File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/markSceme-SL-paper1html
File size: 1.23 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>The volume of a hemisphere, <em>V</em>, is given by the formula</p>
<p style="text-align: center;"><em>V</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{4\,{S^3}}}{{243\,\pi }}} ">
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>S</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>243</mn>
<mspace width="thinmathspace"></mspace>
<mi>π<!-- π --></mi>
</mrow>
</mfrac>
</msqrt>
</math></span>,</p>
<p>where <em>S</em> is the total surface area.</p>
<p>The total surface area of a given hemisphere is 350 cm<sup>2</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this hemisphere in cm<sup>3</sup>.</p>
<p>Give your answer correct to <strong>one decimal place</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (a) correct to the nearest integer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to <strong>part (b)</strong> in the form <em>a</em> × 10<sup><em>k</em></sup> , where 1 ≤ <em>a</em> < 10 and <em>k </em>∈<em> </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{Z}">
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{4\,{{\left( {350} \right)}^3}}}{{243\,\pi }}} ">
<msqrt>
<mfrac>
<mrow>
<mn>4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>350</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>243</mn>
<mspace width="thinmathspace"></mspace>
<mi>π</mi>
</mrow>
</mfrac>
</msqrt>
</math></span> <em><strong>OR </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{171500\,000}}{{763.407\, \ldots }}} ">
<msqrt>
<mfrac>
<mrow>
<mn>171500</mn>
<mspace width="thinmathspace"></mspace>
<mn>000</mn>
</mrow>
<mrow>
<mn>763.407</mn>
<mspace width="thinmathspace"></mspace>
<mo>…</mo>
</mrow>
</mfrac>
</msqrt>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong>(M1)</strong> for substitution of 350 into volume formula.</p>
<p> </p>
<p>= 473.973… <em><strong>(A1)</strong></em> </p>
<p>= 474 (cm<sup>3</sup>) <em><strong>(A1)</strong></em><strong>(ft) <em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>The final<strong> (A1)(ft) </strong>is awarded for rounding <strong>their</strong> answer to 1 decimal place provided the unrounded answer is seen.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>474 (cm<sup>3</sup>) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4.74 × 10<sup>2</sup> (cm<sup>3</sup>) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Follow through from <strong>part (b) only</strong>.</p>
<p>Award<em><strong> (A0)(A0)</strong></em> for answers of the type 0.474 × 10<sup>3</sup>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{3}{4}"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta > 0"> <mi>tan</mi> <mo></mo> <mi>θ</mi> <mo>></mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}"> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of summing to 1 <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {p = 1} "> <mo>∑</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </math></span></p>
<p>correct equation <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta + 2\cos 2\theta = 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mo></mo> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo></mo> <mi>θ</mi> </math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta + 2(2{\cos ^2}\theta - 1) = 1,{\text{ }}4{\cos ^2}\theta + \cos \theta - 3 = 0"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>+</mo> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>evidence of valid approach to solve quadratic <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>factorizing equation set equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0,{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4 \times 4 \times ( - 3)} }}{8}"> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct working, clearly leading to required answer <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4\cos \theta - 3)(\cos \theta + 1),{\text{ }}\frac{{ - 1 \pm 7}}{8}"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <mn>7</mn> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct reason for rejecting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta \ne - 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo></mo> <mi>θ</mi> </math></span> is a probability (value must lie between 0 and 1), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta > 0"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>></mo> <mn>0</mn> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>R0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta \ne - 1"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> without a reason.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{3}{4}"> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>AG N0</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>sketch of right triangle with sides 3 and 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sin ^2}x + {\cos ^2}x = 1"> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working </p>
<p><strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>missing side <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt 7 ,{\text{ }}\frac{{\frac{{\sqrt 7 }}{4}}}{{\frac{3}{4}}}"> <mo>=</mo> <msqrt> <mn>7</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta = \frac{{\sqrt 7 }}{3}"> <mi>tan</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}"> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{f^2},{\text{ }}\int {{{\left( {\frac{1}{{\cos x}}} \right)}^2}} } "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mrow> </math></span></p>
<p>correct substitution of both limits and function <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{{\left( {\frac{1}{{\cos x}}} \right)}^2}{\text{d}}x} "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p>correct integration <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x"> <mi>tan</mi> <mo></mo> <mi>x</mi> </math></span></p>
<p>substituting <strong>their </strong>limits into <strong>their </strong>integrated function and subtracting <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} - \tan \theta "> <mi>tan</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M0 </em></strong>if they substitute into original or differentiated function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} = 1"> <mi>tan</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \tan \theta "> <mn>1</mn> <mo>−</mo> <mi>tan</mi> <mo></mo> <mi>θ</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi - \frac{{\pi \sqrt 7 }}{3}"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mfrac> <mrow> <mi>π</mi> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diameter of a spherical planet is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo> </mo><mtext>km</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the radius of the planet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The volume of the planet can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mi>a</mi><mo>×</mo><msup><mn>10</mn><mi>k</mi></msup></mrow></mfenced><mo> </mo><msup><mtext>km</mtext><mn>3</mn></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>a</mi><mo><</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30000</mn><mo> </mo><mfenced><mtext>km</mtext></mfenced></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>∙</mo><msup><mn>10</mn><mn>4</mn></msup></math>) <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><msup><mfenced><mrow><mn>3</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup></mrow></mfenced><mn>3</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><msup><mfenced><mn>30000</mn></mfenced><mn>3</mn></msup></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><mo>×</mo><mn>27</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup><mo> </mo><mfenced><mrow><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mn>36</mn><mo>×</mo><msup><mn>10</mn><mn>12</mn></msup></mrow></mfenced></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><mo>×</mo><mn>27000000000000</mn></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mn>36</mn><mo>×</mo><msup><mn>10</mn><mn>13</mn></msup></mrow></mfenced><mo> </mo><mfenced><msup><mtext>km</mtext><mn>3</mn></msup></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>6</mn><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>13</mn></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> passes through the points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(0,{\text{ }}1,{\text{ }}8)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>8</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(3,{\text{ }}5,{\text{ }}2)">
<mrow>
<mtext>B</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> are perpendicular, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2">
<mi>p</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {AB} ">
<mover>
<mrow>
<mi>A</mi>
<mi>B</mi>
</mrow>
<mo>→</mo>
</mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>, has equation <strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ {13} \\ { - 14} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} p \\ 0 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>13</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>14</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> are perpendicular, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2">
<mi>p</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> intersect at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C(9,{\text{ }}13,{\text{ }}z)">
<mi>C</mi>
<mo stretchy="false">(</mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>z</mi>
<mo stretchy="false">)</mo>
</math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
<mi>z</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a unit vector in the direction of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find one point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> which is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 5 ">
<msqrt>
<mn>5</mn>
</msqrt>
</math></span> units from C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A - B,\,\, - \left( \begin{gathered} 0 \hfill \\ 1 \hfill \\ 8 \hfill \\ \end{gathered} \right) + \left( \begin{gathered} 3 \hfill \\ 5 \hfill \\ 2 \hfill \\ \end{gathered} \right)">
<mi>A</mi>
<mo>−</mo>
<mi>B</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>5</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {AB} = \left( \begin{gathered} 3 \hfill \\ 4 \hfill \\ - 6 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mi>A</mi>
<mi>B</mi>
</mrow>
<mo>→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>6</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>any </strong>correct equation in the form <strong><em>r</em></strong> = <strong><em>a</em></strong> + <em>t</em><strong><em>b</em></strong> (any parameter for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>) <strong><em>A2</em></strong> <strong><em>N2</em></strong></p>
<p>where <strong><em>a</em></strong> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 0 \hfill \\ 1 \hfill \\ 8 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 3 \hfill \\ 5 \hfill \\ 2 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>5</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, and <strong><em>b </em></strong>is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 3 \hfill \\ 4 \hfill \\ - 6 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>6</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p> </p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ 8 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 3 \\ 4 \\ { - 6} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {3 + 3t} \\ {5 + 4t} \\ {2 - 6t} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mn>3</mn>
<mi>t</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>5</mn>
<mo>+</mo>
<mn>4</mn>
<mi>t</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mn>6</mn>
<mi>t</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <strong><em>r</em></strong> = <strong><em>j</em></strong> + 8<strong><em>k</em></strong> + <em>t</em>(3<strong><em>i</em></strong> + 4<strong><em>j</em></strong> – 6<strong><em>k</em></strong>)</p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1</em> </strong>for the form <strong><em>a</em></strong> + <em>t</em><strong><em>b</em></strong>, <strong><em>A1</em></strong> for the form <strong><em>L</em></strong> = <strong><em>a</em></strong> + <em>t</em><strong><em>b</em></strong>, <strong><em>A0</em></strong> for the form <strong><em>r</em></strong> = <strong><em>b</em></strong> + <em>t</em><strong><em>a</em></strong>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \bullet b = 0">
<mi>a</mi>
<mo>∙</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>choosing correct direction vectors (may be seen in scalar product) <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ 4 \\ { - 6} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} p \\ 0 \\ 1 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 3 \\ 4 \\ { - 6} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} p \\ 0 \\ 1 \end{array}} \right) = 0">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>∙</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>correct working/equation <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3p - 6 = 0">
<mn>3</mn>
<mi>p</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2">
<mi>p</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> <strong><em>AG</em></strong> <strong><em>N0</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1} = \left( {\begin{array}{*{20}{c}} 9 \\ {13} \\ z \end{array}} \right),{\text{ }}{L_1} = {L_2}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>9</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>13</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>z</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>L</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span></p>
<p>one correct equation (must be different parameters if both lines used) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3t = 9,{\text{ }}1 + 2s = 9,{\text{ }}5 + 4t = 13,{\text{ }}3t = 1 + 2s">
<mn>3</mn>
<mi>t</mi>
<mo>=</mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mi>s</mi>
<mo>=</mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>5</mn>
<mo>+</mo>
<mn>4</mn>
<mi>t</mi>
<mo>=</mo>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mi>t</mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mi>s</mi>
</math></span></p>
<p>one correct value <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 3,{\text{ }}s = 4,{\text{ }}t = 2">
<mi>t</mi>
<mo>=</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>s</mi>
<mo>=</mo>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>t</mi>
<mo>=</mo>
<mn>2</mn>
</math></span></p>
<p>valid approach to substitute their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
<mi>s</mi>
</math></span> value <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 + 3( - 6),{\text{ }} - 14 + 4(1)">
<mn>8</mn>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>6</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>14</mn>
<mo>+</mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = - 10">
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>10</mn>
</math></span> <strong><em>A1</em></strong> <strong><em>N3</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\vec d} \right| = \sqrt {{2^2} + 1} \,\,\left( { = \sqrt 5 } \right)">
<mrow>
<mo>|</mo>
<mrow>
<mrow>
<mover>
<mi>d</mi>
<mo stretchy="false">→</mo>
</mover>
</mrow>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mn>2</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\sqrt 5 }}\left( {\begin{array}{*{20}{c}} 2 \\ 0 \\ 1 \end{array}} \right)\,\,\,\,\,\left( {{\text{accept}}\left( {\begin{array}{*{20}{c}} {\frac{2}{{\sqrt 5 }}} \\ {\frac{0}{{\sqrt 5 }}} \\ {\frac{1}{{\sqrt 5 }}} \end{array}} \right)} \right)">
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>2</mn>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>0</mn>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using unit vector) </strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 9 \\ {13} \\ { - 10} \end{array}} \right) \pm \sqrt 5 \hat d">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>9</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>13</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>±</mo>
<msqrt>
<mn>5</mn>
</msqrt>
<mrow>
<mover>
<mi>d</mi>
<mo stretchy="false">^</mo>
</mover>
</mrow>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 9 \\ {13} \\ { - 10} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 2 \\ 0 \\ 1 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 9 \\ {13} \\ { - 10} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 2 \\ 0 \\ 1 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>9</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>13</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>9</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>13</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>one correct point <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11,{\text{ }}13,{\text{ }} - 9),{\text{ }}(7,{\text{ }}13,{\text{ }} - 11)">
<mo stretchy="false">(</mo>
<mn>11</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>7</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>11</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p><strong>METHOD 2 (distance between points) </strong></p>
<p>attempt to use distance between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1 + 2s,{\text{ }}13,{\text{ }} - 14 + s)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mi>s</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>14</mn>
<mo>+</mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(9,{\text{ }}13,{\text{ }} - 10)">
<mo stretchy="false">(</mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>10</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(2s - 8)^2} + {0^2} + {(s - 4)^2} = 5">
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>s</mi>
<mo>−</mo>
<mn>8</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mn>0</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>−</mo>
<mn>4</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>5</mn>
</math></span></p>
<p>solving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5{s^2} - 40s + 75 = 0">
<mn>5</mn>
<mrow>
<msup>
<mi>s</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>40</mn>
<mi>s</mi>
<mo>+</mo>
<mn>75</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> leading to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = 5">
<mi>s</mi>
<mo>=</mo>
<mn>5</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = 3">
<mi>s</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p>one correct point <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11,{\text{ }}13,{\text{ }} - 9),{\text{ }}(7,{\text{ }}13,{\text{ }} - 11)">
<mo stretchy="false">(</mo>
<mn>11</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>9</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>7</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>11</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
<mrow>
<mtext>A</mtext>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
<mrow>
<mtext>B</mtext>
</mrow>
</math></span> have position vectors <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 2} \\ 4 \\ { - 4} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>4</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 6 \\ 8 \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> respectively.</p>
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
<mrow>
<mtext>C</mtext>
</mrow>
</math></span> has position vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 1} \\ k \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}">
<mrow>
<mtext>O</mtext>
</mrow>
</math></span> be the origin.</p>
</div>
<div class="specification">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}} \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}} \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\widehat {\text{O}}{\text{C}} = {\text{B}}\widehat {\text{O}}{\text{C}}"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AOC}}"> <mrow> <mtext>AOC</mtext> </mrow> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}} \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}} \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span> (in (ii)) <em><strong>(A1)</strong></em> </p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 \times \left( { - 1} \right) + 4 \times k"> <mo>−</mo> <mn>2</mn> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mi>k</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 \times \left( { - 1} \right) + 8 \times k"> <mn>6</mn> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> <mo>×</mo> <mi>k</mi> </math></span></p>
<p>correct expression <em><strong>A1</strong></em><em><strong> N1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + 4k"> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4k + 2"> <mn>4</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </math></span></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct expression <em><strong>A1</strong></em><em><strong> N1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8k - 6"> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 + 8k"> <mo>−</mo> <mn>6</mn> <mo>+</mo> <mn>8</mn> <mi>k</mi> </math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding magnitudes (seen anywhere) <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 4} \right)}^2}} \,\,\left( { = 6} \right)"> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {0^2}} \,\,\left( { = 10} \right)"> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>10</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct substitution of their values into formula for angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AOC}}"> <mrow> <mtext>AOC</mtext> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{{2 + 4k}}{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 4} \right)}^2}} \left| {\overrightarrow {{\text{OC}}} } \right|}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct substitution of their values into formula for angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BOC}}"> <mrow> <mtext>BOC</mtext> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{{8k - 6}}{{\sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {0^2}} \left| {\overrightarrow {{\text{OC}}} } \right|}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,{\text{A}}\widehat {\text{O}}{\text{C}} = {\text{cos}}\,{\text{B}}\widehat {\text{O}}{\text{C}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 + 4k}}{{\left| {\overrightarrow {{\text{OC}}} } \right|\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{8k - 6}}{{\left| {\overrightarrow {{\text{OC}}} } \right|\sqrt {{6^2} + {{\left( 8 \right)}^2} + {0^2}} }}"> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <msqrt> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 + 4k}}{{6\sqrt {1 + {k^2}} }} = \frac{{8k - 6}}{{10\sqrt {1 + {k^2}} }}"> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mrow> <mn>6</mn> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mn>10</mn> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span></p>
<p>correct working (without radicals) <em><strong>(A2)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10\left( {2 + 4k} \right) = 6\left( {8k - 6} \right)"> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11{k^2} - 79k + 14 = 0"> <mn>11</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>79</mn> <mi>k</mi> <mo>+</mo> <mn>14</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working clearly leading to the required answer <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20 + 36 = 48k"><mn>20</mn><mo>+</mo><mn>36</mn><mo>=</mo><mn>48</mn><mi>k</mi><mo>-</mo><mn>40</mn><mi>k</mi></math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="56 = 8k"> <mn>56</mn> <mo>=</mo> <mn>8</mn> <mi>k</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{2}{{11}}"> <mi>k</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <mn>11</mn> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k - 7} \right)\left( {11k - 2} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>11</mn> <mi>k</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span> <em><strong>AG</strong></em><em><strong> N0</strong></em></p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding magnitude of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span> (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( { - 1} \right)}^2} + {7^2} + {0^2}} "> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>7</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {50} "> <msqrt> <mn>50</mn> </msqrt> </math></span></p>
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{{2 + 28}}{{6\sqrt {{{\left( { - 1} \right)}^2} + {7^2} + {0^2}} }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>28</mn> </mrow> <mrow> <mn>6</mn> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>7</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{{56 - 6}}{{10\sqrt {{{\left( { - 1} \right)}^2} + {7^2} + {0^2}} }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>56</mn> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mn>10</mn> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>7</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\sqrt {26} } \right)^2} = {6^2} + {\left( {\sqrt {50} } \right)^2} - 2\left( 6 \right)\sqrt {50} \,{\text{cos}}\,\theta "> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>26</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>50</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <msqrt> <mn>50</mn> </msqrt> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span> <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{5}{{\sqrt {50} }}\,\,\,\left( { = \frac{1}{{\sqrt 2 }}} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>5</mn> <mrow> <msqrt> <mn>50</mn> </msqrt> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{4}"> <mi>θ</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = {\text{cos}}\,\theta "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \sqrt {1 - \frac{{25}}{{50}}} "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mfrac> <mrow> <mn>25</mn> </mrow> <mrow> <mn>50</mn> </mrow> </mfrac> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \sqrt {1 - {\text{co}}{{\text{s}}^2}\,\theta } "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \frac{{\sqrt 2 }}{2}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p>correct substitution of <strong>their</strong> values into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}ab\,{\text{sin}}\,{\text{C}}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>C</mtext> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {50} "><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><mo>×</mo><msqrt><mn>50</mn></msqrt><mo>×</mo><msqrt><mn>1</mn><mo>-</mo><mfrac><mn>25</mn><mn>50</mn></mfrac></msqrt></math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {50} \times \frac{5}{{\sqrt {50} }}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <msqrt> <mn>50</mn> </msqrt> <mo>×</mo> <mfrac> <mn>5</mn> <mrow> <msqrt> <mn>50</mn> </msqrt> </mrow> </mfrac> </math></span></p>
<p>area is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15"> <mn>15</mn> </math></span> <em><strong>A1</strong></em><em><strong> N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A balloon in the shape of a sphere is filled with helium until the radius is 6 cm.</p>
</div>
<div class="specification">
