File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 4/markSceme-HL-paper1html
File size: 176.42 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the probability density function</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable><mtr><mtd><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>a</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>c</mi></mtd></mtr><mtr><mtd><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>b</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>b</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>c</mi><mo><</mo><mi>x</mi><mo>≤</mo><mi>b</mi></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math>.</p>
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>b</mi></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>≥</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mn>2</mn></mfrac></math>, find an expression for the median of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> be the median</p>
<p><strong><br>EITHER</strong></p>
<p>attempts to find the area of the required triangle <em><strong>M1</strong></em></p>
<p>base is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>and height is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math></p>
<p>area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>×</mo><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><msup><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to integrate the correct function <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>a</mi><mi>m</mi></munderover><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup></mrow></mfenced><mi>a</mi><mi>m</mi></msubsup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><msubsup><mfenced open="[" close="]"><mrow><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mi>a</mi><mi>x</mi></mrow></mfenced><mi>a</mi><mi>m</mi></msubsup></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct integration and <em><strong>A1</strong> </em>for correct limits.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>sets up (their) <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>a</mi><mi>m</mi></munderover><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi></math> or area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0A0A0M1A0A0</strong></em> if candidates conclude that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>></mo><mi>c</mi></math> and set up their area or sum of integrals <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>a</mi><mo>±</mo><msqrt><mfrac><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></msqrt></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>></mo><mi>a</mi></math>, rejects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>a</mi><mo>-</mo><msqrt><mfrac><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></msqrt></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>a</mi><mo>+</mo><msqrt><mfrac><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Chloe and Selena play a game where each have four cards showing capital letters A, B, C and D.<br>Chloe lays her cards face up on the table in order A, B, C, D as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_14.39.35.png" alt="N17/5/MATHL/HP1/ENG/TZ0/10"></p>
<p>Selena shuffles her cards and lays them face down on the table. She then turns them over one by one to see if her card matches with Chloe’s card directly above.<br>Chloe wins if <strong>no</strong> matches occur; otherwise Selena wins.</p>
</div>
<div class="specification">
<p>Chloe and Selena repeat their game so that they play a total of 50 times.<br>Suppose the discrete random variable <em>X </em>represents the number of times Chloe wins.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the probability that Chloe wins the game is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{8}">
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mean of <em>X</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the variance of <em>X</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>number of possible “deals” <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4! = 24">
<mo>=</mo>
<mn>4</mn>
<mo>!</mo>
<mo>=</mo>
<mn>24</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>consider ways of achieving “no matches” (Chloe winning):</p>
<p>Selena could deal B, C, D (<em>ie</em>, 3 possibilities)</p>
<p>as her first card <strong><em>R1</em></strong></p>
<p>for each of these matches, there are only 3 possible combinations for the remaining 3 cards <strong><em>R1</em></strong></p>
<p>so no. ways achieving no matches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3 \times 3 = 9">
<mo>=</mo>
<mn>3</mn>
<mo>×</mo>
<mn>3</mn>
<mo>=</mo>
<mn>9</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p>so probability Chloe wins <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{9}{{23}} = \frac{3}{8}">
<mo>=</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mn>23</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>A1AG</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>number of possible “deals” <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4! = 24">
<mo>=</mo>
<mn>4</mn>
<mo>!</mo>
<mo>=</mo>
<mn>24</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>consider ways of achieving a match (Selena winning)</p>
<p>Selena card A can match with Chloe card A<em>, </em>giving 6 possibilities for this happening <strong><em>R1</em></strong></p>
<p>if Selena deals B as her first card, there are only 3 possible combinations for the remaining 3 cards. Similarly for dealing C and dealing D <strong><em>R1</em></strong></p>
