot chocolate drinks at her snack bar and has noticed that she sells more hot chocolates on cooler days. On six different days, she records the maximum daily temperature, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, measured in degrees centigrade, and the number of hot chocolates sold, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>. The results are shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> can be modelled by the regression line with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mi>a</mi><mi>T</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the regression equation, estimate the number of hot chocolates that Lucy will sell on a day when the maximum temperature is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>°</mo><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p>eg correct value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> (or for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>962839</mn></math> seen in (ii))</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>9</mn><mo>.</mo><mn>84636</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>221</mn><mo>.</mo><mn>592</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>9</mn><mo>.</mo><mn>85</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>222</mn></math> <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>981244</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>981</mn></math> <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into their equation <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mo>.</mo><mn>85</mn><mo>×</mo><mn>12</mn><mo>+</mo><mn>222</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>103</mn><mo>.</mo><mn>435</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>103</mn><mo>.</mo><mn>8</mn></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>sf</mtext></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>103</mn></math> (hot chocolates) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> be two independent events such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>'</mo><mo> </mo><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>′</mo><mo>∩</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>36</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo><mo>=</mo><mi>x</mi></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mo>'</mo></menclose></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p>one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>=</mo><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>=</mo><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>36</mn></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="padding-left:90px;"><img src=""> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>attempt to equate their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo></math> with their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo><mo>=</mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>⇒</mo><mi>x</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>16</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>36</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>24</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to form at least one equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>B</mi></mfenced></math> using independence <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>∩</mo><mi>B</mi><mo>'</mo></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>×</mo><mi>P</mi><mfenced><mrow><mi>B</mi><mo>'</mo></mrow></mfenced><mo>⇒</mo></mrow></mfenced><mo> </mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>×</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo><mo>∩</mo><mi>B</mi></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo></mrow></mfenced><mo>×</mo><mi>P</mi><mfenced><mi>B</mi></mfenced><mo>⇒</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>36</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo><mo>=</mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>24</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognising <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mo>'</mo></menclose></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>16</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>24</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>36</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>24</mn><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mo>'</mo></menclose></mrow></mfenced><mo>=</mo><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo><mo>∩</mo><mi>B</mi><mo>'</mo></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>B</mi><mo>'</mo></mrow></mfenced></mrow></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>24</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> minutes, taken to complete a jigsaw puzzle can be modelled by a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>6</mn></math>.</p>
<p>It is found that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>%</mo></math> of times taken to complete the jigsaw puzzle are longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn><mo>.</mo><mn>8</mn></math> minutes.</p>
</div>
<div class="specification">
<p>Use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>29</mn></math> in the remainder of the question.</p>
</div>
<div class="specification">
<p>Six randomly chosen people complete the jigsaw puzzle.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By stating and solving an appropriate equation, show, correct to two decimal places, that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>29</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>86</mn></math>th percentile time to complete the jigsaw puzzle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly chosen person will take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to complete the jigsaw puzzle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least five of them will take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to complete the jigsaw puzzle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Having spent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn></math> minutes attempting the jigsaw puzzle, a randomly chosen person had not yet completed the puzzle.</p>
<p>Find the probability that this person will take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to complete the jigsaw puzzle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>~</mo><mi mathvariant="normal">N</mi><mfenced><mrow><mi>μ</mi><mo>,</mo><mo> </mo><mn>8</mn><mo>.</mo><msup><mn>6</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>≤</mo><mn>36</mn><mo>.</mo><mn>8</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn></math> <strong>(A1)</strong></p>
<p>states a correct equation, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>36</mn><mo>.</mo><mn>8</mn><mo>-</mo><mi>μ</mi></mrow><mrow><mn>8</mn><mo>.</mo><mn>6</mn></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>5244</mn><mo>…</mo></math> <strong>A1</strong></p>
<p>attempts to solve their equation <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>36</mn><mo>.</mo><mn>8</mn><mo>-</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5244</mn><mo>…</mo></mrow></mfenced><mfenced><mrow><mn>8</mn><mo>.</mo><mn>6</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>32</mn><mo>.</mo><mn>2902</mn><mo>…</mo></mrow></mfenced></math> <strong>A1</strong></p>
<p>the solution to the equation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>29</mn></math>, correct to two decimal places <strong>AG</strong></p>
<p> </p>
<p><strong>[4</strong><strong> marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mrow><mn>0</mn><mo>.</mo><mn>86</mn></mrow></msub></math> be the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>86</mn></math>th percentile</p>
<p>attempts to use the inverse normal feature of a GDC to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mrow><mn>0</mn><mo>.</mo><mn>86</mn></mrow></msub></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mrow><mn>0</mn><mo>.</mo><mn>86</mn></mrow></msub><mo>=</mo><mn>41</mn><mo>.</mo><mn>6</mn></math> (mins) <strong>A1</strong></p>
<p> </p>
<p><strong>[2</strong><strong> marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of identifying the correct area under the normal curve <strong>(M1)</strong></p>
<p><strong>Note:</strong> Award <strong>M1</strong> for a clearly labelled sketch.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>></mo><mn>30</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>605</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2</strong><strong> marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> represent the number of people out of the six who take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to complete the jigsaw puzzle</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mi mathvariant="normal">B</mi><mfenced><mrow><mn>6</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>6049</mn><mo>…</mo></mrow></mfenced></math> <strong>(M1)</strong></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>=</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>=</mo><mn>6</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>4</mn></mrow></mfenced></math> <strong>(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>241</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[3</strong><strong> marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizes that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>></mo><mn>30</mn><mo> </mo><menclose notation="left"><mi>T</mi><mo>≥</mo><mn>25</mn></menclose></mrow></mfenced></math> is required <strong>(M1)</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for recognizing conditional probability.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>></mo><mn>30</mn><mo>∩</mo><mi>T</mi><mo>≥</mo><mn>25</mn></mrow></mfenced></mrow><mrow><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>≥</mo><mn>25</mn></mrow></mfenced></mrow></mfrac></math> <strong>(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>></mo><mn>30</mn></mrow></mfenced></mrow><mrow><mi mathvariant="normal">P</mi><mfenced><mrow><mi>T</mi><mo>≥</mo><mn>25</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>6049</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>8016</mn><mo>…</mo></mrow></mfrac></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>755</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[4</strong><strong> marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All answers in this question should be given to four significant figures.</strong></p>
<p><br>In a local weekly lottery, tickets cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2</mn></math> each.</p>
<p>In the first week of the lottery, a player will receive <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mi>D</mi></math> for each ticket, with the probability distribution shown in the following table. For example, the probability of a player receiving <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>10</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>03</mn></math>. The grand prize in the first week of the lottery is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1000</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>If nobody wins the grand prize in the first week, the probabilities will remain the same, but the value of the grand prize will be <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2000</mn></math> in the second week, and the value of the grand prize will continue to double each week until it is won. All other prize amounts will remain the same.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether this lottery is a fair game in the first week. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the grand prize is not won and the grand prize continues to double, write an expression in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> for the value of the grand prize in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mtext>th</mtext></math> week of the lottery.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mtext>th</mtext></math> week is the first week in which the player is expected to make a profit. Ryan knows that if he buys a lottery ticket in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mtext>th</mtext></math> week, his expected profit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mi>p</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>considering that sum of probabilities is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>85</mn><mo>+</mo><mi>c</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>03</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>002</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>0001</mn><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>1179</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced><mo>=</mo><mfenced><mrow><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>85</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>1179</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>03</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>50</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>002</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>1000</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>7358</mn></math> <em><strong>A1</strong></em></p>
<p>No, not a fair game <em><strong>A1</strong></em></p>
<p>for a fair game, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced></math> would be <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2</mn></math> OR players expected winnings are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>264</mn></math> <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of GP with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>2</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn><mo>×</mo><msup><mn>2</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mfenced><msup><mn>2</mn><mi>n</mi></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced><mo>></mo><mn>2</mn></math> <em><strong> (M1)</strong></em></p>
<p>correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>w</mi><mtext>th</mtext></msup></math> week (or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mtext>th</mtext></msup></math> week) <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>85</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>1179</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>10</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>03</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>50</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>002</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>1000</mn><mo>×</mo><msup><mn>2</mn><mrow><mi>w</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></mfenced></math></p>
<p>correct inequality (accept equation) <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>6358</mn><mo>+</mo><mfenced><mrow><mn>1000</mn><mo>×</mo><msup><mn>2</mn><mrow><mi>w</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></mfenced><mo>></mo><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>></mo><mn>13</mn><mo>.</mo><mn>642</mn></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>-</mo><mn>1</mn><mo>></mo><mn>3</mn><mo>.</mo><mn>76998</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>76998</mn><mo>…</mo></math> <em><strong> (A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced><mo>=</mo><mn>1</mn><mo>.</mo><mn>4358</mn></math> in week <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>D</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>2358</mn></math> in week <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> <em><strong> (A1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mo>=</mo><mn>5</mn></math> <em><strong> A1</strong></em></p>
<p>expected profit per ticket <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>their E</mtext><mfenced><mi>D</mi></mfenced><mo>-</mo><mn>2</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>2358</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.</p>
<p>The results are shown in the following table.</p>
<p><img src=""></p>
<p>A <em>χ</em><sup>2</sup> test is carried out at the 10 % significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.</p>
</div>
<div class="specification">
<p>The critical value for this test is 7.779.</p>
</div>
<div class="specification">
<p>A flight is chosen at random from the 180 recorded flights.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>χ</em><sup>2</sup> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the associated <em>p</em>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether you would reject the null hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that this flight arrived on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that this flight was not heavily delayed, find the probability that it travelled between 500 km and 5000 km.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two flights are chosen at random from those which were slightly delayed.</p>
<p>Find the probability that each of these flights travelled at least 5000 km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>The arrival status is dependent on the distance travelled by the incoming flight <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “associated” or “not independent”.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{60 \times 45}}{{180}}">
<mfrac>
<mrow>
<mn>60</mn>
<mo>×</mo>
<mn>45</mn>
</mrow>
<mrow>
<mn>180</mn>
</mrow>
</mfrac>
</math></span> <strong>OR </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{60}}{{180}} \times \frac{{45}}{{180}} \times 180">
<mfrac>
<mrow>
<mn>60</mn>
</mrow>
<mrow>
<mn>180</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>45</mn>
</mrow>
<mrow>
<mn>180</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>180</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into expected value formula.</p>
<p>= 15 <em><strong> (A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4 <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if “2 + 2 = 4” is seen.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>9.55 (9.54671…) <em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(G1)</strong></em> for an answer of 9.54.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.0488 (0.0487961…) <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reject the Null Hypothesis <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their hypothesis in part (a).</p>
<p>9.55 (9.54671…) > 7.779 <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>OR </strong></p>
<p>0.0488 (0.0487961…) < 0.1 <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(R0)</strong></em><strong>(ft)</strong>. Follow through from part (d). Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for a correct comparison, <em><strong>(A1)</strong></em><strong>(ft)</strong> for a consistent conclusion with the answers to parts (a) and (d). Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for <em>χ</em><sup>2</sup><em><sub>calc</sub></em> > <em>χ</em><sup>2</sup><em><sub>crit </sub></em>, provided the calculated value is explicitly seen in part (d)(i).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{52}}{{180}}\,\,\left( {0.289,\,\,\frac{{13}}{{45}},\,\,28.9\,{\text{% }}} \right)">
<mfrac>
<mrow>
<mn>52</mn>
</mrow>
<mrow>
<mn>180</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.289</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mn>45</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>28.9</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{35}}{{97}}\,\,\left( {0.361,\,\,36.1\,{\text{% }}} \right)">
<mfrac>
<mrow>
<mn>35</mn>
</mrow>
<mrow>
<mn>97</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.361</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>36.1</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{14}}{{45}} \times \frac{{13}}{{44}}">
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>45</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mn>44</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for two correct fractions and <em><strong>(M1)</strong></em> for multiplying their two fractions.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{182}}{{1980}}\,\,\left( {0.0919,\,\,\frac{{91}}{{990}},\,0.091919 \ldots ,\,9.19\,{\text{% }}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>182</mn>
</mrow>
<mrow>
<mn>1980</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.0919</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>91</mn>
</mrow>
<mrow>
<mn>990</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mn>0.091919</mn>
<mo>…</mo>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mn>9.19</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1) (G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The flight times, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> minutes, between two cities can be modelled by a normal distribution with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn></math> minutes and a standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> minutes.</p>
</div>
<div class="specification">