<p>The volume of the balloon is increased by 40%.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the balloon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of the balloon following this increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>Units are required in parts (a) and (b).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi \times {6^3}">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>6</mn>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into volume of sphere formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 905{\text{ c}}{{\text{m}}^3}{\text{ }}(288\pi {\text{ c}}{{\text{m}}^3},{\text{ }}904.778 \ldots {\text{ c}}{{\text{m}}^3})">
<mo>=</mo>
<mn>905</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>288</mn>
<mi>π</mi>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>904.778</mn>
<mo>…</mo>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1) (C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Answers derived from the use of approximations of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
<mi>π</mi>
</math></span> (3.14; 22/7) are awarded <strong><em>(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Units are required in parts (a) and (b).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{140}}{{100}} \times 904.778 \ldots = \frac{4}{3}\pi {r^3}">
<mfrac>
<mrow>
<mn>140</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>904.778</mn>
<mo>…</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{140}}{{100}} \times 288\pi = \frac{4}{3}\pi {r^3}">
<mfrac>
<mrow>
<mn>140</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>288</mn>
<mi>π</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1266.69 \ldots = \frac{4}{3}\pi {r^3}">
<mn>1266.69</mn>
<mo>…</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying their part (a) by 1.4 or equivalent, <strong><em>(M1) </em></strong>for equating to the volume of a sphere formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{3 \times 1266.69 \ldots }}{{4\pi }}">
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mn>1266.69</mn>
<mo>…</mo>
</mrow>
<mrow>
<mn>4</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{3 \times 1266.69 \ldots }}{{4\pi }}}}">
<mi>r</mi>
<mo>=</mo>
<mroot>
<mrow>
<mfrac>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mn>1266.69</mn>
<mo>…</mo>
</mrow>
<mrow>
<mn>4</mn>
<mi>π</mi>
</mrow>
</mfrac>
</mrow>
<mn>3</mn>
</mroot>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{(1.4) \times {6^3}}}">
<mi>r</mi>
<mo>=</mo>
<mroot>
<mrow>
<mo stretchy="false">(</mo>
<mn>1.4</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mrow>
<msup>
<mn>6</mn>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mroot>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = 302.4">
<mrow>
<msup>
<mi>r</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>302.4</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}6.71{\text{ cm }}(6.71213 \ldots )">
<mo stretchy="false">(</mo>
<mi>r</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>6.71</mn>
<mrow>
<mtext> cm </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>6.71213</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylindrical container with a radius of 8 cm is placed on a flat surface. The container is filled with water to a height of 12 cm, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.17.11.png" alt="M17/5/MATSD/SP1/ENG/TZ2/12"></p>
</div>
<div class="specification">
<p>A heavy ball with a radius of 2.9 cm is dropped into the container. As a result, the height of the water increases to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> cm, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.18.54.png" alt="M17/5/MATSD/SP1/ENG/TZ2/12.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of water in the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \times {8^2} \times 12">
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>8</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>12</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into the volume of a cylinder formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2410{\text{ c}}{{\text{m}}^3}{\text{ }}(2412.74 \ldots {\text{ c}}{{\text{m}}^3},{\text{ }}768\pi {\text{ c}}{{\text{m}}^3})">
<mn>2410</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>2412.74</mn>
<mo>…</mo>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>768</mn>
<mi>π</mi>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi \times {2.9^3} + 768\pi = \pi \times {8^2}h">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>2.9</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>768</mn>
<mi>π</mi>
<mo>=</mo>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>8</mn>
<mn>2</mn>
</msup>
</mrow>
<mi>h</mi>
</math></span> <strong><em>(M1)(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into the volume of a sphere formula (this may be implied by seeing 102.160…), <strong><em>(M1) </em></strong>for adding their volume of the ball to their part (a), <strong><em>(M1) </em></strong>for equating <strong>a </strong>volume to the volume of a cylinder with a height of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}\pi \times {2.9^3} = \pi \times {8^2}(h - 12)">
<mfrac>
<mn>4</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>2.9</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>8</mn>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>h</mi>
<mo>−</mo>
<mn>12</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into the volume of a sphere formula (this may be implied by seeing 102.160…), <strong><em>(M1) </em></strong>for equating to the volume of a cylinder, <strong><em>(M1) </em></strong>for the height of the water level increase, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h - 12">
<mi>h</mi>
<mo>−</mo>
<mn>12</mn>
</math></span>. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h - 12">
<mi>h</mi>
<mo>−</mo>
<mn>12</mn>
</math></span> if adding 12 is implied by their answer.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(h = ){\text{ }}12.5{\text{ (cm) }}\left( {12.5081 \ldots {\text{ (cm)}}} \right)">
<mo stretchy="false">(</mo>
<mi>h</mi>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>12.5</mn>
<mrow>
<mtext> (cm) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>12.5081</mn>
<mo>…</mo>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> If 3 sf answer used, answer is 12.5 (12.4944…). Follow through from part (a) if first method is used.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Emily’s kite ABCD is hanging in a tree. The plane ABCDE is vertical.</p>
<p>Emily stands at point E at some distance from the tree, such that EAD is a straight line and angle BED = 7°. Emily knows BD = 1.2 metres and angle BDA = 53°, as shown in the diagram</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.18.28.png" alt="N17/5/MATSD/SP1/ENG/TZ0/10"></p>
</div>
<div class="specification">
<p>T is a point at the base of the tree. ET is a horizontal line. The angle of elevation of A from E is 41°.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of EB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the angle of elevation of B from E.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vertical height of B above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>Units are required in parts (a) and (c).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{EB}}}}{{\sin 53{\rm{^\circ }}}} = \frac{{1.2}}{{\sin 7{\rm{^\circ }}}}">
<mfrac>
<mrow>
<mrow>
<mtext>EB</mtext>
</mrow>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mn>53</mn>
<mrow>
<mrow>
<msup>
<mi></mi>
<mo>∘</mo>
</msup>
</mrow>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1.2</mn>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mn>7</mn>
<mrow>
<mrow>
<msup>
<mi></mi>
<mo>∘</mo>
</msup>
</mrow>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution into sine formula, <strong><em>(A1) </em></strong>for correct substitution.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({\text{EB}} = ){\text{ }}7.86{\text{ m}}">
<mo stretchy="false">(</mo>
<mrow>
<mtext>EB</mtext>
</mrow>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>7.86</mn>
<mrow>
<mtext> m</mtext>
</mrow>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="786{\text{ cm }}(7.86385 \ldots {\text{ m}}">
<mn>786</mn>
<mrow>
<mtext> cm </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>7.86385</mn>
<mo>…</mo>
<mrow>
<mtext> m</mtext>
</mrow>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="786.385 \ldots {\text{ cm}})">
<mn>786.385</mn>
<mo>…</mo>
<mrow>
<mtext> cm</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1) (C3)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>34° <strong><em>(A1) (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Units are required in parts (a) and (c).</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 34^\circ = \frac{{{\text{height}}}}{{7.86385 \ldots }}">
<mi>sin</mi>
<mo></mo>
<msup>
<mn>34</mn>
<mo>∘</mo>
</msup>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>height</mtext>
</mrow>
</mrow>
<mrow>
<mn>7.86385</mn>
<mo>…</mo>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into a trigonometric ratio.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({\text{height}} = ){\text{ }}4.40{\text{ m}}">
<mo stretchy="false">(</mo>
<mrow>
<mtext>height</mtext>
</mrow>
<mo>=</mo>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4.40</mn>
<mrow>
<mtext> m</mtext>
</mrow>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="440{\text{ cm }}(4.39741 \ldots {\text{ m}}">
<mn>440</mn>
<mrow>
<mtext> cm </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>4.39741</mn>
<mo>…</mo>
<mrow>
<mtext> m</mtext>
</mrow>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="439.741 \ldots {\text{ cm}})">
<mn>439.741</mn>
<mo>…</mo>
<mrow>
<mtext> cm</mtext>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept “BT” used for height. Follow through from parts (a) and (b). Use of 7.86 gives an answer of 4.39525….</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a right triangle ABC. Point D lies on AB such that CD bisects AĈB.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;">AĈD = <em>θ</em> and AC = 14 cm</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \frac{3}{5}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,2\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}}"> <mrow> <mtext>BC</mtext> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> labelled sides on separate triangle, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^2}\,x + {\text{co}}{{\text{s}}^2}\,x = 1"> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> missing side is 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} "> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,2\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>θ</mi> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {\frac{{16}}{{25}}} \right) - 1"> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mn>25</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2{\left( {\frac{3}{5}} \right)^2}"> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16}}{{25}} - \frac{9}{{25}}"> <mfrac> <mrow> <mn>16</mn> </mrow> <mrow> <mn>25</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>9</mn> <mrow> <mn>25</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,2\theta = \frac{7}{{25}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>7</mn> <mrow> <mn>25</mn> </mrow> </mfrac> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{25}} = \frac{{14}}{{{\text{BC}}}}"> <mfrac> <mn>7</mn> <mrow> <mn>25</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>14</mn> </mrow> <mrow> <mrow> <mtext>BC</mtext> </mrow> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = \frac{{14 \times 25}}{7}"> <mrow> <mtext>BC</mtext> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>14</mn> <mo>×</mo> <mn>25</mn> </mrow> <mn>7</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = 50"> <mrow> <mtext>BC</mtext> </mrow> <mo>=</mo> <mn>50</mn> </math></span> (cm) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid glass paperweight consists of a hemisphere of diameter 6 cm on top of a cuboid with a square base of length 6 cm, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The height of the cuboid, <em>x </em>cm, is equal to the height of the hemisphere.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the paperweight.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>1 cm<sup>3</sup> of glass has a mass of 2.56 grams.</p>
<p>Calculate the mass, in grams, of the paperweight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>3 (cm) <em><strong>(A1) (C1)</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>units are required in part (a)(ii)</strong></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \frac{{4\pi \times {{\left( 3 \right)}^3}}}{3} + 3 \times {\left( 6 \right)^2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mn>3</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <strong>their</strong> correct substitution in volume of sphere formula divided by 2, <em><strong>(M1)</strong></em> for adding <strong>their</strong> correctly substituted volume of the cuboid.</p>
<p> </p>
<p>= 165 cm<sup>3 </sup>(164.548…) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note:</strong> The answer is 165 cm<sup>3</sup>; the units are required. Follow through from part (a)(i).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>their 164.548… × 2.56 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying their part (a)(ii) by 2.56.</p>
<p> </p>
<p>= 421 (g) (421.244…(g)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a)(ii).</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A type of candy is packaged in a right circular cone that has volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{100 c}}{{\text{m}}^{\text{3}}}">
<mrow>
<mtext>100 c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msup>
</mrow>
</math></span> and vertical height 8 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.14.55.png" alt="M17/5/MATSD/SP1/ENG/TZ1/09"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, of the circular base of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the slant height, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l">
<mi>l</mi>
</math></span>, of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the curved surface area of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="100 = \frac{1}{3}\pi {r^2}(8)">
<mn>100</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>8</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into volume of cone formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 3.45{\text{ (cm) }}\left( {3.45494 \ldots {\text{ (cm)}}} \right)">
<mi>r</mi>
<mo>=</mo>
<mn>3.45</mn>
<mrow>
<mtext> (cm) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3.45494</mn>
<mo>…</mo>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l^2} = {8^2} + {(3.45494 \ldots )^2}">
<mrow>
<msup>
<mi>l</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mn>8</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo stretchy="false">(</mo>
<mn>3.45494</mn>
<mo>…</mo>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras’ theorem.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l = 8.71{\text{ (cm) }}\left( {8.71416 \ldots {\text{ (cm)}}} \right)">
<mi>l</mi>
<mo>=</mo>
<mn>8.71</mn>
<mrow>
<mtext> (cm) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>8.71416</mn>
<mo>…</mo>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)</strong><em> </em><strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \times 3.45494 \ldots \times 8.71416 \ldots ">
<mi>π</mi>
<mo>×</mo>
<mn>3.45494</mn>
<mo>…</mo>
<mo>×</mo>
<mn>8.71416</mn>
<mo>…</mo>
</math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for their correct substitutions into curved surface area of a cone formula.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 94.6{\text{ c}}{{\text{m}}^2}{\text{ }}(94.5836 \ldots {\text{ c}}{{\text{m}}^2})">
<mo>=</mo>
<mn>94.6</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>94.5836</mn>
<mo>…</mo>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em>(ft) <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from parts (a) and (b). Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="94.4{\text{ c}}{{\text{m}}^2}">
<mn>94.4</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> from use of 3 sf values.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid right circular cone has a base radius of 21 cm and a slant height of 35 cm.<br>A smaller right circular cone has a height of 12 cm and a slant height of 15 cm, and is removed from the top of the larger cone, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of the base of the cone which has been removed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the curved surface area of the cone which has been removed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the curved surface area of the remaining solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{15}^2} - {{12}^2}} ">
<msqrt>
<mrow>
<msup>
<mrow>
<mn>15</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mn>12</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into Pythagoras theorem.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{radius}}}}{{21}} = \frac{{15}}{{35}}">
<mfrac>
<mrow>
<mrow>
<mtext>radius</mtext>
</mrow>
</mrow>
<mrow>
<mn>21</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>15</mn>
</mrow>
<mrow>
<mn>35</mn>
</mrow>
</mfrac>
</math></span> <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for a correct equation.</p>
<p>= 9 (cm) <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \times 9 \times 15">
<mi>π</mi>
<mo>×</mo>
<mn>9</mn>
<mo>×</mo>
<mn>15</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into curved surface area of a cone formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 424\,\,{\text{c}}{{\text{m}}^2}\,\,\,\,\,\left( {135\pi ,\,\,424.115...{\text{c}}{{\text{m}}^2}} \right)">
<mo>=</mo>
<mn>424</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>135</mn>
<mi>π</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>424.115...</mn>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note</strong>: Follow through from part (a).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \times 21 \times 35 - 424.115...">
<mi>π</mi>
<mo>×</mo>
<mn>21</mn>
<mo>×</mo>
<mn>35</mn>
<mo>−</mo>
<mn>424.115...</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into curved surface area of a cone formula and for subtracting their part (b).</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1880\,\,{\text{c}}{{\text{m}}^2}\,\,\,\,\,\left( {600\pi ,\,\,1884.95...{\text{c}}{{\text{m}}^2}} \right)">
<mo>=</mo>
<mn>1880</mn>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>600</mn>
<mi>π</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1884.95...</mn>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows triangle ABC, with <em>AB</em> = 6 and <em>AC</em> = 8.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\hat A = \frac{5}{6}">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mover>
<mi>A</mi>
<mo stretchy="false">^</mo>
</mover>
</mrow>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>6</mn>
</mfrac>
</math></span> find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\hat A">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mover>
<mi>A</mi>
<mo stretchy="false">^</mo>
</mover>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle ABC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach using Pythagorean identity <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^2}\,A + {\left( {\frac{5}{6}} \right)^2} = 1">
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>A</mi>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> (or equivalent) <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,A = \frac{{\sqrt {11} }}{6}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>A</mi>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>11</mn>
</msqrt>
</mrow>
<mn>6</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 8 \times 6 \times \frac{{\sqrt {11} }}{6}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>8</mn>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<mfrac>
<mrow>
<msqrt>
<mn>11</mn>
</msqrt>
</mrow>
<mn>6</mn>
</mfrac>
</math></span> (or equivalent) <em><strong>(A1)</strong></em></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\sqrt {11} ">
<mo>=</mo>
<mn>4</mn>
<msqrt>
<mn>11</mn>
</msqrt>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> passes through points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}( - 3,{\text{ }}4,{\text{ }}2)">
<mrow>
<mtext>A</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>4</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}( - 1,{\text{ }}3,{\text{ }}3)">
<mrow>
<mtext>B</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> also passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}(3,{\text{ }}1,{\text{ }}p)">
<mrow>
<mtext>C</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>p</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The point D has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({q^2},{\text{ }}0,{\text{ }}q)"> <mo stretchy="false">(</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>q</mi> <mo stretchy="false">)</mo> </math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct approach <strong><em>A1</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 3 \\ { - 4} \\ { - 2} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>AG N0</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any correct equation in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = a + tb"> <mi>r</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>t</mi> <mi>b</mi> </math></span> (any parameter for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>)</p>
<p> </p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 1} \\ 3 \\ 3 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A2 N2</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right),{\text{ }}(x,{\text{ }}y,{\text{ }}z) = ( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { - 3 + 2t} \\ {4 - t} \\ {2 + t} \end{array}} \right)"> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>y</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4</mn> <mo>−</mo> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mo>+</mo> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + tb"> <mi>a</mi> <mo>+</mo> <mi>t</mi> <mi>b</mi> </math></span>, <strong>A1</strong> for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = a + tb"> <mi>L</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>t</mi> <mi>b</mi> </math></span>, <strong>A0</strong> for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = b + ta"> <mi>r</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>t</mi> <mi>a</mi> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – finding value of parameter</strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1) = (3,{\text{ }}1,{\text{ }}p)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </math></span></p>
<p> </p>
<p>one correct equation (not involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + 2t = 3,{\text{ }} - 1 - 2s = 3,{\text{ }}4 - t = 1,{\text{ }}3 + s = 1"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>t</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mi>s</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mo>−</mo> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>+</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct parameter from their equation (may be seen in substitution) <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 3,{\text{ }}s = - 2"> <mi>t</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>s</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span></p>
<p>correct substitution <strong><em>(A1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + 3\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}3 - ( - 2)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)"> <mi>p</mi> <mo>=</mo> <mn>5</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p> </p>
<p><strong>METHOD 2 – eliminating parameter</strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( - 1,{\text{ }}3,{\text{ }}3) + s( - 2,{\text{ }}1,{\text{ }} - 1) = (3,{\text{ }}1,{\text{ }}p)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> </math></span></p>
<p> </p>
<p>one correct equation (not involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + 2t = 3,{\text{ }} - 1 - 2s = 3,{\text{ }}4 - t = 1,{\text{ }}3 + s = 1"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>t</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mi>s</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mo>−</mo> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>+</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct equation (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>) <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + t = p,{\text{ }}3 - s = p"> <mn>2</mn> <mo>+</mo> <mi>t</mi> <mo>=</mo> <mi>p</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>−</mo> <mi>s</mi> <mo>=</mo> <mi>p</mi> </math></span></p>
<p>correct working to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7 = 2p - 3,{\text{ }}6 = 1 + p"> <mn>7</mn> <mo>=</mo> <mn>2</mn> <mi>p</mi> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6</mn> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>p</mi> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)"> <mi>p</mi> <mo>=</mo> <mn>5</mn> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1 N2</em></strong></p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} "> <mover> <mrow> <mtext>CD</mtext> </mrow> <mo>→</mo> </mover> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p>correct vector for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} "> <mover> <mrow> <mtext>CD</mtext> </mrow> <mo>→</mo> </mover> </math></span> (may be seen in scalar product) <strong><em>A1</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {5 - q} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2} - 3} \\ { - 1} \\ {q - 5} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {p - q} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>q</mi> <mo>−</mo> <mn>5</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p>recognizing scalar product of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} "> <mover> <mrow> <mtext>CD</mtext> </mrow> <mo>→</mo> </mover> </math></span> with direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> is zero (seen anywhere) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {p - q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = 0,{\text{ }}\overrightarrow {{\text{DC}}} \bullet \overrightarrow {{\text{AC}}} = 0,{\text{ }}\left( {\begin{array}{*{20}{c}} {3 - {q^2}} \\ 1 \\ {5 - q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>−</mo> <mi>q</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p> </p>
<p>correct scalar product in terms of only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 - 2{q^2} - 1 + 5 - q,{\text{ }}2{q^2} + q - 10 = 0,{\text{ }}2(3 - {q^2}) - 1 + 5 - q"> <mn>6</mn> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>−</mo> <mi>q</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>10</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>3</mn> <mo>−</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mn>5</mn> <mo>−</mo> <mi>q</mi> </math></span></p>
<p>correct working to solve quadratic <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2q + 5)(q - 2),{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4(2)( - 10)} }}{{2(2)}}"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>q</mi> <mo>−</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mn>4</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>10</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = - \frac{5}{2},{\text{ }}2"> <mi>q</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> </math></span> <strong><em>A1A1 N3</em></strong></p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The position vectors of points P and Q are <strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 2 <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−<!-- − --></mo>