<p>so no. ways achieving one match is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 6 + 3 + 3 + 3 = 15">
<mo>=</mo>
<mn>6</mn>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<mn>15</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p>so probability Chloe wins <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1 - \frac{{15}}{{24}} = \frac{3}{8}">
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>A1AG</em></strong></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>systematic attempt to find number of outcomes where Chloe wins (no matches)</p>
<p>(using tree diag. or otherwise) <strong><em>M1</em></strong></p>
<p>9 found <strong><em>A1</em></strong></p>
<p>each has probability <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times 1">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{24}}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p>their 9 multiplied by their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{24}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{8}">
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{B}}\left( {50,{\text{ }}\frac{3}{8}} \right)">
<mi>X</mi>
<mo>∼</mo>
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>50</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu = np = 50 \times \frac{3}{8} = \frac{{150}}{8}{\text{ }}\left( { = \frac{{75}}{4}} \right){\text{ }}( = 18.75)">
<mi>μ</mi>
<mo>=</mo>
<mi>n</mi>
<mi>p</mi>
<mo>=</mo>
<mn>50</mn>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>150</mn>
</mrow>
<mn>8</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>75</mn>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>18.75</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2} = np(1 - p) = 50 \times \frac{3}{8} \times \frac{5}{8} = \frac{{750}}{{64}}{\text{ }}\left( { = \frac{{375}}{{32}}} \right){\text{ }}( = 11.7)">
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mi>n</mi>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>50</mn>
<mo>×</mo>
<mfrac>
<mn>3</mn>
<mn>8</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>5</mn>
<mn>8</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>750</mn>
</mrow>
<mrow>
<mn>64</mn>
</mrow>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>375</mn>
</mrow>
<mrow>
<mn>32</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>11.7</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> has probability density function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> given by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {k\left( {\pi - {\text{arcsin}}\,x} \right)}&{0 \leqslant x \leqslant 1} \\ 0&{{\text{otherwise}}} \end{array}} \right.,\,\,{\text{where }}k{\text{ is a positive constant}}{\text{.}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>{</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mi>k</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>π<!-- π --></mi>
<mo>−<!-- − --></mo>
<mrow>
<mtext>arcsin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mrow>
<mrow>
<mtext>otherwise</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>where </mtext>
</mrow>
<mi>k</mi>
<mrow>
<mtext> is a positive constant</mtext>
</mrow>
<mrow>
<mtext>.</mtext>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left( {\frac{{{x^2}}}{2}} \right){\text{arcsin}}\,x - \left( {\frac{1}{4}} \right){\text{arcsin}}\,x + \left( {\frac{x}{4}} \right)\sqrt {1 - {x^2}} ">
<mi>y</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>arcsin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>arcsin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>x</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<msqrt>
<mn>1</mn>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, show that</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the mode of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{\text{arcsin}}\,x\,{\text{d}}x} "> <mo>∫</mo> <mrow> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{2}{{2 + \pi }}"> <mi>k</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <mn>2</mn> <mo>+</mo> <mi>π</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = x\,{\text{arcsin}}\,x"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) = \frac{{3\pi }}{{4\left( {\pi + 2} \right)}}"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>mode is 0 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at integration by parts <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{{\sqrt {1 - {x^2}} }}{\text{,}}\,\,{\text{d}}v = {\text{d}}x"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> <mo>=</mo> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x\,{\text{arcsin}}\,x - \int {\frac{{x{\text{d}}x}}{{\sqrt {1 - {x^2}} }}} "> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x\,{\text{arcsin}}\,x + \sqrt {1 - {x^2}} \left( { + c} \right)"> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mo>(</mo> <mrow> <mo>+</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {\left( {\pi - {\text{arcsin}}\,x} \right)} \,{\text{d}}x = \left[ {\pi x - x\,{\text{arcsin}}\,x - \sqrt {1 - {x^2}} } \right]_0^1"> <munderover> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </munderover> <mrow> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>−</mo> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mi>π</mi> <mi>x</mi> <mo>−</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\pi - \frac{\pi }{2} - 0} \right) - \left( {0 - 0 - 1} \right) = \frac{\pi }{2} + 1"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>−</mo> <mn>0</mn> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\pi + 2}}{2}"> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 k \left( {\pi - {\text{arcsin}}\,x} \right){\text{d}}x = 1"> <munderover> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </munderover> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>−</mo> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> This line can be seen (or implied) anywhere.</p>