<p>On a particular day, there are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn></math> flights scheduled between these two cities.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> of the flight times are longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>82</mn></math> minutes, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected flight will have a flight time of more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that a flight between the two cities takes longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes, find the probability that it takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>82</mn></math> minutes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of flights that will have a flight time of more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> of the flights on this particular day will have a flight time of more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of inverse normal to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-score <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>0537</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>0537</mn><mo>…</mo><mo>=</mo><mfrac><mrow><mn>82</mn><mo>-</mo><mn>75</mn></mrow><mi>σ</mi></mfrac></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>408401</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>41</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of identifying the correct area under the normal curve <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>80</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>071193</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>80</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0712</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>80</mn><mo><</mo><mi>T</mi><mo><</mo><mn>82</mn></mrow></mfenced></math> is required <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo><</mo><mn>82</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>T</mi><mo>></mo><mn>80</mn></menclose></mrow></mfenced><mo>=</mo><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mn>80</mn><mo><</mo><mi>T</mi><mo><</mo><mn>82</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>></mo><mn>80</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mfenced><mfrac><mrow><mn>0</mn><mo>.</mo><mn>051193</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>071193</mn><mo>…</mo></mrow></mfrac></mfenced></math> <em><strong> (M1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>719075</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>719</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of binomial probability <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>64</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>071193</mn><mo>…</mo></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mn>64</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>071193</mn><mo>…</mo></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mn>4</mn><mo>.</mo><mn>556353</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mn>4</mn><mo>.</mo><mn>56</mn></math> (flights) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>></mo><mn>6</mn></mrow></mfenced><mo>=</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>7</mn></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≤</mo><mn>6</mn></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>83088</mn><mo>…</mo></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>1691196</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>169</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the data collected from an experiment.</p>
<p><img src=""></p>
<p>The data is also represented on the following scatter diagram.</p>
<p><img src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> can be modelled by the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this model to predict the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>18</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¯</mo></mover></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>¯</mo></mover></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>433156</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>50265</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>433</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>50</mn></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>18</mn></math> into their equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>433</mn><mo>×</mo><mn>18</mn><mo>+</mo><mn>4</mn><mo>.</mo><mn>50</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>2994</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn><mo>.</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¯</mo></mover><mo>=</mo><mn>15</mn><mo>,</mo><mo> </mo><mo> </mo><mover><mi>y</mi><mo>¯</mo></mover><mo>=</mo><mn>11</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""> <em><strong>A1A</strong></em><em><strong>1</strong></em></p>
<p><strong>Note:</strong> Award marks as follows:</p>
<p style="padding-left:60px;"><strong>A1</strong> for a straight line going through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>15</mn><mo>,</mo><mo> </mo><mn>11</mn></mrow></mfenced></math></p>
<p style="padding-left:60px;"><strong>A1</strong> for intercepting the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis between their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>±</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> (when their line is extended), which includes all the data for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>3</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>25</mn><mo>.</mo><mn>3</mn></math>.</p>
<p>If the candidate does not use a ruler, award <em><strong>A0A1</strong></em> where appropriate.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>At a café, the waiting time between ordering and receiving a cup of coffee is dependent upon the number of customers who have already ordered their coffee and are waiting to receive it.</p>
<p>Sarah, a regular customer, visited the café on five consecutive days. The following table shows the number of customers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, ahead of Sarah who have already ordered and are waiting to receive their coffee and Sarah’s waiting time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> minutes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> can be modelled by the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of Pearson’s product-moment correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret, in context, the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> found in part (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On another day, Sarah visits the café to order a coffee. Seven customers have already ordered their coffee and are waiting to receive it.</p>
<p>Use the result from part (a)(i) to estimate Sarah’s waiting time to receive her coffee.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>805084</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>88135</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>805</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>88</mn></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>97777</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>978</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> represents the (average) increase in waiting time (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>805</mn></math> mins) per additional customer (waiting to receive their coffee) <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>7</mn></math> into their equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>51693</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>52</mn></math> (mins) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of hours spent exercising each week by a group of students is shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The median is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn></math> hours.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>recognising that half the total frequency is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> (may be seen in an ordered list or indicated on the frequency table) <em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>+</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>=</mo><mn>3</mn><mo>+</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo><mi>f</mi><mo>=</mo><mn>20</mn></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>7</mn></math> <em><strong>A1 </strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>58429</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>58</mn></math> <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>5</mn><mo>×</mo><msup><mfenced><mrow><mn>2</mn><mo>-</mo><mn>4</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mfenced><mrow><mn>3</mn><mo>-</mo><mn>4</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>×</mo><msup><mfenced><mrow><mn>4</mn><mo>-</mo><mn>4</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>3</mn><mo>×</mo><msup><mfenced><mrow><mn>5</mn><mo>-</mo><mn>4</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>7</mn><mo>×</mo><msup><mfenced><mrow><mn>6</mn><mo>-</mo><mn>4</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mrow><mn>20</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>51</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>5</mn><mo>×</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>×</mo><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><mn>3</mn><mo>×</mo><msup><mn>5</mn><mn>2</mn></msup><mo>+</mo><mn>7</mn><mo>×</mo><msup><mn>6</mn><mn>2</mn></msup></mrow><mn>20</mn></mfrac><mo>-</mo><mn>4</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>51</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><msqrt><mn>2</mn><mo>.</mo><mn>51</mn></msqrt><mo>=</mo><mn>1</mn><mo>.</mo><mn>58429</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>58</mn></math> <em><strong>A1 </strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates attempted both parts, with varying levels of success, particularly in part (b). </p>
<p>In part (a), the most successful approach seen was from candidates who made an ordered list to visualize the given data set, which enabled them to recognise either the number of sixes required for the median to lie at 4.5, or the total frequency. The most common error was to mistake the median for the mean, which led to a non-integer value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>67</mn></math>.</p>
<p>Part (b) proved to be more challenging, with many candidates either not taking into account the frequency of the exercise time when generating the summary statistics or treating frequency as an additional variable and using two-variable statistics on their GDC. With both, this led to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>41</mn></math> being the most common wrong answer seen. A few candidates gave the sample standard deviation rather than the population standard deviation. A number of candidates attempted to use the standard deviation formula but were usually not successful. This formula is not in the course, although it can be obtained in the HL section of the formula booklet.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sila High School has 110 students. They each take exactly one language class from a choice of English, Spanish or Chinese. The following table shows the number of female and male students in the three different language classes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ<!-- χ --></mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> test was carried out at the 5 % significance level to analyse the relationship between gender and student choice of language class.</p>
</div>
<div class="specification">
<p>Use your graphic display calculator to write down</p>
</div>
<div class="specification">
<p>The critical value at the 5 % significance level for this test is 5.99.</p>
</div>
<div class="specification">
<p>One student is chosen at random from this school.</p>
</div>
<div class="specification">
<p>Another student is chosen at random from this school.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis, H<sub>0 </sub>, for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the expected frequency of female students who chose to take the Chinese class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not H<sub>0</sub> should be rejected. Justify your statement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student does not take the Spanish class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that neither of the two students take the Spanish class.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the two students is female.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(H<sub>0</sub>:) (choice of) language is independent of gender <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “there is no association between language (choice) and gender”. Accept “language (choice) is not dependent on gender”. Do not accept “not related” or “not correlated” or “not influenced”.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 <em><strong>(AG)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>16.4 (16.4181…) <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\chi _{{\text{calc}}}^2 = 8.69">
<msubsup>
<mi>χ</mi>
<mrow>
<mrow>
<mtext>calc</mtext>
</mrow>
</mrow>
<mn>2</mn>
</msubsup>
<mo>=</mo>
<mn>8.69</mn>
</math></span> (8.68507…) <em><strong>(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(we) reject the null hypothesis <strong><em>(A1)</em>(ft)</strong></p>
<p>8.68507… > 5.99 <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c)(ii). Accept “do not accept” in place of “reject.” Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><strong>OR</strong></p>
<p>(we) reject the null hypothesis <em><strong>(A1)</strong></em></p>
<p>0.0130034 < 0.05 <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Accept “do not accept” in place of “reject.” Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{88}}{{110}}\,\,\,\left( {\frac{4}{5}{\text{,}}\,\,0.8{\text{,}}\,\,80{\text{% }}} \right)">
<mfrac>
<mrow>
<mn>88</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.8</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>80</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong><strong><em>(A1)</em></strong><strong><em>(G2)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for correct numerator, <strong><em>(A1)</em></strong> for correct denominator.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{88}}{{110}} \times \frac{{87}}{{109}}">
<mfrac>
<mrow>
<mn>88</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>87</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying two fractions. Award <strong><em>(M1)</em></strong> for multiplying their correct fractions.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{46}}{{110}}} \right)\left( {\frac{{45}}{{109}}} \right) + 2\left( {\frac{{46}}{{110}}} \right)\left( {\frac{{42}}{{109}}} \right) + \left( {\frac{{42}}{{110}}} \right)\left( {\frac{{41}}{{109}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>46</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>45</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>46</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>41</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct products; <strong><em>(M1)</em></strong> for adding 4 products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.639\,\,\,\left( {0.638532 \ldots {\text{,}}\,\,\frac{{348}}{{545}}{\text{,}}\,\,63.9{\text{% }}} \right)">
<mn>0.639</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.638532</mn>
<mo>…</mo>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>348</mn>
</mrow>
<mrow>
<mn>545</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>63.9</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their answer to part (e)(i).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{{67}}{{110}} \times \frac{{66}}{{109}}">
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>67</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>66</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying two correct fractions. Award <strong><em>(M1)</em></strong> for subtracting their product of two fractions from 1.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{43}}{{110}} \times \frac{{42}}{{109}} + \frac{{43}}{{110}} \times \frac{{67}}{{109}} + \frac{{67}}{{110}} \times \frac{{43}}{{109}}">
<mfrac>
<mrow>
<mn>43</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>43</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>67</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>67</mn>
</mrow>
<mrow>
<mn>110</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>43</mn>
</mrow>
<mrow>
<mn>109</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct products; <strong><em>(M1)</em></strong> for adding three products.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.631\,\,\,\left( {0.631192 \ldots {\text{,}}\,\,63.1{\text{% ,}}\,\,\frac{{344}}{{545}}} \right)">
<mn>0.631</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.631192</mn>
<mo>…</mo>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>63.1</mn>
<mrow>
<mtext>% ,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>344</mn>
</mrow>
<mrow>
<mn>545</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The manager of a folder factory recorded the number of folders produced by the factory (in thousands) and the production costs (in thousand Euros), for six consecutive months.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.30.09.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03"></p>
</div>
<div class="specification">
<p>Every month the factory sells all the folders produced. Each folder is sold for 2.99 Euros.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for this data. Use a scale of 2 cm for 5000 folders on the horizontal axis and 2 cm for 10 000 Euros on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of folders produced, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean production cost, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar C">
<mrow>
<mover>
<mi>C</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{M}}(\bar x,{\text{ }}\bar C)">
<mrow>
<mtext>M</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mover>
<mi>C</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo stretchy="false">)</mo>
</math></span> on the scatter diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is appropriate to model the relationship between these variables.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the equation of the regression line to estimate the least number of folders that the factory needs to sell in a month to exceed its production cost for that month.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-17_om_06.54.04.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03.a/M"> <strong><em>(A4)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(A1) </em></strong>for correct scales and labels. Award <strong><em>(A0) </em></strong>if axes are reversed and follow through for their points.</p>
<p>Award <strong><em>(A3) </em></strong>for all six points correctly plotted, <strong><em>(A2) </em></strong>for four or five points correctly plotted, <strong><em>(A1) </em></strong>for two or three points correctly plotted.</p>
<p>If graph paper has not been used, award at most <strong><em>(A1)(A0)(A0)(A0)</em></strong>. If accuracy cannot be determined award <strong><em>(A0)(A0)(A0)(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x = ){\text{ }}21">
<mo stretchy="false">(</mo>
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>21</mn>
</math></span> <strong><em>(A1)(G1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar C = ){\text{ }}55">
<mo stretchy="false">(</mo>
<mrow>
<mover>
<mi>C</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>55</mn>
</math></span> <strong><em>(A1)(G1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept (i) 21000 and (ii) 55000 seen.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their mean point M labelled on diagram <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (b).</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>if their part (b) is correct and their attempt at plotting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(21,{\text{ }}55)">
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>55</mn>
<mo stretchy="false">)</mo>
</math></span> in part (a) is labelled M.</p>
<p>If graph paper not used, award <strong><em>(A1) </em></strong>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(21,{\text{ }}55)">
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>55</mn>
<mo stretchy="false">)</mo>
</math></span> is labelled. If their answer from part (b) is incorrect and accuracy cannot be determined, award <strong><em>(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}0.990{\text{ }}(0.989568 \ldots )">
<mo stretchy="false">(</mo>
<mi>r</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.990</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.989568</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(G2) </em></strong>for 0.99 seen. Award <strong><em>(G1) </em></strong>for 0.98 or 0.989. Do not accept 1.00.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the correlation coefficient/<em>r </em>is (very) close to 1 <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>the correlation is (very) strong <strong><em>(R1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their answer to part (d).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>the position of the data points on the scatter graphs suggests that the tendency is linear <strong><em>(R1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their scatter graph in part (a).</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 1.94x + 14.2{\text{ }}(C = 1.94097 \ldots x + 14.2395 \ldots )">
<mi>C</mi>
<mo>=</mo>
<mn>1.94</mn>
<mi>x</mi>
<mo>+</mo>
<mn>14.2</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>C</mi>
<mo>=</mo>
<mn>1.94097</mn>
<mo>…</mo>
<mi>x</mi>
<mo>+</mo>
<mn>14.2395</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(G1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.94x">
<mn>1.94</mn>
<mi>x</mi>
</math></span>, <strong><em>(G1) </em></strong>for 14.2.</p>
<p>Award a maximum of <strong><em>(G0)(G1) </em></strong>if the answer is not an equation.</p>
<p>Award <strong><em>(G0)(G1)</em>(ft) </strong>if gradient and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>-intercept are swapped in the equation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight line through their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{M}}(21,{\text{ }}55)">
<mrow>
<mtext>M</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>55</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>-intercept of the line (or extension of line) passing through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="14.2{\text{ }}( \pm 1)">
<mn>14.2</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>±</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:</strong> Follow through from part (f). In the event that the regression line is not straight (ruler not used), award <strong><em>(A0)(A1)</em>(ft) </strong>if line passes through both their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(21,{\text{ }}55)">
<mo stretchy="false">(</mo>
<mn>21</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>55</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}14.2)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>14.2</mn>
<mo stretchy="false">)</mo>
</math></span>, otherwise award <strong><em>(A0)(A0)</em></strong>. The line must pass <em>through </em>the midpoint, not <em>near </em>this point. If it is not clear award <strong><em>(A0)</em></strong>.</p>
<p>If graph paper is not used, award at most (A1)(ft)(A0).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.99x = 1.94097 \ldots x + 14.2395 \ldots ">
<mn>2.99</mn>
<mi>x</mi>
<mo>=</mo>
<mn>1.94097</mn>
<mo>…</mo>
<mi>x</mi>
<mo>+</mo>
<mn>14.2395</mn>
<mo>…</mo>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.99x">
<mn>2.99</mn>
<mi>x</mi>
</math></span> seen and <strong><em>(M1) </em></strong>for equating to their equation of the regression line. Accept an inequality sign.</p>
<p>Accept a correct graphical method involving their part (f) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.99x">