</math></span> <strong><em>k </em></strong>and 7<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 3<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−<!-- − --></mo>
</math></span> 4<strong><em>k </em></strong>respectively.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line that passes through P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line through P and Q is perpendicular to the vector 2<strong><em>i </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>n</em><strong><em>k</em></strong>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid attempt to find direction vector <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PQ}}} ,{\text{ }}\overrightarrow {{\text{QP}}} ">
<mover>
<mrow>
<mtext>PQ</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mover>
<mrow>
<mtext>QP</mtext>
</mrow>
<mo>→</mo>
</mover>
</math></span></p>
<p>correct direction vector (or multiple of) <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>6<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 3<strong><em>k</em></strong></p>
<p><strong>any </strong>correct equation in the form <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>b </em></strong>(any parameter for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>) <strong><em>A2 N3</em></strong></p>
<p>where <strong><em>a </em></strong>is <strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 2<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> <strong><em>k</em></strong> or 7<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 3<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 4<strong><em>k </em></strong>, and <strong><em>b </em></strong>is a scalar multiple of 6<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 3<strong><em>k</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> 7<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> 3<strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 4<strong><em>k</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em>(6<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 3<strong><em>k</em></strong>), <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} {1 + 6s} \\ {2 + 1s} \\ { - 1 - 3s} \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { - 6} \\ { - 1} \\ 3 \end{array}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mn>6</mn>
<mi>s</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>2</mn>
<mo>+</mo>
<mn>1</mn>
<mi>s</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>s</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>r</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>A1 </em></strong>for the form <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>b</em></strong>, <strong><em>A1 </em></strong>for the form <strong><em>L</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>b</em></strong>, <strong><em>A0 </em></strong>for the form <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <em>t</em><strong><em>a</em></strong>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct expression for scalar product <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 \times 2 + 1 \times 0 + ( - 3) \times n,{\text{ }} - 3n + 12">
<mn>6</mn>
<mo>×</mo>
<mn>2</mn>
<mo>+</mo>
<mn>1</mn>
<mo>×</mo>
<mn>0</mn>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mi>n</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>n</mi>
<mo>+</mo>
<mn>12</mn>
</math></span></p>
<p>setting scalar product equal to zero (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><strong><em>u</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> <strong><em>v</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0,{\text{ }} - 3n + 12 = 0">
<mo>=</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>n</mi>
<mo>+</mo>
<mn>12</mn>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 4">
<mi>n</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>-</mo><mfrac><mn>6</mn><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>1</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>3</mn><mo>-</mo><mfrac><mn>6</mn><mrow><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>θ</mi><mo>≤</mo><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mi>θ</mi><mo>≠</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt to write all LHS terms with a common denominator of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>-</mo><mfrac><mn>6</mn><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>6</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>-</mo><mfrac><mn>6</mn><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>-</mo><mn>6</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>3</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>-</mo><mfrac><mn>6</mn><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to use algebraic division on RHS <em><strong>(M1)</strong></em></p>
<p>correctly obtains quotient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></math> and remainder <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>-</mo><mfrac><mn>6</mn><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> as required. <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>3</mn></mrow><mrow><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></math></p>
<p><strong><br>EITHER</strong></p>
<p>attempt to factorise in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>+</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>+</mo><mi>b</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Accept any variable in place of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><strong><br></strong><strong>OR</strong></p>
<p>attempt to substitute into quadratic formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>±</mo><msqrt><mn>49</mn></msqrt></mrow><mn>4</mn></mfrac></math></p>
<p><strong><br>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>=</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> only.</p>
<p><br>one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>11</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>330</mn></math>) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>12</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>11</mn><mtext>π</mtext></mrow><mn>12</mn></mfrac></math> (must be in radians) <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A0</strong></em> if additional answers given.</p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A lampshade, in the shape of a cone, has a wireframe consisting of a circular ring and four straight pieces of equal length, attached to the ring at points A, B, C and D.</p>
<p>The ring has its centre at point O and its radius is 20 centimetres. The straight pieces meet at point V, which is vertically above O, and the angle they make with the base of the lampshade is 60°.</p>
<p>This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.16.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/03"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of one of the straight pieces in the wireframe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total length of wire needed to construct this wireframe. Give your answer in centimetres correct to the nearest millimetre.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos 60^\circ = \frac{{20}}{b}"> <mi>cos</mi> <mo></mo> <msup> <mn>60</mn> <mo>∘</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mn>20</mn> </mrow> <mi>b</mi> </mfrac> </math></span><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong>OR</strong><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{20}}{{\cos 60^\circ }}"> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mn>20</mn> </mrow> <mrow> <mi>cos</mi> <mo></mo> <msup> <mn>60</mn> <mo>∘</mo> </msup> </mrow> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution into a correct trig. ratio.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(b = ){\text{ 40 (cm)}}"> <mo stretchy="false">(</mo> <mi>b</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> 40 (cm)</mtext> </mrow> </math></span> <strong><em>(A1)</em></strong> <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4 \times 40 + 2\pi (20)"> <mn>4</mn> <mo>×</mo> <mn>40</mn> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mo stretchy="false">(</mo> <mn>20</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution in the circumference of the circle formula, <strong><em>(M1) </em></strong>for adding 4 times their answer to part (a) to their circumference of the circle.</p>
<p> </p>
<p>285.6637… <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (a). This <strong><em>(A1) </em></strong>may be implied by a correct rounded answer.</p>
<p> </p>
<p>285.7 (cm) <strong><em>(A1)</em>(ft)</strong> <strong><em>(C4)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(A1)</em>(ft) </strong>for rounding their answer (consistent with their method) to the nearest millimetre, irrespective of unrounded answer seen.</p>
<p>The final <strong><em>(A1)(</em>ft) </strong>is not dependent on any of the previous <strong><em>M </em></strong>marks. It is for rounding their unrounded answer correctly.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>x</mi><mo><</mo><mn>2</mn><mi mathvariant="normal">π</mi></math>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> for proofs which work from both sides to find a common expression other than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></math>.</p>
<p> </p>
<p><strong>METHOD 1 (LHS to RHS)</strong></p>
<p>attempt to use double angle formula for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> <em><strong> M1</strong></em></p>
<p>LHS <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></math> OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>=</mo></math> RHS <em><strong> AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2 (RHS to LHS)</strong></p>
<p>RHS <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></math></p>
<p> attempt to use double angle formula for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> <em><strong> M1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></math> <em><strong> A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo></math> LHS <em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to factorise <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong> A1</strong></em></p>
<p>recognition of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>⇒</mo><mfrac><mrow><mi>sin</mi><mo> </mo><mi>x</mi></mrow><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>tan</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p>one correct reference angle seen anywhere, accept degrees <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac></math>)</p>
<p> </p>
<p><strong>Note:</strong> This <em><strong>(M1)(A1)</strong></em> is independent of the previous <em><strong>M1A1</strong></em>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac><mo>,</mo><mfrac><mrow><mn>11</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math> <em><strong> A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for any two correct (radian) answers.<br>Award <em><strong>A1A0</strong></em> if additional values given with the four correct (radian) answers.<br>Award <em><strong>A1A0</strong></em> for four correct answers given in degrees.</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Three airport runways intersect to form a triangle, ABC. The length of AB is 3.1 km, AC is 2.6 km, and BC is 2.4 km.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A company is hired to cut the grass that grows in triangle ABC, but they need to know the area.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size, in degrees, of angle BÂC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area, in km<sup>2</sup>, of triangle ABC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\cos \,A = } \right)\,\,\frac{{{{2.6}^2} + {{3.1}^2} - {{2.4}^2}}}{{2\left( {2.6} \right)\left( {3.1} \right)}}">
<mrow>
<mo>(</mo>
<mrow>
<mi>cos</mi>
<mspace width="thinmathspace"></mspace>
<mi>A</mi>
<mo>=</mo>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mn>2.6</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mn>3.1</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mn>2.4</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>2.6</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3.1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted cosine rule formula, <em><strong>(A1)</strong></em> for correct substitutions.</p>
<p>48.8° (48.8381…°) <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 2.6 \times 3.1 \times {\text{sin}}\left( {48.8381 \ldots ^\circ } \right)">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>2.6</mn>
<mo>×</mo>
<mn>3.1</mn>
<mo>×</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>48.8381</mn>
<msup>
<mo>…</mo>
<mo>∘</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted area of a triangle formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>3.03 (km<sup>2</sup>) (3.033997…(km<sup>2</sup>)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows a circle with centre O and radius<em> r</em> cm.</p>
<p><img src=""></p>
<p>The points A and B lie on the circumference of the circle, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{O}}\limits^ \wedge {\text{B}}">
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>O</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>B</mtext>
</mrow>
</math></span> = <em>θ</em>. The area of the shaded sector AOB is 12 cm<sup>2</sup> and the length of arc AB is 6 cm.</p>
<p>Find the value of <em>r</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of correctly substituting into circle formula (may be seen later) <em><strong>A1A1</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\theta {r^2} = 12,\,\,r\theta = 6">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>θ</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>r</mi>
<mi>θ</mi>
<mo>=</mo>
<mn>6</mn>
</math></span></p>
<p>attempt to eliminate one variable <em><strong>(M1)</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \frac{6}{\theta },\,\,\theta = \frac{1}{r},\,\,\frac{{\frac{1}{2}\theta {r^2}}}{{r\theta }} = \frac{{12}}{6}">
<mi>r</mi>
<mo>=</mo>
<mfrac>
<mn>6</mn>
<mi>θ</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>r</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>θ</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>r</mi>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>12</mn>
</mrow>
<mn>6</mn>
</mfrac>
</math></span></p>
<p>correct elimination <em><strong>(A1)</strong></em><br><em>eg </em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \frac{6}{r} \times {r^2} = 12,\,\,\frac{1}{2}\theta \times {\left( {\frac{6}{\theta }} \right)^2} = 12,\,\,A = \frac{1}{2} \times {r^2} \times \frac{l}{r},\,\,\frac{{{r^2}}}{{2r}} = 2">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>6</mn>
<mi>r</mi>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>θ</mi>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>6</mn>
<mi>θ</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>A</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mfrac>
<mi>l</mi>
<mi>r</mi>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mi>r</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
</math></span></p>
<p>correct equation <em><strong>(A1)</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6r = 12,\,\,\frac{1}{2} \times \frac{{36}}{\theta } = 12,\,\,12 = \frac{1}{2} \times {r^2} \times \frac{6}{r}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>6</mn>
<mi>r</mi>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>36</mn>
</mrow>
<mi>θ</mi>
</mfrac>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>12</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mfrac>
<mn>6</mn>
<mi>r</mi>
</mfrac>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3r = 12,\,\,\frac{{18}}{\theta } = 12,\,\,\frac{r}{2} = 2,\,\,24 = 6r">
<mn>3</mn>
<mi>r</mi>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>18</mn>
</mrow>
<mi>θ</mi>
</mfrac>
<mo>=</mo>
<mn>12</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mi>r</mi>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>24</mn>
<mo>=</mo>
<mn>6</mn>
<mi>r</mi>
</math></span></p>
<p><em>r</em> = 4 (cm) <em><strong>A1 N2</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Solve <span class="mjpage"><math alttext="{\log _2}(2\sin x) + {\log _2}(\cos x) = - 1" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, for <span class="mjpage"><math alttext="2\pi < x < \frac{{5\pi }}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mn>2</mn> <mi>π</mi> <mo><</mo> <mi>x</mi> <mo><</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>correct application of <span class="mjpage"><math alttext="\log a + \log b = \log ab" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>log</mi> <mo></mo> <mi>a</mi> <mo>+</mo> <mi>log</mi> <mo></mo> <mi>b</mi> <mo>=</mo> <mi>log</mi> <mo></mo> <mi>a</mi> <mi>b</mi> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math alttext="\,\,\,\,\," xmlns="http://www.w3.org/1998/Math/MathML"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math alttext="{\log _2}(2\sin x\cos x),{\text{ }}\log 2 + \log (\sin x) + \log (\cos x)" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>log</mi> <mo></mo> <mn>2</mn> <mo>+</mo> <mi>log</mi> <mo></mo> <mo stretchy="false">(</mo> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>log</mi> <mo></mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span></p>
<p>correct equation without logs <strong><em>A1</em></strong></p>
<p><em>eg</em><math alttext="\,\,\,\,\," xmlns="http://www.w3.org/1998/Math/MathML"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math alttext="2\sin x\cos x = {2^{ - 1}},{\text{ }}\sin x\cos x = \frac{1}{4},{\text{ }}\sin 2x = \frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mn>2</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p>recognizing double-angle identity (seen anywhere) <strong><em>A1</em></strong></p>
<p><em>eg</em><math alttext="\,\,\,\,\," xmlns="http://www.w3.org/1998/Math/MathML"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math alttext="\log (\sin 2x),{\text{ }}2\sin x\cos x = \sin 2x,{\text{ }}\sin 2x = \frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>log</mi> <mo></mo> <mo stretchy="false">(</mo> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p>evaluating <span class="mjpage"><math alttext="{\sin ^{ - 1}}\left( {\frac{1}{2}} \right) = \frac{\pi }{6}{\text{ }}(30^\circ )" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>sin</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <msup> <mn>30</mn> <mo>∘</mo> </msup> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p>correct working <strong><em>A1</em></strong></p>
<p><em>eg</em><math alttext="\,\,\,\,\," xmlns="http://www.w3.org/1998/Math/MathML"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math alttext="x = \frac{\pi }{{12}} + 2\pi ,{\text{ }}2x = \frac{{25\pi }}{6},{\text{ }}\frac{{29\pi }}{6},{\text{ }}750^\circ ,{\text{ }}870^\circ ,{\text{ }}x = \frac{\pi }{{12}}" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>25</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>29</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msup> <mn>750</mn> <mo>∘</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msup> <mn>870</mn> <mo>∘</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span><strong>and</strong> <span class="mjpage"><math alttext="x = \frac{{5\pi }}{{12}}" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>, one correct final answer</p>
<p><span class="mjpage"><math alttext="x = \frac{{25\pi }}{{12}},{\text{ }}\frac{{29\pi }}{{12}}" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>25</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>29</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> (do not accept additional values) <strong><em>A2</em></strong> <strong><em>N0</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a ball attached to the end of a spring, which is suspended from a ceiling.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of the ball above the ground at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after being released can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the ball above the ground when it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum height of the ball above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the ball takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> seconds to return to its initial height above the ground for the first time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the first 2 seconds of its motion, determine the amount of time that the ball is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math> metres above the ground.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the rate of change of the ball’s height above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi mathvariant="normal">π</mi><msqrt><mi>q</mi></msqrt><mo> </mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>0</mn></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mn>0</mn></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn></math> (m) (above the ground) <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>uses the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced></math> which is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> (m)</p>
<p> </p>
<p><strong>OR</strong></p>
<p>the amplitude of motion is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn></math> (m) and the mean position is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn></math> (m) <strong>M1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced></math>, attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and determines that the minimum height above the ground occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mo>…</mo></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> (m)</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>4</mn></math> (m) (above the ground) <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>the ball is released from its maximum height and returns there a period later <strong>R1</strong></p>
<p>the period is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi mathvariant="normal">π</mi></mfrac><mfenced><mrow><mo>=</mo><mn>2</mn></mrow></mfenced><mo> </mo><mfenced><mi mathvariant="normal">s</mi></mfenced></math> <strong> A1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <strong> M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>…</mo></math> <strong> A1</strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>so it takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> seconds for the ball to return to its initial position for the first time <strong>AG</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math> (M1)</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></math> A1</strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mi>t</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math> (A1)</strong></p>
<p> </p>
<p><strong>Note: </strong>Accept extra correct positive solutions for <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mi>t</mi></math></strong>.</p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>4</mn></mfrac><mo> </mo><mfenced><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn></mrow></mfenced></math> A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong>A1</strong> if solutions outside <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn></math> are also stated.</p>
<p>the ball is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math> metres above the ground for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mo> </mo></math>(s)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn><mo> </mo></math>(s) <strong>A1</strong></p>
<p> </p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER<br></strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></math> <strong> (M1)</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>recognizes that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></math> is required <strong> (M1)</strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p>attempts to evaluate their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi mathvariant="normal">π</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mi mathvariant="normal">π</mi><msqrt><mn>3</mn></msqrt><mo> </mo><mfenced><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent correct answer forms where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>. For example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mi mathvariant="normal">π</mi><msqrt><mn>3</mn></msqrt></math>.</p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron in the asteroid <em>16 Psyche</em> is said to be valued at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8973</mn></math> quadrillion euros <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtext>EUR</mtext></mfenced></math>, where one quadrillion <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mn>10</mn><mn>15</mn></msup></math>.</p>
</div>
<div class="specification">
<p>James believes the asteroid is approximately spherical with radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>113</mn><mo> </mo><mtext>km</mtext></math>. He uses this information to estimate its volume.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the iron in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>×</mo><msup><mn>10</mn><mi>k</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>a</mi><mo><</mo><mn>10</mn><mo> </mo><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate James’s estimate of its volume, in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mn>3</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The actual volume of the asteroid is found to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><msup><mtext>km</mtext><mn>3</mn></msup></math>.</p>
<p>Find the percentage error in James’s estimate of the volume.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>97</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup><mo> </mo><mo> </mo><mfenced><mtext>EUR</mtext></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>8</mn><mo>.</mo><mn>973</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></mfenced></math> <em><strong>(A1)(A1) (C2)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>97</mn><mo> </mo><mo>(</mo><mn>8</mn><mo>.</mo><mn>973</mn><mo>)</mo></math>, <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></math>. Award <em><strong>(A1)(A0)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>97</mn><mtext>E</mtext><mn>18</mn></math>.<br>Award <em><strong>(A0)(A0)</strong></em> for answers of the type <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8973</mn><mo>×</mo><msup><mn>10</mn><mn>15</mn></msup></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><mo>×</mo><mi mathvariant="normal">π</mi><mo>×</mo><msup><mn>113</mn><mn>3</mn></msup></mrow><mn>3</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in volume of sphere formula.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><mn>040</mn><mo> </mo><mn>000</mn><mo> </mo><mfenced><msup><mtext>km</mtext><mn>3</mn></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>6</mn><mo>.</mo><mn>04</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo>,</mo><mo> </mo><mfrac><mrow><mn>5771588</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>6</mn><mo> </mo><mn>043</mn><mo> </mo><mn>992</mn><mo>.</mo><mn>82</mn></mrow></mfenced></math> <em><strong>(A1) (C2) </strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfrac><mrow><mn>6</mn><mo> </mo><mn>043</mn><mo> </mo><mn>992</mn><mo>.</mo><mn>82</mn><mo>-</mo><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></mfrac></mfenced><mo>×</mo><mn>100</mn></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into the percentage error formula (accept a consistent absence of “<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math>” from all terms).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>494</mn><mo> </mo><mfenced><mo>%</mo></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>494026</mn><mo>…</mo><mfenced><mo>%</mo></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2) </strong></em></p>
