File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/markSceme-HL-paper3html
File size: 207.27 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>This question investigates the sum of sine and cosine functions</p>
</div>
<div class="specification">
<p>The expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,{\text{sin}}\,x + 4\,{\text{cos}}\,x">
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A\,{\text{cos}}(Bx + C) + D">
<mi>A</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mi>x</mi>
<mo>+</mo>
<mi>C</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>D</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A{\text{,}}\,\,B \in {\mathbb{R}^ + }">
<mi>A</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>B</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C{\text{,}}\,\,D \in \mathbb{R}">
<mi>C</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>D</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi < C \leqslant \pi ">
<mo>−<!-- − --></mo>
<mi>π<!-- π --></mi>
<mo><</mo>
<mi>C</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>The expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5\,{\text{sin}}\,x + 12\,{\text{cos}}\,x">
<mn>5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>12</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A\,{\text{cos}}(Bx + C) + D">
<mi>A</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mi>x</mi>
<mo>+</mo>
<mi>C</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>D</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A{\text{,}}\,\,B \in {\mathbb{R}^ + }">
<mi>A</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>B</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C{\text{,}}\,\,D \in \mathbb{R}">
<mi>C</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>D</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi < C \leqslant \pi ">
<mo>−<!-- − --></mo>
<mi>π<!-- π --></mi>
<mo><</mo>
<mi>C</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>In general, the expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\,{\text{sin}}\,x + b\,{\text{cos}}\,x">
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A\,{\text{cos}}(Bx + C) + D">
<mi>A</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mi>x</mi>
<mo>+</mo>
<mi>C</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>D</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b{\text{,}}\,\,A{\text{,}}\,\,B \in {\mathbb{R}^ + }">
<mi>a</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>A</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>B</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C{\text{,}}\,\,D \in \mathbb{R}">
<mi>C</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>D</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi < C \leqslant \pi ">
<mo>−<!-- − --></mo>
<mi>π<!-- π --></mi>
<mo><</mo>
<mi>C</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Conjecture an expression, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, for</p>
</div>
<div class="specification">
<p>The expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\,{\text{sin}}\,x + b\,{\text{cos}}\,x">
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span> can also be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{a^2} + {b^2}} \left( {\frac{a}{{\sqrt {{a^2} + {b^2}} }}{\text{sin}}\,x + \frac{b}{{\sqrt {{a^2} + {b^2}} }}{\text{cos}}\,x} \right)">
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>a</mi>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mi>b</mi>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{a}{{\sqrt {{a^2} + {b^2}} }} = {\text{sin}}\,\theta ">
<mfrac>
<mi>a</mi>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ<!-- θ --></mi>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 3\,{\text{sin}}\,x + 4\,{\text{cos}}\,x">
<mi>y</mi>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2\pi \leqslant x \leqslant 2\pi ">
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
<mo>⩽</mo>
<mi>x</mi>
<mo>⩽</mo>
<mn>2</mn>
<mi>π</mi>
</math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of this graph</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the period of this graph</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers from part (a) to write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{arctan}}\frac{3}{4}">
<mrow>
<mtext>arctan</mtext>
</mrow>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span>, giving the answer to 3 significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on your answer to part (c)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 5\,{\text{sin}}\,x + 12\,{\text{cos}}\,x">
<mi>y</mi>
<mo>=</mo>
<mn>5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>12</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{b}{{\sqrt {{a^2} + {b^2}} }} = {\text{cos}}\,\theta ">
<mfrac>
<mi>b</mi>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{a}{b} = {\text{tan}}\,\theta ">
<mfrac>
<mi>a</mi>
<mi>b</mi>
</mfrac>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence prove your conjectures in part (e).</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>5 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
<mn>2</mn>
<mi>π</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 5">
<mi>A</mi>
<mo>=</mo>
<mn>5</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = 1">
<mi>B</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = 0">
<mi>D</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.644">
<mi>x</mi>
<mo>=</mo>
<mn>0.644</mn>
</math></span> <em><strong>M1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = -0.644">
<mi>C</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.644</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.644 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it appears that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = - {\text{arctan}}\frac{3}{4}">
<mi>C</mi>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mfrac>
<mn>3</mn>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 13">
<mi>A</mi>
<mo>=</mo>
<mn>13</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = 1">
<mi>B</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = 0">
<mi>D</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.395">
<mi>x</mi>
<mo>=</mo>
<mn>0.395</mn>
</math></span> <em><strong>M1</strong></em></p>
<p>So C = −0.395 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = - {\text{arctan}}\frac{5}{{12}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mfrac>
<mn>5</mn>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \sqrt {{a^2} + {b^2}} ">
<mi>A</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = 1">
<mi>B</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = - {\text{arctan}}\frac{a}{b}">
<mi>C</mi>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mfrac>
<mi>a</mi>
<mi>b</mi>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = 0">
<mi>D</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong> EITHER</strong></p>
<p>use of a right triangle and Pythgoras’ to show the missing side length is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> <em><strong>M1A1</strong></em></p>