<mn>2.99</mn>
<mi>x</mi>
</math></span>.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 2.99x">
<mi>C</mi>
<mo>=</mo>
<mn>2.99</mn>
<mi>x</mi>
</math></span> drawn on their scatter graph.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 13.5739 \ldots ">
<mi>x</mi>
<mo>=</mo>
<mn>13.5739</mn>
<mo>…</mo>
</math></span> (this step may be implied by their final answer) <strong><em>(A1)</em>(ft)(G2)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13\,600{\text{ }}(13\,574)">
<mn>13</mn>
<mspace width="thinmathspace"></mspace>
<mn>600</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>13</mn>
<mspace width="thinmathspace"></mspace>
<mn>574</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their answer to (f). Use of 3 sf gives an answer of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13\,524">
<mn>13</mn>
<mspace width="thinmathspace"></mspace>
<mn>524</mn>
</math></span>.</p>
<p>Award <strong><em>(G2) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{13.5739}} \ldots ">
<mrow>
<mtext>13.5739</mtext>
</mrow>
<mo>…</mo>
</math></span> or 13.524 or a value which rounds to 13500 seen without workings.</p>
<p>Award the last <strong><em>(A1)</em>(ft) </strong>for correct multiplication by 1000 <strong>and </strong>an answer satisfying revenue > <strong>their </strong>production cost.</p>
<p>Accept 13.6 thousand (folders).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die is rolled. The following table gives the probability of each score.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected value of the score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is rolled 80 times. On how many rolls would you expect to obtain a three?</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of summing to 1 <em><strong>(M1)</strong></em></p>
<p><em>eg </em>0.28 + <em>k</em> + 1.5 + 0.3 = 1, 0.73 + <em>k</em> = 1</p>
<p><em>k</em> = 0.27 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into formula for E (<em>X</em>) <em><strong>(A1)</strong></em><br>eg 1 × 0.28 + 2 × <em>k</em> + 3 × 0.15 + 4 × 0.3</p>
<p>E (<em>X</em>) = 2.47 (exact) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg np</em>, 80 × 0.15</p>
<p>12 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the hand lengths and the heights of five athletes on a sports team.</p>
<p style="text-align: center;"><img src=""></p>
<p>The relationship between <em>x</em> and <em>y</em> can be modelled by the regression line with equation <em>y</em> = <em>ax</em> + <em>b</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another athlete on this sports team has a hand length of 21.5 cm. Use the regression equation to estimate the height of this athlete.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of set up <em><strong>(M1)</strong></em></p>
<p><em>eg</em> correct value for <em>a</em> or <em>b</em> or <em>r</em> (seen in (ii)) or <em>r</em><sup>2 </sup>(= 0.973)</p>
<p>9.91044, −31.3194</p>
<p><em>a</em> = 9.91, <em>b</em> = −31.3, <em>y</em> = 9.91<em>x</em> − 31.3 <em><strong>A1A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.986417</p>
<p><em>r</em> = 0.986 <em><strong>A1 N1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <em>x</em> = 21.5 into <strong>their</strong> equation <em><strong> (M1)</strong></em></p>
<p><em>eg</em> 9.91(21.5) − 31.3</p>
<p>181.755</p>
<p>182 (cm) <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was conducted on a group of people. The first question asked how many pets they each own. The results are summarized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The second question asked each member of the group to state their age and preferred pet. The data obtained is organized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ<!-- χ --></mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> test is carried out at the 10 % significance level.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of people, from this group, who are <strong>pet owners</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the median number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the ratio of teenagers to non-teenagers in its simplest form.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of teenagers that prefer cats.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>140 <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1 <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1 <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3 <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>17:15 <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{17}}{{15}}">
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mrow>
<mn>15</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for 85:75 or 1.13:1.</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>preferred pet is independent of “whether or not the respondent was a teenager" or "age category” <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept there is no association between pet and age. Do not accept “not related” or “not correlated” or “influenced”.</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>preferred pet is not independent of age <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (e)(i) <em>i.e.</em> award <em><strong>(A1)</strong></em><strong>(ft)</strong> if their alternative hypothesis is the negation of their null hypothesis. Accept “associated” or “dependent”.</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3 <em><strong>(A1)</strong></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{85 \times 55}}{{160}}">
<mfrac>
<mrow>
<mn>85</mn>
<mo>×</mo>
<mn>55</mn>
</mrow>
<mrow>
<mn>160</mn>
</mrow>
</mfrac>
</math></span> <strong>OR </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{85}}{{160}} \times \frac{{55}}{{160}} \times 160">
<mfrac>
<mrow>
<mn>85</mn>
</mrow>
<mrow>
<mn>160</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>55</mn>
</mrow>
<mrow>
<mn>160</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>160</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p>29.2 (29.2187…) <em><strong>(A1)(G2)</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.208 (0.208093…) <em><strong>(G2)</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.208 > 0.1 <em><strong>(R1)</strong></em></p>
<p>accept null hypothesis <strong>OR</strong> fail to reject null hypothesis <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em> for a correct comparison of their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value to the significance level, award <strong><em>(A1)</em>(ft)</strong> for the correct result from that comparison. Accept “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value > 0.1” as part of the comparison but only if their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value is explicitly seen in part (h). Follow through from their answer to part (h). Do not award <strong><em>(R0)(A1)</em></strong>.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>A transportation company owns 30 buses. The distance that each bus has travelled since being purchased by the company is recorded. The cumulative frequency curve for these data is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>It is known that 8 buses travelled more than <em>m</em> kilometres.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance between 15000 and 20000 kilometres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the median distance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the percentage of buses that travelled a distance greater than the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance less than or equal to 12 000 km.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>m</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The smallest distance travelled by one of the buses was 2500 km.<br>The longest distance travelled by one of the buses was 23 000 km.</p>
<p><strong>On graph paper</strong>, draw a box-and-whisker diagram for these data. Use a scale of 2 cm to represent 5000 km.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>28 − 20 <em><strong>(A1)</strong></em></p>
<p><em><strong>Note:</strong></em> Award <em><strong>(A1)</strong></em> for 28 and 20 seen.</p>
<p>8 <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>13500 <em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Accept an answer in the range 13500 to 13750.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10000 <em><strong>(G1)</strong></em></p>
<p><strong>Note:</strong> Accept an answer in the range 10000 to 10250.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>16000 <em><strong>(G1)</strong></em></p>
<p><strong>Note:</strong> Accept an answer in the range 16000 to 16250.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6000 <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from their part (b)(ii) and (iii).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>25% <strong><em> (A1)</em></strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>11 <em><strong>(G1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>30 − 8 <strong>OR</strong> 22 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting 30 − 8 or 22 seen.</p>
<p>15750 <em><strong> (A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Accept 15750 ± 250.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct label and scale; accept “distance” or “km” for label.</p>
<p><strong><em>(A1)</em>(ft)</strong> for correct median,<br><strong><em>(A1)</em>(ft)</strong> for correct quartiles and box,<br><em><strong>(A1)</strong></em> for endpoints at 2500 and 23 000 joined to box by straight lines.<br>Accept ±250 for the median, quartiles and endpoints.<br>Follow through from their part (b).<br>The final <em><strong>(A1)</strong></em> is not awarded if the line goes through the box.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> follows a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
</div>
<div class="specification">
<p>The avocados grown on a farm have weights, in grams, that are normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>. Avocados are categorized as small, medium, large or premium, according to their weight. The following table shows the probability an avocado grown on the farm is classified as small, medium, large or premium.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The maximum weight of a small avocado is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>106</mn><mo>.</mo><mn>2</mn></math> grams.</p>
<p>The minimum weight of a premium avocado is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>182</mn><mo>.</mo><mn>6</mn></math> grams.</p>
</div>
<div class="specification">
<p>A supermarket purchases all the avocados from the farm that weigh more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>106</mn><mo>.</mo><mn>2</mn></math> grams.</p>
</div>
<div class="specification">
<p>Find the probability that an avocado chosen at random from this purchase is categorized as</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>μ</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi><mo><</mo><mi>X</mi><mo><</mo><mi>μ</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>medium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>large.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>premium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The selling prices of the different categories of avocado at this supermarket are shown in the following table:</p>
<p><img style="float:left;" src=""></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>The supermarket pays the farm <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo> </mo><mn>200</mn></math> for the avocados and assumes it will then sell them in exactly the same proportion as purchased from the farm.</p>
<p>According to this model, find the minimum number of avocados that must be sold so that the net profit for the supermarket is at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo> </mo><mn>438</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mfrac><mrow><mi>μ</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi><mo>-</mo><mi>μ</mi></mrow><mi>σ</mi></mfrac><mo><</mo><mfrac><mrow><mi>X</mi><mo>-</mo><mi>μ</mi></mrow><mi>σ</mi></mfrac><mo><</mo><mfrac><mrow><mi>μ</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi><mo>-</mo><mi>μ</mi></mrow><mi>σ</mi></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo><</mo><mi>Z</mi><mo><</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>2</mn><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>Z</mi><mo><</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo><</mo><mi>Z</mi><mo><</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>866385</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>μ</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi><mo><</mo><mi>X</mi><mo><</mo><mi>μ</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>866</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not award any marks for use of their answers from part (b).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>75068</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>30468</mn><mo>…</mo></math> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>correct equations <em><strong>(A1)(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>106</mn><mo>.</mo><mn>2</mn><mo>-</mo><mi>μ</mi></mrow><mi>σ</mi></mfrac><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>75068</mn><mo>…</mo><mo>,</mo><mo> </mo><mo> </mo><mi>μ</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>30468</mn><mo>…</mo><mi>σ</mi><mo>=</mo><mn>182</mn><mo>.</mo><mn>6</mn></math></p>
<p>attempt to solve their equations involving z values <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>149</mn><mo>.</mo><mn>976</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mo> </mo><mi>σ</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>0051</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>150</mn><mo>,</mo><mo> </mo><mi>σ</mi><mo>=</mo><mn>25</mn><mo>.</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>new sample space is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>96</mn><mo>%</mo></math> (may be seen in (ii) or (iii)) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mtext>medium</mtext><mo>|</mo><mtext>not small</mtext></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>576</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>96</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mtext>Medium</mtext></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mtext>Large</mtext></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mtext>Premium</mtext></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to express revenue from avocados <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>29</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>96</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>243</mn><mi>n</mi></math></p>
<p>correct inequality or equation for net profit in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>6</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>29</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>96</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>1</mn><mi>n</mi><mo>-</mo><mn>200</mn><mo>≥</mo><mn>438</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>243</mn><mi>n</mi><mo>-</mo><mn>200</mn><mo>=</mo><mn>438</mn></math></p>
<p>attempt to solve the inequality <em><strong>(M1)</strong></em></p>
<p>sketch OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>513</mn><mo>.</mo><mn>274</mn><mo>.</mo><mo>.</mo><mo>.</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>514</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Only award follow through in part (d) for 3 probabilities which add up to 1. FT of probabilities from c) that do not add up to 1 should only be awarded <em><strong>M</strong></em> marks, where appropriate, in d).</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Fiona walks from her house to a bus stop where she gets a bus to school. Her time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> minutes, to walk to the bus stop is normally distributed with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>12</mn><mo>,</mo><mo> </mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math>.</p>
<p>Fiona always leaves her house at 07:15. The first bus that she can get departs at 07:30.</p>
</div>
<div class="specification">
<p>The length of time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> minutes, of the bus journey to Fiona’s school is normally distributed with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>50</mn><mo>,</mo><mo> </mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math>. The probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> minutes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>941</mn></math>.</p>
</div>
<div class="specification">
<p>If Fiona misses the first bus, there is a second bus which departs at 07:45. She must arrive at school by 08:30 to be on time. Fiona will not arrive on time if she misses both buses. The variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> are independent.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that it will take Fiona between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to walk to the bus stop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Fiona will arrive on time.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This year, Fiona will go to school on <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>183</mn></math> days.</p>
<p>Calculate the number of days Fiona is expected to arrive on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>158655</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>15</mn><mo><</mo><mi>W</mi><mo><</mo><mn>30</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>159</mn></math> <em><strong>A2 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding standardized value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>56322</mn></math></p>
<p>correct substitution using <strong>their</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>-value <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>60</mn><mo>-</mo><mn>50</mn></mrow><mi>σ</mi></mfrac><mo>=</mo><mn>1</mn><mo>.</mo><mn>56322</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>60</mn><mo>-</mo><mn>50</mn></mrow><mrow><mn>1</mn><mo>.</mo><mn>56322</mn></mrow></mfrac><mo>=</mo><mi>σ</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>39703</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>40</mn></math> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>217221</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>B</mi><mo><</mo><mn>45</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.217</mo></math> <em><strong>A2 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find one possible way of being on time (do not penalize incorrect use of strict inequality signs) <em><strong>(M1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>≤</mo><mn>15</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo><</mo><mn>60</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo><</mo><mi>W</mi><mo>≤</mo><mn>30</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo><</mo><mn>45</mn></math></p>
<p>correct calculation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>W</mi><mo>≤</mo><mn>15</mn><mo> </mo><mtext>and</mtext><mo> </mo><mi>B</mi><mo><</mo><mn>60</mn></mrow></mfenced></math> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>841</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>941</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>7917</mn></math></p>
<p>correct calculation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>15</mn><mo><</mo><mi>W</mi><mo>≤</mo><mn>30</mn><mo> </mo><mtext>and</mtext><mo> </mo><mi>B</mi><mo><</mo><mn>45</mn></mrow></mfenced></math> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>159</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>217</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>03446</mn></math></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>841</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>941</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>159</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>217</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>7917</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>03446</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>826168</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P </mtext></math>(on time) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>826</mn></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>183</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>826168</mn></math> <em><strong>(M1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>183</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>826</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>151</mn><mo>.</mo><mn>188</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>151</mn><mo>.</mo><mn>158</mn></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo> </mo><mtext>sf </mtext></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>151</mn></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 0.5{x^4} + 3{x^2} + 2x">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>0.5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.09.00.png" alt="M17/5/MATME/SP2/ENG/TZ2/08"></p>
<p> </p>
<p>There are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercepts at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
</math></span>. There is a maximum at A where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
<mi>x</mi>
<mo>=</mo>
<mi>a</mi>
</math></span>, and a point of inflexion at B where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
<mi>x</mi>
<mo>=</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span> be the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> , the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b"> <mi>x</mi> <mo>=</mo> <mi>b</mi> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0,{\text{ }}y = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>2.73205</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2.73"> <mi>p</mi> <mo>=</mo> <mn>2.73</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.87938, 8.11721</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1.88,{\text{ }}8.12)"> <mo stretchy="false">(</mo> <mn>1.88</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>8.12</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>A2</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate of change is 0 (do not accept decimals) <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using GDC)</strong></p>