<p><strong><em><br></em></strong><strong>Note:</strong> Follow through from their answer to part (b). If the final answer is negative, award at most <em><strong>(M1)(A0)</strong></em>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors <em><strong>a</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 0 \\ 3 \\ p \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 0 \\ 6 \\ {18} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>18</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> for which <em><strong>a</strong></em> and <em><strong>b</strong></em> are</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>parallel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>perpendicular.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg <strong>b</strong></em> = 2<em><strong>a</strong></em>, a = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span><em><strong>b</strong></em>, cos <em>θ </em>= 1, <em><strong>a</strong></em>•<em><strong>b</strong></em> = −|<em><strong>a</strong></em>||<em><strong>b</strong></em>|, 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = 18</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = 9 <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of scalar product<em> <strong>(M1)</strong></em></p>
<p><em>eg </em><em><strong>a</strong></em>•<em><strong>b</strong></em>, (0)(0) + (3)(6) + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>(18)</p>
<p>recognizing <em><strong>a</strong></em>•<em><strong>b</strong></em> = 0 (seen anywhere) <em><strong>(M1)</strong></em></p>
<p>correct working<strong> (A1)</strong></p>
<p><em>eg</em> 18 + 18<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = 0, 18<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = −18 <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = −1 <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylinder with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The sum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
<mi>h</mi>
</math></span> for this cylinder is 12 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation for the area, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, of the <strong>curved</strong> surface in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>A</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> when the area of the curved surface is maximized.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <em><strong>(A1)(M1) (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r + h = 12">
<mi>r</mi>
<mo>+</mo>
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 12 - r">
<mi>h</mi>
<mo>=</mo>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</math></span> seen. Award <em><strong>(M1)</strong></em> for correctly substituting into curved surface area of a cylinder. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2\pi r\left( {12 - r} \right)">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
<mo>−</mo>
<mi>r</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong>OR </strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 24\pi r - 2\pi {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>24</mn>
<mi>π</mi>
<mi>r</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi">
<mn>24</mn>
<mi>π</mi>
</math></span> and <em><strong>(A1)</strong></em><strong>(ft)</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4\pi r">
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
</math></span> . Follow through from part (a). Award at most <em><strong>(A1)</strong></em><strong>(ft)<em>(A0)</em></strong> if additional terms are seen.</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\pi - 4\pi r = 0">
<mn>24</mn>
<mi>π</mi>
<mo>−</mo>
<mn>4</mn>
<mi>π</mi>
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p style="text-align: left;"><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting <em>their</em> part (b) equal to zero.</p>
<p style="text-align: left;">6 (cm) <strong><em>(A1)</em>(ft)</strong><em><strong> (C2)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Follow through from part (b).</p>
<p style="text-align: left;"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be an <strong>obtuse</strong> angle such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta = \frac{3}{5}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ<!-- θ --></mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>5</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{sin}}\,x - \frac{{3x}}{4}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mfrac>
<mrow>
<mn>3</mn>
<mi>x</mi>
</mrow>
<mn>4</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> passes through the origin and has a gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>. Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 3. Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is a tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at point P.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> sketch of triangle with sides 3 and 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^2}\,\theta = 1 - {\text{si}}{{\text{n}}^2}\,\theta "> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> missing side is 4 (may be seen in sketch), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = - \frac{4}{5}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - \frac{3}{4}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span> <em><strong>A2 N4</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of either gradient <strong>or</strong> origin into equation of line <em><strong>(A1)</strong></em></p>
<p>(do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + b"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </math></span>)</p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x\,{\text{tan}}\,\theta "> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = m\left( {x - 0} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx"> <mi>y</mi> <mo>=</mo> <mi>m</mi> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - \frac{3}{4}x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span> <em><strong>A2 N4</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = - \frac{3}{4}x"> <mi>L</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mi>x</mi> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to equate <strong>their</strong> gradients <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = {\text{tan}}\,\theta "> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f' = - \frac{3}{4}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,{\text{cos}}\,x + {{\text{e}}^x}\,{\text{sin}}\,x - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right) - \frac{3}{4} = - \frac{3}{4}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mo>=</mo> <mo>−</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span></p>
<p>correct equation without <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = - {\text{cos}}\,x"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x + {\text{sin}}\,x = 0"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {\text{sin}}\,x}}{{{\text{cos}}\,x}} = 1"> <mfrac> <mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = - 1"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 135^\circ "> <mi>x</mi> <mo>=</mo> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span> (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="135^\circ "> <msup> <mn>135</mn> <mo>∘</mo> </msup> </math></span>) <em><strong>A1 N1</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if additional answers are given.</p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>4</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>></mo><mn>0</mn></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained by two transformations of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe these two transformations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>)</mo></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>7</mn></math>, find the smallest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>translation (shift) by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></math> to the right/positive horizontal direction <em><strong>A1</strong></em></p>
<p>translation (shift) by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> upwards/positive vertical direction <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> accept translation by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd><mi>q</mi></mtd></mtr></mtable></mfenced></math></p>
<p><strong>Do not accept</strong> ‘move’ for translation/shift.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>minimum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn></math> (may be seen in sketch) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi><mo>≥</mo><mn>7</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>≥</mo><mn>8</mn><mo>.</mo><mn>5</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>5</mn></math>) <em><strong>A1</strong></em></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>8</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>r</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>4</mn><mo> </mo><mi>sin</mi><mfenced><mfrac><mrow><mo>-</mo><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>8</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mn>8</mn><mo>.</mo><mn>5</mn></math> <em><strong>(A1)</strong></em></p>
<p>smallest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> to find an expression (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>) in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>r</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>4</mn><mo> </mo><mi>sin</mi><mfenced><mfrac><mrow><mo>-</mo><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>r</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo> </mo><mn>6</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi></math> <em><strong>A1</strong></em></p>
<p>minimum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi><mo>≥</mo><mn>7</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>6</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>≥</mo><mn>7</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>) <em><strong>(A1)</strong></em></p>
<p>smallest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi><mo>=</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi></math> is a maximum <em><strong>(M1)</strong></em></p>
<p>amplitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> <em><strong>(A1)</strong></em></p>
<p>attempt to find least maximum <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>2</mn><mo>×</mo><mn>4</mn><mo>+</mo><mn>7</mn></math></p>
<p>smallest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates knew aspects of the transformations performed but some were unable to correctly describe them fully, e.g., omitting direction (right/up/positive) or using 'move' instead of translate/shift. Each description requires three parts: transformation type, size and direction. e.g., translation of q units up. For part (b) few candidates were able to fully navigate the reasoning required in this question. A common error was to evaluate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mfrac><mrow><mo>-</mo><mn>3</mn><mi>π</mi></mrow><mn>2</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math>, instead of 1. Those who used sketches to assist in their thinking were typically more successful.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand and simplify <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>a</mi><mo>)</mo></mrow><mn>3</mn></msup></math> in ascending powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable substitution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mi>m</mi></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is a positive real constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;">attempt to use binomial expansion <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mmultiscripts><mi>C</mi><mn>1</mn><mprescripts></mprescripts><mn>3</mn></mmultiscripts><mo>×</mo><mn>1</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>2</mn><mprescripts></mprescripts><mn>3</mn></mmultiscripts><mo>×</mo><mn>1</mn><mo>×</mo><msup><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>×</mo><msup><mfenced><mrow><mo>-</mo><mi>a</mi></mrow></mfenced><mn>3</mn></msup></math></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi>a</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>-</mo><mn>3</mn><mi>a</mi><mo>+</mo><mn>3</mn><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><msup><mi>a</mi><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p style="text-align:left;">So, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;">attempt to substitute any double angle rule for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></math> <em><strong>AG</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> Allow working RHS to LHS.</p>
<p style="text-align:left;"> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">recognizing to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>×</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>EITHER</strong></p>
<p style="text-align:left;">applies integration by inspection <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn><mo>∫</mo><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>×</mo><msup><mfenced><mrow><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mn>6</mn></msup></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>0</mn><mi>m</mi></msubsup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mi>cos</mi><mo> </mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mn>32</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo> </mo><mfenced><mrow><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mo>∫</mo><mn>32</mn><msup><mi>u</mi><mn>6</mn></msup><mo> </mo><mo>d</mo><mi>u</mi></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>u</mi><mn>7</mn></msup><mo> </mo><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>0</mn><mi>m</mi></msubsup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>u</mi><mn>7</mn></msup></mrow></mfenced><mn>0</mn><mrow><mi>sin</mi><mo> </mo><mi>m</mi></mrow></msubsup><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math> <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mfenced><mrow><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup></mrow></mfenced><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math> <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>7</mn></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></mrow></mfenced><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>m</mi></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><mn>7</mn></mfrac><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>+</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi><mo>=</mo><mfrac><mn>1</mn><mn>128</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><msup><mn>2</mn><mn>7</mn></msup></mfrac></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>m</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates successfully expanded the binomial, with the most common error being to omit the negative sign with a. The connection between (a)(i) and (ii) was often noted but not fully utilised with candidates embarking on unnecessary complex algebraic expansions of expressions involving double angle rules. Candidates often struggled to apply inspection or substitution when integrating. As a 'show that' question, b(i) provided a useful result to be utilised in (ii). So even without successfully completing (i) candidates could apply it in part (ii). Not many managed to do so.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>AC is a vertical communications tower with its base at C.</p>
<p>The tower has an observation deck, D, three quarters of the way to the top of the tower, A.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_10.32.25.png" alt="N16/5/MATSD/SP1/ENG/TZ0/11"></p>
<p>From a point B, on horizontal ground 250 m from C, the angle of elevation of D is 48°.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate CD, the height of the observation deck above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle of depression from A to B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan 48^\circ = \frac{{{\text{CD}}}}{{250}}"> <mi>tan</mi> <mo></mo> <msup> <mn>48</mn> <mo>∘</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>CD</mtext> </mrow> </mrow> <mrow> <mn>250</mn> </mrow> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the tangent ratio.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({\text{CD}} = ){\text{ }}278{\text{ }}({\text{m}}){\text{ }}(277.653 \ldots )"> <mo stretchy="false">(</mo> <mrow> <mtext>CD</mtext> </mrow> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>278</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>m</mtext> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>277.653</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1) (C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan {\text{ABC (or equivalent)}} = \frac{{\frac{4}{3} \times 277.653 \ldots }}{{250}}"> <mi>tan</mi> <mo></mo> <mrow> <mtext>ABC (or equivalent)</mtext> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> <mo>×</mo> <mn>277.653</mn> <mo>…</mo> </mrow> <mrow> <mn>250</mn> </mrow> </mfrac> </math></span> <strong><em>(M1)(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span> multiplying their part (a), <strong><em>(M1) </em></strong>for substitution into the tangent ratio, <strong><em>(M1) </em></strong>for correct substitution.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="90 - {\tan ^{ - 1}}\left( {\frac{{250}}{{\frac{4}{3} \times 277.653 \ldots }}} \right)"> <mn>90</mn> <mo>−</mo> <mrow> <msup> <mi>tan</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>250</mn> </mrow> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> <mo>×</mo> <mn>277.653</mn> <mo>…</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(M1)(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span> multiplying their part (a), <strong><em>(M1) </em></strong>for substitution into the tangent ratio, <strong><em>(M1) </em></strong>for subtracting from 90 and for correct substitution.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{(angle of depression}} = {\text{) }}56.0^\circ {\text{ }}(55.9687 \ldots )"> <mrow> <mtext>(angle of depression</mtext> </mrow> <mo>=</mo> <mrow> <mtext>) </mtext> </mrow> <msup> <mn>56.0</mn> <mo>∘</mo> </msup> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>55.9687</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em>(ft) <em>(C4)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> have coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>9</mn><mo>,</mo><mo> </mo><mi>m</mi><mo>,</mo><mo> </mo><mo>-</mo><mn>6</mn></mrow></mfenced></math> respectively.</p>
</div>
<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, which passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd></mtr><mtr><mtd><mn>24</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>s</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider a unit vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">u</mi><mo>=</mo><mi>p</mi><mi mathvariant="bold-italic">i</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi mathvariant="bold-italic">j</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="bold-italic">k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>></mo><mn>0</mn></math>.</p>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mn>9</mn><mi mathvariant="bold-italic">u</mi></math>.</p>
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OB</mtext><mo>→</mo></mover><mo>-</mo><mover><mtext>OA</mtext><mo>→</mo></mover><mo> </mo><mo> </mo><mo>,</mo><mo> </mo><mo> </mo><mtext>A</mtext><mo>-</mo><mtext>B</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mi>m</mi><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>8</mn></mtd></mtr></mtable></mfenced></math> <em><strong> A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo> </mo><mo>,</mo><mo> </mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd></mtr><mtr><mtd><mn>24</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>s</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math></p>
<p>one correct equation <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo>+</mo><mn>2</mn><mi>s</mi><mo>=</mo><mn>9</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>6</mn><mo>=</mo><mn>24</mn><mo>-</mo><mn>5</mn><mi>s</mi></math></p>
<p>correct value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mn>6</mn></math></p>
<p>substituting <strong>their</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> value into their expression/equation to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> <em><strong>(M1)</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>19</mn><mo>+</mo><mn>6</mn><mo>×</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>5</mn></math> <em><strong> A1 N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn><mi>p</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mi>C</mi><mo>=</mo><mn>9</mn><mi mathvariant="bold-italic">u</mi><mo>+</mo><mi>B</mi><mo> </mo><mo>,</mo><mo> </mo><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mi>x</mi><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mi>y</mi><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mi>z</mi><mo>+</mo><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>correct working to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>9</mn><mi>p</mi><mo>+</mo><mn>9</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mtext>C</mtext><mo>=</mo><mn>9</mn><mfenced><mtable><mtr><mtd><mi>p</mi></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mo>-</mo><mn>3</mn></math></p>
<p>correct approach to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">u</mi></mfenced></math> (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>4</mn><mn>9</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>9</mn></mfrac></msqrt></math></p>
<p>recognizing unit vector has magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">u</mi></mfenced><mo>=</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mfrac><mn>1</mn><mn>3</mn></mfrac></mfenced><mn>2</mn></msup></msqrt><mo>=</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>5</mn><mn>9</mn></mfrac><mo>=</mo><mn>1</mn></math></p>
<p>correct working <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>4</mn><mn>9</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>substituting <strong>their</strong> value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mi>y</mi><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mi>z</mi><mo>+</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mtext>C</mtext><mo>=</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mtext>C</mtext><mo>=</mo><mn>9</mn><mfenced><mtable><mtr><mtd><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>1</mn><mn>3</mn></mfrac></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>9</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>-</mo><mn>9</mn><mo>=</mo><mn>6</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mfenced><mrow><mn>15</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></mrow></mfenced></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>15</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>) <em><strong> A1 N4</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The marks for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> are independent of the first two marks.<br>For example, it is possible to award marks such as <em><strong>(M0)(A0)A1(M1)(A1)A1 (M0)A0</strong></em> or <em><strong>(M0)(A0)A1(M1)(A0)A0 (M1)A0</strong></em>.</p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn></math> may be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>correct substitution of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>correct substitution using double-angle identities <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempting to factorise <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>−</mo><mn>2</mn><mo>)</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempting to use the quadratic formula <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>±</mo><msqrt><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>2</mn><mo>×</mo><mn>2</mn></msqrt></mrow><mn>4</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>5</mn><mo>±</mo><mn>3</mn></mrow><mn>4</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>10</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>2</mn><mi>x</mi></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mover><mtext>C</mtext><mo>^</mo></mover><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math>, find the area of the triangle.</p>
<p>Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>p</mi><msqrt><mi>q</mi></msqrt></mrow><mn>2</mn></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>attempt to use the cosine rule to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mi>x</mi></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mfenced><mfrac><mn>3</mn><mn>4</mn></mfrac></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>100</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>50</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mn>50</mn></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mover><mi>C</mi><mo>^</mo></mover></math> (seen anywhere) <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mover><mi>C</mi><mo>^</mo></mover><mo>+</mo><msup><mfenced><mfrac><mn>3</mn><mn>4</mn></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mn>3</mn><mn>2</mn></msup><mo>=</mo><msup><mn>4</mn><mn>2</mn></msup></math> or right triangle with side <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> and hypotenuse <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mover><mi>C</mi><mo>^</mo></mover><mo>=</mo><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac></math> <em><strong> (A1)</strong></em></p>
