File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 4/markSceme-SL-paper1html
File size: 2.67 MB
MIME-type: text/x-tex
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>In the Canadian city of Ottawa:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{97% of the population speak English,}}} \\ {{\text{38% of the population speak French,}}} \\ {{\text{36% of the population speak both English and French.}}} \end{array}">
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>97% of the population speak English,</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>38% of the population speak French,</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mtext>36% of the population speak both English and French.</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</math></span></p>
</div>
<div class="specification">
<p>The total population of Ottawa is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="985\,000">
<mn>985</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage of the population of Ottawa that speak English but not French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of people in Ottawa that speak both English and French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (b) in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \times {10^k}">
<mi>a</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mi>k</mi>
</msup>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant a < 10">
<mn>1</mn>
<mo>⩽</mo>
<mi>a</mi>
<mo><</mo>
<mn>10</mn>
</math></span> and <em>k </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Z}">
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="97 - 36">
<mn>97</mn>
<mo>−</mo>
<mn>36</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for subtracting 36 from 97.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-08-15_om_12.54.01.png" alt="M17/5/MATSD/SP1/ENG/TZ1/02.a/M"></p>
<p><strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for 61 <strong>and </strong>36 seen in the correct places in the Venn diagram.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 61{\text{ }}(\% )">
<mo>=</mo>
<mn>61</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">%</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept 61.0 (%).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{36}}{{100}} \times 985\,000">
<mfrac>
<mrow>
<mn>36</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>985</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for multiplying 0.36 (or equivalent) by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="985\,000">
<mn>985</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 355\,000{\text{ }}(354\,600)">
<mo>=</mo>
<mn>355</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>354</mn>
<mspace width="thinmathspace"></mspace>
<mn>600</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3.55 \times {10^5}{\text{ }}(3.546 \times {10^5})">
<mn>3.55</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>3.546</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong><em> </em><strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)(ft) </em></strong>for 3.55 (3.546) <strong>must </strong>match part (b), and <strong><em>(A1)(ft)</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times {10^5}">
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>5</mn>
</msup>
</mrow>
</math></span>.</p>
<p>Award <strong><em>(A0)(A0) </em></strong>for answers of the type: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="35.5 \times {10^4}">
<mn>35.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>4</mn>
</msup>
</mrow>
</math></span>. Follow through from part (b).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{3}{4}"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta > 0"> <mi>tan</mi> <mo></mo> <mi>θ</mi> <mo>></mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}"> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of summing to 1 <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {p = 1} "> <mo>∑</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </math></span></p>
<p>correct equation <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta + 2\cos 2\theta = 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mo></mo> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo></mo> <mi>θ</mi> </math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta + 2(2{\cos ^2}\theta - 1) = 1,{\text{ }}4{\cos ^2}\theta + \cos \theta - 3 = 0"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>+</mo> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>evidence of valid approach to solve quadratic <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>factorizing equation set equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0,{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4 \times 4 \times ( - 3)} }}{8}"> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct working, clearly leading to required answer <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4\cos \theta - 3)(\cos \theta + 1),{\text{ }}\frac{{ - 1 \pm 7}}{8}"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <mn>7</mn> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct reason for rejecting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta \ne - 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo></mo> <mi>θ</mi> </math></span> is a probability (value must lie between 0 and 1), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta > 0"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>></mo> <mn>0</mn> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>R0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta \ne - 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> without a reason.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{3}{4}"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>AG N0</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>sketch of right triangle with sides 3 and 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sin ^2}x + {\cos ^2}x = 1"> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working </p>
<p><strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>missing side <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt 7 ,{\text{ }}\frac{{\frac{{\sqrt 7 }}{4}}}{{\frac{3}{4}}}"> <mo>=</mo> <msqrt> <mn>7</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta = \frac{{\sqrt 7 }}{3}"> <mi>tan</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}"> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{f^2},{\text{ }}\int {{{\left( {\frac{1}{{\cos x}}} \right)}^2}} } "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mrow> </math></span></p>
<p>correct substitution of both limits and function <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{{\left( {\frac{1}{{\cos x}}} \right)}^2}{\text{d}}x} "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p>correct integration <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x"> <mi>tan</mi> <mo></mo> <mi>x</mi> </math></span></p>
<p>substituting <strong>their </strong>limits into <strong>their </strong>integrated function and subtracting <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} - \tan \theta "> <mi>tan</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if they substitute into original or differentiated function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} = 1"> <mi>tan</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \tan \theta "> <mn>1</mn> <mo>−</mo> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi - \frac{{\pi \sqrt 7 }}{3}"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mfrac> <mrow> <mi>π</mi> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Anne-Marie planted four sunflowers in order of height, from shortest to tallest.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn><mo> </mo><mtext>cm</mtext></math> tall.</p>
<p>The median height of the flowers is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>
<div class="specification">
<p>The range of the heights is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mtext>cm</mtext></math>. The height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mtext>cm</mtext></math> and the height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo> </mo><mtext>cm</mtext></math>.</p>
</div>
<div class="specification">
<p>The mean height of the flowers is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of Flower null.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using this information, write down an equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a second equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answers to <strong>parts (b)</strong> and <strong>(c)</strong>, find the height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answers to <strong>parts (b)</strong> and <strong>(c)</strong>, find the height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>-</mo><mn>8</mn></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>-</mo><mfenced><mrow><mn>32</mn><mo>-</mo><mn>24</mn></mrow></mfenced></math> <strong> OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>=</mo><mfrac><mrow><mn>32</mn><mo>+</mo><mi>h</mi></mrow><mn>2</mn></mfrac></math> <strong><em>(M1)</em></strong></p>
<p><strong><br>Note: </strong>Award <em><strong>(M1)</strong></em> for subtracting <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> from the median, or equivalent.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo> </mo><mfenced><mtext>cm</mtext></mfenced></math> <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>-</mo><mi>p</mi><mo>=</mo><mn>50</mn></math> (or equivalent) <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>p</mi><mo>+</mo><mn>16</mn><mo>+</mo><mn>32</mn><mo>+</mo><mi>q</mi></mrow><mn>4</mn></mfrac><mo>=</mo><mn>27</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mi>q</mi><mo>=</mo><mn>60</mn></math> (or equvalent) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p><strong><br></strong><strong>Note: </strong>Follow through from part (a).</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mfenced><mtext>cm</mtext></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p><strong><br></strong><strong>Note: </strong>Follow through from parts (b) and (c).</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>55</mn><mo> </mo><mfenced><mtext>cm</mtext></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p><strong><br></strong><strong>Note: </strong>Follow through from parts (b) and (c).</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In a class of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> students, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn></math> play tennis, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> play both tennis and volleyball, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> do not play either sport.</p>
<p>The following Venn diagram shows the events “plays tennis” and “plays volleyball”. The values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> represent numbers of students.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student from the class plays tennis or volleyball, but not both.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>19</mn><mo>,</mo><mo> </mo><mn>19</mn><mo>-</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>16</mn></math> (may be seen on Venn diagram) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>+</mo><mn>3</mn><mo>+</mo><mi>v</mi><mo>+</mo><mn>6</mn><mo>=</mo><mn>30</mn><mo>,</mo><mo> </mo><mn>30</mn><mo>-</mo><mn>19</mn><mo>-</mo><mn>6</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>5</mn></math> (may be seen on Venn diagram) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mo>+</mo><mn>5</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn></math> students, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mn>6</mn></mrow><mn>30</mn></mfrac></math>, <img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>21</mn><mn>30</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>7</mn><mn>10</mn></mfrac></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Each athlete on a running team recorded the distance (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> miles) they ran in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes.</p>
<p>The median distance is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> miles and the interquartile range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn></math> miles.</p>
<p>This information is shown in the following box-and-whisker plot.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The distance in miles, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>, can be converted to the distance in kilometres, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>, using the formula <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mo>=</mo><mfrac><mn>8</mn><mn>5</mn></mfrac><mi>M</mi></math>.</p>
</div>
<div class="specification">
<p>The variance of the distances run by the athletes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>16</mn><mn>9</mn></mfrac><mo> </mo><msup><mtext>km</mtext><mn>2</mn></msup></math>.</p>
<p>The standard deviation of the distances is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> miles.</p>
</div>
<div class="specification">
<p>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>600</mn></math> athletes from different teams compete in a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race. The times the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>600</mn></math> athletes took to run the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race are shown in the following cumulative frequency graph.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>There were <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn></math> athletes who took between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes to complete the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the median distance in kilometres (km).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn></math> athletes that completed the race won a prize.</p>
<p>Given that an athlete took between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes to complete the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race, calculate the probability that they won a prize.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mn>3</mn></msub><mo>-</mo><msub><mi>Q</mi><mn>1</mn></msub><mo> </mo><mo>,</mo><mo> </mo><msub><mi>Q</mi><mn>3</mn></msub><mo>-</mo><mn>1</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>4</mn></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>5</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mo>.</mo><mn>4</mn></mrow></mfenced></math> (km) <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (standard deviation first)</strong></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>standard deviation</mtext><mo>=</mo><msqrt><mtext>variance</mtext></msqrt><mo> </mo><mo>,</mo><mo> </mo><msqrt><mfrac><mn>16</mn><mn>9</mn></mfrac></msqrt></math></p>
<p>standard deviation<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></math> (km) <em><strong>(A1)</strong></em></p>
<p>valid approach to convert <strong>their</strong> standard deviation <em><strong>(M1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac><mo>×</mo><mfrac><mn>5</mn><mn>8</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><msqrt><mfrac><mn>16</mn><mn>9</mn></mfrac></msqrt><mo>=</mo><mfrac><mn>8</mn><mn>5</mn></mfrac><mi>M</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>20</mn><mn>24</mn></mfrac></math> (miles) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mfrac><mn>5</mn><mn>6</mn></mfrac></mrow></mfenced></math> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>Note:</strong> If no working shown, award <em><strong>M1A1M0A0</strong></em> for the value <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac></math>.<br>If working shown, and candidate’s final answer is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac></math>, award <em><strong>M1A1M0A0</strong></em>.</p>
<p> </p>
<p><strong>METHOD 2 (variance first)</strong></p>
<p>valid approach to convert variance <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>5</mn><mn>8</mn></mfrac></mfenced><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>64</mn><mn>25</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>16</mn><mn>9</mn></mfrac><mo>×</mo><msup><mfenced><mfrac><mn>5</mn><mn>8</mn></mfrac></mfenced><mn>2</mn></msup></math></p>
<p>variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>25</mn><mn>36</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>standard deviation</mtext><mo>=</mo><msqrt><mtext>variance</mtext></msqrt><mo> </mo><mo>,</mo><mo> </mo><msqrt><mfrac><mn>25</mn><mn>36</mn></mfrac></msqrt><mo> </mo><mo>,</mo><mo> </mo><msqrt><mfrac><mn>16</mn><mn>9</mn></mfrac><mo>×</mo><msup><mfenced><mfrac><mn>5</mn><mn>8</mn></mfrac></mfenced><mn>2</mn></msup></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>20</mn><mn>24</mn></mfrac></math> (miles) <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mfrac><mn>5</mn><mn>6</mn></mfrac></mrow></mfenced></math> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct frequency for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> minutes <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math></p>
<p>adding <strong>their</strong> frequency (do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn><mo>+</mo><mn>400</mn></math>) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo>+</mo><mn>400</mn><mo> </mo><mo>,</mo><mo> </mo><mn>420</mn></math> athletes</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>30</mn></math> (minutes) <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn></math> (minutes) <em><strong>(A1)</strong></em></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>130</mn></math> athletes between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn></math> minutes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>22</mn><mo><</mo><mi>t</mi><mo><</mo><mn>27</mn></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>150</mn><mo>-</mo><mn>20</mn></mrow><mn>600</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>13</mn><mn>60</mn></mfrac></math></p>
<p>evidence of conditional probability or reduced sample space <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi></menclose></mrow></mfenced><mo> </mo><mo>,</mo><mo> </mo><mtext>P</mtext><mfenced><mrow><mi>t</mi><mo><</mo><mn>27</mn><mo> </mo><menclose notation="left"><mo> </mo><mn>22</mn><mo><</mo><mi>t</mi><mo><</mo><mn>30</mn></menclose></mrow></mfenced><mo> </mo><mo>,</mo><mo> </mo><mfrac><mrow><mtext>P</mtext><mfenced><mrow><mn>22</mn><mo><</mo><mi>t</mi><mo><</mo><mn>27</mn></mrow></mfenced></mrow><mrow><mtext>P</mtext><mfenced><mrow><mn>22</mn><mo><</mo><mi>t</mi><mo><</mo><mi>m</mi></mrow></mfenced></mrow></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>150</mn><mn>400</mn></mfrac></math></p>
<p>correct working<em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac><mn>130</mn><mn>600</mn></mfrac></mstyle><mstyle displaystyle="true"><mfrac><mn>400</mn><mn>600</mn></mfrac></mstyle></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mrow><mn>150</mn><mo>-</mo><mn>20</mn></mrow><mn>400</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>130</mn><mn>400</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>13</mn><mn>40</mn></mfrac><mo>=</mo><mfrac><mn>78000</mn><mn>240000</mn></mfrac><mo>=</mo><mfrac><mn>390</mn><mn>1200</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>325</mn></mrow></mfenced></math><em><strong> A1 N5</strong></em></p>
<p> </p>
<p><strong>Note:</strong> If no other working is shown, award <em><strong>A0A0M1A0A0</strong></em> for answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>150</mn><mn>400</mn></mfrac></math>.<br>Award <em><strong>N0</strong></em> for answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>8</mn></mfrac></math> with no other working shown.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, is rolled. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the score obtained when die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is rolled. The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A second biased four-sided die, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, is rolled. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the score obtained when die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is rolled.<br>The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> is given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo> </mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the range of possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the range of possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Agnes and Barbara play a game using these dice. Agnes rolls die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> once and Barbara rolls die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> once. The probability that Agnes’ score is less than Barbara’s score is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognising probabilities sum to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mi>p</mi><mo>+</mo><mi>p</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>p</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>7</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo> </mo></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>×</mo><mi>p</mi><mo>+</mo><mn>2</mn><mo>×</mo><mi>p</mi><mo>+</mo><mn>3</mn><mo>×</mo><mi>p</mi><mo>+</mo><mn>4</mn><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>p</mi><mfenced><mrow><mo>=</mo><mn>8</mn><mi>p</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mfrac><mn>16</mn><mn>7</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mn>1</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi><mo>≤</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>q</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>1</mn><mo>⇒</mo><mi>q</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>×</mo><mi>q</mi><mo>+</mo><mn>2</mn><mo>×</mo><mi>q</mi><mo>+</mo><mn>3</mn><mo>×</mo><mi>q</mi><mo>+</mo><mn>4</mn><mo>×</mo><mi>r</mi></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>+</mo><mn>2</mn><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>6</mn><mi>q</mi></math>) <em><strong>(A1)</strong></em></p>
<p>one correct boundary value <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>×</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mn>2</mn><mo>×</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn><mo>×</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn></mrow></mfenced></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>3</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn></mrow></mfenced></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mn>2</mn><mfenced><mn>0</mn></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn></mrow></mfenced></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mn>2</mn><mfenced><mn>1</mn></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn></mrow></mfenced></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>6</mn><mfenced><mn>0</mn></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>6</mn><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>≤</mo><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo><mo>≤</mo><mn>4</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>evidence of choosing at least four correct outcomes from</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>&</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>&</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>&</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>&</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>&</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>&</mo><mn>4</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>7</mn></mfrac><mi>q</mi><mo>+</mo><mfrac><mn>6</mn><mn>7</mn></mfrac><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>+</mo><mi>p</mi><mi>q</mi><mo>+</mo><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>+</mo><mi>p</mi><mi>q</mi><mo>+</mo><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>+</mo><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>solving for either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>7</mn></mfrac><mfenced><mrow><mi>q</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>7</mn></mfrac><mfenced><mrow><mfrac><mrow><mn>1</mn><mo>-</mo><mi>r</mi></mrow><mn>3</mn></mfrac><mo>+</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><mfenced><mfrac><mrow><mn>1</mn><mo>-</mo><mi>r</mi></mrow><mn>3</mn></mfrac></mfenced><mo>+</mo><mn>3</mn><mo> </mo><mi>p</mi><mi>r</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p> </p>