<p>valid approach <strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = 0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo>=</mo> <mn>0</mn> </math></span>, max/min on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’,{\text{ }}x = - 1"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span></p>
<p>sketch of either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’"> <msup> <mi>f</mi> <mo>′</mo> </msup> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’"> <msup> <mi>f</mi> <mo>″</mo> </msup> </math></span>, with max/min or root (respectively) <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p>Substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.5"> <mi>y</mi> <mo>=</mo> <mn>4.5</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong>METHOD 2 (analytical)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = - 6{x^2} + 6"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo>=</mo> <mo>−</mo> <mn>6</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>6</mn> </math></span> <strong><em>A1</em></strong></p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’’ = 0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p>substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1)"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.5"> <mi>y</mi> <mo>=</mo> <mn>4.5</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing rate of change is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’"> <msup> <mi>f</mi> <mo>′</mo> </msup> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y’,{\text{ }}f’(1)"> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span></p>
<p>rate of change is 6 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula <strong><em>(M1)</em></strong></p>
<p>involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}"> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </math></span> (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}x"> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>)</p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int {{{( - 0.5{x^4} + 3{x^2} + 2x)}^2}{\text{d}}x,{\text{ }}\int_1^{1.88} {{f^2}} } "> <mi>π</mi> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>0.5</mn> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msubsup> <mo>∫</mo> <mn>1</mn> <mrow> <mn>1.88</mn> </mrow> </msubsup> <mrow> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </mrow> </mrow> </math></span></p>
<p>128.890</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{volume}} = 129"> <mrow> <mtext>volume</mtext> </mrow> <mo>=</mo> <mn>129</mn> </math></span> <strong><em>A2</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 7 adult men wanted to see if there was a relationship between their Body Mass Index (BMI) and their waist size. Their waist sizes, in centimetres, were recorded and their BMI calculated. The following table shows the results.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the BMI of an adult man whose waist size is 95 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> (or for correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2}">
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> = 0.955631 seen in (ii))</p>
<p>0.141120, 11.1424</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> = 0.141, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> = 11.1 <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.977563</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> = 0.978 <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <strong>their</strong> regression equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.141(95) + 11.1</p>
<p>24.5488</p>
<p>24.5 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A company produces bags of sugar whose masses, in grams, can be modelled by a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn></math>. A bag of sugar is rejected for sale if its mass is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>995</mn></math> grams.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag selected at random is rejected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of bags which will be rejected from a random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> bags.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that a bag is not rejected, find the probability that it has a mass greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1005</mn></math> grams.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, do not penalise incorrect use of strict inequality signs.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>=</mo></math> mass of a bag of sugar</p>
<p> </p>
<p>evidence of identifying the correct area <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo><</mo><mn>995</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>0765637</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0766</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, do not penalise incorrect use of strict inequality signs.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>=</mo></math> mass of a bag of sugar</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0766</mn><mo>×</mo><mn>100</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≈</mo><mn>8</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>66</mn></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, do not penalise incorrect use of strict inequality signs.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>=</mo></math> mass of a bag of sugar</p>
<p> </p>
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>></mo><mn>1005</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>X</mi><mo>≥</mo><mn>995</mn></menclose></mrow></mfenced></math> is required <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>995</mn><mo>∩</mo><mi>X</mi><mo>></mo><mn>1005</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>995</mn></mrow></mfenced></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>></mo><mn>1005</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>≥</mo><mn>995</mn></mrow></mfenced></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0765637</mn><mo>…</mo></mrow><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>0765637</mn><mo>…</mo></mrow></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0765637</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>923436</mn><mo>…</mo></mrow></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0829</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There are three fair six-sided dice. Each die has two green faces, two yellow faces and two red faces.</p>
<p>All three dice are rolled.</p>
</div>
<div class="specification">
<p>Ted plays a game using these dice. The rules are:</p>
<ul>
<li>Having a turn means to roll all three dice.</li>
<li>He wins $10 for each green face rolled and adds this to his winnings.</li>
<li>After a turn Ted can either:<br>
<ul>
<li>end the game (and keep his winnings), or</li>
<li>have another turn (and try to increase his winnings).</li>
</ul>
</li>
<li>If two or more red faces are rolled in a turn, all winnings are lost and the game ends.</li>
</ul>
</div>
<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> ($) represents how much is added to his winnings after a turn.</p>
<p>The following table shows the distribution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span>, where $<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> represents his winnings in the game so far.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling exactly one red face.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling two or more red faces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, after a turn, the probability that Ted adds exactly $10 to his winnings is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ted will always have another turn if he expects an increase to his winnings.</p>
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> for which Ted should end the game instead of having another turn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">valid approach to find P(one red) (M1)<br></span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_n{C_a} \times {p^a} \times {q^{n - a}}">
<msub>
<mrow>
</mrow>
<mi>n</mi>
</msub>
<mrow>
<msub>
<mi>C</mi>
<mi>a</mi>
</msub>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mi>p</mi>
<mi>a</mi>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mi>q</mi>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mi>a</mi>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {n{\text{, }}p} \right)">
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mrow>
<mtext>, </mtext>
</mrow>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{1}{3}} \right){\left( {\frac{2}{3}} \right)^2}">
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">listing all possible cases for exactly one red (may be indicated on tree diagram)</span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">P(1 red) = 0.444 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{4}{9}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> [0.444, 0.445] </span><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"> </span><em style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><strong>A1 N2</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"> [3 marks] [5 maximum for parts (a.i) and (a.ii)]</span></em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">valid approach <em><strong>(M1)</strong></em><br></span></p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><em>eg</em> P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = 2">
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>) + P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = 3">
<mi>X</mi>
<mo>=</mo>
<mn>3</mn>
</math></span>), 1 − P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> ≤ 1), binomcdf<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3{\text{,}}\,\,\frac{1}{3}{\text{,}}\,\,2{\text{,}}\,\,3} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{9} + \frac{1}{{27}}">
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span>, 0.222 + 0.037 , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\left( {\frac{2}{3}} \right)^3} - \frac{4}{9}">
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
</math></span></p>
<p>0.259259</p>
<p><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;">P(at least two red) = 0.259 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{7}{27}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>27</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> </span><span style="font-family: Verdana, sans-serif;font-size: 10.5pt;"> </span><em style="font-family: Verdana, sans-serif;font-size: 10.5pt;"><strong>A1 N3</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks] [5 maximum for parts (a.i) and (a.ii)]</span></em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that winning $10 means rolling exactly one green <em><strong>(M1)</strong></em></p>
<p>recognition that winning $10 also means rolling at most 1 red <em><strong>(M1)</strong></em></p>
<p><em>eg</em> “cannot have 2 or more reds”</p>
<p>correct approach <strong><em>A1</em></strong></p>
<p><em>eg</em> P(1G ∩ 0R) + P(1G ∩ 1R), P(1G) − P(1G ∩ 2R),</p>
<p> “one green and two yellows or one of each colour”</p>
<p><strong>Note:</strong> Because this is a “show that” question, do not award this <strong><em>A1</em></strong> for purely numerical expressions.</p>
<p>one correct probability for their approach <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{1}{3}} \right){\left( {\frac{1}{3}} \right)^2}">
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{6}{27}}">
<mrow>
<mfrac>
<mn>6</mn>
<mn>27</mn>
</mfrac>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{1}{3}} \right){\left( {\frac{2}{3}} \right)^2}">
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{9}}">
<mrow>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{2}{9}}">
<mrow>
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
</mrow>
</math></span></p>
<p>correct working leading to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{27}} + \frac{6}{{27}}">
<mfrac>
<mn>3</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{12}{{27}} - \frac{3}{{27}}">
<mfrac>
<mn>12</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{9}} + \frac{2}{{9}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>9</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mn>9</mn>
</mrow>
</mfrac>
</math></span></p>
<p>probability = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
</math></span> <em><strong>AG N0</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[5 marks]</span></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{7}{{27}}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span>, 0.259 (check <em><strong>FT</strong></em> from (a)(ii)) <em><strong>A1 N1</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[1 mark]</span></em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of summing probabilities to 1 <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum { = 1} ">
<mo>∑</mo>
<mrow>
<mo>=</mo>
<mn>1</mn>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + \frac{1}{3} + \frac{2}{9} + \frac{1}{{27}} = 1">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{7}{{27}} - \frac{9}{{27}} - \frac{6}{{27}} - \frac{1}{{27}}">
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span></p>
<p>0.148147 (0.148407 if working with <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> value to 3 sf)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{4}{{27}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span> (exact), 0.148 <em><strong>A1 N2</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[2 marks]</span></em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into the formula for expected value <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - w \cdot \frac{7}{{27}} + 10 \cdot \frac{9}{{27}} + 20 \cdot \frac{6}{{27}} + 30 \cdot \frac{1}{{27}}">
<mo>−</mo>
<mi>w</mi>
<mo>⋅</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>10</mn>
<mo>⋅</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>20</mn>
<mo>⋅</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>30</mn>
<mo>⋅</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>27</mn>
</mrow>
</mfrac>
</math></span></p>
<p>correct critical value (accept inequality) <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> = 34.2857 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{{240}}{7}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>240</mn>
</mrow>
<mn>7</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> > 34.2857</p>
<p>$40 <em><strong>A1 N2</strong></em></p>
<p><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[3 marks]</span></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The length, <em>X </em>mm, of a certain species of seashell is normally distributed with mean 25 and variance, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2}">
<mrow>
<msup>
<mi>σ<!-- σ --></mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p>The probability that <em>X</em> is less than 24.15 is 0.1446.</p>
</div>
<div class="specification">
<p>A random sample of 10 seashells is collected on a beach. Let <em>Y</em> represent the number of seashells with lengths greater than 26 mm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(24.15 < <em>X</em> < 25).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ</mi>
</math></span>, the standard deviation of <em>X</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that a seashell selected at random has a length greater than 26 mm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find E(<em>Y</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly three of these seashells have a length greater than 26 mm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A seashell selected at random has a length less than 26 mm.</p>
<p>Find the probability that its length is between 24.15 mm and 25 mm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use the symmetry of the normal curve <em><strong>(M1)</strong></em></p>
<p><em>eg</em> diagram, 0.5 − 0.1446</p>
<p>P(24.15 < <em>X</em> < 25) = 0.3554 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of inverse normal to find z score <em><strong>(M1)</strong></em></p>
<p><em>z</em> = −1.0598</p>
<p>correct substitution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24.15 - 25}}{\sigma } = - 1.0598">
<mfrac>
<mrow>
<mn>24.15</mn>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>1.0598</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ</mi>
</math></span> = 0.802 <em><strong>A1 </strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(<em>X</em> > 26) = 0.106 <em><strong> (M1)A1 </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial probability <em><strong>(M1)</strong></em></p>
<p>E(<em>Y</em>) = 10 × 0.10621 <em><strong>(A1)</strong></em></p>
<p>= 1.06 <em><strong>A1 </strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(<em>Y</em> = 3) <em><strong>(M1)</strong></em></p>
<p>= 0.0655 <em><strong>A1 </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing conditional probability <em><strong>(M1)</strong></em></p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.3554}}{{1 - 0.10621}}">
<mfrac>
<mrow>
<mn>0.3554</mn>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>0.10621</mn>
</mrow>
</mfrac>
</math></span></p>
<p>= 0.398 <em><strong> A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> are independent and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>3</mn><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∪</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>68</mn></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∪</mo><mi>B</mi><mo>)</mo><mo>=</mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>-</mo><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>68</mn></math></p>
<p>substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>·</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∪</mo><mi>B</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>-</mo><mtext>P</mtext><mfenced><mi>A</mi></mfenced><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mtext> </mtext><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>68</mn></mrow></mfenced></math></p>
<p>substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>A</mi></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>-</mo><mn>3</mn><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mtext>P</mtext><mfenced><mi>B</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>68</mn></math> (or equivalent) <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The first two <em><strong>M</strong></em> marks are independent of each other.</p>
<p> </p>
<p>attempts to solve their quadratic equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>133</mn><mo>…</mo><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mn>5</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mn>17</mn><mn>15</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>5</mn></mfrac></mrow></mfenced></math> <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> if both answers are given as final answers for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question proved difficult for many students. One common error was to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mtext>A</mtext><mo>∪</mo><mtext>B</mtext><mo>)</mo><mo>=</mo><mtext>P(A)+P(B)</mtext></math>, which simplified the problem greatly, resulting in a linear, not a quadratic equation.</p>
</div>
<br><hr><br><div class="specification">
<p>The following table below shows the marks scored by seven students on two different mathematics tests.</p>
<p><img src=""></p>
<p>Let <em>L</em><sub>1</sub> be the regression line of <em>x</em> on <em>y</em>. The equation of the line <em>L</em><sub>1</sub> can be written in the form <em>x</em> = <em>ay</em> + <em>b</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <em>L</em><sub>2</sub> be the regression line of <em>y</em> on <em>x</em>. The lines <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> pass through the same point with coordinates (<em>p</em> , <em>q</em>).</p>
<p>Find the value of <em>p</em> and the value of <em>q</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>a</em> = 1.29 and <em>b</em> = −10.4 <em><strong> A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognising both lines pass through the mean point <em><strong> (M1)</strong></em></p>
<p><em>p</em> = 28.7, <em>q</em> = 30.3 <em><strong>A2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Contestants in a TV gameshow try to get through three walls by passing through doors without falling into a trap. Contestants choose doors at random.<br>If they avoid a trap they progress to the next wall.<br>If a contestant falls into a trap they exit the game before the next contestant plays.<br>Contestants are not allowed to watch each other attempt the game.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The first wall has four doors with a trap behind one door.</p>
<p style="text-align: left;">Ayako is a contestant.</p>
</div>
<div class="specification">
<p>Natsuko is the second contestant.</p>
</div>
<div class="specification">
<p>The second wall has five doors with a trap behind two of the doors.</p>
<p>The third wall has six doors with a trap behind three of the doors.</p>
<p>The following diagram shows the branches of a probability tree diagram for a contestant in the game.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that Ayako avoids the trap in this wall.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that only one of Ayako and Natsuko falls into a trap while attempting to pass through a door <strong>in the first wall</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> the probability tree diagram and write down the relevant probabilities along the branches.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant fell into a trap while attempting to pass through a door in the second wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant fell into a trap.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>120 contestants attempted this game.</p>
<p>Find the expected number of contestants who fell into a trap while attempting to pass through a door in the third wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span> (0.75, 75%) <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{3}{4}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong>OR </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times \frac{3}{4} \times \frac{1}{4}">
<mn>2</mn>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their product <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} \times \frac{3}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span> seen, and <em><strong>(M1)</strong></em> for adding their two products or multiplying their product by 2.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{8}\,\,\,\,\left( {\frac{6}{{16}},\,\,0.375,\,\,37.5{\text{% }}} \right)">