<p><strong>Note: </strong>Do not allow <em><strong>FT A</strong></em> marks from bi to bii.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k\left( {\frac{{\pi + 2}}{2}} \right) = 1"> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>π</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow k = \frac{2}{{2 + \pi }}"> <mo stretchy="false">⇒</mo> <mi>k</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <mn>2</mn> <mo>+</mo> <mi>π</mi> </mrow> </mfrac> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use product rule to differentiate <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}y}}{{{\text{d}}x}} = x\,{\text{arcsin}}\,x + \frac{{{x^2}}}{{2\sqrt {1 - {x^2}} }} - \frac{1}{{4\sqrt {1 - {x^2}} }} - \frac{{{x^2}}}{{4\sqrt {1 - {x^2}} }} + \frac{{\sqrt {1 - {x^2}} }}{4}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>y</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span> <em><strong>A2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A2</strong></em> for all terms correct, <em><strong>A1</strong></em> for 4 correct terms.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x\,{\text{arcsin}}\,x + \frac{{2{x^2}}}{{4\sqrt {1 - {x^2}} }} - \frac{1}{{4\sqrt {1 - {x^2}} }} - \frac{{{x^2}}}{{4\sqrt {1 - {x^2}} }} + \frac{{1 - {x^2}}}{{4\sqrt {1 - {x^2}} }}"> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4</mn> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for equivalent combination of correct terms over a common denominator.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = x\,{\text{arcsin}}\,x"> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) = k\int\limits_0^1 {x\left( {\pi - {\text{arcsin}}\,x} \right)} \,{\text{d}}x"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>k</mi> <munderover> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </munderover> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>−</mo> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = k\int\limits_0^1 {\left( {\pi x - x\,{\text{arcsin}}\,x} \right)} \,{\text{d}}x"> <mo>=</mo> <mi>k</mi> <munderover> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </munderover> <mrow> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mi>x</mi> <mo>−</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = k\left[ {\frac{{\pi {x^2}}}{2} - \frac{{{x^2}}}{2}{\text{arcsin}}\,x + \frac{1}{4}{\text{arcsin}}\,x - \frac{x}{4}\sqrt {1 - {x^2}} } \right]_0^1"> <mo>=</mo> <mi>k</mi> <msubsup> <mrow> <mo>[</mo> <mrow> <mfrac> <mrow> <mi>π</mi> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mtext>arcsin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mi>x</mi> <mn>4</mn> </mfrac> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for first term, <em><strong>A1</strong></em> for next 3 terms.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = k\left[ {\left( {\frac{\pi }{2} - \frac{\pi }{4} + \frac{\pi }{8}} \right) - \left( 0 \right)} \right]"> <mo>=</mo> <mi>k</mi> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mi>π</mi> <mn>8</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\frac{2}{{2 + \pi }}} \right)\frac{{3\pi }}{8}"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mrow> <mn>2</mn> <mo>+</mo> <mi>π</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>8</mn> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3\pi }}{{4\left( {\pi + 2} \right)}}"> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mi>π</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The continuous random variable <em>X</em> has a probability density function given by</p>
<p style="padding-left: 120px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \left\{ {\begin{array}{*{20}{l}} {k\sin \left( {\frac{{\pi x}}{6}} \right),}&{0 \leqslant x \leqslant \,6} \\ {0,}&{{\text{otherwise}}} \end{array}} \right.">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>{</mo>
<mrow>
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mi>k</mi>
<mi>sin</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π<!-- π --></mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>0</mn>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mrow>
<mtext>otherwise</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <em>f </em>write down the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <em>f </em>write down the median of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <em>f </em>write down the mode of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P(0 \leqslant X \leqslant 2) = \frac{1}{4}"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>⩽</mo> <mi>X</mi> <mo>⩽</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the interquartile range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P(X \leqslant 4|X \geqslant 3)"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>⩽</mo> <mn>4</mn> <mrow> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo>⩾</mo> <mn>3</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to equate integral to 1 (may appear later) <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k\int\limits_0^6 {\sin \left( {\frac{{\pi x}}{6}} \right){\text{d}}x = 1} "> <mi>k</mi> <munderover> <mo>∫</mo> <mn>0</mn> <mn>6</mn> </munderover> <mrow> <mi>sin</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>π</mi> <mi>x</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </math></span></p>