<p><strong><br>Note:</strong> The marks for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mover><mi>C</mi><mo>^</mo></mover></math> may be awarded independently of the first three marks for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p><br>correct substitution into the area formula using their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math>) and their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mover><mi>C</mi><mo>^</mo></mover></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>5</mn><msqrt><mn>2</mn></msqrt><mo>×</mo><mn>10</mn><msqrt><mn>2</mn></msqrt><mo>×</mo><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><msqrt><mn>50</mn></msqrt><mo>×</mo><mn>2</mn><msqrt><mn>50</mn></msqrt><mo>×</mo><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mrow><mn>25</mn><msqrt><mn>7</mn></msqrt></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to find the height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, of the triangle in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mfrac><mn>5</mn><mn>4</mn></mfrac><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mn>10</mn><mn>2</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p>equating their expressions for either <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mn>2</mn></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mn>10</mn><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mfrac><mn>5</mn><mn>4</mn></mfrac><mi>x</mi></mrow></mfenced><mn>2</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>100</mn><mo>-</mo><mfrac><mn>25</mn><mn>16</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac><mi>x</mi></math> (or equivalent) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>50</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mn>50</mn></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>correct substitution into the area formula using their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math>) <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>2</mn><msqrt><mn>50</mn></msqrt><mo>×</mo><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac><msqrt><mn>50</mn></msqrt></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>5</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced><mfenced><mrow><mfrac><msqrt><mn>7</mn></msqrt><mn>4</mn></mfrac><mn>5</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mrow><mn>25</mn><msqrt><mn>7</mn></msqrt></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Find the least positive value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>determines <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math>) as the first quadrant (reference) angle <em><strong>(</strong><strong>A1)</strong></em></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>,</mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac><mfenced><mrow><mo>,</mo><mo>…</mo></mrow></mfenced></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>⇒</mo><mi>x</mi><mo><</mo><mn>0</mn></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> is rejected <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>17</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac></math> (must be in radians) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question proved to be a struggle for many candidates, and some candidates made no attempt here. While a good number of candidates recognized the reference angle of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>π</mi><mn>4</mn></mfrac></math>, this led to a final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>π</mi><mn>6</mn></mfrac></math>, which many left as their final answer. In other cases, some candidates heeded the requirement that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> must be a positive value, however they gave an incorrect final answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>11</mn><mi>π</mi></mrow><mn>6</mn></mfrac></math>. Few candidates correctly rejected their initial reference angle of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>π</mi><mn>4</mn></mfrac></math> and correctly solved an equation using <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>π</mi><mn>3</mn></mfrac><mo>=</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mn>4</mn></mfrac></math>.</p>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, all lengths are in metres and time is in seconds.</strong></p>
<p>Consider two particles, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math>, which start to move at the same time.</p>
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> moves in a straight line such that its displacement from a fixed-point is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> also moves in a straight line. The position of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>.</p>
<p>The speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> is greater than the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mi>q</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognizing velocity is derivative of displacement <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mtext>d</mtext><mi>s</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mtext>d</mtext><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p>velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>14</mn><mn>4</mn></mfrac><mi>t</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></mfenced><mo> </mo><mo>,</mo><mo> </mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math> , velocity<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p>correct speed <em><strong>(A1)</strong></em></p>
<p><em>eg </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>recognizing relationship between speed and velocity (may be seen in inequality/equation) <em><strong>R1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced></math> , speed = | velocity | , graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed , <img src=""> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> speed <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi><mo> </mo><mo>,</mo><mo> </mo><msub><mi>P</mi><mn>2</mn></msub></math> velocity <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>5</mn></math></p>
<p>correct inequality or equation that compares speed or velocity (accept any variable for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>) <em><strong>A1</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>t</mi></mrow></mfenced><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo><</mo><mo>-</mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>></mo><mn>5</mn><mo> </mo><mo>,</mo><mo> </mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mi>q</mi><mo>=</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> (seconds) (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math> , do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>10</mn><mn>7</mn></mfrac></math>) <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the last two <em><strong>A1</strong></em> marks without the <em><strong>R1</strong></em>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \theta = \frac{{\sqrt 5 }}{3}">
<mi>sin</mi>
<mo><!-- --></mo>
<mi>θ<!-- θ --></mi>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> is acute.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta ">
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos 2\theta ">
<mi>cos</mi>
<mo></mo>
<mn>2</mn>
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>right triangle, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\cos ^2}\theta = 1 - {\sin ^2}\theta ">
<mrow>
<msup>
<mi>cos</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>sin</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
</math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span>missing side is 2, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {1 - {{\left( {\frac{{\sqrt 5 }}{3}} \right)}^2}} ">
<msqrt>
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{2}{3}">
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos 2\theta ">
<mi>cos</mi>
<mo></mo>
<mn>2</mn>
<mi>θ</mi>
</math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times {\left( {\frac{2}{3}} \right)^2} - 1,{\text{ }}1 - 2{\left( {\frac{{\sqrt 5 }}{3}} \right)^2},{\text{ }}{\left( {\frac{2}{3}} \right)^2} - {\left( {\frac{{\sqrt 5 }}{3}} \right)^2}">
<mn>2</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos 2\theta = - \frac{1}{9}">
<mi>cos</mi>
<mo></mo>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A triangular postage stamp, ABC, is shown in the diagram below, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 5{\text{ cm}},{\rm{ B\hat AC}} = 34^\circ ,{\rm{ A\hat BC}} = 26^\circ ">
<mrow>
<mtext>AB</mtext>
</mrow>
<mo>=</mo>
<mn>5</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
<mo>,</mo>
<mrow>
<mrow>
<mi mathvariant="normal">B</mi>
<mrow>
<mover>
<mi mathvariant="normal">A</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>=</mo>
<msup>
<mn>34</mn>
<mo>∘<!-- ∘ --></mo>
</msup>
<mo>,</mo>
<mrow>
<mrow>
<mi mathvariant="normal">A</mi>
<mrow>
<mover>
<mi mathvariant="normal">B</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>=</mo>
<msup>
<mn>26</mn>
<mo>∘<!-- ∘ --></mo>
</msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat CB}} = 120^\circ ">
<mrow>
<mrow>
<mi mathvariant="normal">A</mi>
<mrow>
<mover>
<mi mathvariant="normal">C</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">B</mi>
</mrow>
</mrow>
<mo>=</mo>
<msup>
<mn>120</mn>
<mo>∘<!-- ∘ --></mo>
</msup>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.34.31.png" alt="M17/5/MATSD/SP1/ENG/TZ1/13"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of BC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the postage stamp.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{BC}}}}{{\sin 34^\circ }} = \frac{5}{{\sin 120^\circ }}">
<mfrac>
<mrow>
<mrow>
<mtext>BC</mtext>
</mrow>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<msup>
<mn>34</mn>
<mo>∘</mo>
</msup>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mrow>
<mi>sin</mi>
<mo></mo>
<msup>
<mn>120</mn>
<mo>∘</mo>
</msup>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substituted sine rule formula, <strong><em>(A1) </em></strong>for correct substitutions.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = 3.23{\text{ (cm) }}\left( {3.22850 \ldots {\text{ (cm)}}} \right)">
<mrow>
<mtext>BC</mtext>
</mrow>
<mo>=</mo>
<mn>3.23</mn>
<mrow>
<mtext> (cm) </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3.22850</mn>
<mo>…</mo>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong> <strong><em>(C3)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}(5)(3.22850)\sin 26^\circ ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>5</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>3.22850</mn>
<mo stretchy="false">)</mo>
<mi>sin</mi>
<mo></mo>
<msup>
<mn>26</mn>
<mo>∘</mo>
</msup>
</math></span> <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substituted area of a triangle formula, <strong><em>(A1) </em></strong>for correct substitutions.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3.54{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}\left( {3.53820 \ldots {\text{ }}({\text{c}}{{\text{m}}^2})} \right)">
<mo>=</mo>
<mn>3.54</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3.53820</mn>
<mo>…</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em>(ft)</strong> <strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows triangle ABC, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 3{\text{ cm}}">
<mrow>
<mtext>AB</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = 8{\text{ cm}}">
<mrow>
<mtext>BC</mtext>
</mrow>
<mo>=</mo>
<mn>8</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat BC = }}\frac{\pi }{3}">
<mrow>
<mrow>
<mi mathvariant="normal">A</mi>
<mrow>
<mover>
<mi mathvariant="normal">B</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
<mo>=</mo>
</mrow>
</mrow>
<mfrac>
<mi>π<!-- π --></mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.17.57.png" alt="N17/5/MATME/SP1/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 7{\text{ cm}}">
<mrow>
<mtext>AC</mtext>
</mrow>
<mo>=</mo>
<mn>7</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_10.50.00.png" alt="N17/5/MATME/SP1/ENG/TZ0/04.b"></p>
<p>Find the exact perimeter of this shape.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>evidence of choosing the cosine rule <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{c^2} = {a^2} + {b^2} - ab\cos C">
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mi>a</mi>
<mi>b</mi>
<mi>cos</mi>
<mo></mo>
<mi>C</mi>
</math></span></p>
<p>correct substitution into RHS of cosine rule <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{3^2} + {8^2} - 2 \times 3 \times 8 \times \cos \frac{\pi }{3}">
<mrow>
<msup>
<mn>3</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mn>8</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mo>×</mo>
<mn>3</mn>
<mo>×</mo>
<mn>8</mn>
<mo>×</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span></p>
<p>evidence of correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \frac{\pi }{3}">
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span> (may be seen anywhere, including in cosine rule) <strong><em>A1</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \frac{\pi }{3} = \frac{1}{2},{\text{ A}}{{\text{C}}^2} = 9 + 64 - \left( {48 \times \frac{1}{2}} \right),{\text{ }}9 + 64 - 24">
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> A</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>C</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>9</mn>
<mo>+</mo>
<mn>64</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>48</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>9</mn>
<mo>+</mo>
<mn>64</mn>
<mo>−</mo>
<mn>24</mn>
</math></span></p>
<p>correct working clearly leading to answer <strong><em>A1</em></strong></p>
<p>e<em>g</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}{{\text{C}}^2} = 49,{\text{ }}b = \sqrt {49} ">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>C</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>49</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<msqrt>
<mn>49</mn>
</msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 7{\text{ (cm)}}">
<mrow>
<mtext>AC</mtext>
</mrow>
<mo>=</mo>
<mn>7</mn>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</math></span> <strong><em>AG N0</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award no marks if the only working seen is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}{{\text{C}}^2} = 49">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>C</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>49</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = \sqrt {49} ">
<mrow>
<mtext>AC</mtext>
</mrow>
<mo>=</mo>
<msqrt>
<mn>49</mn>
</msqrt>
</math></span> (or similar).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution for semicircle <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{semicircle}} = \frac{1}{2}(2\pi \times 3.5),{\text{ }}\frac{1}{2} \times \pi \times 7,{\text{ }}3.5\pi ">
<mrow>
<mtext>semicircle</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>π</mi>
<mo>×</mo>
<mn>3.5</mn>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mi>π</mi>
<mo>×</mo>
<mn>7</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3.5</mn>
<mi>π</mi>
</math></span></p>
<p>valid approach (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{perimeter}} = {\text{AB}} + {\text{BC}} + {\text{semicircle, }}3 + 8 + \left( {\frac{1}{2} \times 2 \times \pi \times \frac{7}{2}} \right),{\text{ }}8 + 3 + 3.5\pi ">
<mrow>
<mtext>perimeter</mtext>
</mrow>
<mo>=</mo>
<mrow>
<mtext>AB</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>BC</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>semicircle, </mtext>
</mrow>
<mn>3</mn>
<mo>+</mo>
<mn>8</mn>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>2</mn>
<mo>×</mo>
<mi>π</mi>
<mo>×</mo>
<mfrac>
<mn>7</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>8</mn>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mn>3.5</mn>
<mi>π</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11 + \frac{7}{2}\pi {\text{ }}( = 3.5\pi + 11){\text{ (cm)}}">
<mn>11</mn>
<mo>+</mo>
<mfrac>
<mn>7</mn>
<mn>2</mn>
</mfrac>
<mi>π</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>3.5</mn>
<mi>π</mi>
<mo>+</mo>
<mn>11</mn>
<mo stretchy="false">)</mo>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</math></span> <strong><em>A1 N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.<br>This is shown in the following diagram.</p>
<p><img src=""></p>
<p>The vectors <em><strong>p</strong></em> , <em><strong>q</strong></em> and <em><strong>r</strong></em> are shown on the diagram.</p>
<p>Find <em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 </strong>(using |<em><strong>p</strong></em>| |2<em><strong>q</strong></em>| cos<em>θ</em>)</p>
<p>finding <em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r (A1)</strong></em></p>
<p><em>eg </em> 2<em><strong>q</strong></em>, <img src=""></p>
<p>| <em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r </strong></em>| = 2 × 3 (= 6) (seen anywhere) <em><strong>A1</strong></em></p>
<p>correct angle between <em><strong>p</strong></em> and <em><strong>q</strong></em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{3}"> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> (accept 60°)</p>
<p>substitution of <strong>their</strong> values <em><strong>(M1)</strong></em></p>
<p><em>eg</em> 3 × 6 × cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct value for cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>) = 9 <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (scalar product using distributive law)</p>
<p>correct expression for scalar distribution <em><strong>(A1)</strong></em></p>
<p>eg <em><strong>p</strong></em>• <em><strong>p</strong></em> + <em><strong>p</strong></em>•<em><strong>q</strong></em> + <em><strong>p</strong></em>•<em><strong>r</strong></em></p>
<p>three correct angles between the vector pairs (seen anywhere) <em><strong>(A2)</strong></em></p>
<p><em>eg </em> 0° between <em><strong>p</strong></em> and <em><strong>p</strong></em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{3}"> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> between <em><strong>p</strong></em> and <em><strong>q</strong></em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{3}"> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span> between <em><strong>p</strong></em> and <em><strong>r</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for only two correct angles.</p>
<p>substitution of <strong>their</strong> values <em><strong>(M1)</strong></em></p>
<p><em>eg </em> 3.3.cos0 +3.3.cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{3}"> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span> + 3.3.cos120</p>
<p>one correct value for cos0, cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> or cos<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{2\pi }{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>) = 9 <em><strong> A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong> (scalar product using relative position vectors)</p>
<p>valid attempt to find one component of <em><strong>p</strong></em> or <em><strong>r</strong></em> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> sin 60 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{3}"> <mfrac> <mi>x</mi> <mn>3</mn> </mfrac> </math></span>, cos 60 = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{3}"> <mfrac> <mi>x</mi> <mn>3</mn> </mfrac> </math></span>, one correct value <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2},\,\,\frac{{3\sqrt 3 }}{2},\,\,\frac{{ - 3\sqrt 3 }}{2}"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mo>−</mo> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p>one correct vector (two or three dimensions) (seen anywhere) <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \left( \begin{gathered} \,\,\,\frac{3}{2} \hfill \\ \frac{{3\sqrt 3 }}{2} \hfill \\ \end{gathered} \right),\,\,q = \left( \begin{gathered} 3 \hfill \\ 0 \hfill \\ \end{gathered} \right),\,\,r = \left( \begin{gathered} \,\,\,\,\frac{3}{2} \hfill \\ - \frac{{3\sqrt 3 }}{2} \hfill \\ \,\,\,\,0 \hfill \\ \end{gathered} \right)"> <mi>p</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>q</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>−</mo> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span></p>
<p>three correct vectors <em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r </strong></em>= 2<em><strong>q</strong></em> <em><strong>(A1)</strong></em></p>
<p><em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r </strong></em>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 6 \hfill \\ 0 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 6 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right)"> <mrow> <mo>(</mo> <mtable displaystyle="true" columnspacing="1em" rowspacing="3pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </math></span> (seen anywhere, including scalar product) <em><strong>(A1)</strong></em></p>
<p>correct working <em><strong>(A1)</strong></em><br><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{3}{2} \times 6} \right) + \left( {\frac{{3\sqrt 3 }}{2} \times 0} \right),\,\,9 + 0 + 0"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>×</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>9</mn> <mo>+</mo> <mn>0</mn> <mo>+</mo> <mn>0</mn> </math></span></p>
<p><em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>) = 9 <em><strong> A1 N3</strong></em></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Point A has coordinates (−4, −12, 1) and point B has coordinates (2, −4, −4).</p>
</div>
<div class="specification">
<p>The line <em>L</em> passes through A and B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <em>L</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point <em>C</em> (<em>k</em> , 12 , −<em>k</em>) is on <em>L</em>. Show that <em>k</em> = 14.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mspace width="thinmathspace"></mspace>
<mo>∙</mo>
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of angle OBA.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point D is also on <em>L</em> and has coordinates (8, 4, −9).</p>
<p>Find the area of triangle OCD.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>correct approach <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AO}}}\limits^ \to \,\, + \,\,\mathop {{\text{OB}}}\limits^ \to ,\,\,\,{\text{B}} - {\text{A}}\,{\text{, }}\,\left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right) - \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>AO</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>+</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>B</mtext>
</mrow>
<mo>−</mo>
<mrow>
<mtext>A</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>, </mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong>AG N0</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any correct equation in the form <em><strong>r</strong></em> = <em><strong>a</strong></em> + <em>t<strong>b</strong></em> (any parameter for <em>t</em>) <em><strong>A2 N2</strong></em></p>
<p>where <strong><em>a</em></strong> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>b</strong></em> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p><em>eg</em> <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right),\,\,\left( {x,\,\,y,\,\,z} \right) = \left( {2,\,\, - 4,\,\, - 4} \right) + t\left( {6,\,\,8,\,\, - 5} \right),">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>z</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</math></span> <em><strong>r </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \, - 4 + 6t \hfill \\ - 12 + 8t \hfill \\ \,\,\,1 - 5t \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
<mo>+</mo>
<mn>6</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
<mo>+</mo>
<mn>8</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
<mo>−</mo>
<mn>5</mn>
<mi>t</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for the form <em><strong>a</strong></em> + <em>t<strong>b</strong></em>, <em><strong>A1</strong></em> for the form <em><strong>L</strong></em> = <em><strong>a</strong></em> + <em>t<strong>b</strong></em>, <em><strong>A0</strong></em> for the form <em><strong>r</strong></em> = <em><strong>b</strong></em> + <em>t<strong>a</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong> (solving for <em>t</em>)</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right),\,\,\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mi>k</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mi>k</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p>one correct equation <em><strong>A1</strong></em></p>
<p>eg −4 + 8<em>t</em> = 12, −12 + 8<em>t</em> = 12</p>
<p>correct value for <em>t <strong>(A1)</strong></em></p>
<p><em>eg t</em> = 2 or 3</p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg </em> 2 + 6(2), −4 + 6(3), −[1 + 3(−5)]</p>
<p><em>k</em> = 14 <em><strong>AG N0</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (solving simultaneously)</p>
<p>valid approach <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \,\,2 \hfill \\ - 4 \hfill \\ - 4 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right),\,\,\left( \begin{gathered} \,k \hfill \\ 12 \hfill \\ - k \hfill \\ \end{gathered} \right) = \left( \begin{gathered} \, - 4 \hfill \\ - 12 \hfill \\ \,\,\,1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mi>k</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mi>k</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mi>k</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p>two correct equations in <em><strong>A1</strong></em></p>
<p><em>eg k</em> = −4 + 6<em>t,</em> −<em>k</em> = 1 −5<em>t</em></p>
<p><strong>EITHER</strong> (eliminating <em>k</em>)</p>
<p>correct value for <em>t</em> <em><strong>(A1)</strong></em></p>
<p><em>eg t</em> = 2 or 3</p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg </em> 2 + 6(2), −4 + 6(3)</p>
<p><strong>OR</strong> (eliminating <em>t</em>)</p>
<p>correct equation(s) <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 5<em>k</em> + 20 = 30<em>t</em> <strong>and </strong>−6<em>k</em> − 6 = 30<em>t</em>, −<em>k</em> = 1 − 5<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{k + 4}}{6}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>k</mi>
<mo>+</mo>
<mn>4</mn>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working clearly leading to <em>k</em> = 14 <em><strong>A1</strong></em></p>
<p><em>eg </em>−<em>k</em> + 14 = 0, −6<em>k</em> = 6 −5<em>k</em> − 20, 5<em>k</em> = −20 + 6(1 + <em>k</em>)</p>
<p><strong>THEN </strong></p>
<p><em>k</em> = 14 <em><strong>AG N0</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into scalar product <em><strong>A1</strong></em></p>
<p><em>eg </em>(2)(6) − (4)(8) − (4)(−5), 12 − 32 + 20</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mspace width="thinmathspace"></mspace>
<mo>∙</mo>
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span> = 0 <em><strong>A1 N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}\mathop {\text{B}}\limits^ \wedge {\text{A}} = \frac{\pi }{2},\,\,90^\circ \,\,\,\,\,\left( {{\text{accept}}\,\frac{{3\pi }}{2},\,\,270^\circ } \right)\,">
<mrow>
<mtext>O</mtext>
</mrow>
<mover>
<mrow>
<mtext>B</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>A</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msup>
<mn>90</mn>
<mo>∘</mo>
</msup>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>accept</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mn>3</mn>
<mi>π</mi>
</mrow>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<msup>
<mn>270</mn>
<mo>∘</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
</math></span> <strong><em>A1 N1</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × height × CD)</p>
<p>recognizing that OB is altitude of triangle with base CD (seen anywhere) <em><strong> M1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \left| {\mathop {{\text{OB}}}\limits^ \to } \right| \times \left| {\mathop {{\text{CD}}}\limits^ \to } \right|,\,\,{\text{OB}} \bot {\text{CD}},">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>CD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>OB</mtext>
</mrow>
<mi mathvariant="normal">⊥</mi>
<mrow>
<mtext>CD</mtext>
</mrow>
<mo>,</mo>
</math></span> sketch showing right angle at B</p>
<p><img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{CD}}}\limits^ \to = \left( \begin{gathered} - 6 \hfill \\ - 8 \hfill \\ \,5 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>CD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−</mo>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{DC}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>DC</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>correct magnitudes (seen anywhere) <em><strong>(A1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OB}}}\limits^ \to } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 4} \right)}^2}} = \left( {\sqrt {36} } \right)">
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>36</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{CD}}}\limits^ \to } \right| = \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 8} \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right)">