<p><em><strong>EITHER</strong></em> two correct values</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>5</mn><mn>24</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mn>3</mn><mn>8</mn></mfrac></math> <em><strong> A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>OR</strong></em> one correct value</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>5</mn><mn>24</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mn>3</mn><mn>8</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p>substituting their value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>6</mn><mfenced><mfrac><mn>5</mn><mn>24</mn></mfrac></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mn>2</mn><mfenced><mfrac><mn>3</mn><mn>8</mn></mfrac></mfenced></math></p>
<p> </p>
<p><em><strong>THEN</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo><mo>=</mo><mfrac><mn>11</mn><mn>4</mn></mfrac></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (solving for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></math>)</p>
<p>evidence of choosing at least four correct outcomes from</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>&</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>&</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>&</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>&</mo><mn>3</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>&</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>&</mo><mn>4</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>7</mn></mfrac><mi>q</mi><mo>+</mo><mfrac><mn>6</mn><mn>7</mn></mfrac><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>+</mo><mi>p</mi><mi>q</mi><mo>+</mo><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>+</mo><mi>p</mi><mi>q</mi><mo>+</mo><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>+</mo><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>rearranging to make <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> the subject <em><strong>M1</strong></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>-</mo><mtext>E</mtext><mfenced><mi>Y</mi></mfenced></mrow><mn>6</mn></mfrac></math></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>q</mi></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong>M1</strong></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>6</mn><mn>7</mn></mfrac><mo>×</mo><mfenced><mfrac><mrow><mn>4</mn><mo>-</mo><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mn>6</mn></mfrac></mfenced><mo>+</mo><mfrac><mn>6</mn><mn>7</mn></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mfenced><mfrac><mrow><mn>4</mn><mo>-</mo><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mn>6</mn></mfrac></mfenced></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong> A1</strong></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mfenced><mrow><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>7</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo><mo>=</mo><mfrac><mn>11</mn><mn>4</mn></mfrac></math> <strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A school café sells three flavours of smoothies: mango (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span>), kiwi fruit (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="K">
<mi>K</mi>
</math></span>) and banana (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>).<br>85 students were surveyed about which of these three flavours they like.</p>
<p style="padding-left: 210px;">35 students liked mango, 37 liked banana, and 26 liked kiwi fruit<br>2 liked all three flavours<br>20 liked both mango and banana<br>14 liked mango and kiwi fruit<br>3 liked banana and kiwi fruit</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the given information, complete the following Venn diagram.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of surveyed students who did not like any of the three flavours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student is chosen at random from the surveyed students.</p>
<p>Find the probability that this student likes kiwi fruit smoothies given that they like mango smoothies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em><strong><img src=""> (A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 18, 12 and 1 in correct place on Venn diagram, <em><strong>(A1)</strong></em> for 3, 16 and 11 in correct place on Venn diagram.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>85 − (3 + 16 + 11 + 18 + 12 + 1 + 2)<em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting the sum of their values from 85.</p>
<p>22 <em><strong>(A1)</strong></em><strong>(ft) </strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their Venn diagram in part (a).<br>If any numbers that are being subtracted are negative award <em><strong>(M1)(A0)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{14}}{{35}}\,\,\,\left( {\frac{2}{5}{\text{,}}\,\,0.4{\text{,}}\,\,40{\text{% }}} \right)">
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.4</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>40</mn>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span><em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><strong> </strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator; <em><strong>(A1)</strong></em> for correct denominator. Follow through from their Venn diagram.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The fastest recorded speeds of eight animals are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <strong>speed</strong> is a continuous or discrete variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median speed for these animals.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of the animal speeds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these eight animals find the mean speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these eight animals write down the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>continuous <em><strong>(</strong><strong>A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>75.5 (km h<sup>−1</sup>) <em><strong>(</strong><strong>A1) (C1)</strong></em></p>
<p><strong>Note:</strong> Answer must be exact.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>294 (km h<sup>−1</sup>) <em><strong>(</strong><strong>A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{300 + 97 + 80 + 80 + 71 + 64 + 21 + 6}}{8}">
<mfrac>
<mrow>
<mn>300</mn>
<mo>+</mo>
<mn>97</mn>
<mo>+</mo>
<mn>80</mn>
<mo>+</mo>
<mn>80</mn>
<mo>+</mo>
<mn>71</mn>
<mo>+</mo>
<mn>64</mn>
<mo>+</mo>
<mn>21</mn>
<mo>+</mo>
<mn>6</mn>
</mrow>
<mn>8</mn>
</mfrac>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{719}}{8}">
<mfrac>
<mrow>
<mn>719</mn>
</mrow>
<mn>8</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct sum divided by 8.</p>
<p>89.9 (89.875)(km h<sup>−1</sup>) <em><strong>(</strong><strong>A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>84.6 (84.5597…)(km h<sup>−1</sup>) <em><strong>(</strong><strong>A1) (C1)</strong></em></p>
<p><strong>Note:</strong> If the response to part (d)(i) is awarded zero marks, a correct response to part (d)(ii) is awarded <em><strong>(C2)</strong></em>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A health inspector analysed the amount of sugar in 500 different <strong>snacks</strong> prepared in various school cafeterias. The collected data are shown in the following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""><br>Amount of sugar per snack in grams</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what 13 represents in the given diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the interquartile range for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the approximate number of snacks whose amount of sugar ranges from 18 to 20 grams.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The health inspector visits two school cafeterias. She inspects the same number of <strong>meals</strong> at each cafeteria. The data is shown in the following box-and-whisker diagrams.</p>
<p><img src=""></p>
<p>Meals prepared in the school cafeterias are required to have less than 10 grams of sugar.</p>
<p>State, giving a reason, which school cafeteria has more meals that <strong>do not</strong> meet the requirement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>median <em><strong> (A1) (C1) </strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>18 − 12 <em><strong> (A1) </strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct quartiles seen.</p>
<p>6 (g) <em><strong> (A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>125 <em><strong> (A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Cafeteria 2 <em><strong>(A1) (C1)</strong></em></p>
<p>75 % > 50 % (do not meet the requirement) <em><strong>(R1) (C1)</strong></em></p>
<p><strong>OR</strong></p>
<p>25 % < 50 % (meet the requirement) <em><strong>(R1) (C1)</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>(A1)(R0)</strong></em>. Award the <em><strong>(R1)</strong></em> for a correct comparison of percentages for both cafeterias, which may be in words. The percentage values or fractions must be seen. It is possible to award <em><strong>(A0)(R1)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die with faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> is rolled and the result recorded. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the result obtained when the die is rolled. The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is given in the following table where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> are constants.</p>
<p><img src=""></p>
<p>For this probability distribution, it is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>Nicky plays a game with this four-sided die. In this game she is allowed a maximum of five rolls. Her score is calculated by adding the results of each roll. Nicky wins the game if her score is at least ten.</p>
<p>After three rolls of the die, Nicky has a score of four.</p>
</div>
<div class="specification">
<p>David has two pairs of unbiased four-sided dice, a yellow pair and a red pair.</p>
<p>Both yellow dice have faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> represent the sum obtained by rolling the two yellow dice. The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> is shown below.</p>
<p><img src=""></p>
<p>The first red die has faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>. The second red die has faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>a</mi><mo>,</mo><mo> </mo><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo><</mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>. The probability distribution for the sum obtained by rolling the red pair is the same as the distribution for the sum obtained by rolling the yellow pair.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>></mo><mn>2</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that rolls of the die are independent, find the probability that Nicky wins the game.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, providing evidence for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math> to form a linear equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <strong><em>(M1)</em></strong></p>
<p>correct equation in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> from summing to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo>+</mo><mi>q</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>=</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> (or equivalent)</p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mn>2</mn></math> to form a linear equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <strong><em>(M1)</em></strong></p>
<p>correct equation in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>+</mo><mn>3</mn><mi>q</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>=</mo><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mn>3</mn><mi>q</mi><mo>=</mo><mn>1</mn></math> (or equivalent)</p>
<p> </p>
<p><strong>Note:</strong> The marks for using <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo><mtext>P</mtext><mfenced><mrow><mi>X</mi><mo>=</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math> and the marks for using <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mn>2</mn></math> may be awarded independently of each other.</p>
<p> </p>
<p>evidence of correctly solving these equations simultaneously <em><strong>A1</strong></em></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>⇒</mo><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mo>-</mo><mi>p</mi></mrow></mfenced><mo>=</mo><mn>1</mn><mo>⇒</mo><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>></mo><mn>2</mn><mo>)</mo><mo>=</mo><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>=</mo><mn>3</mn><mo>)</mo><mo>+</mo><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>=</mo><mn>4</mn><mo>)</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>></mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>1</mn><mo>-</mo><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo>)</mo><mo>-</mo><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>=</mo><mn>2</mn><mo>)</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises at least one of the valid scores (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>,</mo><mo> </mo><mn>7</mn></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>) required to win the game <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>if candidate also considers scores other than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>,</mo><mo> </mo><mn>7</mn></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> (such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>).</p>
<p> </p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> represent the score on the last two rolls</p>
<p>a score of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> is obtained by rolling <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></mfenced><mo>,</mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>,</mo><mn>2</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>=</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced><mo>+</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>a score of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> is obtained by rolling <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mn>4</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>=</mo><mn>7</mn></mrow></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>04</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>a score of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> is obtained by rolling <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>T</mi><mo>=</mo><mn>8</mn></mrow></mfenced><mo>=</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The above 3 <em><strong>A1</strong> </em>marks are independent of each other.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mtext>Nicky wins</mtext><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>04</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>01</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>+</mo><mi>b</mi><mo>=</mo><mn>8</mn></math> <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>5</mn></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mfrac><mn>4</mn><mn>16</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mfrac><mn>4</mn><mn>16</mn></mfrac></math> <em><strong>A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>5</mn></math></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mfrac><mn>3</mn><mn>16</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mi>a</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mfrac><mn>2</mn><mn>16</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>5</mn><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>16</mn></mfrac></math> <em><strong>A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>6</mn></math></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mfrac><mn>3</mn><mn>16</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mi>a</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mfrac><mn>2</mn><mn>16</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>16</mn></mfrac></math> <em><strong>A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>4</mn></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>3</mn></math> obtained without working/reasoning/justification.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p>correctly lists a relevant part of the sample space <em><strong>A1</strong></em> </p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close="}"><mrow><mi>S</mi><mo>=</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mfenced open="{" close="}"><mrow><mfenced><mrow><mn>3</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>1</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>1</mn><mo>,</mo><mi>a</mi></mrow></mfenced></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close="}"><mrow><mi>S</mi><mo>=</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mfenced open="{" close="}"><mrow><mfenced><mrow><mn>2</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mi>a</mi></mrow></mfenced></mrow></mfenced></math></p>
<p>or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close="}"><mrow><mi>S</mi><mo>=</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mfenced open="{" close="}"><mrow><mfenced><mrow><mn>3</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>3</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>1</mn><mo>,</mo><mn>5</mn></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mn>3</mn><mo>=</mo><mn>6</mn></math></p>
<p><br><strong>OR</strong></p>
<p>eliminates possibilities (exhaustion) for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo><</mo><mn>5</mn></math></p>
<p>convincingly shows that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mn>2</mn><mo>,</mo><mn>4</mn></math> <em><strong>A1</strong></em> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mn>4</mn></math>, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>S</mi><mo>=</mo><mn>7</mn></mrow></mfenced><mo>=</mo><mfrac><mn>2</mn><mn>16</mn></mfrac></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mn>5</mn></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mn>5</mn></mrow></mfenced></math> and so</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>,</mo><mfenced><mrow><mn>3</mn><mo>,</mo><mi>a</mi></mrow></mfenced><mo>⇒</mo><mi>a</mi><mo>+</mo><mn>3</mn><mo>≠</mo><mn>7</mn></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A majority of candidates knew to set up equations using the sum of the probabilities in the distribution equal to 1 and/or the expected value equal to 2, however some candidates simply substituted the given values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> into their equations, which is considered working backwards and not doing what is required by the command term "show that". For the candidates who did set up both equations in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>, nearly all were successful in solving the resulting system of equations. Many candidates answered part (b) correctly using the given values from part (a). In part (c), most candidates recognized a sum of 6 (or more) was required in the final two rolls, but very few were able to find all the different outcomes to make this happen, especially for sums that can happen in more than one way, such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>+</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mn>3</mn></math>. While some candidates were able to correctly answer parts (d) and (e), some did not attempt<br>these questions parts, and many did not justify their final answer in part (e).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A data set has <em>n</em> items. The sum of the items is 800 and the mean is 20.</p>
</div>
<div class="specification">
<p>The standard deviation of this data set is 3. Each value in the set is multiplied by 10.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>n</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the new mean.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the new variance.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct approach <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{800}}{n} = 20">
<mfrac>
<mrow>
<mn>800</mn>
</mrow>
<mi>n</mi>
</mfrac>
<mo>=</mo>
<mn>20</mn>
</math></span></p>
<p>40 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>200 <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognizing variance = <em>σ </em><sup>2</sup> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 3<sup>2</sup> = 9</p>
<p>correct working to find new variance <em><strong>(A1)</strong></em></p>
<p><em>eg σ </em><sup>2 </sup>× 10<sup>2</sup>, 9 × 100</p>
<p>900 <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>new standard deviation is 30 <em><strong> (A1)</strong></em></p>
<p>recognizing variance = <em>σ </em><sup>2</sup> <em><strong>(M1)</strong></em></p>
<p><em>e</em>g 3<sup>2</sup> = 9, 30<sup>2</sup></p>
<p>900 <em><strong> A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following scatter diagram shows the scores obtained by seven students in their mathematics test, <em>m</em>, and their physics test, <em>p</em>.</p>
<p style="text-align: left;"><img src=""></p>
<p style="text-align: left;">The mean point, M, for these data is (40, 16).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\bar m,\,\,\bar p} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mover>
<mi>m</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mover>
<mi>p</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit, by eye, on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your line of best fit, estimate the physics test score for a student with a score of 20 in their mathematics test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""><em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for mean point plotted and <em><strong>(A1)</strong></em> for labelled M.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>straight line through their mean point crossing the <em>p</em>-axis at 5±2 <em><strong>(A1)(ft)(A1)(ft) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for a straight line through their mean point. Award <strong><em>(A1)</em>(ft)</strong> for a correct p-intercept if line is extended.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>point on line where <em>m</em> = 20 identified and an attempt to identify <em>y</em>-coordinate <em><strong>(M1)</strong></em></p>
<p>10.5 <em><strong>(A1)</strong></em><strong>(ft) </strong><em><strong>(C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their line in part (b).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The lengths of trout in a fisherman’s catch were recorded over one month, and are represented in the following histogram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.45.21.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following table.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_12.36.53.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <strong>length of trout </strong>is a continuous or discrete variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Any trout with length 40 cm or less is returned to the lake.</p>