<p>correct integral <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k\left[ { - \frac{6}{\pi }\cos \left( {\frac{{\pi x}}{6}} \right)} \right]_0^6 = 1"> <mi>k</mi> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mfrac> <mn>6</mn> <mi>π</mi> </mfrac> <mi>cos</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>π</mi> <mi>x</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mn>6</mn> </msubsup> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>substituting limits <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{6}{\pi }( - 1 - 1) = \frac{1}{k}"> <mo>−</mo> <mfrac> <mn>6</mn> <mi>π</mi> </mfrac> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{\pi }{{12}}"> <mi>k</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3"> <mo>=</mo> <mn>3</mn> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1A0A0 </em></strong>for three equal answers in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}6)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>median <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3"> <mo>=</mo> <mn>3</mn> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1A0A0 </em></strong>for three equal answers in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}6)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mode <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3"> <mo>=</mo> <mn>3</mn> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1A0A0 </em></strong>for three equal answers in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}6)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}\int\limits_0^2 {\sin } \left( {\frac{{\pi x}}{6}} \right){\text{d}}x"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <munderover> <mo>∫</mo> <mn>0</mn> <mn>2</mn> </munderover> <mrow> <mi>sin</mi> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>π</mi> <mi>x</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\pi }{{12}}\left[ { - \frac{6}{\pi }\cos \left( {\frac{{\pi x}}{6}} \right)} \right]_0^2"> <mo>=</mo> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mfrac> <mn>6</mn> <mi>π</mi> </mfrac> <mi>cos</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>π</mi> <mi>x</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mn>2</mn> </msubsup> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept without the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> at this stage if it is added later.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}\left[ { - \frac{6}{\pi }\left( {\cos \frac{\pi }{3} - 1} \right)} \right]"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mfrac> <mn>6</mn> <mi>π</mi> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{4}"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from (c)(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{Q_1} = 2"> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>2</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>as the graph is symmetrical about the middle value <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3 \Rightarrow {Q_3} = 4"> <mi>x</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">⇒</mo> <mrow> <msub> <mi>Q</mi> <mn>3</mn> </msub> </mrow> <mo>=</mo> <mn>4</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>so interquartile range is</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 - 2"> <mn>4</mn> <mo>−</mo> <mn>2</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2"> <mo>=</mo> <mn>2</mn> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P(X \leqslant 4|X \geqslant 3) = \frac{{P(3 \leqslant X \leqslant 4)}}{{P(X \geqslant 3)}}"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>⩽</mo> <mn>4</mn> <mrow> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mo>⩾</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>⩽</mo> <mi>X</mi> <mo>⩽</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>⩾</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\frac{1}{4}}}{{\frac{1}{2}}}"> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The probability distribution of a discrete random variable, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>, is given by the following table, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
<mi>N</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> are constants.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) = 10"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>10</mn> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N"> <mi>N</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 1 - \frac{1}{2} - \frac{1}{5} - \frac{1}{5}"> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{10}}"> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>10</mn> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} + 1 + 2 + \frac{N}{{10}} = 10"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mfrac> <mi>N</mi> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>=</mo> <mn>10</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow N = 65"> <mo stretchy="false">⇒</mo> <mi>N</mi> <mo>=</mo> <mn>65</mn> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not allow FT in part (b) if their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> is outside the range <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < p < 1"> <mn>0</mn> <mo><</mo> <mi>p</mi> <mo><</mo> <mn>1</mn> </math></span>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider two events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> defined in the same sample space.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = \frac{4}{9},{\text{ P}}(B|A) = \frac{1}{3}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∪<!-- ∪ --></mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B|A') = \frac{1}{6}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