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>CD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>8</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>125</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}bh">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>b</mi>
<mi>h</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {125} ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<msqrt>
<mn>125</mn>
</msqrt>
</math></span> </p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\sqrt {125} ,\,\,15\sqrt 5 ">
<mo>=</mo>
<mn>3</mn>
<msqrt>
<mn>125</mn>
</msqrt>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>15</mn>
<msqrt>
<mn>5</mn>
</msqrt>
</math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong> (subtracting triangles)</p>
<p>recognizing that OB is altitude of either ΔOBD or ΔOBC(seen anywhere) <em><strong>M1</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \left| {\mathop {{\text{OB}}}\limits^ \to } \right| \times \left| {\mathop {{\text{BD}}}\limits^ \to } \right|,\,\,{\text{OB}} \bot {\text{BC}},">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>BD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>OB</mtext>
</mrow>
<mi mathvariant="normal">⊥</mi>
<mrow>
<mtext>BC</mtext>
</mrow>
<mo>,</mo>
</math></span> sketch of triangle showing right angle at B</p>
<p><img src=""></p>
<p>one correct vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BD}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>BD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{DB}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>DB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BC}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>BC</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{CB}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>CB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>eg <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BD}}}\limits^ \to = \left( \begin{gathered} \,6 \hfill \\ \,8 \hfill \\ - 5 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>BD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>5</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{CB}}}\limits^ \to = \left( \begin{gathered} - 12 \hfill \\ - 16 \hfill \\ \,10 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>CB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−</mo>
<mn>12</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>16</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>10</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OB}}}\limits^ \to } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 4} \right)}^2}} = \left( {\sqrt {36} } \right)">
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>OB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>36</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>one correct magnitude of a base (seen anywhere)<em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{BD}}}\limits^ \to } \right| = \sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right),\,\,\left| {\mathop {{\text{BC}}}\limits^ \to } \right| = \sqrt {144 + 256 + 100} = \left( {\sqrt {500} } \right)">
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>BD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>8</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>125</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>BC</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mn>144</mn>
<mo>+</mo>
<mn>256</mn>
<mo>+</mo>
<mn>100</mn>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>500</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct working <strong><em>A1</em></strong></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {500} - \frac{1}{2} \times 6 \times 5\sqrt 5 ,\,\,\frac{1}{2} \times 6 \times \sqrt {500} \times {\text{sin}}90 - \frac{1}{2} \times 6 \times 5\sqrt 5 \times {\text{sin}}90">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<msqrt>
<mn>500</mn>
</msqrt>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<mn>5</mn>
<msqrt>
<mn>5</mn>
</msqrt>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<msqrt>
<mn>500</mn>
</msqrt>
<mo>×</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mn>90</mn>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>6</mn>
<mo>×</mo>
<mn>5</mn>
<msqrt>
<mn>5</mn>
</msqrt>
<mo>×</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mn>90</mn>
</math></span></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\sqrt {125} ,\,\,15\sqrt 5 ">
<mo>=</mo>
<mn>3</mn>
<msqrt>
<mn>125</mn>
</msqrt>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>15</mn>
<msqrt>
<mn>5</mn>
</msqrt>
</math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong> (using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span><em>ab</em> sin <em>C</em> with ΔOCD)</p>
<p>two correct side lengths (seen anywhere) <em><strong>(A1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OD}}}\limits^ \to } \right| = \sqrt {{{\left( 8 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 9} \right)}^2}} = \left( {\sqrt {161} } \right),\,\,\left| {\mathop {{\text{CD}}}\limits^ \to } \right| = \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 8} \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right),\,">
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>OD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>8</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>161</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>CD</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>8</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>125</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{OC}}}\limits^ \to } \right| = \sqrt {{{\left( {14} \right)}^2} + {{\left( {12} \right)}^2} + {{\left( { - 14} \right)}^2}} = \left( {\sqrt {536} } \right)">
<mrow>
<mo>|</mo>
<mrow>
<mover>
<mrow>
<mrow>
<mtext>OC</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>14</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>12</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>14</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mn>536</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>attempt to find cosine ratio (seen anywhere) <em><strong>M1</strong></em><br><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{536 - 286}}{{ - 2\sqrt {161} \sqrt {125} }},\,\,\frac{{{\text{OD}} \bullet {\text{DC}}}}{{\left| {OD} \right|\left| {DC} \right|}}">
<mfrac>
<mrow>
<mn>536</mn>
<mo>−</mo>
<mn>286</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>161</mn>
</msqrt>
<msqrt>
<mn>125</mn>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mfrac>
<mrow>
<mrow>
<mtext>OD</mtext>
</mrow>
<mo>∙</mo>
<mrow>
<mtext>DC</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mo>|</mo>
<mrow>
<mi>O</mi>
<mi>D</mi>
</mrow>
<mo>|</mo>
</mrow>
<mrow>
<mo>|</mo>
<mrow>
<mi>D</mi>
<mi>C</mi>
</mrow>
<mo>|</mo>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<p>correct working for sine ratio <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {125} \right)}^2}}}{{161 \times 125}} + {\text{si}}{{\text{n}}^2}\,D = 1">
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>125</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>161</mn>
<mo>×</mo>
<mn>125</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>D</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}ab\,\,{\text{sin}}\,C">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>a</mi>
<mi>b</mi>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>C</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5 \times \sqrt {161} \times \sqrt {125} \times \frac{6}{{\sqrt {161} }}">
<mn>0.5</mn>
<mo>×</mo>
<msqrt>
<mn>161</mn>
</msqrt>
<mo>×</mo>
<msqrt>
<mn>125</mn>
</msqrt>
<mo>×</mo>
<mfrac>
<mn>6</mn>
<mrow>
<msqrt>
<mn>161</mn>
</msqrt>
</mrow>
</mfrac>
</math></span></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\sqrt {125} ,\,\,15\sqrt 5 ">
<mo>=</mo>
<mn>3</mn>
<msqrt>
<mn>125</mn>
</msqrt>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>15</mn>
<msqrt>
<mn>5</mn>
</msqrt>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn><mi>π</mi></math>.</p>
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> touches the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, as shown. The shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, between the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>
<div class="specification">
<p>The right cone in the following diagram has a total surface area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi mathvariant="normal">π</mi></math>, equal to the shaded area in the previous diagram.</p>
<p>The cone has a base radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>, height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, and slant height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area of the shaded region is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the volume of the cone.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math> (or setting their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mi mathvariant="normal">π</mi></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi mathvariant="normal">π</mi><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow></munderover><mfenced><mrow><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mn>6</mn><mi>x</mi><mo>+</mo><mn>6</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mi mathvariant="normal">π</mi><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow></msubsup></math> <em><strong>A1A1</strong></em></p>
<p>substitute their limits into their integrated expression and subtract <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>18</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>3</mn><mi mathvariant="normal">π</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>6</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><mo> </mo><mi>sin</mi><mo> </mo><mi mathvariant="normal">π</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>6</mn><mfenced><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow></mfenced><mo>+</mo><mn>0</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>6</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>0</mn></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>18</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>6</mn><mi mathvariant="normal">π</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>area<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mn>12</mn><mi mathvariant="normal">π</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into formula for surface area (including base) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><msup><mn>2</mn><mn>2</mn></msup></mfenced><mo>+</mo><mi mathvariant="normal">π</mi><mfenced><mn>2</mn></mfenced><mfenced><mi>l</mi></mfenced><mo>=</mo><mn>12</mn><mi mathvariant="normal">π</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi mathvariant="normal">π</mi><mo>+</mo><mn>2</mn><mtext>π</mtext><mi>l</mi><mo>=</mo><mn>12</mn><mi mathvariant="normal">π</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mtext>π</mtext><mi>l</mi><mo>=</mo><mn>8</mn><mi mathvariant="normal">π</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find the height of the cone <em><strong>(M1)</strong></em></p>
<p>e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mtext>their</mtext><mo> </mo><mi>l</mi></mrow></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><msqrt><mn>12</mn></msqrt><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mn>3</mn></msqrt></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>π</mi><msup><mi>r</mi><mn>2</mn></msup><mi>h</mi></math> with their values substituted <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="normal">π</mi><mfenced><msup><mn>2</mn><mn>2</mn></msup></mfenced><mfenced><msqrt><mn>12</mn></msqrt></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>volume</mtext><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi><msqrt><mn>12</mn></msqrt></mrow><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mo>=</mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi></mrow><msqrt><mn>3</mn></msqrt></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A calculator fits into a cuboid case with height 29 mm, width 98 mm and length 186 mm.</p>
</div>
<div class="question">
<p>Find the volume, in cm<sup>3</sup>, of this calculator case.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>evidence of 10 mm = 1 cm <strong><em>(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for dividing their volume from part (a) or part (b) by 1000.</p>
<p>529 (cm<sup>3</sup>) (528.612 (cm<sup>3</sup>)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (a) or (b). Accept answers written in scientific notation.</p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on the circumference of the circle, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>1</mn><mo> </mo><mtext>radian</mtext></math>.</p>
<p style="text-align: left;">The perimeter of the shaded region is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the exact area of the <strong>non-shaded</strong> region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>minor arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math> has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> <em><strong>(A1)</strong></em></p>
<p>recognition that perimeter of shaded sector is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>r</mi></math> <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>r</mi><mo>=</mo><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>-</mo><mi mathvariant="normal">A</mi><mover><mi mathvariant="normal">O</mi><mo>^</mo></mover><mi mathvariant="normal">B</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>1</mn></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p>Area of non-shaded region <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><msup><mn>4</mn><mn>2</mn></msup></mfenced></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>area of circle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> area of shaded sector <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><mi mathvariant="normal">π</mi><mo>-</mo><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>1</mn><mo>×</mo><msup><mn>4</mn><mn>2</mn></msup></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>16</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>8</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>8</mn><mfenced><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_9}\left( {{\text{cos}}\,2x + 2} \right) = {\text{lo}}{{\text{g}}_3}\sqrt {{\text{cos}}\,2x + 2} ">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>9</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<msqrt>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</msqrt>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_3}\left( {{\text{2}}\,{\text{sin}}\,x} \right) = {\text{lo}}{{\text{g}}_9}\left( {{\text{cos}}\,2x + 2} \right)">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>2</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>9</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempting to use the change of base rule <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_9}\left( {{\text{cos}}\,2x + 2} \right) = \frac{{{\text{lo}}{{\text{g}}_3}\left( {{\text{cos}}\,2x + 2} \right)}}{{{\text{lo}}{{\text{g}}_3}9}}">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>9</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mn>9</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}{\text{lo}}{{\text{g}}_3}\left( {{\text{cos}}\,2x + 2} \right)">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{lo}}{{\text{g}}_3}\sqrt {{\text{cos}}\,2x + 2} ">
<mo>=</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<msqrt>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</msqrt>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_3}\left( {{\text{2}}\,{\text{sin}}\,x} \right) = {\text{lo}}{{\text{g}}_3}\sqrt {{\text{cos}}\,2x + 2} ">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>2</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<msqrt>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{2}}\,{\text{sin}}\,x = \sqrt {{\text{cos}}\,2x + 2} ">
<mrow>
<mtext>2</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<msqrt>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</msqrt>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{4}}\,{\text{si}}{{\text{n}}^2}\,x = {\text{cos}}\,2x + 2">
<mrow>
<mtext>4</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span> (or equivalent) <em><strong>A1</strong></em></p>
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,2x = 1 - 2\,{\text{si}}{{\text{n}}^2}\,x">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6\,{\text{si}}{{\text{n}}^2}\,x = 3">
<mn>6</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = \left( \pm \right)\frac{1}{{\sqrt 2 }}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mo>±</mo>
<mo>)</mo>
</mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>A0</strong></em> if solutions other than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>4</mn>
</mfrac>
</math></span> are included.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = \frac{1}{3}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,4x">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>4</mn>
<mi>x</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>correct substitution into formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {2x} \right)">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\left( {2x} \right)">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2{\left( {\frac{1}{3}} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\left( {\frac{{\sqrt 8 }}{3}} \right)^2} - 1">
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {\frac{1}{3}} \right)\left( {\frac{{\sqrt 8 }}{3}} \right)">
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{{\sqrt 8 }}{3}} \right)^2} - {\left( {\frac{1}{3}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {2x} \right) = \frac{7}{9}">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>9</mn>
</mfrac>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\left( {2x} \right) = \frac{{2\sqrt 8 }}{9}\,\,\,\,\left( { = \frac{{\sqrt {32} }}{9} = \frac{{4\sqrt 2 }}{9}} \right)">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>9</mn>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>32</mn>
</msqrt>
</mrow>
<mn>9</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (may be seen in substitution) <em><strong>A2</strong></em></p>
<p>recognizing 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is double angle of 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {2\left( {2x} \right)} \right)">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{co}}{{\text{s}}^2}\,\left( {2\theta } \right) - 1">
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2\,{\text{si}}{{\text{n}}^2}\,\left( {2\theta } \right)">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^2}\,\left( {2\theta } \right) - {\text{si}}{{\text{n}}^2}\,\left( {2\theta } \right)">
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct substitution of <strong>their</strong> value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {2x} \right)">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\left( {2x} \right)">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> into formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {4x} \right)">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\left( {\frac{7}{9}} \right)^2} - 1">
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>7</mn>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{98}}{{81}} - 1">
<mfrac>
<mrow>
<mn>98</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2{\left( {\frac{{2\sqrt 8 }}{9}} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>2</mn>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{{64}}{{81}}">
<mn>1</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>64</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{7}{9}} \right)^2} - {\left( {\frac{{2\sqrt 8 }}{9}} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>7</mn>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>2</mn>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{49}}{{81}} - \frac{{32}}{{81}}">
<mfrac>
<mrow>
<mn>49</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>32</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {4x} \right) = \frac{{17}}{{81}}">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>recognizing 4<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is double angle of 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {2\left( {2x} \right)} \right)">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>double angle identity for 2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{co}}{{\text{s}}^2}\,\left( {2\theta } \right) - 1">
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2\,{\text{si}}{{\text{n}}^2}\left( {2x} \right)">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^2}\,\left( {2\theta } \right) - {\text{si}}{{\text{n}}^2}\,\left( {2\theta } \right)">
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p>correct expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {4x} \right)">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\left( {1 - 2\,{\text{si}}{{\text{n}}^2}\,\theta } \right)^2} - 1">
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2{\left( {2\,{\text{sin}}\,x\,{\text{cos}}\,x} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 - 2\,{\text{si}}{{\text{n}}^2}\,\theta } \right)^2} - {\left( {2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta } \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>correct substitution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\left( {1 - 2{{\left( {\frac{1}{3}} \right)}^2}} \right)^2} - 1">
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {1 - 4{{\left( {\frac{1}{3}} \right)}^2} + 4{{\left( {\frac{1}{3}} \right)}^4}} \right) - 1">
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>4</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2{\left( {2 \times \frac{1}{3} \times \frac{{\sqrt 8 }}{3}} \right)^2}">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<msqrt>
<mn>8</mn>
</msqrt>
</mrow>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {\frac{{49}}{{81}}} \right) - 1">
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>49</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 2\left( {\frac{{32}}{{81}}} \right)">
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>32</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{49}}{{81}} - \frac{{32}}{{81}}">
<mfrac>
<mrow>
<mn>49</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>32</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\left( {4x} \right) = \frac{{17}}{{81}}">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>17</mn>
</mrow>
<mrow>
<mn>81</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><strong>Note: In this question, distance is in metres and time is in seconds.</strong></p>
<p>Two particles <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}">
<mrow>
<msub>
<mi>P</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_2}">
<mrow>
<msub>
<mi>P</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> start moving from a point A at the same time, along different straight lines.</p>
<p>After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> seconds, the position of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}">
<mrow>
<msub>
<mi>P</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> is given by <strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Two seconds after leaving A, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}">
<mrow>
<msub>
<mi>P</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span> is at point B.</p>
</div>
<div class="specification">
<p>Two seconds after leaving A, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_2}">
<mrow>
<msub>
<mi>P</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> is at point C, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}} 3 \\ 0 \\ 4 \end{array}} \right)">
<mover>
<mrow>
<mtext>AC</mtext>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AB}}} } \right|"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos {\rm{B\hat AC}}"> <mi>cos</mi> <mo></mo> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mrow> <mover> <mi mathvariant="normal">A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi mathvariant="normal">C</mi> </mrow> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the distance between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}"> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_2}"> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> </math></span> two seconds after they leave A.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </math></span> at A <strong><em>(M1)</em></strong></p>
<p>A is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4,{\text{ }} - 1,{\text{ }}3)"> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right) + 2\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 2} \end{array}} \right),{\text{ }}(6,{\text{ }}3,{\text{ }} - 1)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>6</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span></p>
<p>correct approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span> <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AO}} + {\text{OB}},{\text{ B}} - {\text{A, }}\left( {\begin{array}{*{20}{c}} 6 \\ 3 \\ { - 1} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right)"> <mrow> <mtext>AO</mtext> </mrow> <mo>+</mo> <mrow> <mtext>OB</mtext> </mrow> <mo>,</mo> <mrow> <mtext> B</mtext> </mrow> <mo>−</mo> <mrow> <mtext>A, </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ 4 \\ { - 4} \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span> is two times the direction vector <strong><em>(M1)</em></strong></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = 2\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 2} \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ 4 \\ { - 4} \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt {{2^2} + {4^2} + {4^2}} ,{\text{ }}\sqrt {4 + 16 + 16} ,{\text{ }}\sqrt {36} "> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msqrt> <mn>4</mn> <mo>+</mo> <mn>16</mn> <mo>+</mo> <mn>16</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msqrt> <mn>36</mn> </msqrt> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AB}}} } \right| = 6"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>6</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (vector approach)</strong></p>
<p>valid approach involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} "> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> </math></span> <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AC}}} ,{\text{ }}\frac{{\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{AC}}} }}{{{\text{AB}} \times {\text{AC}}}}"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mover> <mrow> <mtext>BA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mrow> <mrow> <mtext>AB</mtext> </mrow> <mo>×</mo> <mrow> <mtext>AC</mtext> </mrow> </mrow> </mfrac> </math></span></p>
<p>finding scalar product and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AC}}} } \right|"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </math></span> <strong><em>(A1)(A1)</em></strong></p>
<p>scalar product <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2(3) + 4(0) - 4(4){\text{ }}( = - 10)"> <mn>2</mn> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>4</mn> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>−</mo> <mn>4</mn> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AC}}} } \right| = \sqrt {{3^2} + {0^2} + {4^2}} {\text{ }}( = 5)"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>5</mn> <mo stretchy="false">)</mo> </math></span></p>
