File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 4/markSceme-HL-paper3html
File size: 24.97 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>The random variables <em>X</em> , <em>Y</em> follow a bivariate normal distribution with product moment correlation coefficient <em>ρ</em>.</p>
</div>

<div class="specification">
<p>A random sample of 11 observations on <em>X</em>, <em>Y</em> was obtained and the value of the sample product moment correlation coefficient, <em>r</em>, was calculated to be −0.708.</p>
</div>

<div class="specification">
<p>The covariance of the random variables <em>U</em>, <em>V</em> is defined by</p>
<p style="text-align: center;">Cov(<em>U</em>, <em>V</em>) = E((<em>U</em> − E(<em>U</em>))(<em>V</em> − E(<em>V</em>))).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses to investigate whether or not a negative linear association exists between <em>X</em> and <em>Y</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the <em>p</em>-value.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State your conclusion at the 1 % significance level.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Cov(<em>U</em>, <em>V</em>) = E(<em>UV</em>) − E(<em>U</em>)E(<em>V</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that if <em>U</em>, <em>V</em> are independent random variables then the population product moment correlation coefficient, <em>ρ</em>, is zero.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>H<sub>0 </sub>: <em>ρ</em> = 0; H<sub>1 </sub>: <em>ρ</em> &lt; 0       <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t =&nbsp; - 0.708\sqrt {\frac{{11 - 2}}{{1 - {{\left( { - 0.708} \right)}^2}}}} \,\, = \,\,\left( { - 3.0075 \ldots } \right)">
  <mi>t</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>0.708</mn>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>11</mn>
        <mo>−</mo>
        <mn>2</mn>
      </mrow>
      <mrow>
        <mn>1</mn>
        <mo>−</mo>
        <mrow>
          <msup>
            <mrow>
              <mrow>
                <mo>(</mo>
                <mrow>
                  <mo>−</mo>
                  <mn>0.708</mn>
                </mrow>
                <mo>)</mo>
              </mrow>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
    </mfrac>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo>=</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>3.0075</mn>
      <mo>…</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>degrees of freedom = 9&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p>P(<em>T</em>&nbsp;&lt; −3.0075...)&nbsp;= 0.00739&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept any answer that rounds to 0.0074.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reject H<sub>0</sub> or equivalent statement&nbsp; &nbsp; &nbsp; <em><strong>&nbsp;R1</strong></em></p>
<p><strong>Note:</strong> Apply follow through on the candidate’s <em>p</em>-value.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Cov(<em>U</em>, <em>V</em>)&nbsp;+ E((<em>U</em> − E(<em>U</em>))(<em>V</em> − E(<em>V</em>)))</p>
<p>=&nbsp;E(<em>UV </em>− E(<em>U</em>)<em>V </em>− E(<em>V</em>)<em>U&nbsp;</em>+ E(<em>U</em>)E(<em>V</em>))&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p>=&nbsp;E(<em>UV</em>)&nbsp;− E(E(<em>U</em>)<em>V</em>) − E(E(<em>V</em>)<em>U</em>)&nbsp;+ E(E(<em>U</em>)E(<em>V</em>))&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p>=&nbsp;E(<em>UV</em>) − E(<em>U</em>)E(<em>V</em>) − E(<em>V</em>)E(<em>U</em>)&nbsp;+ E(<em>U</em>)E(<em>V</em>)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>Cov(<em>U</em>, <em>V</em>)&nbsp;= E(<em>UV</em>) − E(<em>U</em>)E(<em>V</em>)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>E(<em>UV</em>)&nbsp;= E(<em>U</em>)E(<em>V</em>) (independent random variables)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>⇒Cov(<em>U</em>, <em>V</em>)&nbsp;= E(<em>U</em>)E(<em>V</em>) − E(<em>U</em>)E(<em>V</em>)&nbsp;= 0&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p>hence,&nbsp;<em>ρ =&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{Cov}}\left( {U,\,V} \right)}}{{\sqrt {{\text{Var}}\left( U \right)\,{\text{Var}}\left( V \right)} }} = 0">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>Cov</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>U</mi>
          <mo>,</mo>
          <mspace width="thinmathspace"></mspace>
          <mi>V</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <msqrt>
        <mrow>
          <mtext>Var</mtext>
        </mrow>
        <mrow>
          <mo>(</mo>
          <mi>U</mi>
          <mo>)</mo>
        </mrow>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>Var</mtext>
        </mrow>
        <mrow>
          <mo>(</mo>
          <mi>V</mi>
          <mo>)</mo>