<p>Calculate the percentage of the fisherman’s catch that is returned to the lake.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-15_om_12.38.42.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01.a/M"> <strong><em>(A2)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A2) </em></strong>for all correct entries, <strong><em>(A1) </em></strong>for 3 correct entries.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>continuous <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{60 (cm)}} < {\text{trout length}} \leqslant {\text{70 (cm)}}">
<mrow>
<mtext>60 (cm)</mtext>
</mrow>
<mo><</mo>
<mrow>
<mtext>trout length</mtext>
</mrow>
<mo>⩽</mo>
<mrow>
<mtext>70 (cm)</mtext>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent notation such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(60,{\text{ }}70]">
<mo stretchy="false">(</mo>
<mn>60</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>70</mn>
<mo stretchy="false">]</mo>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="]60,{\text{ }}70]">
<mo stretchy="false">]</mo>
<mn>60</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>70</mn>
<mo stretchy="false">]</mo>
</math></span>.</p>
<p>Award <strong><em>(A0) </em></strong>for “60-70” (incorrect notation).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{{22}} \times 100">
<mfrac>
<mn>4</mn>
<mrow>
<mn>22</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>100</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for their 4 divided by their 22.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 18.2{\text{ }}(18.1818 \ldots )">
<mo>=</mo>
<mn>18.2</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>18.1818</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their part (a). Do not accept 0.181818….</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosewood College has 120 students. The students can join the sports club (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span>) and the music club (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span>).</p>
<p>For a student chosen at random from these 120, the probability that they joined both clubs is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> and the probability that they joined the music club is<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<p>There are 20 students that did not join either club.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram for these students.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_08.15.35.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the students who joined the sports club is chosen at random. Find the probability that this student joined both clubs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
<mi>M</mi>
</math></span> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2018-02-13_om_08.19.04.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a/M"> <strong><em>(A1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for 30 in correct area, <strong><em>(A1) </em></strong>for 60 and 10 in the correct areas.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{90}}{\text{ }}\left( {\frac{1}{3},{\text{ }}0.333333 \ldots ,{\text{ }}33.3333 \ldots \% } \right)">
<mfrac>
<mrow>
<mn>30</mn>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.333333</mn>
<mo>…</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>33.3333</mn>
<mo>…</mo>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct numerator of 30, <strong><em>(A1)</em>(ft) </strong>for correct denominator of 90. Follow through from their Venn diagram.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(S) \times {\text{P}}(M) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>S</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>M</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(R1) </em></strong>for multiplying their by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<p> </p>
<p>therefore the events are independent <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{as P}}(S \cap M) = \frac{1}{4}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>as P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>S</mi>
<mo>∩</mo>
<mi>M</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(R1)(A1)</em>(ft) </strong>for an answer which is consistent with their Venn diagram.</p>
<p>Do not award <strong><em>(R0)(A1)</em>(ft)</strong>.</p>
<p>Do not award final <strong><em>(A1) </em></strong>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(S) \times {\text{P}}(M)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>S</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>M</mi>
<mo stretchy="false">)</mo>
</math></span> is not calculated. Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <em>Z</em> is normally distributed with mean 0 and standard deviation 1. It is known that P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span> < −1.6) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span> > 2.4) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A second random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> and standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span>.</p>
<p>It is known that P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> < 1) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(−1.6 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span> < 2.4). Write your answer in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span> > −1.6, find the probability that z < 2.4 . Write your answer in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the standardized value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is also known that P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> > 2) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing area under curve = 1 <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + x + b = 1">
<mi>a</mi>
<mo>+</mo>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="100 - a - b">
<mn>100</mn>
<mo>−</mo>
<mi>a</mi>
<mo>−</mo>
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - a + b">
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( { - 1.6 < z < 2.4} \right) = 1 - a - b\,\,\left( { = 1 - \left( {a + b} \right)} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.6</mn>
<mo><</mo>
<mi>z</mi>
<mo><</mo>
<mn>2.4</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
<mo>−</mo>
<mi>b</mi>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {z > - 1.6} \right) = 1 - a">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>z</mi>
<mo>></mo>
<mo>−</mo>
<mn>1.6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
</math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>recognizing conditional probability <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A\left| B \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mrow>
<mo>|</mo>
<mi>B</mi>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {B\left| A \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>B</mi>
<mrow>
<mo>|</mo>
<mi>A</mi>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {z < 2.4 \cap z > - 1.6} \right)}}{{{\text{P}}\left( {z > - 1.6} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>z</mi>
<mo><</mo>
<mn>2.4</mn>
<mo>∩</mo>
<mi>z</mi>
<mo>></mo>
<mo>−</mo>
<mn>1.6</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>z</mi>
<mo>></mo>
<mo>−</mo>
<mn>1.6</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( { - 1.6 < z < 2.4} \right)}}{{{\text{P}}\left( {z > - 1.6} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.6</mn>
<mo><</mo>
<mi>z</mi>
<mo><</mo>
<mn>2.4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>z</mi>
<mo>></mo>
<mo>−</mo>
<mn>1.6</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {z < 2.4\left| z \right. > - 1.6} \right) = \frac{{1 - a - b}}{{1 - a}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>z</mi>
<mo><</mo>
<mn>2.4</mn>
<mrow>
<mo>|</mo>
<mi>z</mi>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
<mo>></mo>
<mo>−</mo>
<mn>1.6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
<mo>−</mo>
<mi>b</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1 N4</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if correct answer is seen followed by incorrect simplification.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = - 1.6">
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1.6</mn>
</math></span> (may be seen in part (d)) <em><strong>A1 N1</strong></em></p>
<p><strong>Note:</strong> Depending on the candidate’s interpretation of the question, they may give <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - m}}{s}">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mi>s</mi>
</mfrac>
</math></span> as the answer to part (c). Such answers should be awarded the first <em><strong>(M1)</strong></em> in part (d), even when part (d) is left blank. If the candidate goes on to show <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = - 1.6">
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1.6</mn>
</math></span> as part of their working in part (d), the <em><strong>A1</strong> </em>in part (c) may be awarded.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to standardize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x - \mu }}{\sigma }">
<mfrac>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mi>μ</mi>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span>) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - m}}{s}">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mi>s</mi>
</mfrac>
</math></span> (may be seen in part (c)), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{m - 2}}{s}">
<mfrac>
<mrow>
<mi>m</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mi>s</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x - m}}{\sigma }">
<mfrac>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mi>σ</mi>
</mfrac>
</math></span></p>
<p>correct equation with each <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span>-value <em><strong>(A1)(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1.6 = \frac{{1 - m}}{s}">
<mo>−</mo>
<mn>1.6</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mi>s</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.4 = \frac{{2 - m}}{s}">
<mn>2.4</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mi>s</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m + 2.4s = 2">
<mi>m</mi>
<mo>+</mo>
<mn>2.4</mn>
<mi>s</mi>
<mo>=</mo>
<mn>2</mn>
</math></span></p>
<p>valid approach (to set up equation in one variable) <em><strong>M1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.4 = \frac{{2 - \left( {1.6s + 1} \right)}}{s}">
<mn>2.4</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1.6</mn>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mi>s</mi>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - m}}{{ - 1.6}} = \frac{{2 - m}}{{2.4}}">
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mrow>
<mo>−</mo>
<mn>1.6</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mi>m</mi>
</mrow>
<mrow>
<mn>2.4</mn>
</mrow>
</mfrac>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.6s + 1 = 2 - 2.4s">
<mn>1.6</mn>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<mn>2.4</mn>
<mi>s</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4s = 1">
<mn>4</mn>
<mi>s</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = \frac{7}{5}">
<mi>m</mi>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>5</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{1}{4}">
<mi>s</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Srinivasa places the nine labelled balls shown below into a box.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Srinivasa then chooses two balls at random, one at a time, from the box. The first ball is <strong>not replaced</strong> before he chooses the second.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the first ball chosen is labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the first ball chosen is labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> or labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the second ball chosen is labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, given that the first ball chosen was labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both balls chosen are labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>9</mn></mfrac><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>333</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>333333</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>33</mn><mo>.</mo><mn>3</mn><mo>%</mo></mrow></mfenced></math> <strong><em>(A1)</em></strong><em><strong> (C1)</strong></em></p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>9</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>556</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>555555</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>55</mn><mo>.</mo><mn>6</mn><mo>%</mo></mrow></mfenced></math> <strong><em>(A1)</em></strong><em><strong> (C1)</strong></em></p>
<p><strong><br></strong><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>8</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>375</mn><mo>,</mo><mo> </mo><mn>37</mn><mo>.</mo><mn>5</mn><mo>%</mo></mrow></mfenced></math> <strong><em>(A1)(A1)</em></strong><em><strong> (C2)</strong></em></p>
<p><strong><br>Note: </strong>Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>9</mn></mfrac><mo>×</mo><mfrac><mn>1</mn><mn>8</mn></mfrac></math> <strong><em>(M1)</em></strong></p>
<p><strong><br>Note: </strong>Award <em><strong>(M1)</strong></em> for a correct compound probability calculation seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>72</mn></mfrac><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mn>36</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0278</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0277777</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>78</mn><mo>%</mo></mrow></mfenced></math> <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Jim heated a liquid until it boiled. He measured the temperature of the liquid as it cooled. The following table shows its temperature, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> degrees Celsius, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> minutes after it boiled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_08.45.05.png" alt="M17/5/MATME/SP1/ENG/TZ1/04"></p>
</div>
<div class="specification">
<p>Jim believes that the relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> can be modelled by a linear regression equation.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the independent variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the boiling temperature of the liquid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jim describes the correlation as <strong>very strong</strong>. Circle the value below which best represents the correlation coefficient.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="0.992\quad \quad \quad 0.251\quad \quad \quad 0\quad \quad \quad - 0.251\quad \quad \quad - 0.992">
<mn>0.992</mn>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mn>0.251</mn>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mn>0</mn>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mo>−</mo>
<mn>0.251</mn>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mspace width="1em"></mspace>
<mo>−</mo>
<mn>0.992</mn>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jim’s model is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = - 2.24t + 105">
<mi>d</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2.24</mn>
<mi>t</mi>
<mo>+</mo>
<mn>105</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 20">
<mn>0</mn>
<mo>⩽</mo>
<mi>t</mi>
<mo>⩽</mo>
<mn>20</mn>
</math></span>. Use his model to predict the decrease in temperature for any 2 minute interval.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> <em><strong>A1</strong></em> <em><strong>N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>105 <em><strong>A1</strong></em> <em><strong>N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 0.992">
<mo>−</mo>
<mn>0.992</mn>
</math></span> <strong><em>A2</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}d}}{{{\text{d}}t}} = - 2.24;{\text{ }}2 \times 2.24,{\text{ }}2 \times - 2.24,{\text{ }}d(2) = - 2 \times 2.24 \times 105,">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>d</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2.24</mn>
<mo>;</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo>×</mo>
<mn>2.24</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo>×</mo>
<mo>−</mo>
<mn>2.24</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>d</mi>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mo>×</mo>
<mn>2.24</mn>
<mo>×</mo>
<mn>105</mn>
<mo>,</mo>
</math></span></p>
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d({t_2}) - d({t_1})">
<mi>d</mi>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>t</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mi>d</mi>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_2} = {t_1} + 2">
<mrow>
<msub>
<mi>t</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>t</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>2</mn>
</math></span></p>
<p>4.48 (degrees) <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award no marks for answers that <strong>directly </strong>use the table to find the decrease in temperature for 2 minutes <em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{105 - 98.4}}{2} = 3.3">
<mfrac>
<mrow>
<mn>105</mn>
<mo>−</mo>
<mn>98.4</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mn>3.3</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Pablo drives to work. The probability that he leaves home before 07:00 is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}">
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span>.</p>
<p>If he leaves home before 07:00 the probability he will be late for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>.</p>
<p>If he leaves home at 07:00 or later the probability he will be late for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{8}">
<mfrac>
<mn>5</mn>
<mn>8</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> and complete the following tree diagram.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Pablo leaves home before 07:00 and is late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Pablo is late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Pablo is late for work, find the probability that he left home before 07:00.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two days next week Pablo will drive to work. Find the probability that he will be late at least once.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""><em><strong>A1A1A1 N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each bold fraction.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>multiplying along correct branches <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4} \times \frac{1}{8}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </math></span></p>
<p>P(leaves before 07:00 ∩ late) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{32}"> <mfrac> <mn>3</mn> <mn>32</mn> </mfrac> </math></span> <em><strong> A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p>multiplying along other “late” branch <em><strong>(M1)</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} \times \frac{5}{8}"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> </math></span></p>
<p>adding probabilities of two mutually exclusive late paths <em><strong>(A1)</strong></em><br>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{3}{4} \times \frac{1}{8}} \right) + \left( {\frac{1}{4} \times \frac{5}{8}} \right),\,\,\frac{3}{{32}} + \frac{5}{{32}}"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>3</mn> <mrow> <mn>32</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>5</mn> <mrow> <mn>32</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( L \right) = \frac{8}{{32}}\,\,\left( { = \frac{1}{4}} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>8</mn> <mrow> <mn>32</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing conditional probability (seen anywhere) <em><strong> (M1)</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A|B} \right),\,\,{\text{P}}\left( {{\text{before 7}}|{\text{late}}} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mrow> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>before 7</mtext> </mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <mrow> <mtext>late</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct substitution of <strong>their</strong> values into formula <em><strong>(A1)</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\frac{3}{{32}}}}{{\frac{1}{4}}}"> <mfrac> <mrow> <mfrac> <mn>3</mn> <mrow> <mn>32</mn> </mrow> </mfrac> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {{\text{left before 07:00}}|{\text{late}}} \right) = \frac{3}{8}"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>left before 07:00</mtext> </mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <mrow> <mtext>late</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> </math></span> <strong><em> A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em><br><em>eg</em> 1 − P(not late twice), P(late once) + P(late twice)</p>
<p>correct working <em><strong>(A1)</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \left( {\frac{3}{4} \times \frac{3}{4}} \right),\,\,2 \times \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4}"> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mo>×</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>×</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{16}}"> <mfrac> <mn>7</mn> <mrow> <mn>16</mn> </mrow> </mfrac> </math></span> <strong><em> A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The histogram shows the lengths of 25 metal rods, each measured correct to the nearest cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The upper quartile is 4 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal length of the rods.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median length of the rods.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3 <em><strong>(A1) (C1)</strong></em><br> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>median is 13th position <em><strong>(M1)</strong></em></p>
<p>CF: 2, 6, 14, 20, 23, 25 <em><strong>(M1)</strong></em></p>
<p>median = 3 <strong>(A1) (C3)</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2.5 <em><strong>(A1) (C1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> if the sum of <strong>their</strong> parts (c)(i) and (c)(ii) is 4.</p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.5 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> if the sum of <strong>their</strong> parts (c)(i) and (c)(ii) is 4.</p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>University students were surveyed and asked how many hours, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> , they worked each month. The results are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Use the table to find the following values.</p>
</div>
<div class="specification">
<p>The first five class intervals, indicated in the table, have been used to draw part of a cumulative frequency curve as shown.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the same grid, complete the cumulative frequency curve for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find an estimate for the number of students who worked at most 35 hours per month.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 10">