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>6</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.375</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>37.5</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a), but only if the sum of their two fractions is 1.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct pair of branches. Follow through from part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{2}{5}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p>Note: Award <em><strong>(M1)</strong></em> for correct probabilities multiplied together.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{{10}}\,\,\,\left( {0.3,\,\,30{\text{% }}} \right)">
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.3</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>30</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram or part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{3}{4} \times \frac{2}{5} \times \frac{3}{6}">
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} + \frac{3}{4} \times \frac{2}{5} + \frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
</math></span> and <em><strong>(M1)</strong></em> for subtracting their correct probability from 1, or adding to their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} + \frac{3}{4} \times \frac{2}{5}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{93}}{{120}}\,\,\,\,\left( {\frac{{31}}{{40}},\,\,0.775,\,\,77.5{\text{% }}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>93</mn>
</mrow>
<mrow>
<mn>120</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>31</mn>
</mrow>
<mrow>
<mn>40</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.775</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>77.5</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6} \times 120">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mn>120</mn>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}\,\,\,\,\left( {\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}\,\,{\text{OR}}\,\,\frac{{27}}{{120}}\,\,{\text{OR}}\,\,\frac{9}{{40}}} \right)">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>OR</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mn>120</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>OR</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>9</mn>
<mrow>
<mn>40</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>(M1)</strong></em> for multiplying by 120.</p>
<p>= 27 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram or their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{3}{5} \times \frac{3}{6}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>6</mn>
</mfrac>
</math></span> from their calculation in part (d)(ii).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The principal of a high school is concerned about the effect social media use might be having on the self-esteem of her students. She decides to survey a random sample of 9 students to gather some data. She wants the number of students in each grade in the sample to be, as far as possible, in the same proportion as the number of students in each grade in the school.</p>
</div>
<div class="specification">
<p>The number of students in each grade in the school is shown in table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>In order to select the 3 students from grade 12, the principal lists their names in alphabetical order and selects the 28<sup>th</sup>, 56<sup>th</sup> and 84<sup>th</sup> student on the list.</p>
</div>
<div class="specification">
<p>Once the principal has obtained the names of the 9 students in the random sample, she surveys each student to find out how long they used social media the previous day and measures their self-esteem using the Rosenberg scale. The Rosenberg scale is a number between 10 and 40, where a high number represents high self-esteem.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name for this type of sampling technique.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that 3 students will be selected from grade 12.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of students in each grade in the sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name for this type of sampling technique.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Pearson’s product moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret the meaning of the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> in the context of the principal’s concerns.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> makes it appropriate to find the equation of a regression line.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another student at the school, Jasmine, has a self-esteem value of 29. </p>
<p>By finding the equation of an appropriate regression line, estimate the time Jasmine spent on social media the previous day.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Stratified sampling <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There are 260 students in total <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{84}}{{260}} \times 9 = 2.91">
<mfrac>
<mrow>
<mn>84</mn>
</mrow>
<mrow>
<mn>260</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>9</mn>
<mo>=</mo>
<mn>2.91</mn>
</math></span> <em><strong>M1A1</strong></em></p>
<p>So 3 students will be selected. <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>grade 9 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{60}}{{260}} \times 9 \approx 2">
<mo>=</mo>
<mfrac>
<mrow>
<mn>60</mn>
</mrow>
<mrow>
<mn>260</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>9</mn>
<mo>≈</mo>
<mn>2</mn>
</math></span>, grade 10 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{83}}{{260}} \times 9 \approx 3">
<mo>=</mo>
<mfrac>
<mrow>
<mn>83</mn>
</mrow>
<mrow>
<mn>260</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>9</mn>
<mo>≈</mo>
<mn>3</mn>
</math></span>, grade 11 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{33}}{{260}} \times 9 \approx 1">
<mo>=</mo>
<mfrac>
<mrow>
<mn>33</mn>
</mrow>
<mrow>
<mn>260</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>9</mn>
<mo>≈</mo>
<mn>1</mn>
</math></span> <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Systematic sampling <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = -0.901">
<mi>r</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.901</mn>
</math></span> <em><strong>A2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The negative value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> indicates that more time spent on social media leads to lower self-esteem, supporting the principal’s concerns. <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> being close to –1 indicates there is strong correlation, so a regression line is appropriate. <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Find the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span>. <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = - 0.281s + 9.74">
<mi>t</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.281</mn>
<mi>s</mi>
<mo>+</mo>
<mn>9.74</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \left( { - 0.2807 \ldots } \right)\left( {29} \right) + 9.739 \ldots = 1.60">
<mi>t</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>0.2807</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>29</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>9.739</mn>
<mo>…</mo>
<mo>=</mo>
<mn>1.60</mn>
</math></span> hours <em><strong>M1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A healthy human body temperature is 37.0 °C. Eight people were medically examined and the difference in their body temperature (°C), from 37.0 °C, was recorded. Their heartbeat (beats per minute) was also recorded.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for temperature difference from 37 °C (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>) against heartbeat (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>). Use a scale of 2 cm for 0.1 °C on the horizontal axis, starting with −0.3 °C. Use a scale of 1 cm for 2 heartbeats per minute on the vertical axis, starting with 60 beats per minute.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean temperature difference from 37 °C, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of heartbeats per minute, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
<mrow>
<mover>
<mi>x</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
<mrow>
<mover>
<mi>y</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>) on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe the correlation between temperature difference from 37 °C and heartbeat.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""> <em><strong>(</strong><strong>A4)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct scales, axis labels, minimum <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 0.3">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.3</mn>
</math></span>, and minimum <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 60">
<mi>y</mi>
<mo>=</mo>
<mn>60</mn>
</math></span>. Award <em><strong>(A0)</strong></em> if axes are reversed and follow through for their points.</p>
<p>Award <em><strong>(A3)</strong></em> for all eight points correctly plotted,<br><em><strong> (A2)</strong></em> for six or seven points correctly plotted.<br><em><strong> (A1)</strong></em> for four or five points correctly plotted.</p>
<p>Allow a tolerance of half a small square.</p>
<p>If graph paper has not been used, award at most <em><strong>(A1)(A0)(A0)(A0)</strong></em>.</p>
<p>If accuracy cannot be determined award <em><strong>(A0)(A0)(A0)(A0)</strong></em>.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.025 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{{40}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mn>40</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>74 <strong><em>(A1)</em></strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the point M labelled, correctly plotted on their diagram <strong><em>(A1)(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for labelled M. Do not accept any other label. Award <strong><em>(A1)</em>(ft)</strong> for their point M correctly plotted. Follow through from part (b).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.807 (0.806797…) <strong><em>(G2)</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(moderately) strong, positive <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for (moderately) strong, <em><strong>(A1)</strong></em> for positive. Follow through from part (d)(i). If there is no answer to part (d)(i), award at most <em><strong>(A0)</strong></em><em><strong>(A1)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 22.0x + 73.5\,\,\left( {y = 21.9819 \ldots x + 73.4504 \ldots } \right)">
<mi>y</mi>
<mo>=</mo>
<mn>22.0</mn>
<mi>x</mi>
<mo>+</mo>
<mn>73.5</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>y</mi>
<mo>=</mo>
<mn>21.9819</mn>
<mo>…</mo>
<mi>x</mi>
<mo>+</mo>
<mn>73.4504</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> (G1)</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="22.0x">
<mn>22.0</mn>
<mi>x</mi>
</math></span>, <em><strong>(G1)</strong></em> for 73.5.</p>
<p>Award a maximum of <em><strong>(G0)(G1)</strong></em> if the answer is not an equation.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their regression line correctly drawn on scatter diagram <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for a straight line, using a ruler, intercepting their mean point, and <strong><em>(A1)</em>(ft)</strong> for intercepting the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis at their 73.5 and the gradient of the line is positive. If graph paper is not used, award at most <strong><em>(A1)</em></strong><strong><em>(A0)</em></strong>. Follow through from part (e).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 66 people went on holiday to Hawaii. During their stay, three trips were arranged: a boat trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>), a coach trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>) and a helicopter trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>).</p>
<p>From this group of people:</p>
<table style="width: 691.333px;">
<tbody>
<tr>
<td style="width: 182px; text-align: right;">3 </td>
<td style="width: 526.333px;">went on all three trips;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">16 </td>
<td style="width: 526.333px;">went on the coach trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">13 </td>
<td style="width: 526.333px;">went on the boat trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">5 </td>
<td style="width: 526.333px;">went on the helicopter trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;"><em>x </em></td>
<td style="width: 526.333px;">went on the coach trip and the helicopter trip <strong>but not</strong> the boat trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">2<em>x </em>
</td>
<td style="width: 526.333px;">went on the boat trip and the helicopter trip <strong>but not</strong> the coach trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">4<em>x </em>
</td>
<td style="width: 526.333px;">went on the boat trip and the coach trip <strong>but not</strong> the helicopter trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">8 </td>
<td style="width: 526.333px;">did not go on any of the trips.</td>
</tr>
</tbody>
</table>
</div>
<div class="specification">
<p>One person in the group is selected at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Venn diagram to represent the given information, using sets labelled <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(B \cap C)">
<mi>n</mi>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo>∩</mo>
<mi>C</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person</p>
<p>(i) went on at most one trip;</p>
<p>(ii) went on the coach trip, given that this person also went on both the helicopter trip and the boat trip.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-07_om_10.03.03.png" alt="N16/5/MATSD/SP2/ENG/TZ0/02.a/M"> <strong><em>(A5)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for rectangle and three labelled intersecting circles (U need not be seen),</p>
<p><strong><em>(A1) </em></strong>for 3 in the correct region,</p>
<p><strong><em>(A1) </em></strong>for 8 in the correct region,</p>
<p><strong><em>(A1) </em></strong>for 5, 13 and 16 in the correct regions,</p>
<p><strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x">
<mn>2</mn>
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x">
<mn>4</mn>
<mi>x</mi>
</math></span> in the correct regions.</p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 + 13 + 16 + 3 + 5 + x + 2x + 4x = 66">
<mn>8</mn>
<mo>+</mo>
<mn>13</mn>
<mo>+</mo>
<mn>16</mn>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mi>x</mi>
<mo>=</mo>
<mn>66</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for <strong>either </strong>a completely correct equation <strong>or </strong>adding all the terms from <strong>their </strong>diagram in part (a) and equating to 66.</p>
<p>Award <strong><em>(M0)(A0) </em></strong>if their equation has no <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7x = 66 - 45">
<mn>7</mn>
<mi>x</mi>
<mo>=</mo>
<mn>66</mn>
<mo>−</mo>
<mn>45</mn>
</math></span><strong> OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7x + 45 = 66">
<mn>7</mn>
<mi>x</mi>
<mo>+</mo>
<mn>45</mn>
<mo>=</mo>
<mn>66</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for adding their like terms correctly, <strong>but only </strong>when the solution to their equation is equal to 3 and is consistent with their original equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>The conclusion <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>15 <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a). The answer must be an integer.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{42}}{{66}}{\text{ }}\left( {\frac{7}{{11}},{\text{ }}0.636,{\text{ }}63.6\% } \right)">
<mfrac>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>66</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>7</mn>
<mrow>
<mn>11</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.636</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>63.6</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)(G2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for numerator, <strong><em>(A1) </em></strong>for denominator. Follow through from their Venn diagram.</p>
<p> </p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{9}{\text{ }}\left( {\frac{1}{3},{\text{ }}0.333,{\text{ }}33.3\% } \right)">
<mfrac>
<mn>3</mn>
<mn>9</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.333</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>33.3</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for numerator, <strong><em>(A1)</em>(ft) </strong>for denominator. Follow through from their Venn diagram.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the mean weight, <em>y</em> kg , of children who are <em>x</em> years old.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between the variables is modelled by the regression line with equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your equation to estimate the mean weight of a child that is 1.95 years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> correct value for <em>a</em> or <em>b</em> (or for <em>r</em> seen in (ii))</p>
<p><em>a</em> = 1.91966 <em>b</em> = 7.97717</p>
<p><em>a</em> = 1.92, <em>b</em> = 7.98 <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.984674</p>
<p><em>r </em>= 0.985 <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into their equation <em><strong>(A1)</strong></em><br><em>eg</em> 1.92 × 1.95 + 7.98</p>
<p>11.7205</p>
<p>11.7 (kg) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ten students were surveyed about the number of hours, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>, they spent browsing the Internet during week 1 of the school year. The results of the survey are given below.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\sum\limits_{i = 1}^{10} {{x_i} = 252,{\text{ }}\sigma = 5{\text{ and median}} = 27.} ">
<munderover>
<mo movablelimits="false">∑<!-- ∑ --></mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</munderover>
<mrow>
<mrow>
<msub>
<mi>x</mi>
<mi>i</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>252</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>σ<!-- σ --></mi>
<mo>=</mo>
<mn>5</mn>
<mrow>
<mtext> and median</mtext>
</mrow>
<mo>=</mo>
<mn>27.</mn>
</mrow>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours spent browsing the Internet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 2, the students worked on a major project and they each spent an additional five hours browsing the Internet. For week 2, write down</p>
<p>(i) the mean;</p>
<p>(ii) the standard deviation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 3 each student spent 5% less time browsing the Internet than during week 1. For week 3, find</p>
<p>(i) the median;</p>
<p>(ii) the variance.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to substitute into formula for mean <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Sigma x}}{{10}},{\text{ }}\frac{{252}}{n},{\text{ }}\frac{{252}}{{10}}"> <mfrac> <mrow> <mi mathvariant="normal">Σ</mi> <mi>x</mi> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>252</mn> </mrow> <mi>n</mi> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>252</mn> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span></p>
<p>mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 25.2{\text{ (hours)}}"> <mo>=</mo> <mn>25.2</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 30.2{\text{ (hours)}}"> <mo>=</mo> <mn>30.2</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span> <strong><em>A1 N1</em></strong></p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = 5{\text{ (hours)}}"> <mi>σ</mi> <mo>=</mo> <mn>5</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span> <strong><em>A1 N1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>95%, 5% of 27</p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.95 \times 27,{\text{ }}27 - (5\% {\text{ of }}27)"> <mn>0.95</mn> <mo>×</mo> <mn>27</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>27</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mi mathvariant="normal">%</mi> <mrow> <mtext> of </mtext> </mrow> <mn>27</mn> <mo stretchy="false">)</mo> </math></span></p>
<p>median <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 25.65{\text{ (exact), }}25.7{\text{ (hours)}}"> <mo>=</mo> <mn>25.65</mn> <mrow> <mtext> (exact), </mtext> </mrow> <mn>25.7</mn> <mrow> <mtext> (hours)</mtext> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p>(ii) <strong>METHOD 1</strong></p>
<p>variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {({\text{standard deviation}})^2}"> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <mtext>standard deviation</mtext> </mrow> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> </math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p>valid attempt to find new standard deviation <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma _{new}} = 0.95 \times 5,{\text{ }}4.75"> <mrow> <msub> <mi>σ</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>w</mi> </mrow> </msub> </mrow> <mo>=</mo> <mn>0.95</mn> <mo>×</mo> <mn>5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4.75</mn> </math></span></p>
<p>variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6"> <mo>=</mo> <mn>22.5625</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>exact</mtext> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>22.6</mn> </math></span> <strong><em>A1 N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {({\text{standard deviation}})^2}"> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <mtext>standard deviation</mtext> </mrow> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> </math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p>valid attempt to find new variance <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{0.95^2}{\text{ }},{\text{ }}0.9025 \times {\sigma ^2}"> <mrow> <msup> <mn>0.95</mn> <mn>2</mn> </msup> </mrow> <mrow> <mtext> </mtext> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.9025</mn> <mo>×</mo> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>new variance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6"> <mo>=</mo> <mn>22.5625</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>exact</mtext> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>22.6</mn> </math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the systolic blood pressures, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> mmHg, and the ages, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> years, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> male patients at a medical clinic.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> can be modelled by the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mi>a</mi><mi>t</mi><mo>+</mo><mi>b</mi></math> .</p>