<p>substitution of <strong>their </strong>scalar product and magnitudes into cosine formula <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos {\rm{B\hat AC = }}\frac{{6 + 0 - 16}}{{6\sqrt {{3^2} + {4^2}} }}"> <mi>cos</mi> <mo></mo> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mrow> <mover> <mi mathvariant="normal">A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi mathvariant="normal">C</mi> <mo>=</mo> </mrow> </mrow> <mfrac> <mrow> <mn>6</mn> <mo>+</mo> <mn>0</mn> <mo>−</mo> <mn>16</mn> </mrow> <mrow> <mn>6</mn> <msqrt> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,B\hat AC = - \frac{{10}}{{30}}\left( { = - \frac{1}{3}} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mrow> <mover> <mi>A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi>C</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>10</mn> </mrow> <mrow> <mn>30</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p> </p>
<p><strong>METHOD 2 (triangle approach)</strong></p>
<p>valid approach involving cosine rule <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos {\rm{B\hat AC = }}\frac{{{\text{A}}{{\text{B}}^2} + {\text{A}}{{\text{C}}^2} - {\text{B}}{{\text{C}}^2}}}{{2 \times {\text{AB}} \times {\text{AC}}}}"> <mi>cos</mi> <mo></mo> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mrow> <mover> <mi mathvariant="normal">A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi mathvariant="normal">C</mi> <mo>=</mo> </mrow> </mrow> <mfrac> <mrow> <mrow> <mtext>A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>B</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <mtext>A</mtext> </mrow> <mrow> <msup> <mrow> <mtext>C</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>C</mtext> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mrow> <mtext>AB</mtext> </mrow> <mo>×</mo> <mrow> <mtext>AC</mtext> </mrow> </mrow> </mfrac> </math></span></p>
<p>finding lengths AC and BC <strong><em>(A1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 5,{\text{ BC}} = 9"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mrow> <mtext> BC</mtext> </mrow> <mo>=</mo> <mn>9</mn> </math></span></p>
<p>substitution of <strong>their </strong>lengths into cosine formula <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos {\rm{B\hat AC}} = \frac{{{5^2} + {6^2} - {9^2}}}{{2 \times 5 \times 6}}"> <mi>cos</mi> <mo></mo> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mrow> <mover> <mi mathvariant="normal">A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi mathvariant="normal">C</mi> </mrow> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mn>5</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mn>9</mn> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>5</mn> <mo>×</mo> <mn>6</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos {\rm{B\hat AC}} = - \frac{{20}}{{60}}{\text{ }}\left( { = - \frac{1}{3}} \right)"> <mi>cos</mi> <mo></mo> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mrow> <mover> <mi mathvariant="normal">A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi mathvariant="normal">C</mi> </mrow> </mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>20</mn> </mrow> <mrow> <mn>60</mn> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> Award relevant marks for working seen to find BC in part (c) (if cosine rule used in part (c)).</p>
<p> </p>
<p><strong>METHOD 1 (using cosine rule)</strong></p>
<p>recognizing need to find BC <strong><em>(M1)</em></strong></p>
<p>choosing cosine rule <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{c^2} = {a^2} + {b^2} - 2ab\cos {\text{C}}"> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>cos</mi> <mo></mo> <mrow> <mtext>C</mtext> </mrow> </math></span></p>
<p>correct substitution into RHS <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{C}}^2} = {(6)^2} + {(5)^2} - 2(6)(5)\left( { - \frac{1}{3}} \right),{\text{ }}36 + 25 + 20"> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>C</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mn>6</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <mo stretchy="false">(</mo> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>36</mn> <mo>+</mo> <mn>25</mn> <mo>+</mo> <mn>20</mn> </math></span></p>
<p>distance is 9 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p> </p>
<p><strong>METHOD 2 (finding magnitude of </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {BC} "> <mover> <mrow> <mi>B</mi> <mi>C</mi> </mrow> <mo>→</mo> </mover> </math></span><strong>) </strong></p>
<p>recognizing need to find BC <strong><em>(M1)</em></strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OB}}} "> <mover> <mrow> <mrow> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> <mo>→</mo> </mover> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OC}}} "> <mover> <mrow> <mrow> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">C</mi> </mrow> </mrow> <mo>→</mo> </mover> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OB}}} = \left( {\begin{array}{*{20}{c}} 6 \\ 3 \\ { - 1} \end{array}} \right)"> <mover> <mrow> <mrow> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OC}}} = \left( {\begin{array}{*{20}{c}} 7 \\ { - 1} \\ 7 \end{array}} \right),{\text{ }}\overrightarrow {{\rm{BA}}} + \overrightarrow {{\rm{AC}}} "> <mover> <mrow> <mrow> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">C</mi> </mrow> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mover> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">A</mi> </mrow> </mrow> <mo>→</mo> </mover> <mo>+</mo> <mover> <mrow> <mrow> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">C</mi> </mrow> </mrow> <mo>→</mo> </mover> </math></span></p>
<p>correct working <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{BC}}} = \left( {\begin{array}{*{20}{c}} 1 \\ { - 4} \\ 8 \end{array}} \right),{\text{ }}\overrightarrow {{\rm{CB}}} = \left( {\begin{array}{*{20}{c}} { - 1} \\ 4 \\ { - 8} \end{array}} \right),{\text{ }}\sqrt {{1^2} + {4^2} + {8^2}} = \sqrt {81} "> <mover> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mi mathvariant="normal">C</mi> </mrow> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mover> <mrow> <mrow> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>8</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <msqrt> <mn>81</mn> </msqrt> </math></span></p>
<p>distance is 9 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p> </p>
<p><strong>METHOD 3 (finding coordinates and using distance formula)</strong></p>
<p>recognizing need to find BC <strong><em>(M1)</em></strong></p>
<p>valid approach <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>attempt to find coordinates of B or C, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(6,{\text{ }}3,{\text{ }} - 1)"> <mrow> <mtext>B</mtext> </mrow> <mo stretchy="false">(</mo> <mn>6</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}(7,{\text{ }} - 1,{\text{ }}7)"> <mrow> <mtext>C</mtext> </mrow> <mo stretchy="false">(</mo> <mn>7</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7</mn> <mo stretchy="false">)</mo> </math></span></p>
<p>correct substitution into distance formula <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = \sqrt {{{(6 - 7)}^2} + {{\left( {3 - ( - 1)} \right)}^2} + {{( - 1 - 7)}^2}} ,{\text{ }}\sqrt {{1^2} + {4^2} + {8^2}} = \sqrt {81} "> <mrow> <mtext>BC</mtext> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mn>6</mn> <mo>−</mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msqrt> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <msqrt> <mn>81</mn> </msqrt> </math></span></p>
<p>distance is 9 <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A ladder on a fire truck has its base at point B which is 4 metres above the ground. The ladder is extended and its other end rests on a vertical wall at point C, 16 metres above the ground. The horizontal distance between B and C is 9 metres.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation from B to C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second truck arrives whose ladder, when fully extended, is 30 metres long. The base of this ladder is also 4 metres above the ground. For safety reasons, the maximum angle of elevation that the ladder can make is 70º.</p>
<p>Find the maximum height on the wall that can be reached by the ladder on the second truck.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,B = \frac{{12}}{9}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>=</mo> <mfrac> <mrow> <mn>12</mn> </mrow> <mn>9</mn> </mfrac> </math></span> <em><strong>(A1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 12 seen, <em><strong>(M1)</strong></em> for correct substitution into tan (or equivalent). Accept equivalent methods, such as Pythagoras, to find BC and correct substitution into other trig ratios. If <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^{ - 1}}\left( {\frac{{16}}{9}} \right)"> <mrow> <mtext>ta</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>16</mn> </mrow> <mn>9</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> seen award <em><strong>(A0)(M1)(A0)</strong></em>.</p>
<p>53.1° (53.1301…°) <em><strong>(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> If radians are used the answer is 0.927295…; award at most <em><strong>(A1)(M1)(A0)</strong></em>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="30\,{\text{sin}}\,70^\circ + 4">
<mn>30</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<msup>
<mn>70</mn>
<mo>∘</mo>
</msup>
<mo>+</mo>
<mn>4</mn>
</math></span> <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,70^\circ = \frac{x}{{30}}">
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<msup>
<mn>70</mn>
<mo>∘</mo>
</msup>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mn>30</mn>
</mrow>
</mfrac>
</math></span> (or equivalent) and <em><strong>(M1)</strong></em> for adding 4.</p>
<p>32.2 (32.1907…) (m) <em><strong>(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> If radians are used the answer is 27.2167…; award at most <em><strong>(M1)(M1)(A0)</strong></em>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OA}}}\limits^ \to = \left( \begin{gathered} 2 \hfill \\ 1 \hfill \\ 3 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>OA</mtext>
</mrow>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered} 1 \hfill \\ 3 \hfill \\ 1 \hfill \\ \end{gathered} \right)">
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, where O is the origin. <em>L</em><sub>1</sub> is the line that passes through A and B.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <em>L</em><sub>1</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 2 \hfill \\ p \hfill \\ 0 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>p</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to ">
<mover>
<mrow>
<mrow>
<mtext>AB</mtext>
</mrow>
</mrow>
<mo stretchy="false">→</mo>
</mover>
</math></span>. Find the value of <em>p</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>any correct equation in the form <em><strong>r</strong> = <strong>a</strong> + t<strong>b</strong></em> (accept any parameter for <em>t</em>)</p>
<p>where <strong><em>a</em></strong> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 2 \hfill \\ 1 \hfill \\ 3 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, and <strong><em>b</em></strong> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 1 \hfill \\ 3 \hfill \\ 1 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A2 N2</strong></em></p>
<p>eg <em><strong>r</strong> = </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} 2 \hfill \\ 1 \hfill \\ 3 \hfill \\ \end{gathered} \right) = t\left( \begin{gathered} 1 \hfill \\ 3 \hfill \\ 1 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>, <em><strong>r</strong> = 2<strong>i</strong> + <strong>j</strong> + 3<strong>k</strong> + s</em>(<em><strong>i</strong> + 3<strong>j</strong> + <strong>k</strong></em>)</p>
<p><strong>Note:</strong> Award<em><strong> A1</strong></em> for the form<em> <strong>a</strong> + t<strong>b</strong>, <strong>A1 </strong></em>for the form<em> L = <strong>a</strong> + t<strong>b</strong></em>, A0 for the form <em><strong>r</strong> = <strong>b</strong> + t<strong>a</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>correct scalar product <em><strong>(A1)</strong></em></p>
<p><em>eg </em> (1 × 2) + (3 × <em>p</em>) + (1 × 0), 2 + 3<em>p</em></p>
<p>evidence of equating <strong>their</strong> scalar product to zero <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <em><strong>a•b</strong></em> = 0, 2 + 3p = 0, 3<em>p</em> = −2</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = - \frac{2}{3}">
<mi>p</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>valid attempt to find angle between vectors <em><strong>(M1)</strong></em></p>
<p>correct substitution into numerator and/or angle <em><strong>(A1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \frac{{\left( {1 \times 2} \right) + \left( {3 \times p} \right) + \left( {1 \times 0} \right)}}{{\left| a \right|\left| b \right|}},\,\,{\text{cos}}\,\theta = 0">
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>×</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mo>×</mo>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>×</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<mo>|</mo>
<mi>a</mi>
<mo>|</mo>
</mrow>
<mrow>
<mo>|</mo>
<mi>b</mi>
<mo>|</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = - \frac{2}{3}">
<mi>p</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A park in the form of a triangle, ABC, is shown in the following diagram. AB is 79 km and BC is 62 km. Angle A<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\text{B}}\limits^ \wedge ">
<mover>
<mrow>
<mtext>B</mtext>
</mrow>
<mo>∧<!-- ∧ --></mo>
</mover>
</math></span>C is 52°.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of side AC in km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the park.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(AC<sup>2</sup> =) 62<sup>2</sup> + 79<sup>2</sup> − 2 × 62 × 79 × cos(52°) <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting in the cosine rule formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>63.7 (63.6708…) (km) <em><strong> (A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 62 × 79 × sin(52°) <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting in the area of triangle formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>1930 km<sup>2</sup> (1929.83…km<sup>2</sup>) <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The vectors <strong><em>a</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <strong><em>b</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {k + 3} \\ k \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mi>k</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>k</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> are perpendicular to each other.</p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <strong><em>c</em></strong> = <strong><em>a</em></strong> + 2<strong><em>b</em></strong>, find <strong><em>c</em></strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of scalar product <strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet "> <mo>∙</mo> </math></span> <strong><em>b</em></strong>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4(k + 3) + 2k"> <mn>4</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>k</mi> </math></span></p>
<p>recognizing scalar product must be zero <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet "> <mo>∙</mo> </math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0,{\text{ }}4k + 12 + 2k = 0"> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mi>k</mi> <mo>+</mo> <mn>12</mn> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working (must involve combining terms) <strong><em>(A1)</em></strong></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6k + 12,\,\,\,6k = - 12"> <mn>6</mn> <mi>k</mi> <mo>+</mo> <mn>12</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>6</mn> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>12</mn> </math></span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = - 2"> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <strong>their </strong>value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> (seen anywhere) <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><strong><em>b</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 2 + 3} \\ { - 2} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, 2<strong><em>b</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 2 \\ { - 4} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct working <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} 2 \\ { - 4} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {4 + 2k + 6} \\ {2 + 2k} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>4</mn> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>6</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong><em>c</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 6 \\ { - 2} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1</em></strong> <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two fixed points, A and B, are 40 m apart on horizontal ground. Two straight ropes, AP and BP, are attached to the same point, P, on the base of a hot air balloon which is vertically above the line AB. The length of BP is 30 m and angle BAP is 48°.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>Angle APB is acute.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label with an <em>x</em> the angle of depression of B from P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle APB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of the angle of depression of B from P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""><em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{40}}{{{\text{sin APB}}}} = \frac{{30}}{{{\text{sin 48}}^\circ }}">
<mfrac>
<mrow>
<mn>40</mn>
</mrow>
<mrow>
<mrow>
<mtext>sin APB</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>30</mn>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>sin 48</mtext>
</mrow>
<mo>∘</mo>
</msup>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into sine rule, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>(angle APB =) 82.2° (82.2473…°) <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>180 − 48 − 82.2473… <em><strong> (M1)</strong></em></p>
<p>49.8° (49.7526…°) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (a) and (b).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>, has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} { - 3} \\ 9 \\ {10} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)">
<mi>r</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>9</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>6</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>. Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {15{\text{,}}\,\,9{\text{,}}\,\,c} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>15</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>9</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
<mrow>
<msub>
<mi>L</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>, is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and passes through (1, 2, 3).</p>
<p>Write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>correct equation <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + 6s = 15"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mi>s</mi> <mo>=</mo> <mn>15</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6s = 18"> <mn>6</mn> <mi>s</mi> <mo>=</mo> <mn>18</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = 3"> <mi>s</mi> <mo>=</mo> <mn>3</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p>substitute their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s"> <mi>s</mi> </math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z"> <mi>z</mi> </math></span> component <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 + 3\left( 2 \right)"> <mn>10</mn> <mo>+</mo> <mn>3</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 + 6"> <mn>10</mn> <mo>+</mo> <mn>6</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 16"> <mi>c</mi> <mo>=</mo> <mn>16</mn> </math></span> <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> (=(<em><strong>i</strong></em> + 2<em><strong>j</strong></em> + 3<em><strong>k</strong></em>) + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>(6<em><strong>i</strong></em> + 2<em><strong>k</strong></em>)) <em><strong>A2 N2</strong></em></p>
<p><strong>Note:</strong> Accept any scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> for the direction vector.</p>
<p>Award <strong>A1</strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2} = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right)"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, <em><strong>A0</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}} 6 \\ 0 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ 3 \end{array}} \right)"> <mi>r</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>π</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mo>=</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math></p>
<p>recognising to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><msqrt><mn>3</mn></msqrt></math> (values may be seen in right triangle) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mi>π</mi><mn>6</mn></mfrac></math> (seen anywhere) (accept degrees) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>=</mo><mfrac><mi>π</mi><mn>6</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mn>6</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi>π</mi><mn>12</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mn>12</mn></mfrac></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if any additional solutions are seen.<br>Award <em><strong>A1A0</strong> </em>for correct answers in degrees.<br>Award <em><strong>A0A0</strong> </em>for correct answers in degrees with additional values.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Determining the composite function was very well done. In part (b) very few candidates showed any recognition that tan (or cot) were required to solve this trigonometric equation. Many saw the 2<em>x</em> and simply employed one of the double angle rules but could not then progress to an answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the vectors <em><strong>a</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ {2p} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {p + 1} \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>Find the possible values of <em>p</em> for which <strong><em>a</em></strong> and <strong><em>b</em></strong> are parallel.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 </strong>(eliminating <em>k</em>)</p>
<p>recognizing parallel vectors are multiples of each other <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <em><strong>a</strong></em> = <em>k<strong>b</strong></em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ {2p} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> = <em>k</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {p + 1} \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{p + 1}}{3} = \frac{8}{{2p}}"> <mfrac> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> <mo>=</mo> <mfrac> <mn>8</mn> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mfrac> </math></span>, 3<em>k</em> = <em>p</em> + 1 and 2<em>kp</em> = 8</p>
<p>correct working (must be quadratic) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 2<em>p</em><sup>2</sup> + 2<em>p</em> = 24, <em>p</em><sup>2</sup> + <em>p</em> – 12, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = \frac{{{p^2} + p}}{4}"> <mn>3</mn> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>p</mi> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p>valid attempt to solve <strong>their</strong> quadratic equation <em><strong>(M1)</strong></em></p>
<p><em>eg </em>factorizing, formula, completing the square</p>
<p>evidence of correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> (<em>p</em> + 4)(<em>p</em> – 3), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{ - 2 \pm \sqrt {4 - 4\left( 2 \right)\left( { - 24} \right)} }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>2</mn> <mo>±</mo> <msqrt> <mn>4</mn> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>24</mn> </mrow> <mo>)</mo> </mrow> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p><em>p</em> = –4, <em>p</em> = 3 <strong> <em>A1A1 N4</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong> (solving for <em>k</em>)</p>
<p>recognizing parallel vectors are multiples of each other <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <em><strong>a</strong></em> = <em>k<strong>b</strong></em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ {2p} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> = <em>k</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {p + 1} \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, 3<em>k</em> = <em>p</em> + 1 and 2<em>kp</em> = 8</p>
<p>correct working (must be quadratic) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> 3<em>k</em><sup>2</sup> – <em>k</em> = 4, 3<em>k</em><sup>2</sup> – <em>k</em> – 4, 4<em>k</em><sup>2</sup> = 3 – <em>k</em></p>
<p>one correct value for <em>k</em> <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <em>k</em> = –1, <em>k</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span>, <em>k</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span></p>
<p>substituting <strong>their</strong> value(s) of <em>k</em> <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ {2p} \end{array}} \right) = \frac{3}{4}\left( {\begin{array}{*{20}{c}} {p + 1} \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{4}{3}} \right) = p + 1"> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {\frac{4}{3}} \right)p = 8"> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>p</mi> <mo>=</mo> <mn>8</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 1} \right)\left( {\begin{array}{*{20}{c}} 3 \\ {2p} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {p + 1} \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><em>p</em> = –4, <em>p</em> = 3 <em><strong>A1A1 N4</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong> (working with angles and cosine formula)</p>
<p>recognizing angle between parallel vectors is 0 and/or 180° <em><strong>M1</strong></em></p>
<p><em>eg</em> cos <em>θ</em> = ±1, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \bullet b = \left| a \right|\left| b \right|"> <mi>a</mi> <mo>∙</mo> <mi>b</mi> <mo>=</mo> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mi>b</mi> <mo>|</mo> </mrow> </math></span></p>
<p>correct substitution of scalar product and magnitudes into equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\left( {p + 1} \right) + 2p\left( 8 \right)}}{{\sqrt {{3^2} + {{\left( {2p} \right)}^2}} \sqrt {{{\left( {p + 1} \right)}^2} + {8^2}} }} = \pm 1"> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <mo>±</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19p + 3 = \sqrt {4{p^2} + 9} \sqrt {{p^2} + 2p + 65} "> <mn>19</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo>=</mo> <msqrt> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>9</mn> </msqrt> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>65</mn> </msqrt> </math></span></p>
<p>correct working (must include both ± ) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {p + 1} \right) + 2p\left( 8 \right) = \pm \sqrt {{3^2} + {{\left( {2p} \right)}^2}} \sqrt {{{\left( {p + 1} \right)}^2} + {8^2}} "> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>±</mo> <msqrt> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19p + 3 = \pm \sqrt {4{p^2} + 9} \sqrt {{p^2} + 2p + 65} "> <mn>19</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo>=</mo> <mo>±</mo> <msqrt> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>9</mn> </msqrt> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>65</mn> </msqrt> </math></span></p>