<mi>p</mi>
<mo>=</mo>
<mn>10</mn>
</math></span> <em><strong>(A1)</strong></em><em><strong> (C1) </strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct value.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 56">
<mi>q</mi>
<mo>=</mo>
<mn>56</mn>
</math></span> <em><strong>(A1)</strong></em><em><strong> (C1) </strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct value.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(A1)(A1)</strong></em><em><strong> (C2) </strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their 3 correctly plotted points; award <strong><em>(A1)</em>(ft)</strong> for completing diagram with a smooth curve through their points. The second <strong><em>(A1)</em>(ft)</strong> can follow through from incorrect points, provided the gradient of the curve is never negative. Award <em><strong>(C2)</strong></em> for a completely correct smooth curve that goes through the correct points.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a straight vertical line drawn at 35 (accept 35 ± 1) <em><strong>(M1)</strong></em></p>
<p>26 (students)<em><strong> (A1)</strong></em><em><strong> (C2) </strong></em></p>
<p><strong>Note:</strong> Accept values between 25 and 27 inclusive.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A boy is chosen at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>20 <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{43}}\,\,\,\left( {0.11627 \ldots ,\,\,11.6279 \ldots {\text{% }}} \right)">
<mfrac>
<mn>5</mn>
<mrow>
<mn>43</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.11627</mn>
<mo>…</mo>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>11.6279</mn>
<mo>…</mo>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{37}} \times \frac{{12}}{{36}} + \frac{{12}}{{37}} \times \frac{7}{{36}}">
<mfrac>
<mn>7</mn>
<mrow>
<mn>37</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>37</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>7</mn>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for first or second correct product seen, <em><strong>(M1)</strong></em> for adding their two products or for multiplying their product by two.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{14}}{{111}}\,\,\left( {\,0.12612 \ldots ,\,\,12.6126\,{\text{% }}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mrow>
<mn>111</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mspace width="thinmathspace"></mspace>
<mn>0.12612</mn>
<mo>…</mo>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>12.6126</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Hafizah harvested <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>49</mn></math> mangoes from her farm. The weights of the mangoes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi></math>, in grams, are shown in the following grouped frequency table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal group for these data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find an estimate of the standard deviation of the weights of mangoes from this harvest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the grid below, draw a histogram for the data in the table.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn><mo>≤</mo><mi>w</mi><mo><</mo><mn>500</mn></math> <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Accept alternative notation <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mn>400</mn><mo>,</mo><mo> </mo><mn>500</mn><mo>)</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mn>400</mn><mo>,</mo><mo> </mo><mn>500</mn><mo>[</mo><mo>.</mo></math><br>Do not accept "<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn><mtext>-</mtext><mn>500</mn></math>".</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>115</mn><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>115</mn><mo>.</mo><mn>265</mn><mo>…</mo><mo> </mo><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mfenced></math> <em><strong>(A2) (C2)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(A1)(A0)</strong></em> for an answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>116</mn><mo> </mo><mfenced><mrow><mn>116</mn><mo>.</mo><mn>459</mn><mo>…</mo></mrow></mfenced></math>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(A2)(A1) (C3)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(A2)</strong></em> for all correct heights of bars or <em><strong>(A1)</strong></em> for three or four correct heights of bars.<br>Award <em><strong>(A1)</strong></em> for rectangular bars all with correct left and right end points (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>,</mo><mo> </mo><mn>200</mn><mo>,</mo><mo> </mo><mn>300</mn><mo>,</mo><mo> </mo><mn>400</mn><mo>,</mo><mo> </mo><mn>500</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>600</mn></math>) and for no gaps; the bars do <strong>not</strong> have to be shaded.<br>Award at most <em><strong>(A2)(A0)</strong></em> if a ruler is not used for all lines.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>On a work day, the probability that Mr Van Winkel wakes up early is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{5}">
<mfrac>
<mn>4</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
<p>If he wakes up early, the probability that he is on time for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<p>If he wakes up late, the probability that he is on time for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>The probability that Mr Van Winkel arrives on time for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}">
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram below.</p>
<p><img src="images/Schermafbeelding_2017-03-07_om_06.20.32.png" alt="N16/5/MATSD/SP1/ENG/TZ0/12.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-07_om_06.24.40.png" alt="N16/5/MATSD/SP1/ENG/TZ0/12.a/M"> <strong><em>(A1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each correct pair of probabilities.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{5}p + \frac{1}{5} \times \frac{1}{4} = \frac{3}{5}">
<mfrac>
<mn>4</mn>
<mn>5</mn>
</mfrac>
<mi>p</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span> <strong><em>(A1)</em>(ft)<em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for two correct products from part (a), <strong><em>(M1) </em></strong>for adding their products, <strong><em>(M1) </em></strong>for equating the sum of any two probabilities to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}">
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p = ){\text{ }}\frac{{11}}{{16}}{\text{ }}(0.688,{\text{ }}0.6875)">
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>11</mn>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0.688</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.6875</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award the final <strong><em>(A1)</em>(ft) </strong>only if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant p \leqslant 1">
<mn>0</mn>
<mo>⩽</mo>
<mi>p</mi>
<mo>⩽</mo>
<mn>1</mn>
</math></span>. Follow through from part (a).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey at a swimming pool is given to one adult in each family. The age of the adult, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> years old, and of their eldest child, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> years old, are recorded.</p>
<p>The ages of the eldest child are summarized in the following box and whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><mi>c</mi><mo>+</mo><mn>20</mn></math>. The regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mo>-</mo><mn>9</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> that would not be considered an outlier.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the adults surveyed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>42</mn></math> years old. Estimate the age of their eldest child.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean age of all the adults surveyed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IQR</mtext><mo>=</mo><mn>10</mn><mo>-</mo><mn>6</mn><mfenced><mrow><mo>=</mo><mn>4</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Q</mi><mn>3</mn></msub><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mtext>IQR</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>+</mo><mn>6</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>choosing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mo>-</mo><mn>9</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>42</mn><mo>-</mo><mn>9</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>12</mn></math> (years old) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve system by substitution or elimination <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>34</mn></math> (years old) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates correctly found the value of 16. Some then incorrectly went on to state that 15 was therefore the minimum value that was not an outlier. For part (b) students needed to choose the appropriate rule to use to estimate the child's age. It was clear that many did not know there was a choice to be made and used both equations. As the mean point (𝑐̅,𝑎̅ ) lies on both regression lines, in part (c) candidates needed to solve the system of equations to find the mean adult age, 𝑎̅. Few candidates seemed to be aware of this.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass of a certain type of Chilean corncob follows a normal distribution with a mean of 400 grams and a standard deviation of 50 grams.</p>
</div>
<div class="specification">
<p>A farmer labels one of these corncobs as premium if its mass is greater than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> grams. 25% of these corncobs are labelled as premium.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the mass of one of these corncobs is greater than 400 grams.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the interquartile range of the distribution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}\left( {50\% ,{\text{ }}\frac{1}{2}} \right)">
<mn>0.5</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>50</mn>
<mi mathvariant="normal">%</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > a) = 0.25">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.25</mn>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X < a) = 0.75">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo><</mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.75</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for a sketch of approximate normal curve with a vertical line drawn to the right of the mean with the area to the right of this line shaded.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 434{\text{ (g) }}\left( {433.724 \ldots {\text{ (g)}}} \right)">
<mi>a</mi>
<mo>=</mo>
<mn>434</mn>
<mrow>
<mtext> (g) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>433.724</mn>
<mo>…</mo>
<mrow>
<mtext> (g)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="33.7244 \ldots \times 2">
<mn>33.7244</mn>
<mo>…</mo>
<mo>×</mo>
<mn>2</mn>
</math></span> <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="33.7244 \ldots {\text{ }}({\text{or }}433.7244 \ldots {\text{ }} - {\text{ }}400)">
<mn>33.7244</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>or </mtext>
</mrow>
<mn>433.7244</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>400</mn>
<mo stretchy="false">)</mo>
</math></span> seen, award <strong><em>(M1) </em></strong>for multiplying their 33.7244… by 2. Follow through from their answer to part (b).</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="434 - 366.275 \ldots ">
<mn>434</mn>
<mo>−</mo>
<mn>366.275</mn>
<mo>…</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="366.275 \ldots {\text{ }}(366)">
<mn>366.275</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>366</mn>
<mo stretchy="false">)</mo>
</math></span> seen, <strong><em>(M1) </em></strong>for difference between their answer to (b) and their 366.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-08-16_om_07.56.55.png" alt="M17/5/MATSD/SP1/ENG/TZ2/11.c/M"> <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="366.275 \ldots {\text{ }}(366)">
<mn>366.275</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>366</mn>
<mo stretchy="false">)</mo>
</math></span> seen. Award <strong><em>(M1) </em></strong>for correct symmetrical region indicated on labelled normal curve.</p>
<p> </p>
<p>67.4 (g) <strong><em>(A1)</em>(ft)</strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept an answer of 68 from use of rounded values<strong><em>. </em></strong>Follow through from part (b).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The Home Shine factory produces light bulbs, 7% of which are found to be defective.</p>
</div>
<div class="specification">
<p>Francesco buys two light bulbs produced by Home Shine.</p>
</div>
<div class="specification">
<p>The Bright Light factory also produces light bulbs. The probability that a light bulb produced by Bright Light is not defective is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<p>Deborah buys three light bulbs produced by Bright Light.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that a light bulb produced by Home Shine is not defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both light bulbs are not defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of Francesco’s light bulbs is defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, for the probability that at least one of Deborah’s three light bulbs is defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>0.93 (93%) <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.93 \times 0.93">
<mn>0.93</mn>
<mo>×</mo>
<mn>0.93</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for squaring their answer to part (a).</p>
<p> </p>
<p>0.865 (0.8649; 86.5%) <strong><em>(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Follow through from part (a).</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.86{\text{ }}\left( {{\text{unless it follows }}\frac{{93}}{{100}} \times \frac{{92}}{{99}}} \right)">
<mn>0.86</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>unless it follows </mtext>
</mrow>
<mfrac>
<mrow>
<mn>93</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>92</mn>
</mrow>
<mrow>
<mn>99</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 0.8649">
<mn>1</mn>
<mo>−</mo>
<mn>0.8649</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their answer to part (b)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.07 \times 0.07 + 2 \times (0.07 \times 0.93)">
<mn>0.07</mn>
<mo>×</mo>
<mn>0.07</mn>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mn>0.07</mn>
<mo>×</mo>
<mn>0.93</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p>0.135 (0.1351; 13.5%) <strong><em>(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {a^3}">
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>a</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{a^2}(1 - a) + 3a{(1 - a)^2} + {(1 - a)^3}">
<mn>3</mn>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>3</mn>
<mi>a</mi>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mn>3</mn>
</msup>
</mrow>
</math></span> or equivalent.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A large school has students from Year 6 to Year 12.</p>
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> students in Year 12 were randomly selected and surveyed to find out how many hours per week they each spend doing homework. Their results are represented by the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>This same information is represented by the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>There are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>320</mn></math> students in Year 12 at this school.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median number of hours per week these Year 12 students spend doing homework.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> of these Year 12 students spend more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> hours per week doing homework, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of Year 12 students that spend more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> hours each week doing homework.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why this sampling method might not provide an accurate representation of the amount of time <strong>all</strong> of the students in the school spend doing homework.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a more appropriate sampling method.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of median position <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math> students</p>
<p>median <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>14</mn></math> (hours) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing there are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> students in the top <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> students spent less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> hours <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>18</mn></math> (hours) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> hours is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> students OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>60</mn><mo>-</mo><mn>4</mn></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>56</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn></math> hours is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>76</mn></math> students OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>80</mn><mo>−</mo><mn>76</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>80</mn><mo>−</mo><mn>4</mn><mo>−</mo><mn>56</mn><mo>−</mo><mn>16</mn></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> students OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac></math> spend more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> hours doing homework <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>20</mn><mn>80</mn></mfrac><mo>=</mo><mfrac><mi>x</mi><mn>320</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>×</mo><mn>320</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>×</mo><mn>20</mn></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> (students) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>only year 12 students surveyed OR amount of homework might be different for different year levels <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stratified sampling OR survey students in all years <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A bag contains <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> marbles, two of which are blue. Hayley plays a game in which she randomly draws marbles out of the bag, one after another, without replacement. The game ends when Hayley draws a blue marble.</p>
</div>
<div class="specification">
<p> Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> = 5. Find the probability that the game will end on her</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, that the game will end on her first draw.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, that the game will end on her second draw.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>third draw.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>fourth draw.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hayley plays the game when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> = 5. She pays $20 to play and can earn money back depending on the number of draws it takes to obtain a blue marble. She earns no money back if she obtains a blue marble on her first draw. Let <em>M</em> be the amount of money that she earns back playing the game. This information is shown in the following table.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> so that this is a fair game.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{n}">
<mfrac>
<mn>2</mn>
<mi>n</mi>
</mfrac>
</math></span> <em><strong>A1 N1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct probability for one of the draws <em><strong>A1</strong></em></p>
<p><em>eg </em>P(not blue first) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n - 2}}{n}">
<mfrac>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mi>n</mi>
</mfrac>
</math></span>, blue second = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{{n - 1}}">
<mfrac>
<mn>2</mn>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span></p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> recognizing loss on first in order to win on second, P(<em>B'</em> then <em>B</em>), P(<em>B'</em>) × P(<em>B </em>| <em>B'</em>), tree diagram</p>
<p>correct expression in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n - 2}}{n} \times \frac{2}{{n - 1}}">
<mfrac>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mi>n</mi>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2n - 4}}{{{n^2} - n}}">
<mfrac>
<mrow>
<mn>2</mn>
<mi>n</mi>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>n</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>n</mi>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\left( {n - 2} \right)}}{{n\left( {n - 1} \right)}}">
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}">
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{{60}}\,\,\,\left( { = \frac{1}{5}} \right)">
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>60</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2}">
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{6}{{60}}\,\,\,\left( { = \frac{1}{{10}}} \right)">
<mfrac>
<mn>6</mn>
<mrow>
<mn>60</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct probabilities (seen anywhere) <em><strong>(A1)(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\text{1}} \right) = \frac{2}{5}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>1</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\text{2}} \right) = \frac{6}{{20}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>2</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mn>20</mn>
</mrow>
</mfrac>
</math></span> (may be seen on tree diagram)</p>
<p>valid approach to find E (<em>M</em>) or expected winnings using <strong>their</strong> probabilities <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\text{1}} \right) \times \left( 0 \right) + {\text{P}}\left( {\text{2}} \right) \times \left( {20} \right) + {\text{P}}\left( {\text{3}} \right) \times \left( {8k} \right) + {\text{P}}\left( {\text{4}} \right) \times \left( {12k} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>1</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>2</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>3</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>8</mn>
<mi>k</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>4</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mi>k</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\text{1}} \right) \times \left( { - 20} \right) + {\text{P}}\left( {\text{2}} \right) \times \left( 0 \right) + {\text{P}}\left( {\text{3}} \right) \times \left( {8k - 20} \right) + {\text{P}}\left( {\text{4}} \right) \times \left( {12k - 20} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>1</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>2</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>3</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>8</mn>
<mi>k</mi>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtext>4</mtext>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mi>k</mi>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working to find E (<em>M</em>) or expected winnings <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{5}\left( 0 \right) + \frac{3}{{10}}\left( {20} \right) + \frac{1}{5}\left( {8k} \right) + \frac{1}{{10}}\left( {12k} \right)">