<p><strong>OR</strong></p>
<p>Use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1">
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
<mo>+</mo>
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mi>θ</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, leading to the required result <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong> EITHER</strong></p>
<p>use of a right triangle, leading to the required result. <em><strong>M1</strong></em></p>
<p><strong>OR</strong></p>
<p>Use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta = \frac{{{\text{sin}}\,\theta }}{{{\text{cos}}\,\theta }}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span>, leading to the required result. <em><strong>M1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\,{\text{sin}}\,x + b\,{\text{cos}}\,x = \sqrt {{a^2} + {b^2}} \left( {{\text{sin}}\,\theta \,{\text{sin}}\,x + {\text{cos}}\,\theta \,{\text{cos}}\,x} \right)">
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\,{\text{sin}}\,x + b\,{\text{cos}}\,x = \sqrt {{a^2} + {b^2}} \left( {{\text{cos}}\left( {x - \theta } \right)} \right)">
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \sqrt {{a^2} + {b^2}} ">
<mi>A</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = 1">
<mi>B</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = 0">
<mi>D</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>And <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = - \theta ">
<mi>C</mi>
<mo>=</mo>
<mo>−</mo>
<mi>θ</mi>
</math></span> <em><strong>M1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = - {\text{arctan}}\frac{a}{b}">
<mi>C</mi>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mtext>arctan</mtext>
</mrow>
<mfrac>
<mi>a</mi>
<mi>b</mi>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>This question asks you to investigate some properties of the sequence of functions of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x) = {\text{cos}}\left( {n\,{\text{arccos}}\,x} \right)">
<mrow>
<msub>
<mi>f</mi>
<mi>n</mi>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>arccos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, −1 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 1 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }">
<mi>n</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
<p><strong>Important:</strong> When sketching graphs in this question, you are <strong>not</strong> required to find the coordinates of any axes intercepts or the coordinates of any stationary points unless requested.</p>
</div>
<div class="specification">
<p>For odd values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> > 2, use your graphic display calculator to systematically vary the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>. Hence suggest an expression for odd values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> describing, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, the number of</p>
</div>
<div class="specification">
<p>For even values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> > 2, use your graphic display calculator to systematically vary the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>. Hence suggest an expression for even values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>describing, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, the number of</p>
</div>
<div class="specification">
<p>The sequence of functions, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x)">
<mrow>
<msub>
<mi>f</mi>
<mi>n</mi>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, defined above can be expressed as a sequence of polynomials of degree <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{n + 1}}(x) = {\text{cos}}\left( {\left( {n + 1} \right)\,{\text{arccos}}\,x} \right)">
<mrow>
<msub>
<mi>f</mi>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>arccos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the same set of axes, sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_1}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_3}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> for −1 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>local maximum points;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>local minimum points;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On a new set of axes, sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_2}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_4}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>4</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> for −1 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>local maximum points;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>local minimum points.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}^\prime (x) = 0"> <msup> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mi mathvariant="normal">′</mi> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> and hence show that the stationary points on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_n}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> occur at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{cos}}\frac{{k\pi }}{n}"> <mi>x</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mi>k</mi> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }"> <mi>k</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span> and 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an appropriate trigonometric identity to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_2}(x) = 2{x^2} - 1"> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an appropriate trigonometric identity to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{n + 1}}(x) = {\text{cos}}\left( {n\,{\text{arccos}}\,x} \right){\text{cos}}\left( {{\text{arccos}}\,x} \right) - {\text{sin}}\left( {n\,{\text{arccos}}\,x} \right){\text{sin}}\left( {{\text{arccos}}\,x} \right)"> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{n + 1}}(x) + {f_{n - 1}}(x) = 2x{f_n}\left( x \right)"> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }"> <mi>n</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_3}(x)"> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> as a cubic polynomial.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_1}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <em><strong>A1</strong></em></p>
<p>correct graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_3}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <em><strong>A1</strong></em></p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>graphical or tabular evidence that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> has been systematically varied <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> = 3, 1 local maximum point and 1 local minimum point</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> = 5, 2 local maximum points and 2 local minimum points</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> = 7, 3 local maximum points and 3 local minimum points <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n - 1}}{2}"> <mfrac> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </math></span> local maximum points <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n - 1}}{2}"> <mfrac> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </math></span> local minimum points <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow follow through from an incorrect local maximum formula expression.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_2}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <em><strong>A1</strong></em></p>