</math></span>,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(A' \cap B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) = \frac{1}{3}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>;</p>
<p>(ii) hence find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(A) + {\text{P}}(A \cap B) + {\text{P}}(A' \cap B) - {\text{P}}(A \cap B)"> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(A) + {\text{P}}(A' \cap B)"> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A \cap B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(A) + {\text{P}}(B) - {\text{P}}(A|B) \times {\text{P}}(B)"> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mrow> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> <mo>×</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(A) + \left( {1 - {\text{P}}(A|B)} \right) \times {\text{P}}(B)"> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mrow> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(A) + {\text{P}}(A'|B) \times {\text{P}}(B)"> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mrow> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> <mo>×</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(A) + {\text{P}}(A' \cap B)"> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∩</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(A' \cap B)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B) = {\text{P}}(B|A'){\text{P}}(A')">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{9} = {\text{P}}(A) + \frac{1}{6}\left( {1 - {\text{P}}(A)} \right)">
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 = 18{\text{P}}(A) + 3\left( {1 - {\text{P}}(A)} \right)">
<mn>8</mn>
<mo>=</mo>
<mn>18</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) = \frac{1}{3}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p>(ii) <strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B) = {\text{P}}(A \cap B) + {\text{P}}(A' \cap B)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{P}}(B|A){\text{P}}(A) + {\text{P}}(B|A'){\text{P}}(A')">
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{3} \times \frac{1}{3} + \frac{1}{6} \times \frac{2}{3} = \frac{2}{9}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cap B) = {\text{P}}(B|A){\text{P}}(A) \Rightarrow {\text{P}}(A \cap B) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">⇒</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B) = {\text{P}}(A \cup B) + {\text{P}}(A \cap B) - {\text{P}}(A)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B) = \frac{4}{9} + \frac{1}{9} - \frac{1}{3} = \frac{2}{9}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>9</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The faces of a fair six-sided die are numbered 1, 2, 2, 4, 4, 6. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> be the discrete random variable that models the score obtained when this die is rolled.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the probability distribution table for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2017-02-28_om_11.16.45.png" alt="N16/5/MATHL/HP1/ENG/TZ0/02.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-02-28_om_11.18.41.png" alt="N16/5/MATHL/HP1/ENG/TZ0/02.a/M"> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for each correct row.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{3} + 4 \times \frac{1}{3} + 6 \times \frac{1}{6}">
<mrow>
<mtext>E</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mn>4</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mn>6</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
</math></span> <strong>(<em>M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{19}}{6}{\text{ }}\left( { = 3\frac{1}{6}} \right)">
<mo>=</mo>
<mfrac>
<mrow>
<mn>19</mn>
</mrow>
<mn>6</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>3</mn>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>If the probabilities in (a) are not values between 0 and 1 or lead to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) > 6">
<mrow>
<mtext>E</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>></mo>
<mn>6</mn>
</math></span> award <strong><em>M1A0 </em></strong>to correct method using the incorrect probabilities; otherwise allow <strong><em>FT </em></strong>marks.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The discrete random variable <em>X</em> has the following probability distribution, where<em> p</em> is a constant.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>p</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>μ</em>, the expected value of <em>X</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(<em>X</em> > <em>μ</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>equating sum of probabilities to 1 (<em>p</em> + 0.5 − <em>p</em> + 0.25 + 0.125 + <em>p</em><sup>3</sup> = 1) <em><strong>M1</strong></em></p>
<p><em>p</em><sup>3</sup> = 0.125 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </math></span></p>
<p><em>p</em>= 0.5 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>μ</em> = 0 × 0.5 + 1 × 0 + 2 × 0.25 + 3 × 0.125 + 4 × 0.125 <em><strong> M1</strong></em></p>