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>8</mn>
<mi>k</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mi>k</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{5}\left( { - 20} \right) + \frac{3}{{10}}\left( 0 \right) + \frac{1}{5}\left( {8k - 20} \right) + \frac{1}{{10}}\left( {12k - 20} \right)">
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>8</mn>
<mi>k</mi>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mi>k</mi>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct equation for fair game <em><strong> A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{10}}\left( {20} \right) + \frac{1}{5}\left( {8k} \right) + \frac{1}{{10}}\left( {12k} \right) = 20">
<mfrac>
<mn>3</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>8</mn>
<mi>k</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mi>k</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>20</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{5}\left( { - 20} \right) + \frac{1}{5}\left( {8k - 20} \right) + \frac{1}{{10}}\left( {12k - 20} \right) = 0">
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>8</mn>
<mi>k</mi>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mi>k</mi>
<mo>−</mo>
<mn>20</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working to combine terms in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 8 + \frac{{14}}{5}k - 4 - 2 = 0">
<mo>−</mo>
<mn>8</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mn>5</mn>
</mfrac>
<mi>k</mi>
<mo>−</mo>
<mn>4</mn>
<mo>−</mo>
<mn>2</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 + \frac{{14}}{5}k = 20">
<mn>6</mn>
<mo>+</mo>
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mn>5</mn>
</mfrac>
<mi>k</mi>
<mo>=</mo>
<mn>20</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{14}}{5}k = 14">
<mfrac>
<mrow>
<mn>14</mn>
</mrow>
<mn>5</mn>
</mfrac>
<mi>k</mi>
<mo>=</mo>
<mn>14</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> = 5 <em><strong>A1 N0</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if the candidate’s <em><strong>FT</strong></em> probabilities do not sum to 1.</p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Malthouse school opens at 08:00 every morning.</p>
<p>The daily arrival times of the 500 students at Malthouse school follow a normal distribution. The mean arrival time is 52 minutes after the school opens and the standard deviation is 5 minutes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a student, chosen at random arrives at least 60 minutes after the school opens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a student, chosen at random arrives between 45 minutes and 55 minutes after the school opens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second school, Mulberry Park, also opens at 08:00 every morning. The arrival times of the students at this school follows exactly the same distribution as Malthouse school.</p>
<p>Given that, on one morning, 15 students arrive at least 60 minutes after the school opens, estimate the number of students at Mulberry Park school.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>0.0548 (0.054799…, 5.48%) <strong><em>(A2) (C2)</em></strong></p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.645 (0.6449900…, 64.5%) <em><strong>(A2) (C2)</strong></em></p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{15}}{{0.0548}}">
<mfrac>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>0.0548</mn>
</mrow>
</mfrac>
</math></span> <strong>(M1)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for dividing 15 by their part (a)(i).</p>
<p>Accept an equation of the form 15 = <em>x</em> × 0.0548 for <em><strong>(M1)</strong></em>.</p>
<p>274 (273.722…) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a)(i). Accept 273.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Colorado beetles are a pest, which can cause major damage to potato crops. For a certain Colorado beetle the amount of oxygen, in millilitres (ml), consumed each day increases with temperature as shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
<p>This information has been used to plot a scatter diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The mean point has coordinates (20, 230).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In order to estimate the amount of oxygen consumed, this regression line is considered to be reliable for a temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 15.5x - 80">
<mi>y</mi>
<mo>=</mo>
<mn>15.5</mn>
<mi>x</mi>
<mo>−</mo>
<mn>80</mn>
</math></span> <em><strong>(A1)</strong></em><strong><em>(A1)</em><em> (C2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15.5x">
<mn>15.5</mn>
<mi>x</mi>
</math></span>; <em><strong>(A1)</strong></em> for −80. Award at most <em><strong>(A1)(A0)</strong></em> if answer is not an equation. Award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 80x + 15.5">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>80</mn>
<mi>x</mi>
<mo>+</mo>
<mn>15.5</mn>
</math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(A1)</strong></em><strong><em>(A1)</em><em> (C2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for a straight line using a ruler passing through (20, 230); <em><strong>(A1)</strong></em> for correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-intercept. If a ruler has not been used, award at most <em><strong>(A0)(A1)</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 10">
<mi>a</mi>
<mo>=</mo>
<mn>10</mn>
</math></span> <strong>AND </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 30">
<mi>b</mi>
<mo>=</mo>
<mn>30</mn>
</math></span> <em><strong>(A1)</strong></em><strong><em>(A1)</em><em> (C2)</em></strong></p>
<p><strong>Note:</strong> Accept [10, 30] or 10 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 30.</p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Dune Canyon High School organizes its <strong>school year </strong>into three trimesters: fall/autumn (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
<mi>F</mi>
</math></span>), winter (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>) and spring (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
<mi>S</mi>
</math></span>). The school offers a variety of sporting activities during and outside the school year.</p>
<p>The activities offered by the school are summarized in the following Venn diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.56.10.png" alt="M17/5/MATSD/SP1/ENG/TZ1/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of sporting activities offered by the school during its <strong>school year</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether rock-climbing is offered by the school in the fall/autumn trimester.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements of the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F \cap W’"> <mi>F</mi> <mo>∩</mo> <msup> <mi>W</mi> <mo>′</mo> </msup> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(W \cap S)"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo>∩</mo> <mi>S</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F"> <mi>F</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S"> <mi>S</mi> </math></span>, an expression for the set which contains only archery, baseball, kayaking and surfing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>15 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept “it is only offered in Winter and Spring”.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>volleyball, golf, cycling <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Responses must list all three sports for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4 <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(F \cup W \cup S)’"> <mo stretchy="false">(</mo> <mi>F</mi> <mo>∪</mo> <mi>W</mi> <mo>∪</mo> <mi>S</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> </math></span><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong>OR</strong><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F’ \cap W' \cap S’"> <msup> <mi>F</mi> <mo>′</mo> </msup> <mo>∩</mo> <msup> <mi>W</mi> <mo>′</mo> </msup> <mo>∩</mo> <msup> <mi>S</mi> <mo>′</mo> </msup> </math></span> (or equivalent) <strong><em>(A2)</em></strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {p = 1} ">
<mo>∑</mo>
<mrow>
<mi>p</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{13}} + \frac{1}{{13}} + \frac{4}{{13}} + k = 1">
<mfrac>
<mn>3</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>4</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{8}{{13}}">
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mn>8</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{5}{{13}}">
<mi>k</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \times \frac{1}{{13}} + 2 \times \frac{4}{{13}} + 3 \times k">
<mn>1</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mfrac>
<mn>4</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>3</mn>
<mo>×</mo>
<mi>k</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \times \frac{3}{{13}} + 1 \times \frac{1}{{13}} + 2 \times \frac{4}{{13}} + 3 \times \frac{5}{{13}}">
<mn>0</mn>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>1</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mfrac>
<mn>4</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>3</mn>
<mo>×</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{13}} + \frac{8}{{13}} + \frac{{15}}{{13}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>8</mn>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) = \frac{{24}}{{13}}">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following graphs of normal distributions.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>At an airport, the weights of suitcases (in kg) were measured. The weights are normally distributed with a mean of 20 kg and standard deviation of 3.5 kg.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the following table, write down the letter of the corresponding graph next to the given mean and standard deviation.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a suitcase weighs less than 15 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Any suitcase that weighs more than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> kg is identified as excess baggage.<br>19.6 % of the suitcases at this airport are identified as excess baggage.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""> <em><strong>(A1)(A1)</strong></em><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct entry.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: center;"><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for sketch with 15 labelled and left tail shaded <strong>OR</strong> for a correct probability statement, P(<em>X</em> < 15).</p>
<p>0.0766 (0.0765637…, 7.66%) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: center;"><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for a sketch showing correctly shaded region to the right of the mean with 19.6% labelled (accept shading of the complement with 80.4% labelled) <strong>OR</strong> for a correct probability statement, P(<em>X</em> > <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>) = 0.196 or P(<em>X</em> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>) = 0.804.</p>
<p>23.0 (kg) (22.9959… (kg)) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following box-and-whisker plot shows the number of text messages sent by students in a school on a particular day.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One student sent<em> k</em> text messages, where <em>k</em> > 11 . Given that <em>k</em> is an outlier, find the least value of <em>k</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing <em>Q</em><sub>1</sub> or <em>Q</em><sub>3</sub> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p>eg 4,11 , indicated on diagram</p>
<p>IQR = 7 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing the need to find 1.5 IQR <em><strong>(M1)</strong></em></p>
<p><em>eg </em> 1.5 × IQR, 1.5 × 7</p>
<p>valid approach to find <em>k </em> <em><strong> (M1)</strong></em></p>
<p><em>eg </em>10.5 + 11, 1.5 × IQR + <em>Q</em><sub>3</sub></p>
<p>21.5 <em><strong>(A1) </strong></em></p>
<p><em>k</em> = 22 <em><strong>A1 N3</strong></em></p>
<p><strong>Note:</strong> If no working shown, award <em><strong>N2</strong></em> for an answer of 21.5.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following Venn diagram shows the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) = 0.3">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.3</mn>
</math></span>. The values shown are probabilities.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A' \cup B} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach <em><strong> (M1)</strong></em></p>
<p><em>eg</em> 0.30 − 0.1, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> + 0.1 = 0.3</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> = 0.2 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong> (M1)</strong></em></p>
<p><em>eg</em> 1 − (0.3 + 0.4), 1 − 0.4 − 0.1 − <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> = 0.3 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong> (M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.7 + 0.5 - 0.3"> <mn>0.7</mn> <mo>+</mo> <mn>0.5</mn> <mo>−</mo> <mn>0.3</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + q + 0.4"> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>0.4</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 0.1"> <mn>1</mn> <mo>−</mo> <mn>0.1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A' \cup B} \right) = {\text{P}}\left( {A'} \right) + {\text{P}}\left( B \right) - {\text{P}}\left( {A' \cap B} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mi>B</mi> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A' \cup B} \right) = 0.9"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.9</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was carried out to investigate the relationship between a person’s age in years ( <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>) and the number of hours they watch television per week (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>). The scatter diagram represents the results of the survey.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.00.45.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05"></p>
<p>The mean age of the people surveyed was 50.</p>
<p>For these results, the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 0.22a + 15">
<mi>h</mi>
<mo>=</mo>
<mn>0.22</mn>
<mi>a</mi>
<mo>+</mo>
<mn>15</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that the people surveyed watch television per week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By placing a tick (✔) in the correct box, determine which of the following statements is true:</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_07.09.18.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Diogo is 18 years old. Give a reason why the regression line should not be used to estimate the number of hours Diogo watches television per week.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.22(50) + 15">
<mn>0.22</mn>
<mo stretchy="false">(</mo>
<mn>50</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>15</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of 50 into equation of the regression line.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( = ){\text{ }}26">
<mo stretchy="false">(</mo>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>26</mn>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{655}}{{25}}">
<mfrac>
<mrow>
<mn>655</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correctly summing the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> values of the points, and dividing by 25.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( = ){\text{ }}26.2">
<mo stretchy="false">(</mo>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>26.2</mn>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(50,{\text{ }}26 \pm 1)">
<mo stretchy="false">(</mo>
<mn>50</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>26</mn>
<mo>±</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}15)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>15</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for a straight line through (50, their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar h">
<mrow>
<mover>
<mi>h</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span>), and <strong><em>(A1) </em></strong>for the line intercepting the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}15)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>15</mn>
<mo stretchy="false">)</mo>
</math></span>; this may need to be extrapolated. Follow through from part (a). Award at most <strong><em>(A0)(A1) </em></strong>if the line is not drawn with a ruler.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-13_om_07.53.00.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05.c/M"> <strong><em>(A1) (C1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A0) </em></strong>if more than one tick (✔) is seen.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>18 is less than the lowest age in the survey <strong>OR </strong>extrapolation. <strong><em>(A1) (C1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept equivalent statements<em>.</em></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The price per kilogram of tomatoes, in euro, sold in various markets in a city is found to be normally distributed with a mean of 3.22 and a standard deviation of 0.84.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the price that is two standard deviations above the mean price.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the price of a kilogram of tomatoes, chosen at random, will be between 2.00 and 3.00 euro.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To stimulate reasonable pricing, the city offers a free permit to the sellers whose price of a kilogram of tomatoes is in the lowest 20 %.</p>
<p>Find the highest price that a seller can charge and still receive a free permit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>4.90 <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.323 (0.323499…; 32.3 %) <em><strong>(A2) (C2)</strong></em></p>
<p><strong>Note:</strong> If final answer is incorrect, <em><strong>(M1)(A0)</strong></em> may be awarded for correct shaded area shown on a sketch, below, or for a correct probability statement “P(2 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> ≤ 3)” (accept other variables for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> or “price” and strict inequalities).</p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2.51 (2.51303…) <em><strong>(A2) (C2)</strong></em></p>
<p><strong>Note:</strong> If final answer is incorrect, <em><strong>(M1)(A0)</strong></em> may be awarded for correct shaded area shown on a sketch, below, or for a correct probability statement “P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>) = 0.2” (accept other variables and strict inequalities).</p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A research student weighed lizard eggs in grams and recorded the results. The following box and whisker diagram shows a summary of the results where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi></math> are the lower and upper quartiles respectively.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The interquartile range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> grams and there are no outliers in the results.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the minimum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use definition of outlier</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>20</mn><mo>+</mo><msub><mi>Q</mi><mn>3</mn></msub></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>20</mn><mo>+</mo><mi>U</mi><mo>≥</mo><mn>75</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>U</mi><mo>≥</mo><mn>45</mn></math>, accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi><mo>></mo><mn>45</mn></math>) OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo>×</mo><mn>20</mn><mo>+</mo><msub><mi>Q</mi><mn>3</mn></msub><mo>=</mo><mn>75</mn></math> <em><strong> A1</strong></em></p>
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi><mo>=</mo><mn>45</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use interquartile range <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi><mo>-</mo><mi>L</mi><mo>=</mo><mn>20</mn></math> (may be seen in part (a)) OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>≥</mo><mn>25</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>></mo><mn>25</mn></math>)</p>
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>25</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following Venn diagrams.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 2.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the shaded region represented by Diagram 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {H \cup I} \right)'"> <msup> <mrow> <mo>(</mo> <mrow> <mi>H</mi> <mo>∪</mo> <mi>I</mi> </mrow> <mo>)</mo> </mrow> <mo>′</mo> </msup> </math></span>.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="J \cap K"> <mi>J</mi> <mo>∩</mo> <mi>K</mi> </math></span>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>A' <strong>(A1)</strong><br></em></p>
<p><em><strong>Note:</strong> </em>Accept alternative set notation for complement such as<em> U − A.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C \cap D'"> <mi>C</mi> <mo>∩</mo> <msup> <mi>D</mi> <mo>′</mo> </msup> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D' \cap C"> <msup> <mi>D</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>C</mi> </math></span> <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept alternative set notation for complement.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {E \cap F} \right) \cup G"> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mo>∩</mo> <mi>F</mi> </mrow> <mo>)</mo> </mrow> <mo>∪</mo> <mi>G</mi> </math></span> <strong>OR </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G \cup \left( {E \cap F} \right)"> <mi>G</mi> <mo>∪</mo> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mo>∩</mo> <mi>F</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A2) (C4)</strong></em></p>
<p><strong>Note:</strong> Accept equivalent answers, for example <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {E \cup G} \right) \cap \left( {F \cup G} \right)"> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mo>∪</mo> <mi>G</mi> </mrow> <mo>)</mo> </mrow> <mo>∩</mo> <mrow> <mo>(</mo> <mrow> <mi>F</mi> <mo>∪</mo> <mi>G</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1) (C2)</strong></em><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A bag contains 5 red and 3 blue discs, all identical except for the colour. First, Priyanka takes a disc at random from the bag and then Jorgé takes a disc at random from the bag.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Jorgé chooses a red disc.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""> <em><strong>(A1)(A1)(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> (A1)</strong></em> for each correct pair of branches.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{7}">
<mfrac>
<mn>5</mn>
<mn>8</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>4</mn>
<mn>7</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>5</mn>
<mn>7</mn>
</mfrac>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for <strong>their</strong> two correct products from their tree diagram. Follow through from part (a), award <em><strong>(M1)</strong></em> for adding their two products. Award <em><strong>(M0)</strong></em> if additional products or terms are added.</p>
<p> </p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{8}">