<p>correct graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_4}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mn>4</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <em><strong>A1</strong></em></p>
<p><img src=""></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>graphical or tabular evidence that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> has been systematically varied <em><strong>M1</strong></em></p>
<p><em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> = 2, 0 local maximum point and 1 local minimum point</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> = 4, 1 local maximum points and 2 local minimum points</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> = 6, 2 local maximum points and 3 local minimum points <em><strong> (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n - 2}}{2}"> <mfrac> <mrow> <mi>n</mi> <mo>−</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </math></span> local maximum points <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{n}{2}"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </math></span> local minimum points <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x) = {\text{cos}}\left( {n\,{\text{arccos}}\left( x \right)} \right)"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}^\prime (x) = \frac{{n\,{\text{sin}}\left( {n\,{\text{arccos}}\left( x \right)} \right)}}{{\sqrt {1 - {x^2}} }}"> <msup> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mi mathvariant="normal">′</mi> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span> <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to use the chain rule.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}^\prime (x) = 0 \Rightarrow n\,{\text{sin}}\left( {n\,{\text{arccos}}\left( x \right)} \right) = 0"> <msup> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mi mathvariant="normal">′</mi> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\,{\text{arccos}}\left( x \right) = k\pi \,\,\,\left( {k \in {\mathbb{Z}^ + }} \right)"> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>k</mi> <mi>π</mi> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>leading to</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{cos}}\frac{{k\pi }}{n}"> <mi>x</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mi>k</mi> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> </math></span> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }"> <mi>k</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span> and 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>) <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_2}(x) = {\text{cos}}\left( {2\,{\text{arccos}}\,x} \right)"> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2{\left( {{\text{cos}}\left( {{\text{arccos}}\,x} \right)} \right)^2} - 1"> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </math></span> <em><strong>M1</strong></em></p>
<p>stating that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{cos}}\left( {{\text{arccos}}\,x} \right)} \right) = x"> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </math></span> <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_2}(x) = 2{x^2} - 1"> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{n + 1}}(x) = {\text{cos}}\left( {\left( {n + 1} \right)\,{\text{arccos}}\,x} \right)"> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{cos}}\left( {n\,{\text{arccos}}\,x + {\text{arccos}}\,x} \right)"> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>use of cos(<em>A</em> + <em>B</em>) = cos <em>A </em>cos <em>B</em> − sin <em>A </em>sin <em>B</em> leading to <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{cos}}\left( {n\,{\text{arccos}}\,x} \right){\text{cos}}\left( {{\text{arccos}}\,x} \right) - {\text{sin}}\left( {n\,{\text{arccos}}\,x} \right){\text{sin}}\left( {{\text{arccos}}\,x} \right)"> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{n - 1}}(x) = {\text{cos}}\left( {\left( {n - 1} \right)\,{\text{arccos}}\,x} \right)"> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{cos}}\left( {n\,{\text{arccos}}\,x} \right){\text{cos}}\left( {{\text{arccos}}\,x} \right) + {\text{sin}}\left( {n\,{\text{arccos}}\,x} \right){\text{sin}}\left( {{\text{arccos}}\,x} \right)"> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{n + 1}}(x) + {f_{n - 1}}(x) = 2\,{\text{cos}}\left( {n\,{\text{arccos}}\,x} \right){\text{cos}}\left( {{\text{arccos}}\,x} \right)"> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <msub> <mi>f</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>arccos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2x{f_n}\left( x \right)"> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_3}(x) = 2x{f_2}\left( x \right) - {f_1}(x)"> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2x\left( {2{x^2} - 1} \right) - x"> <mo>=</mo> <mn>2</mn> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4{x^3} - 3x"> <mo>=</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> <mi>x</mi> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> rectangle has an area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> and a perimeter of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math>.</strong></p>
<p> </p>
<p>For each polygon in this question, let the numerical value of its area be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and let the numerical value of its perimeter be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
</div>
<div class="specification">
<p>An <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>-sided regular polygon can be divided into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> congruent isosceles triangles. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> be the length of each of the two equal sides of one such isosceles triangle and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> be the length of the third side. The included angle between the two equal sides has magnitude <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac></math>.</p>
<p>Part of such an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>-sided regular polygon is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Consider a <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>-sided regular polygon such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi></math>.</p>
</div>
<div class="specification">
<p>The Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>x</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mfrac><msup><mi>x</mi><mn>3</mn></msup><mn>3</mn></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>5</mn></msup></mrow><mn>15</mn></mfrac><mo>+</mo><mo>…</mo></math></p>