</div>
<div class="specification">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>‐year‐old male patient enters the medical clinic for his appointment.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Pearson’s product‐moment correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret, in context, the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> found in part (a) (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation from part (b) to predict this patient’s systolic blood pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math>‐year‐old male patient enters the medical clinic for his appointment.</p>
<p>Explain why the regression equation from part (b) should not be used to predict this patient’s systolic blood pressure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>946</mn></math> <strong>A2</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> shows a (very) strong positive correlation between age and (systolic) blood pressure <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>05</mn><mi>t</mi><mo>+</mo><mn>69</mn><mo>.</mo><mn>3</mn></math> <strong>A1A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Only award marks for an equation. Award <strong>A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>05</mn></math> and <strong>A1</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>69</mn><mo>.</mo><mn>3</mn></math>. Award <strong>A1A0</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>05</mn><mi>x</mi><mo>+</mo><mn>69</mn><mo>.</mo><mn>3</mn></math>.</p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>122</mn></math> (mmHg) <strong>(M1)A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the regression equation should not be used because it involves extrapolation <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A nationwide study on reaction time is conducted on participants in two age groups. The participants in Group X are less than 40 years old. Their reaction times are normally distributed with mean 0.489 seconds and standard deviation 0.07 seconds.</p>
</div>
<div class="specification">
<p>The participants in Group Y are 40 years or older. Their reaction times are normally distributed with mean 0.592 seconds and standard deviation <em>σ</em> seconds.</p>
</div>
<div class="specification">
<p>In the study, 38 % of the participants are in Group X.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A person is selected at random from Group X. Find the probability that their reaction time is greater than 0.65 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The probability that the reaction time of a person in Group Y is greater than 0.65 seconds is 0.396. Find the value of <em>σ</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A randomly selected participant has a reaction time greater than 0.65 seconds. Find the probability that the participant is in Group X.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ten of the participants with reaction times greater than 0.65 are selected at random. Find the probability that at least two of them are in Group X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>0.010724</p>
<p>0.0107 <em><strong>A2 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct <em>z</em>-value <em><strong>(A1)</strong></em></p>
<p>0.263714…</p>
<p>evidence of appropriate approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.65 - 0.592}}{\sigma }">
<mfrac>
<mrow>
<mn>0.65</mn>
<mo>−</mo>
<mn>0.592</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.264 = \frac{{x - u}}{\sigma }">
<mn>0.264</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mi>u</mi>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span></p>
<p>correct substitution <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.263714 = \frac{{0.65 - 0.592}}{\sigma }">
<mn>0.263714</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.65</mn>
<mo>−</mo>
<mn>0.592</mn>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma = \frac{{0.65 - 0.592}}{{0.264}}">
<mi>σ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.65</mn>
<mo>−</mo>
<mn>0.592</mn>
</mrow>
<mrow>
<mn>0.264</mn>
</mrow>
</mfrac>
</math></span></p>
<p>0.219934</p>
<p><em>σ </em>= 0.220 <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct work for P(group X and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> > 0.65) or P(group Y and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> > 0.65) (may be seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{group X}}} \right) \times {\text{P}}\left( {t > 0.65\left| {\text{X}} \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>group X</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
<mrow>
<mo>|</mo>
<mrow>
<mtext>X</mtext>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{X}} \cap t > 0.65} \right) = 0.0107 \times 0.38\left( { = 0.004075} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>X</mtext>
</mrow>
<mo>∩</mo>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.0107</mn>
<mo>×</mo>
<mn>0.38</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>0.004075</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{Y}} \cap t > 0.65} \right) = 0.396 \times 0.62">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>Y</mtext>
</mrow>
<mo>∩</mo>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.396</mn>
<mo>×</mo>
<mn>0.62</mn>
</math></span></p>
<p>recognizing conditional probability (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {\text{X}} \right|t > 0.65} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mrow>
<mtext>X</mtext>
</mrow>
<mo>|</mo>
</mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. A \right|B} \right) = \frac{{{\text{P}}\left( {A \cap B} \right)}}{{{\text{P}}\left( B \right)}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mi>A</mi>
<mo>|</mo>
</mrow>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {t > 0.65} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <img src="">, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{X and }}t > 0.65} \right) + {\text{P}}\left( {{\text{Y and }}t > 0.65} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>X and </mtext>
</mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>Y and </mtext>
</mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct work for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {t > 0.65} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 0.0107 × 0.38 + 0.396 × 0.62, 0.249595</p>
<p>correct substitution into conditional probability formula <strong><em> A1</em></strong></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0107 \times 0.38}}{{0.0107 \times 0.38 + 0.396 \times 0.62}}">
<mfrac>
<mrow>
<mn>0.0107</mn>
<mo>×</mo>
<mn>0.38</mn>
</mrow>
<mrow>
<mn>0.0107</mn>
<mo>×</mo>
<mn>0.38</mn>
<mo>+</mo>
<mn>0.396</mn>
<mo>×</mo>
<mn>0.62</mn>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.004075}}{{0.249595}}">
<mfrac>
<mrow>
<mn>0.004075</mn>
</mrow>
<mrow>
<mn>0.249595</mn>
</mrow>
</mfrac>
</math></span></p>
<p>0.016327</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {\text{X}} \right|t > 0.65} \right) = 0.0163270">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mrow>
<mtext>X</mtext>
</mrow>
<mo>|</mo>
</mrow>
<mi>t</mi>
<mo>></mo>
<mn>0.65</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.0163270</mn>
</math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial probability <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim B\left( {n,\,\,p} \right)">
<mi>X</mi>
<mo>∼</mo>
<mi>B</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{q^{n - r}}">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>n</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>r</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mi>p</mi>
<mi>r</mi>
</msup>
</mrow>
<mrow>
<msup>
<mi>q</mi>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mi>r</mi>
</mrow>
</msup>
</mrow>
</math></span>, (0.016327)<sup>2</sup>(0.983672)<sup>8</sup>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {10} \\ 2 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X \geqslant 2} \right) = 1 - {\text{P}}\left( {X \leqslant 1} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>⩾</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>⩽</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\text{P}}\left( {X < a} \right)">
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo><</mo>
<mi>a</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, summing terms from 2 to 10 (accept binomcdf(10, 0.0163, 2, 10))</p>
<p>0.010994</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X \geqslant 2} \right) = 0.0110">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>⩾</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.0110</mn>
</math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>SpeedWay airline flies from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
<mrow>
<mtext>A</mtext>
</mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
<mrow>
<mtext>B</mtext>
</mrow>
</math></span>. The flight time is normally distributed with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="260">
<mn>260</mn>
</math></span> minutes and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15">
<mn>15</mn>
</math></span> minutes.</p>
<p>A flight is considered late if it takes longer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
<mn>275</mn>
</math></span> minutes.</p>
</div>
<div class="specification">
<p>The flight is considered to be <strong>on time</strong> if it takes between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
<mn>275</mn>
</math></span> minutes. The probability that a flight is on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.830">
<mn>0.830</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>During a week, SpeedWay has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12">
<mn>12</mn>
</math></span> flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
<mrow>
<mtext>A</mtext>
</mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
<mrow>
<mtext>B</mtext>
</mrow>
</math></span>. The time taken for any flight is independent of the time taken by any other flight.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability a flight is <strong>not</strong> late.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are <strong>on time</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are on time, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10"> <mn>10</mn> </math></span> flights are on time.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>SpeedWay increases the number of flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20"> <mn>20</mn> </math></span> flights each week, and improves their efficiency so that more flights are on time. The probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19"> <mn>19</mn> </math></span> flights are on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.788"> <mn>0.788</mn> </math></span>.</p>
<p>A flight is chosen at random. Calculate the probability that it is on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < 275} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo><</mo> <mn>275</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 0.158655"> <mn>1</mn> <mo>−</mo> <mn>0.158655</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.841344"> <mn>0.841344</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.841"> <mn>0.841</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < 275} \right) - {\text{P}}\left( {X < m} \right) = 0.830"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo><</mo> <mn>275</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo><</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.830</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < m} \right) = 0.0113447"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo><</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.0113447</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="225.820"> <mn>225.820</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="226"> <mn>226</mn> </math></span> (minutes) <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of recognizing binomial distribution (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_n{C_a} \times {p^a} \times {q^{n - a}}"> <msub> <mrow> </mrow> <mi>n</mi> </msub> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> <mo>×</mo> <mrow> <msup> <mi>p</mi> <mi>a</mi> </msup> </mrow> <mo>×</mo> <mrow> <msup> <mi>q</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>a</mi> </mrow> </msup> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {n{\text{, }}p} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mrow> <mtext>, </mtext> </mrow> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>evidence of summing probabilities from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12"> <mn>12</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 7} \right) + {\text{P}}\left( {X = 8} \right) + \ldots + {\text{P}}\left( {X = 12} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>8</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>12</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\text{P}}\left( {X \leqslant 6} \right)"> <mn>1</mn> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>⩽</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.991248"> <mn>0.991248</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.991"> <mn>0.991</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 10} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>10</mn> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {12} \\ {10} \end{array}} \right) \times {0.83^{10}} \times {0.17^2}\,\,\left( { = 0.295952} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>12</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <msup> <mn>0.83</mn> <mrow> <mn>10</mn> </mrow> </msup> </mrow> <mo>×</mo> <mrow> <msup> <mn>0.17</mn> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>0.295952</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>recognizing conditional probability <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A\left| B \right.} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mrow> <mo>|</mo> <mi>B</mi> <mo stretchy="true" symmetric="true" fence="true"></mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 10\left| {X \geqslant 7} \right.} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>10</mn> <mrow> <mo>|</mo> <mrow> <mi>X</mi> <mo>⩾</mo> <mn>7</mn> </mrow> <mo stretchy="true" symmetric="true" fence="true"></mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {X = 10 \cap X \geqslant 7} \right)}}{{{\text{P}}\left( {X \geqslant 7} \right)}}"> <mfrac> <mrow> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>10</mn> <mo>∩</mo> <mi>X</mi> <mo>⩾</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>⩾</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.295952}}{{0.991248}}"> <mfrac> <mrow> <mn>0.295952</mn> </mrow> <mrow> <mn>0.991248</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.298565"> <mn>0.298565</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.299"> <mn>0.299</mn> </math></span> <em><strong>A1 N1</strong></em></p>
<p><strong>Note: Exception to the <em>FT</em> rule:</strong> if the candidate uses an incorrect value for the probability that a flight is on time in (i) and working shown, award full <em><strong>FT</strong></em> in (ii) as appropriate.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {20} \\ {19} \end{array}} \right){p^{19}}\left( {1 - p} \right) + {p^{20}} = 0.788"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>20</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>19</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mi>p</mi> <mrow> <mn>19</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <msup> <mi>p</mi> <mrow> <mn>20</mn> </mrow> </msup> </mrow> <mo>=</mo> <mn>0.788</mn> </math></span></p>
<p>valid attempt to solve <em><strong>(M1)</strong></em></p>
<p><em>eg</em> graph</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.956961"> <mn>0.956961</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.957"> <mn>0.957</mn> </math></span> <em><strong>A1 N1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass <em>M</em> of apples in grams is normally distributed with mean <em>μ</em>. The following table shows probabilities for values of <em>M</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The apples are packed in bags of ten.</p>
<p>Any apples with a mass less than 95 g are classified as small.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>μ</em> = 106.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>P</em>(M < 95) .</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag of apples selected at random contains at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of bags in this crate that contain at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least 48 bags in this crate contain at most one small apple.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {{p_i}} = 1">
<mo>∑</mo>
<mrow>
<mrow>
<msub>
<mi>p</mi>
<mi>i</mi>
</msub>
</mrow>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg k</em> + 0.98 + 0.01 = 1</p>
<p><em>k</em> = 0.01 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that 93 and 119 are symmetrical about <em>μ</em> <em><strong>(M1)</strong></em></p>
<p><em>eg μ</em> is midpoint of 93 and 119</p>
<p>correct working to find <em>μ</em> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{119 + 93}}{2}">
<mfrac>
<mrow>
<mn>119</mn>
<mo>+</mo>
<mn>93</mn>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><em>μ</em> = 106 <em><strong>AG N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding standardized value for 93 or 119 <em><strong> (A1)</strong></em><br><em>eg</em> <em>z</em> = −2.32634, <em>z</em> = 2.32634</p>
<p>correct substitution using <strong>their</strong> <em>z</em> value <em><strong>(A1)</strong></em><br><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{93 - 106}}{\sigma } = - 2.32634,\,\,\frac{{119 - 106}}{{2.32634}} = \sigma ">
<mfrac>
<mrow>
<mn>93</mn>
<mo>−</mo>
<mn>106</mn>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2.32634</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>119</mn>
<mo>−</mo>
<mn>106</mn>
</mrow>
<mrow>
<mn>2.32634</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mi>σ</mi>
</math></span></p>
<p>σ = 5.58815 <em><strong>(A1)</strong></em></p>
<p>0.024508</p>
<p>P(<em>X</em> < 95) = 0.0245 <em><strong> A2 N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of recognizing binomial <strong><em>(M1) </em></strong></p>
<p><em>eg </em>10, <em>anana</em><em>Cpqn</em>−=××and 0.024B(5,,)<em>pnp</em>= </p>
<p>valid approach <strong><em>(M1) </em></strong></p>
<p><em>eg </em>P(1),P(0)P(1)<em>XXX</em>≤=+= </p>
<p>0.976285 </p>
<p>0.976 <strong><em>A1 N2 </em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <strong>new</strong> binomial probability <em><strong>(M1)</strong></em><br><em>eg </em> B(50, 0.976)</p>
<p>correct substitution <em><strong>(A1)</strong></em><br><em>eg</em> <em>E(X) = </em>50 (0.976285)</p>
<p>48.81425</p>
<p>48.8 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> P(X ≥ 48), 1 − P(X ≤ 47)</p>
<p>0.884688</p>
<p>0.885 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two events <em>A</em> and <em>B</em> are such that P(<em>A</em>) = 0.62 and P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {A \cap B} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> = 0.18.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(<em>A</em> ∩ <em>B′ </em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P((<em>A</em> ∪ <em>B</em>)′<em> </em>) = 0.19, find P(<em>A </em>|<em> </em><em>B</em>′<em> </em>).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach</p>
<p><em>eg</em> Venn diagram, P(<em>A</em>) − P (<em>A</em> ∩ <em>B</em>), 0.62 − 0.18 <em><strong>(M1) </strong></em></p>
<p>P(<em>A</em> ∩ <em>B' </em>) = 0.44 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find either P(<em>B</em>′ ) or P(<em>B</em>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><img src=""> (seen anywhere), 1 − P(<em>A</em> ∩ <em>B</em>′<em> </em>) − P((<em>A</em> ∪ <em>B</em>)′<em> </em>)</p>
<p>correct calculation for P(<em>B</em>′ ) or P(<em>B</em>) <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 0.44 + 0.19, 0.81 − 0.62 + 0.18</p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {A \cap B'} \right)}}{{{\text{P}}\left( {B'} \right)}}"> <mfrac> <mrow> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>∩</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.44}}{{0.19 + 0.44}},\,\,\frac{{0.44}}{{1 - 0.37}}"> <mfrac> <mrow> <mn>0.44</mn> </mrow> <mrow> <mn>0.19</mn> <mo>+</mo> <mn>0.44</mn> </mrow> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>0.44</mn> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mn>0.37</mn> </mrow> </mfrac> </math></span></p>
<p>0.698412</p>
<p>P(<em>A </em>|<em> </em><em>B</em>′<em> </em>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{44}}{{63}}"> <mfrac> <mrow> <mn>44</mn> </mrow> <mrow> <mn>63</mn> </mrow> </mfrac> </math></span> (exact), 0.698 <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A bakery makes two types of muffins: chocolate muffins and banana muffins.</p>
<p>The weights, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> grams, of the chocolate muffins are normally distributed with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>62</mn><mo> </mo><mtext>g</mtext></math> and standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>g</mtext></math>.</p>
</div>
<div class="specification">
<p>The weights, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> grams, of the banana muffins are normally distributed with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>68</mn><mo> </mo><mtext>g</mtext></math> and standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>4</mn><mo> </mo><mtext>g</mtext></math>.</p>
<p>Each day <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>%</mo></math> of the muffins made are chocolate.</p>
<p>On a particular day, a muffin is randomly selected from all those made at the bakery.</p>
</div>
<div class="specification">