<mfrac>
<mn>5</mn>
<mn>8</mn>
</mfrac>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{35}}{{56}},\,\,0.625,\,\,62.5\,{\text{% }}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>35</mn>
</mrow>
<mrow>
<mn>56</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0.625</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>62.5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong> <em><strong>(C3)</strong></em></p>
<p><strong>Note:</strong> Follow through from their tree diagram, only if probabilities are [0,1].</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The following table shows the probability distribution of a discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, justifying your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>=</mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><mn>7</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mi>k</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>k</mi><mo>+</mo><mn>1</mn><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>attempts to factorize their quadratic <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts use of the quadratic formula on their equation <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>5</mn><mo>±</mo><msqrt><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>4</mn></mfenced><mfenced><mn>1</mn></mfenced></msqrt></mrow><mn>8</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>5</mn><mo>±</mo><mn>3</mn></mrow><mn>8</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> <strong>A1</strong></p>
<p>rejects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> as this value leads to invalid probabilities, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>=</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mo><</mo><mn>0</mn></math> <strong>R1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>R0A1</strong> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> is stated without a valid reason given for rejecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
<p> </p>
<p><strong>[6 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> are independent with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cap B) = 0.2">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.2</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B) = 0.6">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.6</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid interpretation (may be seen on a Venn diagram) <strong><em>(M1)</em></strong></p>
<p>eg<math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cap B) + {\text{P}}(A' \cap B),{\text{ }}0.2 + 0.6"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.2</mn> <mo>+</mo> <mn>0.6</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B) = 0.8"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.8</mn> </math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cap B) = {\text{P}}(A) \times {\text{P}}(B),{\text{ }}0.8 \times A = 0.2"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>×</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.8</mn> <mo>×</mo> <mi>A</mi> <mo>=</mo> <mn>0.2</mn> </math></span></p>
<p>correct working for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.25,{\text{ }}\frac{{0.2}}{{0.8}}"> <mn>0.25</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>0.2</mn> </mrow> <mrow> <mn>0.8</mn> </mrow> </mfrac> </math></span></p>
<p>correct working for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.25 + 0.8 - 0.2,{\text{ }}0.6 + 0.2 + 0.05"> <mn>0.25</mn> <mo>+</mo> <mn>0.8</mn> <mo>−</mo> <mn>0.2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.6</mn> <mo>+</mo> <mn>0.2</mn> <mo>+</mo> <mn>0.05</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = 0.85"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.85</mn> </math></span> <strong><em>A1 N3</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist measures the concentration of dissolved oxygen, in milligrams per litre (<em>y</em>) , in a river. She takes 10 readings at different temperatures, measured in degrees Celsius (<em>x</em>).</p>
<p>The results are shown in the table.</p>
<p><img src=""></p>
<p>It is believed that the concentration of dissolved oxygen in the river varies linearly with the temperature.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find Pearson’s product-moment correlation coefficient, <em>r.</em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find the equation of the regression line <em>y</em> on <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the equation of the regression line, estimate the concentration of dissolved oxygen in the river when the temperature is 18 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>−0.974 (−0.973745…) <em><strong>(A2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for an answer of 0.974 (minus sign omitted). Award <em><strong>(A1)</strong></em> for an answer of −0.973 (incorrect rounding).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = −0.365<em>x</em> + 17.9 (<em>y</em> = −0.365032…<em>x + </em>17.9418…)<em> </em> <em><strong>(A1)(A1) (C4)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for −0.365<em>x</em>, <em><strong>(A1)</strong></em> for 17.9. Award at most <em><strong>(A1)(A0)</strong></em> if not an equation or if the values are reversed (eg <em>y</em> = 17.9<em>x</em> −0.365).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = −0.365032… × 18 + 17.9418… <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituting 18 into their part (a)(ii).</p>
<p>= 11.4 (11.3712…) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a)(ii).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> is normally distributed with a mean of 100. The following diagram shows the normal curve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_16.32.27.png" alt="M17/5/MATME/SP1/ENG/TZ2/03"></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> be the shaded region under the curve, to the right of 107. The area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span> is 0.24.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 107)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(100 < X < 107)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>100</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(93 < X < 107)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>93</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 107) = 0.24\,\,\,\left( { = \frac{6}{{25}},{\text{ }}24\% } \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.24</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>6</mn>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>24</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 100) = 0.5,{\text{ P}}(X > 100) - {\text{P}}(X > 107)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>100</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.5</mn>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>100</mn>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5 - 0.24,{\text{ }}0.76 - 0.5">
<mn>0.5</mn>
<mo>−</mo>
<mn>0.24</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.76</mn>
<mo>−</mo>
<mn>0.5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(100 < X < 107) = 0.26\,\,\,\left( { = \frac{{13}}{{50}},{\text{ }}26\% } \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>100</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.26</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>26</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 0.26,{\text{ }}1 - 2(0.24),{\text{ P}}(93 < X < 100) = {\text{P}}(100 < X < 107)">
<mn>2</mn>
<mo>×</mo>
<mn>0.26</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>0.24</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>93</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>100</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>100</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(93 < X < 107) = 0.52\,\,\,\left( { = \frac{{13}}{{25}},{\text{ }}52\% } \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>93</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mn>107</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.52</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>52</mn>
<mi mathvariant="normal">%</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a class of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="30">
<mn>30</mn>
</math></span> students, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18">
<mn>18</mn>
</math></span> are fluent in Spanish, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10">
<mn>10</mn>
</math></span> are fluent in French, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5">
<mn>5</mn>
</math></span> are not fluent in either of these languages. The following Venn diagram shows the events “fluent in Spanish” and “fluent in French”.</p>
<p>The values <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> represent numbers of students.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 5"> <mi>q</mi> <mo>=</mo> <mn>5</mn> </math></span> <em><strong>A1 N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {18 + 10 + 5} \right) - 30"> <mrow> <mo>(</mo> <mrow> <mn>18</mn> <mo>+</mo> <mn>10</mn> <mo>+</mo> <mn>5</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>30</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="28 - 25"> <mn>28</mn> <mo>−</mo> <mn>25</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18 + 10 - n = 25"> <mn>18</mn> <mo>+</mo> <mn>10</mn> <mo>−</mo> <mi>n</mi> <mo>=</mo> <mn>25</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 3"> <mi>n</mi> <mo>=</mo> <mn>3</mn> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach for finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> (may be seen in part (b)) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18 - 3"> <mn>18</mn> <mo>−</mo> <mn>3</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + p = 10"> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo>=</mo> <mn>10</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 15"> <mi>m</mi> <mo>=</mo> <mn>15</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 7"> <mi>p</mi> <mo>=</mo> <mn>7</mn> </math></span> <em><strong>A1A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 20 students travelled to a gymnastics tournament together. Their ages, in years, are given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_17.17.22.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p>The lower quartile of the ages is 16 and the upper quartile is 18.5.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the students in this group find the mean age;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the students in this group write down the median age.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a box-and-whisker diagram, for these students’ ages, on the following grid.</p>
<p><img src="images/Schermafbeelding_2018-02-12_om_18.53.31.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{14 + 2 \times 15 + 7 \times 16 + 17 + 4 \times 18 + 19 + 20 + 3 \times 22}}{{20}}">
<mfrac>
<mrow>
<mn>14</mn>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mn>15</mn>
<mo>+</mo>
<mn>7</mn>
<mo>×</mo>
<mn>16</mn>
<mo>+</mo>
<mn>17</mn>
<mo>+</mo>
<mn>4</mn>
<mo>×</mo>
<mn>18</mn>
<mo>+</mo>
<mn>19</mn>
<mo>+</mo>
<mn>20</mn>
<mo>+</mo>
<mn>3</mn>
<mo>×</mo>
<mn>22</mn>
</mrow>
<mrow>
<mn>20</mn>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitutions into mean formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( = ){\text{ }}17.5">
<mo stretchy="false">(</mo>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>17.5</mn>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>16.5 <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-12_om_18.54.55.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01.b/M"> <strong><em>(A1)(A1)(A1)</em>(ft)</strong><em> <strong>(C3)</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for correct endpoints, <strong><em>(A1) </em></strong>for correct quartiles, <strong><em>(A1)</em>(ft) </strong>for their median. Follow through from part (a)(ii), but only if median is between 16 and 18.5. If a horizontal line goes through the box, award at most <strong><em>(A1)(A1)(A0)</em></strong>. Award at most <strong><em>(A0)(A1)(A1) </em></strong>if a ruler has not been used.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In a high school, 160 students completed a questionnaire which asked for the number of people they are following on a social media website. The results were recorded in the following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The following incomplete table shows the distribution of the responses from these 160 students.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value for the 100 < <em>x</em> ≤ 150 group.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the table, calculate an estimate for the mean number of people being followed on the social media website by these 160 students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>180 <em><strong>(A1) (C1)</strong></em><br><strong>[1 mark]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>36, 24 <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)(A1)</strong></em> for two incorrect values that add up to 60.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>125 (accept 125.5) <em><strong> (A1)</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 25 + 36 \times 75 + 34 \times 125 + 46 \times 175 + 24 \times 225 + 16 \times 275}}{{160}}">
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>25</mn>
<mo>+</mo>
<mn>36</mn>
<mo>×</mo>
<mn>75</mn>
<mo>+</mo>
<mn>34</mn>
<mo>×</mo>
<mn>125</mn>
<mo>+</mo>
<mn>46</mn>
<mo>×</mo>
<mn>175</mn>
<mo>+</mo>
<mn>24</mn>
<mo>×</mo>
<mn>225</mn>
<mo>+</mo>
<mn>16</mn>
<mo>×</mo>
<mn>275</mn>
</mrow>
<mrow>
<mn>160</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their mid-interval values, multiplied by their frequencies, into mean formula.</p>
<p>=156 (155.625) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (b) and (c)(i).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The histogram shows the time, <em>t</em>, in minutes, that it takes the customers of a restaurant to eat their lunch on one particular day. Each customer took less than 25 minutes.</p>
<p>The histogram is incomplete, and only shows data for 0 ≤ <em>t</em> < 20.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The mean time it took <strong>all</strong> customers to eat their lunch was estimated to be 12 minutes.</p>
<p>It was found that <em>k</em> customers took between 20 and 25 minutes to eat their lunch.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value for 10 ≤ <em>t</em> < 15.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of customers in terms of<em> k</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, complete the histogram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>12.5 <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>33 + <em>k</em> <strong>OR</strong> 10 + 8 + 5 + 10 + <em>k</em> <em><strong> (A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “number of customers = 33 + <em>k</em>”.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.5 \times 10 + 7.5 \times 8 + \ldots + 22.5 \times k}}{{33 + k}} = 12">
<mfrac>
<mrow>
<mn>2.5</mn>
<mo>×</mo>
<mn>10</mn>
<mo>+</mo>
<mn>7.5</mn>
<mo>×</mo>
<mn>8</mn>
<mo>+</mo>
<mo>…</mo>
<mo>+</mo>
<mn>22.5</mn>
<mo>×</mo>
<mi>k</mi>
</mrow>
<mrow>
<mn>33</mn>
<mo>+</mo>
<mi>k</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>12</mn>
</math></span> <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the mean formula and equating to 12, <strong><em>(A1)</em>(ft)</strong> for their correct substitutions.</p>
<p>(<em>k</em> =) 7 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C4)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b)(i) and their mid-interval values, consistent with part (a). Do not award final <strong><em>(A1)</em></strong> if answer is not an integer.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p><strong>Note:</strong> Follow through from their part (b)(ii) but only if the value is between 1 and 10, inclusive.</p>
<p><em><strong>[1 mark]</strong></em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 10 girls recorded the number of hours they spent watching television during a particular week. Their results are summarized in the box-and-whisker plot below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The group of girls watched a total of 180 hours of television.</p>
</div>
<div class="specification">
<p>A group of 20 boys also recorded the number of hours they spent watching television that same week. Their results are summarized in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The following week, the group of boys had exams. During this exam week, the boys spent half as much time watching television compared to the previous week.</p>
<p>For this exam week, find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The range of the data is 16. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that the girls in this group spent watching television that week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total number of hours the group of boys spent watching television that week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that <strong>all 30</strong> girls and boys spent watching television that week.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the mean number of hours that the group of boys spent watching television.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 16 + 8, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> − 8</p>
<p>24 (hours) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 20 − 15, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{Q_3} - {Q_1}"> <mrow> <msub> <mi>Q</mi> <mn>3</mn> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> </mrow> </math></span>, 15 − 20</p>
<p>IQR = 5 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{180}}{{10}}"> <mfrac> <mrow> <mn>180</mn> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{180}}{n}"> <mfrac> <mrow> <mn>180</mn> </mrow> <mi>n</mi> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sum x }}{{10}}"> <mfrac> <mrow> <mo>∑</mo> <mi>x</mi> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span></p>
<p>mean = 18 (hours) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find total hours for group B <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x \times n"> <mrow> <mover> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mo>×</mo> <mi>n</mi> </math></span></p>
<p>group B total hours = 420 (seen anywhere) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find sum for combined group (may be seen in working) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 180 + 420, 600</p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{180 + 420}}{{30}}"> <mfrac> <mrow> <mn>180</mn> <mo>+</mo> <mn>420</mn> </mrow> <mrow> <mn>30</mn> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{600}}{{30}}"> <mfrac> <mrow> <mn>600</mn> </mrow> <mrow> <mn>30</mn> </mrow> </mfrac> </math></span></p>
<p>mean = 20 (hours) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find the new mean <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\mu "> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>μ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 21"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>21</mn> </math></span> </p>
<p>mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{21}}{2}"> <mo>=</mo> <mfrac> <mrow> <mn>21</mn> </mrow> <mn>2</mn> </mfrac> </math></span> (= 10.5) hours <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<br><hr><br><div class="specification">
<p>In a group of 20 girls, 13 take history and 8 take economics. Three girls take both history and economics, as shown in the following Venn diagram. The values <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> represent numbers of girls.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_08.39.12.png" alt="M17/5/MATME/SP1/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A girl is selected at random. Find the probability that she takes economics but not history.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + 3 = 13,{\text{ }}13 - 3">
<mi>p</mi>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>−</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 10">
<mi>p</mi>
<mo>=</mo>
<mn>10</mn>
</math></span> <em><strong>A1</strong></em> <em><strong>N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + 3 + 5 + q = 20,{\text{ }}10 - 10 - 8">
<mi>p</mi>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mn>5</mn>
<mo>+</mo>
<mi>q</mi>
<mo>=</mo>
<mn>20</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>10</mn>
<mo>−</mo>
<mn>10</mn>
<mo>−</mo>
<mn>8</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 2">
<mi>q</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em> <em><strong>N2</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20 - p - q - 3,{\text{ }}1 - \frac{{15}}{{20}},{\text{ }}n(E \cap H') = 5">
<mn>20</mn>
<mo>−</mo>
<mi>p</mi>
<mo>−</mo>
<mi>q</mi>
<mo>−</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>20</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>n</mi>
<mo stretchy="false">(</mo>
<mi>E</mi>
<mo>∩</mo>
<msup>
<mi>H</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{{20}}\,\,\,\left( {\frac{1}{4}} \right)">
<mfrac>
<mn>5</mn>
<mrow>
<mn>20</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em> <em><strong>N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A set of data comprises of five numbers <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x_{1\,}}{\text{,}}\,\,{x_2}{\text{,}}\,\,{x_3}{\text{,}}\,\,{x_4}{\text{,}}\,\,{x_5}">
<mrow>
<msub>
<mi>x</mi>
<mrow>
<mn>1</mn>
<mspace width="thinmathspace"></mspace>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msub>
<mi>x</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
</math></span> which have been placed in ascending order.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Recalling definitions, such as the Lower Quartile is the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n + 1}}{4}th">
<mfrac>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</mfrac>
<mi>t</mi>
<mi>h</mi>
</math></span> piece of data with the data placed in order, find an expression for the Interquartile Range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that a data set with only 5 numbers in it cannot have any outliers.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give an example of a set of data with 7 numbers in it that does have an outlier, justify this fact by stating the Interquartile Range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="LQ = \frac{{{x_1} + {x_2}}}{2}{\text{,}}\,\,UQ = \frac{{{x_4} + {x_5}}}{2}{\text{,}}\,\,IQR = \frac{{{x_4} + {x_5} - {x_1} - {x_2}}}{2}">
<mi>L</mi>
<mi>Q</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>U</mi>
<mi>Q</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>I</mi>
<mi>Q</mi>
<mi>R</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <strong><em><span style="font-family: 'Verdana',sans-serif;">M1A1</span></em></strong></span></p>
<p style="text-align: start;"><strong><em><span style="font-size: 10.5pt;font-family: 'Verdana',sans-serif;color: black;">[2 marks]</span></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="UQ + 1.5IQR = 1.25{x_4} + 1.25{x_5} - 0.75{x_1} - 0.75{x_2} \geqslant {x_5}">
<mi>U</mi>
<mi>Q</mi>
<mo>+</mo>
<mn>1.5</mn>
<mi>I</mi>
<mi>Q</mi>
<mi>R</mi>
<mo>=</mo>
<mn>1.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>1.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
<mo>−</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>⩾</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p>Since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1.25{x_4} + 0.25{x_5} \geqslant 0.75{x_1} + 0.75{x_2}">