        </mrow>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0</mn>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1AG</strong></em></p>
<p><strong>Note:</strong> Accept the statement that Cov(<em>U</em>,<em>V</em>) is the numerator of the formula for <em>ρ</em>.</p>
<p><strong>Note:</strong> Only award the first <em><strong>A1</strong> </em>if the <em><strong>R1</strong> </em>is awarded.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Peter, the Principal of a college, believes that there is an association between the score in a&nbsp;Mathematics test, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, and the time taken to run 500 m, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> seconds, of his students.&nbsp;The following paired data are collected.</p>
<p><img src=""></p>
<p>It can be assumed that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {X{\text{, }}Y} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>X</mi>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mi>Y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> follow a bivariate normal distribution with product moment&nbsp;correlation coefficient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho ">
  <mi>ρ<!-- ρ --></mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses <span class="mjpage"><math alttext="{H_0}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math alttext="{H_1}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> </math></span> to test Peter’s claim, using a two-tailed test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carry out a suitable test at the 5 % significance level. With reference to the&nbsp;<span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>-value, state your conclusion in the context of Peter’s claim.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Peter uses the regression line of <span class="mjpage"><math alttext="y" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>y</mi> </math></span> on <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> as <span class="mjpage"><math alttext="y = 0.248x + 83.0" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>y</mi> <mo>=</mo> <mn>0.248</mn> <mi>x</mi> <mo>+</mo> <mn>83.0</mn> </math></span> and calculates that a&nbsp;student with a Mathematics test score of 73 will have a running time of 101 seconds.&nbsp;Comment on the validity of his calculation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math alttext="{H_0}\,{\text{:}}\,\rho&nbsp; = 0" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>:</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>ρ</mi> <mo>=</mo> <mn>0</mn> </math></span>&nbsp; &nbsp;<span class="mjpage"><math alttext="{H_1}\,{\text{:}}\,\rho&nbsp; \ne 0" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>:</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>ρ</mi> <mo>≠</mo> <mn>0</mn> </math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> It must be <span class="mjpage"><math alttext="\rho " xmlns="http://www.w3.org/1998/Math/MathML"> <mi>ρ</mi> </math></span>.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math alttext="p = 0.649" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> <mo>=</mo> <mn>0.649</mn> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>&nbsp;A2</strong></em></p>
<p><strong>Note:</strong> Accept anything that rounds to 0.65</p>
<p>0.649 &gt; 0.05&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>R1</strong></em></p>
<p>hence, we accept&nbsp;<span class="mjpage"><math alttext="{H_0}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> </mrow> </math></span> and conclude that Peter’s claim is wrong&nbsp; &nbsp; &nbsp; &nbsp;<em><strong> &nbsp;A1</strong></em></p>
<p><strong>Note:</strong> The <em><strong>A</strong></em> mark depends on the <em><strong>R</strong></em> mark and the answer must be given in context. Follow through the <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>-value in part (b).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a statement along along the lines of ‘(we have accepted that) the two variables are independent’ or ‘the two variables are weakly correlated’&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>a statement along the lines of ‘the use of the regression line is invalid’ or ‘it would give an inaccurate result’&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award the second <strong><em>R1</em></strong> only if the first <em><strong>R1</strong></em> is awarded.</p>
<p><strong>Note:</strong> FT the conclusion in(a)(ii). If a candidate concludes that the claim is correct, mark as follows: (as we have accepted H<sub>1</sub>) the 2 variables are dependent and 73 lies in the range of <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> values <em><strong>R1</strong></em>, hence the use of the regression line is valid <em><strong>R1</strong></em>.&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>