<p>= 1.375 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{{11}}{8}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>11</mn> </mrow> <mn>8</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(<em>X</em> > <em>μ</em>) = P(<em>X</em> = 2) + P(<em>X</em> = 3) + P(<em>X</em> = 4) <em><strong>(M1)</strong></em></p>
<p>= 0.5 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award follow through <em><strong>A</strong></em> marks in (b)(i) from an incorrect value of <em>p</em>.</p>
<p><strong>Note:</strong> Award <em><strong>M</strong> </em>marks in both (b)(i) and (b)(ii) provided no negative probabilities, and provided a numerical value for <em>μ</em> has been found.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider two events, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) = {\text{P}}\left( {A' \cap B} \right) = 0.4">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.4</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap B} \right) = 0.1">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By drawing a Venn diagram, or otherwise, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> are not independent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src=""> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for a Venn diagram with at least one probability in the correct region.</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap B'} \right) = 0.3">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<msup>
<mi>B</mi>
<mo>′</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.3</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right) = 0.3 + 0.4 + 0.1 = 0.8">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.3</mn>
<mo>+</mo>
<mn>0.4</mn>
<mo>+</mo>
<mn>0.1</mn>
<mo>=</mo>
<mn>0.8</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( B \right) = 0.5">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right) = 0.5 + 0.4 - 0.1 = 0.8">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.5</mn>
<mo>+</mo>
<mn>0.4</mn>
<mo>−</mo>
<mn>0.1</mn>
<mo>=</mo>
<mn>0.8</mn>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right){\text{P}}\left( B \right) = 0.4 \times 0.5">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.4</mn>
<mo>×</mo>
<mn>0.5</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 0.2 <em><strong>A1</strong></em></p>
<p>statement that their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right){\text{P}}\left( B \right) \ne {\text{P}}\left( {A \cap B} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
<mo>≠</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for correct reasoning from their value.</p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> not independent <strong><em>AG</em></strong></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. A \right|B} \right) = \frac{{{\text{P}}\left( {A \cap B} \right)}}{{{\text{P}}\left( B \right)}} = \frac{{0.1}}{{0.5}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mi>A</mi>
<mo>|</mo>
</mrow>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>B</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.1</mn>
</mrow>
<mrow>
<mn>0.5</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 0.2 <em><strong>A1</strong></em></p>
<p>statement that their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. A \right|B} \right) \ne {\text{P}}\left( A \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mi>A</mi>
<mo>|</mo>
</mrow>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>≠</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
</math></span> <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for correct reasoning from their value.</p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> not independent <strong><em>AG</em></strong></p>
<p><strong>Note:</strong> Accept equivalent argument using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. B \right|A} \right) = 0.25">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
<mi>B</mi>
<mo>|</mo>
</mrow>
<mi>A</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.25</mn>
</math></span>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the probability distribution given by the following table.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mfrac><mn>19</mn><mn>12</mn></mfrac></math>, determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced><mo>=</mo><mfenced><mrow><mn>0</mn><mo>×</mo><mi>p</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>1</mn><mo>×</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>2</mn><mo>×</mo><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow></mfenced><mo>+</mo><mn>3</mn><mi>q</mi><mfenced><mrow><mo>=</mo><mfrac><mn>19</mn><mn>12</mn></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>⇒</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mn>3</mn><mi>q</mi><mo>=</mo><mfrac><mn>19</mn><mn>12</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>+</mo><mi>q</mi><mo>=</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>⇒</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>=</mo><mfrac><mn>7</mn><mn>12</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A continuous random variable <em>X</em> has the probability density function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> given by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{\pi x}}{{36}}{\text{sin}}\left( {\frac{{\pi x}}{6}} \right){\text{,}}}&{0 \leqslant x \leqslant 6} \\ {0{\text{,}}}&{{\text{otherwise}}} \end{array}} \right.">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>{</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>0</mn>
<mrow>
<mtext>,</mtext>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<mrow>
<mtext>otherwise</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</math></span>.</p>