<mn>1.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>0.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
<mo>⩾</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> due to the ascending order. <strong> <em>R1</em></strong></p>
<p>Similarly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="LQ - 1.5IQR = 1.25{x_1} + 1.25{x_2} - 0.75{x_4} - 0.75{x_5} \leqslant {x_1}">
<mi>L</mi>
<mi>Q</mi>
<mo>−</mo>
<mn>1.5</mn>
<mi>I</mi>
<mi>Q</mi>
<mi>R</mi>
<mo>=</mo>
<mn>1.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>1.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>−</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
<mo>−</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>5</mn>
</msub>
</mrow>
<mo>⩽</mo>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p>Since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.25{x_1} + 1.25{x_2} \leqslant 0.75{x_3} + 0.75{x_4}">
<mn>0.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>1.25</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>⩽</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>0.75</mn>
<mrow>
<msub>
<mi>x</mi>
<mn>4</mn>
</msub>
</mrow>
</math></span> due to the ascending order.</p>
<p>So there are no outliers for a data set of 5 numbers. <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For example 1, 2, 3, 4, 5, 6, 100 where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="IQR = 4">
<mi>I</mi>
<mi>Q</mi>
<mi>R</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>For a study, a researcher collected 200 leaves from oak trees. After measuring the lengths of the leaves, in cm, she produced the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.29.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>The researcher finds that 10% of the leaves have a length greater than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median length of these leaves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of leaves with a length less than or equal to 8 cm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Before measuring, the researcher estimated <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> to be approximately 9.5 cm. Find the percentage error in her estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>9 (cm) <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>40 (leaves) <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(200 \times 0.90 = ){\text{ }}180">
<mo stretchy="false">(</mo>
<mn>200</mn>
<mo>×</mo>
<mn>0.90</mn>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>180</mn>
</math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for a horizontal line drawn through the cumulative frequency value of 180 and meeting the curve (or the corresponding vertical line from 10.5 cm).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(k = ){\text{ }}10.5{\text{ (cm)}}">
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>10.5</mn>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept an error of ±0.1.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\frac{{9.5 - 10.5}}{{10.5}}} \right| \times 100\% ">
<mrow>
<mo>|</mo>
<mrow>
<mfrac>
<mrow>
<mn>9.5</mn>
<mo>−</mo>
<mn>10.5</mn>
</mrow>
<mrow>
<mn>10.5</mn>
</mrow>
</mfrac>
</mrow>
<mo>|</mo>
</mrow>
<mo>×</mo>
<mn>100</mn>
<mi mathvariant="normal">%</mi>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(M1) </em></strong>for their correct substitution into the percentage error formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{9.52 (% ) }}\left( {{\text{9.52380}} \ldots {\text{ (% )}}} \right)">
<mrow>
<mtext>9.52 (% ) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>9.52380</mtext>
</mrow>
<mo>…</mo>
<mrow>
<mtext> (% )</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Follow through from their answer to part (c)(i).</p>
<p>Award <strong><em>(A1)(A0) </em></strong>for an answer of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 9.52">
<mo>−</mo>
<mn>9.52</mn>
</math></span> with or without working.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Applicants for a job had to complete a mathematics test. The time they took to complete the test is normally distributed with a mean of 53 minutes and a standard deviation of 16.3. One of the applicants is chosen at random.</p>
</div>
<div class="specification">
<p>For 11% of the applicants it took longer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> minutes to complete the test.</p>
</div>
<div class="specification">
<p>There were 400 applicants for the job.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this applicant took at least 40 minutes to complete the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of applicants who completed the test in less than 25 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>0.787 (0.787433…, 78.7%) <strong><em>(M1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for a correct probability statement, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 40)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mn>40</mn>
<mo stretchy="false">)</mo>
</math></span>, or a correctly shaded normal distribution graph.</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-02-13_om_13.12.51.png" alt="N17/5/MATSD/SP1/ENG/TZ0/13.a/M"></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>73.0 (minutes) (72.9924…) <strong><em>(M1)(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for a correct probability statement, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > k) = 0.11">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>></mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.11</mn>
</math></span>, or a correctly shaded normal distribution graph.</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-02-13_om_13.16.45.png" alt="N17/5/MATSD/SP1/ENG/TZ0/13.b/M"></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0423433 \ldots \times 400">
<mn>0.0423433</mn>
<mo>…</mo>
<mo>×</mo>
<mn>400</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying a probability by 400. Do not award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.11 \times 400">
<mn>0.11</mn>
<mo>×</mo>
<mn>400</mn>
</math></span>.</p>
<p>Use of a lower bound less than zero gives a probability of 0.0429172….</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 16">
<mo>=</mo>
<mn>16</mn>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Accept a final answer of 17. Do not accept a final answer of 18. Accept a non-integer final answer either 16.9 (16.9373…) from use of lower bound zero or 17.2 (17.1669…) from use of the default lower bound of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="-{10^{99}}">
<mo>−</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mn>99</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A large company surveyed 160 of its employees to find out how much time they spend traveling to work on a given day. The results of the survey are shown in the following cumulative frequency diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Only 10% of the employees spent more than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> minutes traveling to work.</p>
</div>
<div class="specification">
<p>The results of the survey can also be displayed on the following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median number of minutes spent traveling to work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees whose travelling time is within 15 minutes of the median.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Travelling times of less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> minutes are considered outliers.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of median position <em><strong> (M1)</strong></em></p>
<p>80th employee</p>
<p>40 minutes <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find interval (25–55) <em><strong>(M1)</strong></em></p>
<p>18 (employees), 142 (employees) <em><strong>A1</strong></em></p>
<p>124 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognising that there are 16 employees in the top 10% <em><strong>(M1)</strong></em></p>
<p>144 employees travelled more than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> minutes <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> = 56 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> = 70 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> is first quartile value <em><strong>(M1)</strong></em></p>
<p>40 employees</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 33 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>47 − 33 <em><strong> (M1)</strong></em></p>
<p>IQR = 14 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find 1.5 × <strong>their</strong> IQR <em><strong>(M1)</strong></em></p>
<p>33 − 21</p>
<p>12 <em><strong>(A1)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>All the children in a summer camp play at least one sport, from a choice of football (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
<mi>F</mi>
</math></span>) or basketball (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>). 15 children play both sports.</p>
<p>The number of children who play only football is double the number of children who play only basketball.</p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> be the number of children who play only football.</p>
</div>
<div class="specification">
<p>There are 120 children in the summer camp.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, for the number of children who play only basketball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram using the above information.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of children who play only football.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(F)"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}x"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>x</mi> </math></span> <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong><em>(A1)(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(A1) </em></strong>for 15 placed in the correct position, award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}x"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>x</mi> </math></span> placed in the correct positions of diagram. Do not penalize the absence of 0 inside the rectangle and award at most <strong><em>(A1)(A0) </em></strong>if any value other than 0 is seen outside the circles. Award at most <strong><em>(A1)(A0) </em></strong>if 35 and 70 are seen instead of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}x"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>x</mi> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + \frac{1}{2}x + 15 = 120"> <mi>x</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>x</mi> <mo>+</mo> <mn>15</mn> <mo>=</mo> <mn>120</mn> </math></span> or equivalent <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for adding the values in their Venn and equating to 120 (or equivalent).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x = ){\text{ }}70"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>70</mn> </math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their Venn diagram, but only if the answer is a positive integer and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> is seen in their Venn diagram.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>85 <strong><em>(A1)</em>(ft)</strong> <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their Venn diagram and their answer to part (c), but only if the answer is a positive integer and less than 120.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Box 1 contains 5 red balls and 2 white balls.</p>
<p>Box 2 contains 4 red balls and 3 white balls.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A box is chosen at random and a ball is drawn. Find the probability that the ball is red.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> be the event that “box 1 is chosen” and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> be the event that “a red ball is drawn”.</p>
<p>Determine whether events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>R</mi></mfenced></math> <em><strong>(M1)</strong></em></p>
<p>tree diagram (must include probabilty of picking box) with correct required probabilities</p>
<p>OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>R</mi><mo>∩</mo><msub><mi>B</mi><mn>1</mn></msub></mrow></mfenced><mo>+</mo><mi mathvariant="normal">P</mi><mfenced><mrow><mi>R</mi><mo>∩</mo><msub><mi>B</mi><mn>2</mn></msub></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>R</mi><mo> </mo><menclose notation="left"><mo> </mo><msub><mi>B</mi><mn>1</mn></msub></menclose></mrow></mfenced><mi mathvariant="normal">P</mi><mfenced><msub><mi>B</mi><mn>1</mn></msub></mfenced><mo>+</mo><mi mathvariant="normal">P</mi><mfenced><mrow><mi>R</mi><mo> </mo><menclose notation="left"><mo> </mo><msub><mi>B</mi><mn>2</mn></msub></menclose></mrow></mfenced><mi mathvariant="normal">P</mi><mfenced><msub><mi>B</mi><mn>2</mn></msub></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>7</mn></mfrac><mo>·</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>4</mn><mn>7</mn></mfrac><mo>·</mo><mfrac><mstyle displaystyle="true"><mn>1</mn></mstyle><mstyle displaystyle="true"><mn>2</mn></mstyle></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mi>R</mi></mfenced><mo>=</mo><mfrac><mn>9</mn><mn>14</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> are not independent, since <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>14</mn></mfrac><mo>·</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>≠</mo><mfrac><mn>5</mn><mn>14</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>7</mn></mfrac><mo>≠</mo><mfrac><mn>9</mn><mn>14</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>9</mn></mfrac><mo>≠</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p>OR an explanation e.g. different number of red balls in each box <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Both conclusion and reasoning are required. Do not split the <em><strong>A2</strong></em>.</p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a circular horizontal board divided into six equal sectors. The sectors are labelled white (W), yellow (Y) and blue (B).</p>
<p style="text-align: center;"><img src=""></p>
<p>A pointer is pinned to the centre of the board. The pointer is to be spun and when it stops the colour of the sector on which the pointer stops is recorded. The pointer is equally likely to stop on any of the six sectors.</p>
<p>Eva will spin the pointer twice. The following tree diagram shows all the possible outcomes.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both spins are yellow.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the spins is yellow.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the second spin is yellow, given that the first spin is blue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3} \times \frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{1}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying correct probabilities.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{9}">
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
</math></span> (0.111, 0.111111…, 11.1%) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{2} \times \frac{1}{3}} \right) + \left( {\frac{1}{6} \times \frac{1}{3}} \right) + \frac{1}{3}">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{2} \times \frac{1}{3}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{6} \times \frac{1}{3}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> or equivalent, and <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong>and </strong>adding only the three correct probabilities.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\left( {\frac{2}{3}} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{2}{3}}">
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
</math></span> seen and <em><strong>(M1)</strong></em> for subtracting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{2}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> from 1. This may be shown in a tree diagram with “yellow” and “not yellow” branches.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{9}">
<mfrac>
<mn>5</mn>
<mn>9</mn>
</mfrac>
</math></span> (0.556, 0.555555…, 55.6%) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note: </strong>Follow through marks may be awarded if their answer to part (a) is used in a correct calculation.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> (0.333, 0.333333…, 33.3%) <em><strong>(A1)</strong></em><em><strong> (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Sara regularly flies from Geneva to London. She takes either a direct flight or a non-directflight that goes via Amsterdam.</p>
<p>If she takes a direct flight, the probability that her baggage does not arrive in London is 0.01.<br>If she takes a non-direct flight the probability that her baggage arrives in London is 0.95.</p>
<p>The probability that she takes a non-direct flight is 0.2.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.08.43.png" alt="M17/5/MATSD/SP1/ENG/TZ1/07"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Sara’s baggage arrives in London.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-08-15_om_14.22.22.png" alt="M17/5/MATSD/SP1/ENG/TZ1/07.a/M"> <strong><em>(A1)(A1)(A1) (C3)</em></strong></p>
<p> </p>
<p> </p>
<p>Note: Award <strong><em>(A1) </em></strong>for each correct pair of probabilities.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.8 \times 0.99 + 0.2 \times 0.95">
<mn>0.8</mn>
<mo>×</mo>
<mn>0.99</mn>
<mo>+</mo>
<mn>0.2</mn>
<mo>×</mo>
<mn>0.95</mn>
</math></span> <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for two correct products of probabilities taken from their diagram, <strong><em>(M1) </em></strong>for the addition of their products.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.982{\text{ }}\left( {98.2\% ,{\text{ }}\frac{{491}}{{500}}} \right)">
<mo>=</mo>
<mn>0.982</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>98.2</mn>
<mi mathvariant="normal">%</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>491</mn>
</mrow>
<mrow>
<mn>500</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)</strong><em> </em><strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A florist sells bouquets of roses. The florist recorded, in<strong> Table 1</strong>, the number of roses in each bouquet sold to customers.</p>
<p style="text-align: center;"><strong>Table 1</strong></p>
<p style="text-align: center;"><img src=""></p>
<p>The roses can be arranged into bouquets of size small, medium or large. The data from <strong>Table 1</strong> has been organized into a cumulative frequency table,<strong> Table 2</strong>.</p>
<p style="text-align: center;"><strong>Table 2</strong></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the cumulative frequency table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that a bouquet of roses sold is <strong>not</strong> small.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A customer buys a large bouquet.</p>
<p>Find the probability that there are 12 roses in this bouquet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""> <strong><em>(A1)(A1)</em>(ft) <em>(C2)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for 10; <strong><em>(A1)</em>(ft)</strong> for the last column all correct. Follow through from <em>their</em> 10 for <em>their</em> 50 in the last column.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{35}}{{50}}\,\,\left( {0.7{\text{,}}\,\,\frac{7}{{10}}{\text{,}}\,\,70\,{\text{% }}} \right)">
<mfrac>
<mrow>
<mn>35</mn>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.7</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>7</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>70</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their numerator being 25 + <em>their</em> 10, and <em><strong>(A1)</strong></em><strong>(ft)</strong> for their denominator being <em>their</em> 50. Follow through from part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{{10}}\,\,\left( {0.4{\text{,}}\,\,\frac{2}{5}{\text{,}}\,\,40\,{\text{% }}} \right)">
<mfrac>
<mn>4</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.4</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>40</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>% </mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)(A1)</em>(ft) <em>(C2)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for a numerator of 4 and <strong><em>(A1)</em>(ft)</strong> for <em>their</em> 10 as denominator. Follow through from part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A sample of 120 oranges was tested for Vitamin C content. The cumulative frequency curve below represents the Vitamin C content, in milligrams, of these oranges.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.11.24.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02"></p>
</div>
<div class="specification">
<p>The minimum level of Vitamin C content of an orange in the sample was 30.1 milligrams. The maximum level of Vitamin C content of an orange in the sample was 35.0 milligrams.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Giving your answer to one decimal place, write down the value of</p>
<p>(i) the median level of Vitamin C content of the oranges in the sample;</p>
<p>(ii) the lower quartile;</p>
<p>(iii) the upper quartile.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a box-and-whisker diagram on the grid below to represent the Vitamin C content, in milligrams, for this sample.</p>
<p><img src="images/Schermafbeelding_2017-03-06_om_12.47.06.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i) 32.5 <strong><em>(A1)</em></strong></p>
<p>(ii) 31.9 <strong><em>(A1)</em></strong></p>
<p>(iii) 33.1 <strong><em>(A1) (C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Answers must be given correct to 1 decimal place.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-03-06_om_12.50.10.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02.b/M"></p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct median, <strong><em>(A1)</em>(ft) </strong>for correct quartiles and box, <strong><em>(A1) </em></strong>for correct end points of whiskers and straight whiskers.</p>
<p>Award at most <strong><em>(A1)(A1)(A0) </em></strong>if a horizontal line goes right through the box or if the whiskers are not well aligned with the midpoint of the box.</p>
<p>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following Venn diagram shows the sets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
<mi>U</mi>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is an element of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
<mi>U</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.16.47.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the table indicate whether the given statements are True or False.</p>
<p><img src="images/Schermafbeelding_2017-03-06_om_12.54.23.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.a"></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the Venn diagram, shade the region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap (B \cup C)'"> <mi>A</mi> <mo>∩</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∪</mo> <mi>C</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src="images/Schermafbeelding_2017-03-06_om_12.57.08.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.a/M"> <strong><em>(A1)(A1)(A1)(A1)(A1) (C5)</em></strong></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-03-06_om_13.00.17.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.b/M"> <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A tetrahedral (four-sided) die has written on it the numbers 1, 2, 3 and 4. The die is rolled many times and the scores are noted. The table below shows the resulting frequency distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_05.55.47.png" alt="M17/5/MATSD/SP1/ENG/TZ2/07"></p>