<p>The machine that makes the chocolate muffins is adjusted so that the mean weight of the chocolate muffins remains the same but their standard deviation changes to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo> </mo><mtext>g</mtext></math>. The machine that makes the banana muffins is not adjusted. The probability that the weight of a randomly selected muffin from these machines is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math> is now <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>157</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected chocolate muffin weighs less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a random selection of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> chocolate muffins, find the probability that exactly <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> weigh less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the randomly selected muffin weighs less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that a randomly selected muffin weighs less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>, find the probability that it is chocolate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced></math><strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>365112</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>365</mn></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of binomial eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>~</mo><mtext>B</mtext><mfenced><mrow><mn>12</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>365</mn><mo>…</mo></mrow></mfenced></math><strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>213666</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>214</mn></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>M</mi></math> represent ‘chocolate muffin’ and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>M</mi></math> represent ‘banana muffin’</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>B</mi><mo><</mo><mn>61</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>0197555</mn><mo>.</mo><mo>.</mo><mo>.</mo></math><strong> <em>(A1)</em></strong></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mi>M</mi></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>C</mi><mi>M</mi></menclose></mrow></mfenced><mo>+</mo><mtext>P</mtext><mfenced><mrow><mi>B</mi><mi>M</mi></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>B</mi><mo><</mo><mn>61</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mi>M</mi></menclose></mrow></mfenced></math> (or equivalent in words)<strong> <em>(M1)</em></strong></p>
<p><br><strong>OR</strong></p>
<p>tree diagram showing two ways to have a muffin weigh <math xmlns="http://www.w3.org/1998/Math/MathML"><mo><</mo><mn>61</mn></math><strong> <em>(M1)</em></strong></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>365</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0197</mn><mo>…</mo></mrow></mfenced></math><strong> <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>226969</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>227</mn></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing conditional probability<strong> <em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Recognition must be shown in context either in words or symbols, not just <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi></menclose></mrow></mfenced></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>365112</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>226969</mn><mo>…</mo></mrow></mfrac></math><strong> <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>965183</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>965</mn></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mi>M</mi></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>C</mi><mi>M</mi></menclose></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>B</mi><mi>M</mi></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>B</mi><mo><</mo><mn>61</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mi>M</mi></menclose></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn></math><strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0197555</mn><mo>…</mo></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>248496</mn><mo>…</mo></math><strong> <em>(A1)</em></strong></p>
<p>attempt to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> using GDC<strong> <em>(M1)</em></strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for a graph or table of values to show their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced></math> with a variable standard deviation.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>47225</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>47</mn><mo> </mo><mfenced><mtext>g</mtext></mfenced></math><strong> <em>A2</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mi>M</mi></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>C</mi><mi>M</mi></menclose></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>B</mi><mi>M</mi></mrow></mfenced><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>B</mi><mo><</mo><mn>61</mn><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mi>M</mi></menclose></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn></math><strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>×</mo><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>0197555</mn><mo>…</mo></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>157</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>248496</mn><mo>…</mo></math><strong> <em>(A1)</em></strong></p>
<p>use of inverse normal to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math> score of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>C</mi><mo><</mo><mn>61</mn></mrow></mfenced></math><strong> <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>679229</mn><mo>…</mo></math></p>
<p>correct substitution<strong> <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>61</mn><mo>-</mo><mn>62</mn></mrow><mi>σ</mi></mfrac><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>679229</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>47225</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>47</mn><mo> </mo><mfenced><mtext>g</mtext></mfenced></math><strong> <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was common to both HL and SL papers.</p>
<p>The first two parts of this question were generally well done, with many candidates demonstrating an understanding of how to find, using their GDC, the required probability from a normal distribution in part (a), and recognising the binomial probability in part (b).</p>
<p>Parts (c) and (d) were not done well, although many that were able to make progress in part (d) were often able to give concise solutions. Most that attempted part (c) did very poorly, while few attempted part (d). Both parts proved challenging, principally due to difficulties in determining the different possible outcomes with combined events. In part (c)(i), tree diagrams were unfortunately rarely seen, as were attempts to set out the ways of selecting a muffin weighing less than 61 g, either in words, or using appropriate notation involving probabilities. Those who did understand these concepts on the other hand were much more likely to be able to find the conditional probability in part (c)(ii) and be successful in part (d). Common errors included not considering both types of muffin, and in part (d) using a probability instead of a <em>z</em>-value.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of messages, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span>, that six randomly selected teenagers sent during the month of October is shown in the following table. The table also shows the time, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span>, that they spent talking on their phone during the same month.</p>
<p><img src=""></p>
<p>The relationship between the variables can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M = aT + b">
<mi>M</mi>
<mo>=</mo>
<mi>a</mi>
<mi>T</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression equation to predict the number of messages sent by a teenager that spent <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="154"> <mn>154</mn> </math></span> minutes talking on their phone in October.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of set up <em><strong>(M1)</strong></em></p>
<p><em>eg</em> correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 0.966856"> <mi>r</mi> <mo>=</mo> <mn>0.966856</mn> </math></span>)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4.30161"> <mn>4.30161</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="163.330"> <mn>163.330</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 4.30"> <mi>a</mi> <mo>=</mo> <mn>4.30</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 163"> <mi>b</mi> <mo>=</mo> <mn>163</mn> </math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4.30x + 163"> <mi>y</mi> <mo>=</mo> <mn>4.30</mn> <mi>x</mi> <mo>+</mo> <mn>163</mn> </math></span>) <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4.30\left( {154} \right) + 163"> <mn>4.30</mn> <mrow> <mo>(</mo> <mrow> <mn>154</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>163</mn> </math></span></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="825.778"> <mn>825.778</mn> </math></span> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="825.2"> <mn>825.2</mn> </math></span> from 3 sf values) <em><strong>(A1)</strong></em></p>
<p>number of messages <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="= 826"> <mo>=</mo> <mn>826</mn> </math></span> (must be an integer) <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A random sample of nine adults were selected to see whether sleeping well affected their reaction times to a visual stimulus. Each adult’s reaction time was measured twice.</p>
<p>The first measurement for reaction time was taken on a morning after the adult had slept well. The second measurement was taken on a morning after the same adult had not slept well.</p>
<p>The box and whisker diagrams for the reaction times, measured in seconds, are shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Consider the box and whisker diagram representing the reaction times after sleeping well.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the median reaction time after sleeping well.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the measurement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>46</mn></math> seconds is not an outlier.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why it appears that the mean reaction time is greater than the median reaction time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Now consider the two box and whisker diagrams.</p>
<p>Comment on whether these box and whisker diagrams provide any evidence that might suggest that not sleeping well causes an increase in reaction time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>28</mn></math> (s) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IQR</mtext><mo>=</mo><mn>0</mn><mo>.</mo><mn>35</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>27</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>08</mn></mrow></mfenced></math> (s) <em><strong>(A1)</strong></em></p>
<p>substituting <strong>their</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IQR</mtext></math> into correct expression for upper fence <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>35</mn><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>08</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>47</mn></mrow></mfenced></math> (s) </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>46</mn><mo><</mo><mn>0</mn><mo>.</mo><mn>47</mn></math> <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>46</mn></math> (s) is not an outlier <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the median is closer to the lower quartile (positively skewed) <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>The distribution is positively skewed <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>the range of reaction times below the median is smaller than the range of reaction times above the median <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> These are sample answers from a range of acceptable correct answers. Award <em><strong>R1</strong></em> for any correct statement that explains this.<br>Do not award <em><strong>R1</strong></em> if there is also an incorrect statement, even if another statement in the answer is correct. Accept a correctly and clearly labelled diagram.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the distribution for ‘not sleeping well’ is centred at a higher reaction time <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>The median reaction time after not sleeping well is equal to the upper quartile reaction time after sleeping well <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo>%</mo></math> of reaction times are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo><</mo><mn>0</mn><mo>.</mo><mn>35</mn></math> seconds after sleeping well, compared with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo>%</mo></math> after not sleeping well <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>the sample size of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> is too small to draw any conclusions <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> These are sample answers from a range of acceptable correct answers. Accept any relevant correct statement <strong>that relates to the median and/or quartiles shown in the box plots</strong>. <strong>Do not accept</strong> a comparison of means. Do not award <em><strong>R1</strong> </em>if there is also an incorrect statement, even if another statement in the answer is correct.</p>
<p>Award <em><strong>R0</strong> </em>to “correlation does not imply causation”.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Parts (a) and (b) were generally known, but answers to parts (c) and (d) showed poor understanding of interpreting data. Many students thought they could find the mean by considering only the end points. Others assumed it would be halfway between the quartiles. When it came to evidence, many were far too quick to say the diagrams 'proved' something. Most compared only the medians and thought that was sufficient evidence, completely ignoring the fact the median only represented one data point. Others just compared the maximum and minimum. A few commented correctly that 9 subjects was too small a sample to prove anything.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A six-sided biased die is weighted in such a way that the probability of obtaining a “six” is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{10}}">
<mfrac>
<mn>7</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is tossed five times. Find the probability of obtaining at most three “sixes”.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is tossed five times. Find the probability of obtaining the third “six” on the fifth toss.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognition of binomial <em><strong>(M1)</strong></em></p>
<p><em>X</em> ~ B(5, 0.7)</p>
<p>attempt to find P (<em>X</em> ≤ 3) <em><strong>M1</strong></em></p>
<p>= 0.472 (= 0.47178) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of 2 sixes in 4 tosses <em><strong>(M1)</strong></em></p>
<p>P (3rd six on the 5th toss) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) \times {{\left( {0.7} \right)}^2} \times {{\left( {0.3} \right)}^2}} \right] \times 0.7 \left( {=0.2646 \times 0.7} \right)">
<mo>=</mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.7</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.3</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>×</mo>
<mn>0.7</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>0.2646</mn>
<mo>×</mo>
<mn>0.7</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>= 0.185 (= 0.18522) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 800 students answered 40 questions on a category of their choice out of History, Science and Literature.</p>
<p>For each student the category and the number of correct answers, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>, was recorded. The results obtained are represented in the following table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_14.11.54.png" alt="N17/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ<!-- χ --></mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> test at the 5% significance level is carried out on the results. The critical value for this test is 12.592.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> is a discrete or a continuous variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>, the modal class;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>, the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency of students choosing the Science category and obtaining 31 to 40 correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis for this test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value for the test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the result of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>discrete <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11 \leqslant N \leqslant 20">
<mn>11</mn>
<mo>⩽</mo>
<mi>N</mi>
<mo>⩽</mo>
<mn>20</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>15.5 <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="21.2{\text{ }}(21.2125)">
<mn>21.2</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>21.2125</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9.60{\text{ }}(9.60428 \ldots )">
<mn>9.60</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>9.60428</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G1)</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{260}}{{800}} \times \frac{{157}}{{800}} \times 800">
<mfrac>
<mrow>
<mn>260</mn>
</mrow>
<mrow>
<mn>800</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>157</mn>
</mrow>
<mrow>
<mn>800</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>800</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{260 \times 157}}{{800}}">
<mfrac>
<mrow>
<mn>260</mn>
<mo>×</mo>
<mn>157</mn>
</mrow>
<mrow>
<mn>800</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into expected frequency formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 51.0{\text{ }}(51.025)">
<mo>=</mo>
<mn>51.0</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>51.025</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>choice of category and number of correct answers are independent <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Accept “no association” between (choice of) category and number of correct answers. Do not accept “not related” or “not correlated” or “influenced”.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<p> </p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0644{\text{ }}(0.0644123 \ldots )">
<mn>0.0644</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.0644123</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11.9{\text{ }}(11.8924 \ldots )">
<mn>11.9</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>11.8924</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the null hypothesis is not rejected (the null hypothesis is accepted) <strong><em>(A1)</em>(ft)</strong></p>
<p><strong><em>OR</em></strong></p>
<p>(choice of) category and number of correct answers are independent <strong><em>(A1)</em>(ft)</strong></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11.9 < 12.592">
<mn>11.9</mn>
<mo><</mo>
<mn>12.592</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0644 > 0.05">
<mn>0.0644</mn>
<mo>></mo>
<mn>0.05</mn>
</math></span> <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(R1) </em></strong>for a correct comparison of either their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> statistic to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> critical value or their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value to the significance level. Award <strong><em>(A1)</em>(ft) </strong>from that comparison.</p>
<p>Follow through from part (f). Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> is normally distributed with mean, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span>. In the following diagram, the shaded region between 9 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span> represents 30% of the distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.15.49.png" alt="M17/5/MATME/SP2/ENG/TZ1/09"></p>
</div>
<div class="specification">
<p>The standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> is 2.1.</p>
</div>
<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
<mi>Y</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ<!-- λ --></mi>
</math></span> and standard deviation 3.5. The events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X > 9">
<mi>X</mi>
<mo>></mo>
<mn>9</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y > 9">
<mi>Y</mi>
<mo>></mo>
<mn>9</mn>
</math></span> are independent, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {(X > 9) \cap (Y > 9)} \right) = 0.4">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>∩<!-- ∩ --></mo>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo>></mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.4</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 9)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y > 9">
<mi>Y</mi>
<mo>></mo>
<mn>9</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y < 13)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo><</mo>
<mn>13</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < \mu ) = 0.5,{\text{ }}0.5 - 0.3">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.5</mn>
<mo>−</mo>
<mn>0.3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 9) = 0.2">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.2</mn>
</math></span> (exact) <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = - 0.841621">
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.841621</mn>
</math></span> (may be seen in equation) <strong><em>(A1)</em></strong></p>
<p>valid attempt to set up an equation with <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.842 = \frac{{\mu - X}}{\sigma },{\text{ }} - 0.842 = \frac{{X - \mu }}{\sigma },{\text{ }}z = \frac{{9 - \mu }}{{2.1}}">
<mo>−</mo>
<mn>0.842</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mi>μ</mi>
<mo>−</mo>
<mi>X</mi>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>0.842</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mi>X</mi>
<mo>−</mo>
<mi>μ</mi>
</mrow>
<mi>σ</mi>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>z</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>9</mn>
<mo>−</mo>
<mi>μ</mi>
</mrow>
<mrow>
<mn>2.1</mn>
</mrow>
</mfrac>
</math></span></p>
<p>10.7674</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu = 10.8">
<mi>μ</mi>
<mo>=</mo>
<mn>10.8</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 9) = 0.8">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.8</mn>