<p style="text-align: left;">Find P(0 ≤ <em>X</em> ≤ 3).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempting integration by parts, <em>eg</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \frac{{\pi x}}{{36}}{\text{,}}\,{\text{d}}u = \frac{\pi }{{36}}{\text{d}}x{\text{,}}\,{\text{d}}v = {\text{sin}}\left( {\frac{{\pi x}}{6}} \right){\text{d}}x{\text{,}}\,v = - \frac{6}{\pi }{\text{cos}}\left( {\frac{{\pi x}}{6}} \right)">
<mi>u</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>v</mi>
<mo>=</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>v</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>6</mn>
<mi>π</mi>
</mfrac>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em> (M1)</em></strong></p>
<p>P(0 ≤ <em>X</em> ≤ 3) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{\pi }{{36}}\left( {\left[ { - \frac{{6x}}{\pi }{\text{cos}}\left( {\frac{{\pi x}}{6}} \right)} \right]_0^3 + \frac{6}{\pi }\int\limits_0^3 {{\text{cos}}\left( {\frac{{\pi x}}{6}} \right)} {\text{d}}x} \right)">
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mn>6</mn>
<mi>x</mi>
</mrow>
<mi>π</mi>
</mfrac>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mn>3</mn>
</msubsup>
<mo>+</mo>
<mfrac>
<mn>6</mn>
<mi>π</mi>
</mfrac>
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mn>3</mn>
</munderover>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (or equivalent) <strong><em> A1A1</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for a correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="uv">
<mi>u</mi>
<mi>v</mi>
</math></span> and <em><strong>A1</strong></em> for a correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {v\,{\text{d}}u} ">
<mo>∫</mo>
<mrow>
<mi>v</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>u</mi>
</mrow>
</math></span>.</p>
<p>attempting to substitute limits <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{36}}\left[ { - \frac{{6x}}{\pi }{\text{cos}}\left( {\frac{{\pi x}}{6}} \right)} \right]_0^3 = 0">
<mfrac>
<mi>π</mi>
<mrow>
<mn>36</mn>
</mrow>
</mfrac>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mn>6</mn>
<mi>x</mi>
</mrow>
<mi>π</mi>
</mfrac>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mn>3</mn>
</msubsup>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p>so P(0 ≤ <em>X</em> ≤ 3) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{\pi }\left[ {{\text{sin}}\left( {\frac{{\pi x}}{6}} \right)} \right]_0^3">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>π</mi>
</mfrac>
<msubsup>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π</mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>0</mn>
<mn>3</mn>
</msubsup>
</math></span> (or equivalent) <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{\pi }">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>π</mi>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> be a random variable which follows a normal distribution with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < \mu - 5} \right) = 0.2">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo><</mo>
<mi>μ<!-- μ --></mi>
<mo>−<!-- − --></mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.2</mn>
</math></span> , find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > \mu + 5} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < \mu + 5\,\left| {\,X > \mu - 5} \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>|</mo>
<mrow>
<mspace width="thinmathspace"></mspace>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>use of symmetry <em>eg</em> diagram <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > \mu + 5} \right) = 0.2">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < \mu + 5\,\left| {\,X > \mu - 5} \right.} \right) = \frac{{{\text{P}}\left( {X > \mu - 5 \cap X < \mu + 5} \right)}}{{{\text{P}}\left( {X > \mu - 5} \right)}}">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>|</mo>
<mrow>
<mspace width="thinmathspace"></mspace>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
<mo>∩</mo>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{P}}\left( {\mu - 5 < X < \mu + 5} \right)}}{{{\text{P}}\left( {X > \mu - 5} \right)}}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>(A1)</strong></em></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.6}}{{0.8}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.6</mn>
</mrow>
<mrow>
<mn>0.8</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> <em><strong>A1</strong></em> for denominator is independent of the previous <em><strong>A</strong></em> marks.</p>
<p><strong>OR</strong></p>
<p>use of diagram <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Only award <em><strong>(M1)</strong></em> if the region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu - 5 < X < \mu + 5">
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</math></span> is indicated and used.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > \mu - 5} \right) = 0.8">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.8</mn>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\mu - 5 < X < \mu + 5} \right) = 0.6">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.6</mn>
</math></span> <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Probabilities can be shown on the diagram.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.6}}{{0.8}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.6</mn>
</mrow>
<mrow>
<mn>0.8</mn>
</mrow>
</mfrac>
</math></span> <em><strong>M1</strong></em><em><strong>A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{3}{4}\,\,\, = \left( {0.75} \right)">