<p>correct quartic equation <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="361\,{p^2} + 114p + 9 = 4{p^4} + 8{p^3} + 269{p^2} + 18p + 585"> <mn>361</mn> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>114</mn> <mi>p</mi> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mrow> <msup> <mi>p</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mn>269</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>18</mn> <mi>p</mi> <mo>+</mo> <mn>585</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4{p^4} + 8{p^3} - 92{p^2} - 96p + 576 = 0"> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mrow> <msup> <mi>p</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>92</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>96</mn> <mi>p</mi> <mo>+</mo> <mn>576</mn> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p^4} + 2{p^3} - 23{p^2} - 24p + 144 = 0"> <mrow> <msup> <mi>p</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>p</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>23</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>24</mn> <mi>p</mi> <mo>+</mo> <mn>144</mn> <mo>=</mo> <mn>0</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {p + 4} \right)^2}{\left( {p - 3} \right)^2} = 0"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><em>p</em> = –4, <em>p</em> = 3 <em><strong>A2 N4</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 2\,{\text{sin}}\,x">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
<mn>2</mn>
<mi>π<!-- π --></mi>
</math></span> . The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> intersects the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 1">
<mi>y</mi>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span> exactly twice, at point A and point B. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question">
<p>Consider the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 2\,{\text{sin}}\,px"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mi>x</mi> </math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi "> <mn>2</mn> <mi>π</mi> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> > 0.</p>
<p>Find the greatest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> such that the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> does not intersect the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 1"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>recognizing period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> is larger than the period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> <em><strong> (M1)</strong></em></p>
<p><em>eg</em> sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> with larger period (may be seen on diagram), A at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2\pi "> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> </math></span>,</p>
<p> image of A when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 2\pi "> <mi>x</mi> <mo>></mo> <mn>2</mn> <mi>π</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7\pi }}{6} \to 2\pi "> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> <mo stretchy="false">→</mo> <mn>2</mn> <mi>π</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{sin}}\,\left( {2\pi p} \right) = - 1"> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>π</mi> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7\pi }}{6} \times k = 2\pi "> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> <mo>×</mo> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7\pi }}{6} \cdot \frac{1}{p} = 2\pi "> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> <mo>⋅</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mn>2</mn> <mi>π</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi p = \frac{{7\pi }}{6}"> <mn>2</mn> <mi>π</mi> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{12}}{7}"> <mfrac> <mrow> <mn>12</mn> </mrow> <mn>7</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{7}{12}"> <mi>p</mi> <mo>=</mo> <mfrac> <mn>7</mn> <mn>12</mn> </mfrac> </math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{accept}}\,\,p < \frac{7}{12}\,\,{\text{or}}\,\,p \leqslant \frac{7}{12}} \right)"> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>accept</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo><</mo> <mfrac> <mn>7</mn> <mn>12</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>or</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>⩽</mo> <mfrac> <mn>7</mn> <mn>12</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A buoy is floating in the sea and can be seen from the top of a vertical cliff. A boat is travelling from the base of the cliff directly towards the buoy.</p>
<p>The top of the cliff is 142 m above sea level. Currently the boat is 100 metres from the buoy and the angle of depression from the top of the cliff to the boat is 64°.</p>
<p><img src=""></p>
</div>
<div class="question">
<p>Draw and label the angle of depression on the diagram.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""> <strong><em>(A1)</em><em> </em></strong><strong><em>(C1)</em></strong></p>
<p><strong>Note:</strong> The horizontal line must be shown and the angle of depression must be labelled. Accept a numerical or descriptive label.</p>
<p><em><strong>[1 mark]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>15</mn><mo> </mo><mtext>cm</mtext><mo>,</mo><mo> </mo><mtext>BC</mtext><mo>=</mo><mn>10</mn><mo> </mo><mtext>cm</mtext></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mi>θ</mi></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext></math> is acute, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mfenced><mrow><mn>2</mn><mo>×</mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1 – (sine rule)</strong></p>
<p>evidence of choosing sine rule <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mo> </mo><mover><mi>A</mi><mo>^</mo></mover></mrow><mi>a</mi></mfrac><mo>=</mo><mfrac><mrow><mi>sin</mi><mo> </mo><mover><mi>B</mi><mo>^</mo></mover></mrow><mi>b</mi></mfrac></math></p>
<p>correct substitution <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac bevelled="true"><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mstyle><mn>10</mn></mfrac><mo>=</mo><mfrac><mrow><mi>sin</mi><mstyle displaystyle="true"><mo> </mo></mstyle><mstyle displaystyle="true"><mi>θ</mi></mstyle></mrow><mn>15</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><msqrt><mn>3</mn></msqrt><mn>30</mn></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>sin</mi><mo> </mo><mi>θ</mi></mstyle><mn>15</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mfrac><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle><mstyle displaystyle="true"><mn>30</mn></mstyle></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi>sin</mi><mo> </mo><mtext>B</mtext></mstyle><mn>15</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – (perpendicular from vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">C</mtext></math>)</strong></p>
<p>valid approach to find perpendicular length (may be seen on diagram) <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <img src="">, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>h</mi><mn>15</mn></mfrac><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></math></p>
<p>correct perpendicular length <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>15</mn><msqrt><mn>3</mn></msqrt></mrow><mn>3</mn></mfrac><mo> </mo><mo>,</mo><mo> </mo><mn>5</mn><msqrt><mn>3</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the final <em><strong>A</strong></em> mark if candidate goes on to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math>, as this demonstrates a lack of understanding.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into double-angle formula for cosine <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>2</mn><msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><msup><mfenced><mfrac><msqrt><mn>6</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><msup><mfenced><mfrac><msqrt><mn>6</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>,</mo><mo> </mo><mo> </mo><mi>cos</mi><mo> </mo><mfenced><mrow><mn>2</mn><mi>θ</mi></mrow></mfenced><mo>=</mo><mn>1</mn><mo>-</mo><mn>2</mn><msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>,</mo><mo> </mo><mo> </mo><mn>1</mn><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mfenced><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></mfenced></math></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>2</mn><mo>×</mo><mfrac><mn>3</mn><mn>9</mn></mfrac><mo>,</mo><mo> </mo><mo> </mo><mn>2</mn><mo>×</mo><mfrac><mn>6</mn><mn>9</mn></mfrac><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo> </mo><mfrac><mn>6</mn><mn>9</mn></mfrac><mo>-</mo><mfrac><mn>3</mn><mn>9</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mn>2</mn><mo>×</mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext></mrow></mfenced><mo>=</mo><mfrac><mn>3</mn><mn>9</mn></mfrac><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow></mfenced></math> <em><strong>A1 N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The magnitudes of two vectors, <em><strong>u</strong></em> and <em><strong>v</strong></em>, are 4 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 3 "> <msqrt> <mn>3</mn> </msqrt> </math></span> respectively. The angle between <em><strong>u</strong></em> and <em><strong>v</strong></em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{6}"> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span>.</p>
<p>Let <em><strong>w</strong></em> = <em><strong>u</strong></em> − <em><strong>v</strong></em>. Find the magnitude of <em><strong>w</strong></em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 (cosine rule)</strong></p>
<p>diagram including <em><strong>u</strong></em>, <em><strong>v</strong></em> and included angle of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{6}"> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><em>eg </em> <img src=""></p>
<p>sketch of triangle with <em><strong>w</strong> </em>(does not need to be to scale) <em><strong> (A1)</strong></em></p>
<p><em>eg</em> <img src=""></p>
<p>choosing cosine rule <em><strong>(M1)</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a^2} + {b^2} - 2ab\,{\text{cos}}\,C"> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>C</mi> </math></span></p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{4^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 4 \right)\left( {\sqrt 3 } \right){\text{cos}}\frac{\pi }{6}"> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{\pi }{6} = \frac{{\sqrt 3 }}{2}"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg </em> 16 + 3 − 12</p>
<p>| <em><strong>w </strong></em>| = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 7 "> <msqrt> <mn>7</mn> </msqrt> </math></span> <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2 (scalar product)</strong></p>
<p>valid approach, in terms of u and v (seen anywhere) <em><strong>(M1)</strong></em></p>
<p><em>eg </em> | <em><strong>w </strong></em>|<sup>2</sup> = (<em><strong>u</strong></em> − <em><strong>v</strong></em>)•(<em><strong>u</strong></em> − <em><strong>v</strong></em>), | <em><strong>w </strong></em>|<sup>2</sup> = <em><strong>u</strong></em>•<em><strong>u </strong></em>− 2<em><strong>u</strong></em>•<strong><em>v </em></strong>+ <strong><em>v</em></strong>•<em><strong>v</strong></em>, | <em><strong>w </strong></em>|<sup>2 </sup>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{u_1} - {v_1}} \right)^2} + {\left( {{u_2}\; - \;{v_2}} \right)^2}"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mspace width="thickmathspace"></mspace> <mo>−</mo> <mspace width="thickmathspace"></mspace> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span>,</p>
<p>| <em><strong>w </strong></em>| = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( {{u_1} - {v_1}} \right)}^2} + {{\left( {{u_2}\; - \;{v_2}} \right)}^2} + {{\left( {{u_3}\; - \;{v_3}} \right)}^2}} "> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mo>−</mo> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mspace width="thickmathspace"></mspace> <mo>−</mo> <mspace width="thickmathspace"></mspace> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>3</mn> </msub> </mrow> <mspace width="thickmathspace"></mspace> <mo>−</mo> <mspace width="thickmathspace"></mspace> <mrow> <msub> <mi>v</mi> <mn>3</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </math></span></p>
<p>correct value for <em><strong>u</strong></em>•<em><strong>u</strong></em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> | <em><strong>u</strong><strong> </strong></em>|<sup>2</sup> = 16, <em><strong>u</strong></em>•<em><strong>u</strong></em> = 16, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}^2 + {u_2}^2 = 16"> <msup> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>16</mn> </math></span></p>
<p>correct value for <strong><em>v</em></strong>•<em><strong>v</strong></em> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> | <em><strong>v</strong><strong> </strong></em>|<sup>2</sup> = 16, <strong><em>v</em></strong>•<em><strong>v</strong></em> = 3, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_1}^2 + {v_2}^2 + {v_3}^2 = 3"> <msup> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>3</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>3</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> (seen anywhere) <em><strong>(A1)</strong></em></p>
<p><em><strong>u</strong></em>•<strong><em>v</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4 \times \sqrt 3 \times \frac{{\sqrt 3 }}{2}"> <mo>=</mo> <mn>4</mn> <mo>×</mo> <msqrt> <mn>3</mn> </msqrt> <mo>×</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span> (= 6) (seen anywhere) <em><strong>A1</strong></em></p>
<p>correct substitution into <em><strong>u</strong></em>•<em><strong>u </strong></em>− 2<em><strong>u</strong></em>•<strong><em>v </em></strong>+ <strong><em>v</em></strong>•<em><strong>v</strong></em> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}^2 + {u_2}^2 + {v_1}^2 + {v_2}^2 - 2\left( {{u_1}{v_1} + {u_2}{v_2}} \right)"> <msup> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </msup> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>v</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> (2 or 3 dimensions) <em><strong>(A1)</strong></em></p>
<p><em>eg </em>16 − 2(6) + 3 (= 7)</p>
<p>| <em><strong>w </strong></em>| = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 7 "> <msqrt> <mn>7</mn> </msqrt> </math></span> <em><strong>A1 N2</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Julio is making a wooden pencil case in the shape of a large pencil. The pencil case consists of a cylinder attached to a cone, as shown.</p>
<p>The cylinder has a radius of <em>r</em> cm and a height of 12 cm.</p>
<p>The cone has a base radius of <em>r</em> cm and a height of 10 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the slant height of the cone <strong>in terms of <em>r</em></strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total external surface area of the pencil case rounded to 3 significant figures is 570 cm<sup>2</sup>.</p>
<p>Using your graphic display calculator, calculate the value of <em>r</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(slant height<sup>2</sup> =) 10<sup>2</sup> + <em>r </em><sup>2</sup> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> For correct substitution of 10 and <em>r</em> into Pythagoras’ Theorem.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{10}^2} + {r^2}} ">
<msqrt>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong>(A1) (C2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2} + 2\pi r \times 12 + \pi r\sqrt {100 + {r^2}} = 570">
<mi>π</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mi>π</mi>
<mi>r</mi>
<mo>×</mo>
<mn>12</mn>
<mo>+</mo>
<mi>π</mi>
<mi>r</mi>
<msqrt>
<mn>100</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>=</mo>
<mn>570</mn>
</math></span> <em><strong>(M1)(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in curved surface area of cylinder and area of the base, <em><strong>(M1)</strong></em> for their correct substitution in curved surface area of cone, <em><strong>(M1)</strong></em> for adding their 3 surface areas and equating to 570. Follow through their part (a).</p>
<p>= 4.58 (4.58358...) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C4)</strong></em></p>
<p><strong>Note:</strong> Last line must be seen to award final <em><strong>(A1)</strong></em>. Follow through from part (a).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4\,{\text{cos}}\left( {\frac{x}{2}} \right) + 1"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 6\pi "> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>6</mn> <mi>π</mi> </math></span>. Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) > 2\sqrt 2 + 1"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>></mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> <mo>+</mo> <mn>1</mn> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1 – FINDING INTERVALS FOR <em>x</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\,{\text{cos}}\left( {\frac{x}{2}} \right) + 1 > 2\sqrt 2 + 1"> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>></mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> <mo>+</mo> <mn>1</mn> </math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\,{\text{cos}}\left( {\frac{x}{2}} \right) = 2\sqrt 2 "><mn>4</mn><mspace width="thinmathspace"></mspace><mtext>cos</mtext><mfenced><mfrac><mi>x</mi><mn>2</mn></mfrac></mfenced><mo>=</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {\frac{x}{2}} \right) > \frac{{\sqrt 2 }}{2}"><mtext>cos</mtext><mfenced><mfrac><mi>x</mi><mn>2</mn></mfrac></mfenced><mo>></mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></math></span></p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^{ - 1}}\frac{{\sqrt 2 }}{2} = \frac{\pi }{4}"> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p>one additional correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2}"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </math></span> (ignoring domain and equation/inequalities) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{\pi }{4}{\text{, }}\frac{{7\pi }}{4}{\text{, }}315^\circ {\text{, }}\frac{{9\pi }}{4}{\text{, }} - 45^\circ {\text{, }}\frac{{15\pi }}{4}"> <mo>−</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <msup> <mn>315</mn> <mo>∘</mo> </msup> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>15</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p>three correct values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{2}{\text{, }}\frac{{7\pi }}{2}{\text{, }}\frac{{9\pi }}{2}"> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p>valid approach to find intervals <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <img src=""></p>
<p>correct intervals (must be in radians) <em><strong>A1</strong></em><em><strong>A1 N2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7\pi }}{2} < x < \frac{{9\pi }}{2}"> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> <mo><</mo> <mi>x</mi> <mo><</mo> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span> </p>
<p><strong>Note:</strong> If working shown, award <em><strong>A1A0</strong></em> if inclusion/exclusion of endpoints is incorrect. If no working shown award <em><strong>N1</strong></em>.<br>If working shown, award <em><strong>A1A0</strong></em> if both correct intervals are given, <strong>and</strong> additional intervals are given. If no working shown award <em><strong>N1</strong></em>.<br>Award <em><strong>A0A0</strong></em> if inclusion/exclusion of endpoints are incorrect <strong>and</strong> additional intervals are given.</p>
<p> </p>
<p><strong>METHOD 2 – FINDING INTERVALS FOR <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2}"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </math></span></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\,{\text{cos}}\left( {\frac{x}{2}} \right) + 1 > 2\sqrt 2 + 1"><mn>4</mn><mspace width="thinmathspace"></mspace><mtext>cos</mtext><mfenced><mfrac><mi>x</mi><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>1</mn><mo>></mo><mn>2</mn><msqrt><mn>2</mn></msqrt><mo>+</mo><mn>1</mn></math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4\,{\text{cos}}\left( {\frac{x}{2}} \right) = 2\sqrt 2 "><mn>4</mn><mspace width="thinmathspace"></mspace><mtext>cos</mtext><mfenced><mfrac><mi>x</mi><mn>2</mn></mfrac></mfenced><mo>=</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {\frac{x}{2}} \right) > \frac{{\sqrt 2 }}{2}"><mtext>cos</mtext><mfenced><mfrac><mi>x</mi><mn>2</mn></mfrac></mfenced><mo>></mo><mfrac><msqrt><mn>2</mn></msqrt><mn>2</mn></mfrac></math></span></p>
<p>recognizing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{s}}^{ - 1}}\frac{{\sqrt 2 }}{2} = \frac{\pi }{4}"> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p>one additional correct value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2}"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </math></span> (ignoring domain and equation/inequalities) <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{\pi }{4}{\text{, }}\frac{{7\pi }}{4}{\text{, }}315^\circ {\text{, }}\frac{{9\pi }}{4}{\text{, }} - 45^\circ {\text{, }}\frac{{15\pi }}{4}"> <mo>−</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <msup> <mn>315</mn> <mo>∘</mo> </msup> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>15</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p>three correct values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2}"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{4}{\text{, }}\frac{{7\pi }}{4}{\text{, }}\frac{{9\pi }}{4}"> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p>valid approach to find intervals <em><strong>(M1)</strong></em></p>
<p><em>eg</em> <img src=""></p>
<p>one correct interval for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{2}"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant \frac{x}{2} < \frac{\pi }{4}{\text{, }}\frac{{7\pi }}{4} < \frac{x}{2} < \frac{{9\pi }}{4}"> <mn>0</mn> <mo>⩽</mo> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> <mo><</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo><</mo> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> <mo><</mo> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p>correct intervals (must be in radians) <em><strong>A1</strong></em><em><strong>A1 N2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7\pi }}{2} < x < \frac{{9\pi }}{2}"> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> <mo><</mo> <mi>x</mi> <mo><</mo> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span> </p>
<p><strong>Note:</strong> If working shown, award <em><strong>A1A0</strong></em> if inclusion/exclusion of endpoints is incorrect. If no working shown award <em><strong>N1</strong></em>.<br>If working shown, award <em><strong>A1A0</strong></em> if both correct intervals are given, <strong>and</strong> additional intervals are given. If no working shown award <em><strong>N1</strong></em>.<br>Award <em><strong>A0A0</strong></em> if inclusion/exclusion of endpoints are incorrect <strong>and</strong> additional intervals are given.</p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The following diagram shows triangle PQR.</p>
<p><img src="images/Schermafbeelding_2017-08-11_om_09.36.55.png" alt="M17/5/MATME/SP1/ENG/TZ1/03"></p>
<p>Find PR.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1 </strong></p>
<p>evidence of choosing the sine rule <em><strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{a}{{\sin A}} = \frac{b}{{\sin B}}">
<mfrac>
<mi>a</mi>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>A</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mi>b</mi>
<mrow>
<mi>sin</mi>
<mo></mo>
<mi>B</mi>
</mrow>
</mfrac>
</math></span></p>
<p>correct substitution <em><strong>A1</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{{\sin 30}} = \frac{{13}}{{\sin 45}},{\text{ }}\frac{{13\sin 30}}{{\sin 45}}">
<mfrac>
<mi>x</mi>
<mrow>
<mi>sin</mi>
<mo></mo>
<mn>30</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mn>45</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>13</mn>
<mi>sin</mi>
<mo></mo>
<mn>30</mn>
</mrow>
<mrow>
<mi>sin</mi>
<mo></mo>
<mn>45</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 30 = \frac{1}{2},{\text{ }}\sin 45 = \frac{1}{{\sqrt 2 }}">
<mi>sin</mi>
<mo></mo>
<mn>30</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>sin</mi>
<mo></mo>
<mn>45</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>(A1)(A1)</strong></em></p>
<p>correct working <em><strong>A1</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times \frac{{13}}{{\frac{1}{{\sqrt 2 }}}},{\text{ }}\frac{1}{2} \times 13 \times \frac{2}{{\sqrt 2 }},{\text{ }}13 \times \frac{1}{2} \times \sqrt 2 ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>13</mn>
<mo>×</mo>
<mfrac>
<mn>2</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>13</mn>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<msqrt>
<mn>2</mn>
</msqrt>
</math></span></p>
<p>correct answer <em><strong>A1</strong></em> <em><strong>N3</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PR}} = \frac{{13\sqrt 2 }}{2},{\text{ }}\frac{{13}}{{\sqrt 2 }}{\text{ (cm)}}">
<mrow>
<mtext>PR</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>13</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</math></span></p>
<p><strong>METHOD 2 (using height of Δ</strong><strong>PQR</strong><strong>)</strong></p>
<p>valid approach to find height of ΔPQR <em><strong>(M1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 30 = \frac{x}{{13}},{\text{ }}\cos 60 = \frac{x}{{13}}">
<mi>sin</mi>
<mo></mo>
<mn>30</mn>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>cos</mi>
<mo></mo>
<mn>60</mn>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mn>13</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 30 = \frac{1}{2}{\text{ or }}\cos 60 = \frac{1}{2}">
<mi>sin</mi>
<mo></mo>
<mn>30</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext> or </mtext>
</mrow>
<mi>cos</mi>
<mo></mo>
<mn>60</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{height}} = 6.5">
<mrow>
<mtext>height</mtext>
</mrow>
<mo>=</mo>
<mn>6.5</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>correct working <em><strong>A1</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 45 = \frac{{6.5}}{{{\text{PR}}}},{\text{ }}\sqrt {{{6.5}^2} + {{6.5}^2}} ">
<mi>sin</mi>
<mo></mo>
<mn>45</mn>
<mo>=</mo>
<mfrac>
<mrow>
<mn>6.5</mn>
</mrow>
<mrow>
<mrow>
<mtext>PR</mtext>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mn>6.5</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mn>6.5</mn>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span></p>
<p>correct working <em><strong>(A1)</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 45 = \frac{1}{{\sqrt 2 }},{\text{ }}\cos 45 = \frac{1}{{\sqrt 2 }},{\text{ }}\sqrt {\frac{{169 \times 2}}{4}} ">
<mi>sin</mi>
<mo></mo>
<mn>45</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>cos</mi>
<mo></mo>
<mn>45</mn>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<msqrt>
<mfrac>
<mrow>
<mn>169</mn>
<mo>×</mo>
<mn>2</mn>
</mrow>
<mn>4</mn>
</mfrac>
</msqrt>
</math></span></p>
<p>correct answer <em><strong>A1</strong></em> <em><strong>N3</strong></em></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PR}} = \frac{{13\sqrt 2 }}{2},{\text{ }}\frac{{13}}{{\sqrt 2 }}{\text{ (cm)}}">
<mrow>
<mtext>PR</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>13</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mfrac>
<mrow>
<mn>13</mn>
</mrow>
<mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext> (cm)</mtext>
</mrow>
</math></span></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>