</math></span> (seen anywhere) <strong><em>(A1)</em></strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) \times {\text{P}}(B)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct equation <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.8 \times {\text{P}}(Y > 9) = 0.4">
<mn>0.8</mn>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo>></mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y > 9) = 0.5">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo>></mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 9">
<mi>λ</mi>
<mo>=</mo>
<mn>9</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(9 < Y < 13) = 0.373450">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>9</mn>
<mo><</mo>
<mi>Y</mi>
<mo><</mo>
<mn>13</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.373450</mn>
</math></span> (seen anywhere) <strong><em>(A2)</em></strong></p>
<p>recognizing conditional probability <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A|B),{\text{ P}}(Y < 13|Y > 9)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo><</mo>
<mn>13</mn>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>Y</mi>
<mo>></mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{0.373}}}}{{0.5}}">
<mfrac>
<mrow>
<mrow>
<mtext>0.373</mtext>
</mrow>
</mrow>
<mrow>
<mn>0.5</mn>
</mrow>
</mfrac>
</math></span></p>
<p>0.746901</p>
<p>0.747 <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A jigsaw puzzle consists of many differently shaped pieces that fit together to form a picture.</p>
<p style="text-align: center;"><img src=""></p>
<p>Jill is doing a 1000-piece jigsaw puzzle. She started by sorting the edge pieces from the interior pieces. Six times she stopped and counted how many of each type she had found. The following table indicates this information.</p>
<p style="text-align: center;"><img src=""></p>
<p>Jill models the relationship between these variables using the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
<mi>y</mi>
<mo>=</mo>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to predict how many edge pieces she had found when she had sorted a <strong>total</strong> of 750 pieces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> (ignore incorrect labels)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 6.92986">
<mi>a</mi>
<mo>=</mo>
<mn>6.92986</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 8.80769">
<mi>b</mi>
<mo>=</mo>
<mn>8.80769</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 6.93">
<mi>a</mi>
<mo>=</mo>
<mn>6.93</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 8.81">
<mi>b</mi>
<mo>=</mo>
<mn>8.81</mn>
</math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 6.93x + 8.81">
<mi>y</mi>
<mo>=</mo>
<mn>6.93</mn>
<mi>x</mi>
<mo>+</mo>
<mn>8.81</mn>
</math></span>) <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> 750 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
</math></span>, edge + interior = 750</p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 750 − <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = 6.9298<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> + 8.807 , 93.4684</p>
<p>93 (pieces) (accept 94) <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ten students were asked for the distance, in km, from their home to school. Their responses are recorded below.</p>
<p style="text-align: center;">0.3 0.4 3 3 3.5 5 7 8 8 10</p>
</div>
<div class="specification">
<p>The following box-and-whisker plot represents this data.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find the mean distance from a student’s home to school.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sum x }}{n}"> <mfrac> <mrow> <mo>∑</mo> <mi>x</mi> </mrow> <mi>n</mi> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.3 + 0.4 + 3 + \ldots + 10}}{{10}}"> <mfrac> <mrow> <mn>0.3</mn> <mo>+</mo> <mn>0.4</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mn>10</mn> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{48.2}}{{10}}"> <mfrac> <mrow> <mn>48.2</mn> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x = 4.82"> <mrow> <mover> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mo>=</mo> <mn>4.82</mn> </math></span> (exact) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = 4.25 (exact) <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> Q<sub>3</sub> − Q<sub>1</sub> 3 − 8 , 3 to 8</p>
<p>IQR = 5 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A jar contains 5 red discs, 10 blue discs and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> green discs. A disc is selected at random and replaced. This process is performed four times.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the first disc selected is red.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> be the number of red discs selected. Find the smallest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X{\text{ }}) < 0.6">
<mrow>
<mtext>Var</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo><</mo>
<mn>0.6</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(red)}} = \frac{5}{{15 + m}}">
<mrow>
<mtext>P(red)</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>15</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
</mfrac>
</math></span> <strong><em>A1 N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing binomial distribution <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim B(n,{\text{ }}p)">
<mi>X</mi>
<mo>∼</mo>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>p</mi>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct value for the complement of <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> (seen anywhere) <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{5}{{15 + m}},{\text{ }}\frac{{10 + m}}{{15 + m}}">
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>15</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>10</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
<mrow>
<mn>15</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
</mfrac>
</math></span></p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X) = np(1 - p)">
<mrow>
<mtext>Var</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>n</mi>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\left( {\frac{5}{{15 + m}}} \right)\left( {\frac{{10 + m}}{{15 + m}}} \right),{\text{ }}\frac{{20(10 + m)}}{{{{(15 + m)}^2}}} < 0.6">
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mrow>
<mn>15</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>10</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
<mrow>
<mn>15</mn>
<mo>+</mo>
<mi>m</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>20</mn>
<mo stretchy="false">(</mo>
<mn>10</mn>
<mo>+</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo>+</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo><</mo>
<mn>0.6</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m > 12.2075">
<mi>m</mi>
<mo>></mo>
<mn>12.2075</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 13">
<mi>m</mi>
<mo>=</mo>
<mn>13</mn>
</math></span> <strong><em>A1 N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In Lucy’s music academy, eight students took their piano diploma examination and achieved scores out of 150. For her records, Lucy decided to record the average number of hours per week each student reported practising in the weeks prior to their examination. These results are summarized in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Pearson’s product-moment correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between the variables can be modelled by the regression equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mi>a</mi><mi>h</mi><mo>+</mo><mi>b</mi></math>. Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of these eight students was disappointed with her result and wished she had practised more. Based on the given data, determine how her score could have been expected to alter had she practised an extra five hours per week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of GDC to give <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>883529</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>884</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award the <em><strong>(M1)</strong></em> for any correct value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>780624</mn><mo>…</mo></math> seen in part (a) or part (b).</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>36609</mn><mo>…</mo><mo> </mo><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>64</mn><mo>.</mo><mn>5171</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>37</mn><mo> </mo><mo>,</mo><mo> </mo><mi>b</mi><mo>=</mo><mn>64</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br></strong><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find their difference <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>36609</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>36609</mn><mo>…</mo><mfenced><mrow><mi>h</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mn>64</mn><mo>.</mo><mn>5171</mn><mo>…</mo><mo>-</mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>36609</mn><mo>…</mo><mi>h</mi><mo>+</mo><mn>64</mn><mo>.</mo><mn>5171</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>83045</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mo>.</mo><mn>83</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>6</mn><mo>.</mo><mn>85</mn><mo> </mo><mi>from</mi><mo> </mo><mn>1</mn><mo>.</mo><mn>37</mn></mrow></mfenced></math></p>
<p>the student could have expected her score to increase by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> marks. <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept an increase of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>83</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>85</mn></math>.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> has the following probability distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.34.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2|X > 0)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>></mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>total probability = 1</p>
<p>correct equation <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.475 + 2{k^2} + \frac{k}{{10}} + 6{k^2} = 1,{\text{ }}8{k^2} + 0.1k - 0.525 = 0">
<mn>0.475</mn>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mi>k</mi>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>8</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>0.1</mn>
<mi>k</mi>
<mo>−</mo>
<mn>0.525</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.25">
<mi>k</mi>
<mo>=</mo>
<mn>0.25</mn>
</math></span> <strong><em>A2 N3</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2) = 0.025">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.025</mn>
</math></span> <strong><em>A1 N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach for finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 0)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 0.475,{\text{ }}2({0.25^2}) + 0.025 + 6({0.25^2}),{\text{ }}1 - {\text{P}}(X = 0),{\text{ }}2{k^2} + \frac{k}{{10}} + 6{k^2}">
<mn>1</mn>
<mo>−</mo>
<mn>0.475</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mn>0.25</mn>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>0.025</mn>
<mo>+</mo>
<mn>6</mn>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mn>0.25</mn>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mi>k</mi>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>k</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>correct substitution into formula for conditional probability <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.025}}{{1 - 0.475}},{\text{ }}\frac{{0.025}}{{0.525}}">
<mfrac>
<mrow>
<mn>0.025</mn>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>0.475</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>0.025</mn>
</mrow>
<mrow>
<mn>0.525</mn>
</mrow>
</mfrac>
</math></span></p>
<p>0.0476190</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2|X > 0) = \frac{1}{{21}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>></mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>21</mn>
</mrow>
</mfrac>
</math></span> (exact), 0.0476 <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The maximum temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span>, in degrees Celsius, in a park on six randomly selected days is shown in the following table. The table also shows the number of visitors, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span>, to the park on each of those six days.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_17.34.22.png" alt="M17/5/MATME/SP2/ENG/TZ2/02"></p>
<p>The relationship between the variables can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = aT + b">
<mi>N</mi>
<mo>=</mo>
<mi>a</mi>
<mi>T</mi>
<mo>+</mo>
<mi>b</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the number of visitors on a day when the maximum temperature is 15 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of set up <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span></p>
<p>0.667315, 22.2117</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 0.667,{\text{ }}b = 22.2">
<mi>a</mi>
<mo>=</mo>
<mn>0.667</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<mn>22.2</mn>
</math></span> <strong><em>A1A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.922958</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 0.923">
<mi>r</mi>
<mo>=</mo>
<mn>0.923</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.667(15) + 22.2,{\text{ }}N(15)">
<mn>0.667</mn>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>22.2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mn>15</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p>32.2214 <strong><em>(A1)</em></strong></p>
<p>32 (visitors) (must be an integer) <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A data set consisting of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> test scores has mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mo>.</mo><mn>5</mn></math> . One test score of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> requires a second marking and is removed from the data set.</p>
<p>Find the mean of the remaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> test scores.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mstyle displaystyle="true"><munderover><mi mathvariant="normal">Σ</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mn>16</mn></munderover></mstyle><msub><mi>x</mi><mi>i</mi></msub></mrow><mn>16</mn></mfrac><mo>=</mo><mn>14</mn><mo>.</mo><mn>5</mn></math> <strong>(M1)</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><mstyle displaystyle="true"><munderover><mi mathvariant="normal">Σ</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover></mstyle><msub><mi>x</mi><mi>i</mi></msub></mrow><mi>n</mi></mfrac></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><munderover><mi mathvariant="normal">Σ</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mn>16</mn></munderover><msub><mi>x</mi><mi>i</mi></msub><mo>=</mo><mn>232</mn></math> <strong>(A1)</strong></p>
<p>new <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¯</mo></mover><mo>=</mo><mfrac><mrow><mn>232</mn><mo>-</mo><mn>9</mn></mrow><mn>15</mn></mfrac></math> <strong>(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>14</mn><mo>.</mo><mn>9</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>14</mn><mo>.</mo><mn>8</mn><mover><mn>6</mn><mo>¯</mo></mover><mo>,</mo><mo>=</mo><mfrac><mn>223</mn><mn>15</mn></mfrac></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not accept 15.</p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>In a large university the probability that a student is left handed is 0.08. A sample of 150 students is randomly selected from the university. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> be the expected number of left-handed students in this sample.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> students are left handed;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that fewer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> students are left handed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of binomial distribution (may be seen in part (b)) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="np,{\text{ }}150 \times 0.08"> <mi>n</mi> <mi>p</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>150</mn> <mo>×</mo> <mn>0.08</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 12"> <mi>k</mi> <mo>=</mo> <mn>12</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 12} \right) = \left( {\begin{array}{*{20}{c}} {150} \\ {12} \end{array}} \right){\left( {0.08} \right)^{12}}{\left( {0.92} \right)^{138}}"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>12</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mn>150</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>12</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>0.08</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>12</mn> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>0.92</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>138</mn> </mrow> </msup> </mrow> </math></span> <strong><em>(A1)</em></strong></p>
<p>0.119231</p>
<p>probability <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.119"> <mo>=</mo> <mn>0.119</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \leqslant 11"> <mi>X</mi> <mo>⩽</mo> <mn>11</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p>0.456800</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < 12) = 0.457"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo><</mo> <mn>12</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.457</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, has the following probability distribution:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mi>k</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, giving a reason for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>41</mn><mo>+</mo><mi>k</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>28</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>46</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>29</mn><mo>-</mo><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>-</mo><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>13</mn></math> (or equivalent) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mi>k</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>3</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p>reasoning to reject <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math> eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced><mo>=</mo><mi>k</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>28</mn><mo>≥</mo><mn>0</mn></math> therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>≠</mo><mn>0</mn><mo>.</mo><mn>2</mn></math> <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to use the expected value formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>41</mn><mo>+</mo><mn>1</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>28</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>46</mn><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>29</mn><mo>-</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>27</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1A0</strong></em> if additional values are given.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was well done in this question, with most candidates recognising that the probabilities needed to sum to 1. Many candidates also approached part (b) appropriately. While many did so by graphing the quadratic on the GDC and identifying the zeros, most solved the equation analytically. Those that used the GDC, often assumed there was only one <em>x</em>-intercept and did not investigate the relevant area of the graph in more detail. While some who found the two required values of <em>k</em> recognised that <em>k</em> = 0.2 should be rejected by referring to the original probabilities, most had lost sight of the context of the question, and were unable to give a valid reason using P(<em>X</em> = 1) to reject this solution. Those that obtained one solution in part (b), were generally able to find the expected value successfully in part (c).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the following probability distribution.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> which gives the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of summing probabilities to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>+</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mi>p</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><mn>1</mn><mo>-</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mi>p</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>+</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mi>p</mi></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math> formula <em><strong>(A1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mi>p</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>×</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>×</mo><mi>p</mi><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>7</mn><mo>-</mo><mn>4</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>valid approach to find when <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math> is a maximum <em><strong>(M1)</strong></em></p>
<p>eg max on sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mi>p</mi><mo>+</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>8</mn><mi>p</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn></mrow><mrow><mn>2</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mn>8</mn></mrow></mfenced></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></mrow></mfenced></math> (exact) (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>8</mn></mfrac></math>) <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>225</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>89</mn><mn>40</mn></mfrac></math> (exact), <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>23</mn></math> <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}{{\text{e}}^{3x}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>3</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="question">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a horizontal tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>valid method <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, <img src="">, <img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - 0.667\left( { = - \frac{2}{3}} \right)"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>0.667</mn> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 0.667"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>0.667</mn> </math></span>) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>