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.75</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has probability density function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable columnspacing="1.4ex" columnalign="left"><mtr><mtd><mfrac><mi>k</mi><msqrt><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac><mo>,</mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo>,</mo></mtd><mtd><mtext>otherwise</mtext><mo>.</mo></mtd></mtr></mtable></mfenced></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>k</mi><msqrt><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>k</mi><mfenced open="⌊" close="⌋"><mrow><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mtext>arcsin</mtext><mfenced><mrow><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mi>x</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arcsin</mtext><mfenced><mrow><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mi>x</mi></mrow></mfenced></math>.<br>Condone absence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> up to this stage.</p>
<p> </p>
<p>equating their integrand to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mtext>arcsin</mtext><mfenced><mrow><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mi>x</mi></mrow></mfenced></mrow></mfenced><mn>0</mn><mn>1</mn></msubsup><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mi mathvariant="normal">π</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mi mathvariant="normal">π</mi></mfrac><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup><mfrac><mi>x</mi><msqrt><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Condone absence of limits if seen at a later stage.</p>
<p><br><strong>EITHER</strong></p>
<p>attempt to integrate by inspection <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mi mathvariant="normal">π</mi></mfrac><mo>×</mo><mo>-</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>∫</mo><mo>-</mo><mn>6</mn><mi>x</mi><msup><mfenced><mrow><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>3</mn><msqrt><mn>3</mn></msqrt></mrow><mi mathvariant="normal">π</mi></mfrac><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msqrt><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mrow></mfenced><mn>0</mn><mn>1</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Condone the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> up to this stage.</p>
<p><br><strong>OR</strong></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>6</mn><mi>x</mi></math></p>
<p><br><strong>Note:</strong> Other substitutions may be used. For example <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac><msubsup><mo>∫</mo><mn>4</mn><mn>1</mn></msubsup><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>d</mo><mi>u</mi></math> <em><strong>M1</strong></em></p>
<p><strong><br>Note:</strong> Condone absence of limits up to this stage.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow></mfrac><msubsup><mfenced open="[" close="]"><mrow><mn>2</mn><msqrt><mi>u</mi></msqrt></mrow></mfenced><mn>4</mn><mn>1</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Condone the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> up to this stage.</p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A0M1A1A0</strong></em> for their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><msqrt><mn>4</mn><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mfenced open="[" close="]"><mrow><mo>-</mo><mn>2</mn><msqrt><mi>u</mi></msqrt></mrow></mfenced></math> for working with incorrect or no limits.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates who attempted part (a) knew that the integrand must be equated to 1 and only a small proportion of these managed to recognize the standard integral involved here. The effect of 3 in 3<em>x<sup>2</sup></em> was missed by many resulting in very few completely correct answers for this part. Part (b) proved to be challenging for vast majority of the candidates and was poorly done in general. Stronger candidates who made good progress in part (a) were often successful in part (b) as well. Most candidates used a substitution, however many struggled to make progress using this approach. Often when using a substitution, the limits were unchanged. If the function was re-written in terms of <em>x</em>, this did not result in an error in the final answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two unbiased tetrahedral (four-sided) dice with faces labelled 1, 2, 3, 4 are thrown and the scores recorded. Let the random variable <em>T</em> be the maximum of these two scores.</p>
<p>The probability distribution of <em>T</em> is given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected value of <em>T</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{3}{{16}}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{5}{{16}}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for consideration of the possible outcomes when rolling the two dice.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( T \right) = \frac{{1 + 6 + 15 + 28}}{{16}} = \frac{{25}}{8}\left( { = 3.125} \right)">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mn>6</mn>
<mo>+</mo>
<mn>15</mn>
<mo>+</mo>
<mn>28</mn>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>25</mn>
</mrow>
<mn>8</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>3.125</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Allow follow through from part (a) even if probabilities do not add up to 1.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>