<p>The die was rolled a total of 100 times.</p>
</div>
<div class="specification">
<p>The mean score is 2.71.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>, for the total number of times the die was rolled.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the mean score, write down a second equation in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18 + x + y + 22 = 100">
<mn>18</mn>
<mo>+</mo>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>+</mo>
<mn>22</mn>
<mo>=</mo>
<mn>100</mn>
</math></span> or equivalent <strong><em>(A1)</em></strong> <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{18 + 2x + 3y + 88}}{{100}} = 2.71">
<mfrac>
<mrow>
<mn>18</mn>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mi>y</mi>
<mo>+</mo>
<mn>88</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2.71</mn>
</math></span> or equivalent <strong><em>(M1)(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for a sum including <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>, divided by 100 and equated to 2.71, <strong><em>(A1) </em></strong>for a correct equation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y = 60">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>=</mo>
<mn>60</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + 3y = 165">
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mi>y</mi>
<mo>=</mo>
<mn>165</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for obtaining a correct linear equation in one variable from their (a) and their (b).</p>
<p>This may be implied if seen in part (a) or part (b).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 15;{\text{ }}y = 45">
<mi>x</mi>
<mo>=</mo>
<mn>15</mn>
<mo>;</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<mn>45</mn>
</math></span> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Follow through from parts (a) and (b), irrespective of working seen provided the answers are positive integers.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Each month the number of days of rain in Cardiff is recorded.<br>The following data was collected over a period of 10 months.</p>
<p style="text-align: center;">11 13 8 11 8 7 8 14 <em>x </em> 15</p>
<p style="text-align: left;">For these data the <strong>median</strong> number of days of rain per month is 10.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x + 11}}{2} = 10">
<mfrac>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>11</mn>
</mrow>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mn>10</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into median formula or for arranging all 9 values into ascending/descending order.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x = } \right)\,\,9">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>9</mn>
</math></span> <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2.69 (2.69072…) <strong><em>(A2)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>13 − 8 <em><strong>(M1)</strong></em><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 13 and 8 seen.</p>
<p>= 5 <strong><em>(A1)</em>(ft) <em>(C4)</em></strong><br><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A city hired 160 employees to work at a festival. The following cumulative frequency curve shows the number of hours employees worked during the festival.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_07.01.49.png" alt="M17/5/MATME/SP1/ENG/TZ2/08.a.ii"></p>
</div>
<div class="specification">
<p>The city paid each of the employees £8 per hour for the first 40 hours worked, and £10 per hour for each hour they worked after the first 40 hours.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median number of hours worked by the employees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of employees who worked 50 hours or less.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of money an employee earned for working 40 hours;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of money an employee earned for working 43 hours.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who earned £200 or less.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Only 10 employees earned more than £<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>evidence of median position <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>80th employee</p>
<p>40 hours <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>130 employees <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>£320 <strong><em>A1</em></strong> <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>splitting into 40 and 3 <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>3 hours more, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 \times 10">
<mn>3</mn>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="320 + 3 \times 10">
<mn>320</mn>
<mo>+</mo>
<mn>3</mn>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p>£350 <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>200 is less than 320 so 8 pounds/hour, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="200 \div 8,{\text{ }}25,{\text{ }}\frac{{200}}{{320}} = \frac{x}{{40}}">
<mn>200</mn>
<mo>÷</mo>
<mn>8</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>25</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>200</mn>
</mrow>
<mrow>
<mn>320</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mn>40</mn>
</mrow>
</mfrac>
</math></span>,</p>
<p>18 employees <strong><em>A2</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="160 - 10">
<mn>160</mn>
<mo>−</mo>
<mn>10</mn>
</math></span></p>
<p>60 hours worked <strong><em>(A1)</em></strong></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="40(8) + 20(10),{\text{ }}320 + 200">
<mn>40</mn>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>20</mn>
<mo stretchy="false">(</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>320</mn>
<mo>+</mo>
<mn>200</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 520">
<mi>k</mi>
<mo>=</mo>
<mn>520</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Andre will play in the semi-final of a tennis tournament.</p>
<p>If Andre wins the semi-final he will progress to the final. If Andre loses the semi-final, he will <strong>not</strong> progress to the final.</p>
<p>If Andre wins the final, he will be the champion.</p>
<p>The probability that Andre will win the semi-final is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>. If Andre wins the semi-final, then the probability he will be the champion is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>6</mn></math>.</p>
</div>
<div class="specification">
<p>The probability that Andre will not be the champion is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>58</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the values in the tree diagram.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Andre did not become the champion, find the probability that he lost in the semi-final.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><img src=""> <em><strong>(A1) (C1)<br></strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for the correct pair of probabilities.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>+</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mi>p</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>58</mn></math> <em><strong>(M1)<br></strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying and adding correct probabilities for losing equated to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>58</mn></math>.<br><br><strong>OR</strong><br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>=</mo><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>58</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying correct probabilities for winning equated to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>58</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>42</mn></math>.<br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>p</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>0</mn><mo>.</mo><mn>7</mn></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><br><strong>Note:</strong> Follow through from their part (a). Award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> only if their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> is within the range <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn></math>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>58</mn></mrow></mfrac><mo> </mo><mfenced><mfrac><mrow><mn>1</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>58</mn></mrow></mfrac></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em></strong><em><strong><br></strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct numerator. Follow through from part (b). Award <em><strong>(A1)</strong></em> for the correct denominator.<br><br><strong>OR</strong><br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>3</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct numerator. Follow through from part (b). Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct calculation of Andre losing the semi-final or winning the semi-final and then losing in the final. Follow through from their parts (a) and (b).<br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>15</mn><mn>29</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>517</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>517241</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>51</mn><mo>.</mo><mn>7</mn><mo>%</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><br><strong>Note:</strong> Follow through from parts (a) and (b).</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
<mi>Y</mi>
</math></span> be normally distributed with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{N}}\left( {14{\text{, }}{a^2}} \right)">
<mi>X</mi>
<mo>∼<!-- ∼ --></mo>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>14</mn>
<mrow>
<mtext>, </mtext>
</mrow>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y \sim {\text{N}}\left( {22{\text{, }}{a^2}} \right)">
<mi>Y</mi>
<mo>∼<!-- ∼ --></mo>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>22</mn>
<mrow>
<mtext>, </mtext>
</mrow>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a > 0">
<mi>a</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> so that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > b} \right) = {\text{P}}\left( {Y < b} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>></mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo><</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > 20} \right) = 0.112"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>></mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.112</mn> </math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {16 < Y < 28} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>16</mn> <mo><</mo> <mi>Y</mi> <mo><</mo> <mn>28</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> is midway between the means of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="14"> <mn>14</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="22"> <mn>22</mn> </math></span>. <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <img src="">, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{14 + 22}}{2}"> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mn>14</mn> <mo>+</mo> <mn>22</mn> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 18"> <mi>b</mi> <mo>=</mo> <mn>18</mn> </math></span> <em><strong>A1</strong></em><em><strong> N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>valid attempt to compare distributions <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{b - 14}}{a} = \frac{{b - 22}}{a}{\text{, }}b - 14 = 22 - b"> <mfrac> <mrow> <mi>b</mi> <mo>−</mo> <mn>14</mn> </mrow> <mi>a</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>b</mi> <mo>−</mo> <mn>22</mn> </mrow> <mi>a</mi> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mi>b</mi> <mo>−</mo> <mn>14</mn> <mo>=</mo> <mn>22</mn> <mo>−</mo> <mi>b</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 18"> <mi>b</mi> <mo>=</mo> <mn>18</mn> </math></span> <em><strong>A1</strong></em><em><strong> N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to compare distributions (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y"> <mi>Y</mi> </math></span> is a horizontal translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span> of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8"> <mn>8</mn> </math></span> units to the right,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {16 < Y < 28} \right) = {\text{P}}\left( {8 < X < 20} \right){\text{, P}}\left( {Y > 22 + 6} \right) = {\text{P}}\left( {X > 14 + 6} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>16</mn> <mo><</mo> <mi>Y</mi> <mo><</mo> <mn>28</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>8</mn> <mo><</mo> <mi>X</mi> <mo><</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>></mo> <mn>22</mn> <mo>+</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>></mo> <mn>14</mn> <mo>+</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>valid approach using symmetry <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2{\text{P}}\left( {X > 20} \right){\text{, }}1 - 2{\text{P}}\left( {Y < 16} \right){\text{, }}2 \times {\text{P}}\left( {14 < X < 20} \right){\text{, P}}\left( {X < 8} \right) = {\text{P}}\left( {X > 20} \right)"><mn>1</mn><mo>−</mo><mn>2</mn><mtext>P</mtext><mrow><mo>(</mo><mi>X</mi><mo>></mo><mn>20</mn><mo>)</mo></mrow><mtext>, </mtext><mn>1</mn><mo>−</mo><mn>2</mn><mtext>P</mtext><mrow><mo>(</mo><mi>Y</mi><mo><</mo><mn>16</mn><mo>)</mo></mrow><mtext>, </mtext><mn>2</mn><mo>×</mo><mtext>P</mtext><mrow><mo>(</mo><mn>14</mn><mo><</mo><mi>x</mi><mo><</mo><mn>20</mn><mo>)</mo></mrow><mtext>, P</mtext><mrow><mo>(</mo><mi>X</mi><mo><</mo><mn>8</mn><mo>)</mo></mrow><mo>=</mo><mtext>P</mtext><mrow><mo>(</mo><mi>X</mi><mo>></mo><mn>20</mn><mo>)</mo></mrow></math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2\left( {0.112} \right){\text{, }}2 \times \left( {0.5 - 0.112} \right){\text{, }}2 \times 0.388{\text{, }}0.888 - 0.112"> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mn>0.112</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mn>2</mn> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mn>0.5</mn> <mo>−</mo> <mn>0.112</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mn>2</mn> <mo>×</mo> <mn>0.388</mn> <mrow> <mtext>, </mtext> </mrow> <mn>0.888</mn> <mo>−</mo> <mn>0.112</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {16 < Y < 28} \right) = 0.776"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>16</mn> <mo><</mo> <mi>Y</mi> <mo><</mo> <mn>28</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.776</mn> </math></span> <em><strong>A1</strong></em><em><strong> N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following sets:</p>
<p style="padding-left: 210px;">The universal set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
<mi>U</mi>
</math></span> consists of all positive integers less than 15;<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> is the set of all numbers which are multiples of 3;<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> is the set of all even numbers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements that belong to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap B"> <mi>A</mi> <mo>∩</mo> <mi>B</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements that belong to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap B'"> <mi>A</mi> <mo>∩</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {A \cap B'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>∩</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span> = {3, 6, 9, 12} <strong>AND </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span> = {2, 4, 6, 8, 10, 12, 14} <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for listing all elements of sets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span>. May be seen in part (b). Condone the inclusion of 15 in set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span> when awarding the <em><strong>(M1)</strong></em>.</p>
<p>6, 12 <em><strong>(A1)(A1) (C3) </strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct element. Award <em><strong>(A1)(A0)</strong></em> if one additional value seen. Award <em><strong>(A0)(A0)</strong></em> if two or more additional values are seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3, 9 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2) </strong></em></p>
<p><strong>Note:</strong> Follow through from part (a) but only if their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span> are explicitly listed.<br>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for each correct element. Award <em><strong>(A1)(A0)</strong></em> if one additional value seen. Award <em><strong>(A0)(A0)</strong></em> if two or more additional values are seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1) </strong></em></p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A bag contains 5 green balls and 3 white balls. Two balls are selected at random without replacement.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following tree diagram.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_09.35.12.png" alt="N17/5/MATME/SP1/ENG/TZ0/01.a"></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly one of the selected balls is green.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>correct probabilities</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_09.51.13.png" alt="N17/5/MATME/SP1/ENG/TZ0/01.a/M"> <strong><em>A1A1A1 N3</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for each correct <strong>bold</strong> answer.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>multiplying along branches <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{8} \times \frac{3}{7},{\text{ }}\frac{3}{8} \times \frac{5}{7},{\text{ }}\frac{{15}}{{56}}"> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>7</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> <mo>×</mo> <mfrac> <mn>5</mn> <mn>7</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>15</mn> </mrow> <mrow> <mn>56</mn> </mrow> </mfrac> </math></span></p>
<p>adding probabilities of correct mutually exclusive paths <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{5}{7},{\text{ }}\frac{{15}}{{56}} + \frac{{15}}{{56}}"> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> <mo>×</mo> <mfrac> <mn>3</mn> <mn>7</mn> </mfrac> <mo>+</mo> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> <mo>×</mo> <mfrac> <mn>5</mn> <mn>7</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>15</mn> </mrow> <mrow> <mn>56</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>15</mn> </mrow> <mrow> <mn>56</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{30}}{{56}}{\text{ }}\left( { = \frac{{15}}{{28}}} \right)"> <mfrac> <mrow> <mn>30</mn> </mrow> <mrow> <mn>56</mn> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>15</mn> </mrow> <mrow> <mn>28</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Place the numbers <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi {\text{,}}\,\, - 5{\text{,}}\,\,{3^{ - 1}}"> <mn>2</mn> <mi>π</mi> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>5</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mn>3</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^{\frac{3}{2}}}"> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span> in the correct position on the Venn diagram.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the table indicate which <strong>two</strong> of the given statements are true by placing a tick (✔) in the right hand column.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""> <strong><em>(A1)(A1)(A1)(A1)</em><em> </em></strong><strong><em>(C4)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each number in the correct position.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong><em>(A1)(A1)</em><em> </em></strong><strong><em>(C2)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correctly placed tick.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 60 sports enthusiasts visited the PyeongChang 2018 Winter Olympic games to watch a variety of sporting events.</p>
<p>The most popular sports were snowboarding (<em>S</em>), figure skating (<em>F</em>) and ice hockey (<em>H</em>).</p>
<p>For this group of 60 people:</p>
<p style="padding-left: 120px;">4 did not watch any of the most popular sports,<br><em>x</em> watched all three of the most popular sports,<br>9 watched snowboarding only,<br>11 watched figure skating only,<br>15 watched ice hockey only,<br>7 watched snowboarding and figure skating,<br>13 watched figure skating and ice hockey,<br>11 watched snowboarding and ice hockey.</p>
</div>
<div class="question">
<p>Find the value of <em>x</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 + 9 + 11 + 15 + x + \left( {7 - x} \right) + \left( {11 - x} \right) + \left( {13 - x} \right) = 60"> <mn>4</mn> <mo>+</mo> <mn>9</mn> <mo>+</mo> <mn>11</mn> <mo>+</mo> <mn>15</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>11</mn> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>13</mn> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>60</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the sum of at least seven of the entries in their Venn diagram to 60.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x = } \right)\,\,5"> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>=</mo> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>5</mn> </math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a), but only if answer is positive.</p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Let <em>A</em> and <em>B</em> be events such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) = 0.5">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( B \right) = 0.4">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.4</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right) = 0.6">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.6</mn>
</math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {A\,} \right|B} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mrow>
<mi>A</mi>
<mspace width="thinmathspace"></mspace>
</mrow>
<mo>|</mo>
</mrow>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to substitute into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right) = {\text{P}}\left( A \right) + {\text{P}}\left( B \right) - {\text{P}}\left( {A \cap B} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Accept use of Venn diagram or other valid method.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.6 = 0.5 + 0.4 - {\text{P}}\left( {A \cap B} \right)">
<mn>0.6</mn>
<mo>=</mo>
<mn>0.5</mn>
<mo>+</mo>
<mn>0.4</mn>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap B} \right) = 0.3">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.3</mn>
</math></span> (seen anywhere) <em><strong>A1</strong></em></p>
<p>attempt to substitute into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {A\,} \right|B} \right) = \frac{{{\text{P}}\left( {A \cap B} \right)}}{{{\text{P}}\left( B \right)}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mrow>
<mi>A</mi>
<mspace width="thinmathspace"></mspace>
</mrow>
<mo>|</mo>
</mrow>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.3}}{{0.4}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.3</mn>
</mrow>
<mrow>
<mn>0.4</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {A\,} \right|B} \right) = 0.75\left( { = \frac{3}{4}} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mrow>
<mi>A</mi>
<mspace width="thinmathspace"></mspace>
</mrow>
<mo>|</mo>
</mrow>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.75</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>