</div>
<div class="specification">
<p>Consider a right-angled triangle with side lengths <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≥</mo><mi>b</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the side length, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>></mo><mn>0</mn></math>, of a square such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, an expression for the area, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>T</mi></msub></math>, of one of these isosceles triangles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the results from parts (b) and (c) to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>=</mo><mn>4</mn><mi>n</mi><mo> </mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>x</mi></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mfenced><mrow><mn>4</mn><mi>n</mi><mo> </mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret your answer to part (e)(i) geometrically.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>8</mn><mrow><mi>b</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>4</mn></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>A</mi><mo>,</mo><mo> </mo><mi>P</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area and perimeter of these two right-angled triangles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msup><mi>s</mi><mn>2</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>4</mn><mi>s</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>⇒</mo><msup><mi>s</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><mi>s</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mrow><mi>s</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>s</mi><mo>=</mo><mn>4</mn><mfenced><mrow><mi>s</mi><mo>></mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Award <em><strong>A1M1A0</strong></em> if both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mn>0</mn></math> are stated as final answers.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>T</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mrow><mn>2</mn><mo> </mo></mrow></msup><mi>sin</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Award <em><strong>A1 </strong></em>for a correct alternative form expressed in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> only.</p>
<p> For example, using Pythagoras’ theorem, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>T</mi></msub><mo>=</mo><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>x</mi><mrow><mn>2</mn><mo> </mo></mrow></msup><msup><mi>sin</mi><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>T</mi></msub><mo>=</mo><mn>2</mn><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced><mfenced><mrow><mi>x</mi><mo> </mo><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi>T</mi></msub><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mtext>opp</mtext><mtext>hyp</mtext></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac><mi>y</mi><mn>2</mn></mfrac></mstyle><mi>x</mi></mfrac><mo>=</mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>uses Pythagoras’ theorem <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mi>y</mi><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mi>x</mi><mo> </mo><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mi>y</mi><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>x</mi><mo> </mo><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>cos</mi><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>uses the cosine rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>cos</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>cos</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p>uses the sine rule <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>y</mi><mrow><mi>sin</mi><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac></mstyle></mrow></mfrac><mo>=</mo><mfrac><mi>x</mi><mrow><mi>sin</mi><mstyle displaystyle="true"><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced></mstyle></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>⇒</mo><mi>n</mi><msub><mi>A</mi><mi>T</mi></msub><mo>=</mo><mi>n</mi><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for equating correct expressions for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>n</mi><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac><mo>=</mo><mn>2</mn><mi>n</mi><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo> </mo><mfenced><mrow><mi>n</mi><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo>=</mo><mn>2</mn><mi>n</mi><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo> </mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>n</mi></mfrac><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></math> (seen anywhere in part (d) or in part (b)) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo>=</mo><mn>2</mn><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></math></p>
<p>attempts to either factorise or divide their expression <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mfenced><mrow><mi>x</mi><mo> </mo><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo>-</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac><mo>,</mo><mo> </mo><mfenced><mrow><mi>x</mi><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mo>≠</mo><mn>0</mn></mrow></mfenced></math> (or equivalent) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac></math> (or equivalent) into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mi>n</mi><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>2</mn><mi>n</mi><mfenced><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac></mfenced><mfenced><mrow><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Other approaches are possible. For example, award<em><strong> A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>2</mn><mi>n</mi><mi>x</mi><mo> </mo><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mi>tan</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></math> and <em><strong>M1</strong></em> for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<p><strong><br>OR</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac></math> (or equivalent) into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>n</mi><msub><mi>A</mi><mi>T</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>n</mi><msup><mfenced><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac></mfenced><mn>2</mn></msup><mfenced><mrow><mi>sin</mi><mfrac><mstyle displaystyle="true"><mn>2</mn><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>n</mi><msup><mfenced><mfrac><mn>2</mn><mrow><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfrac></mfenced><mn>2</mn></msup><mfenced><mrow><mn>2</mn><mo> </mo><mi>sin</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mi>cos</mi><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>=</mo><mn>4</mn><mi>n</mi><mo> </mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to use the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>x</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mi>n</mi></mstyle></mfrac><mo>+</mo><mfrac><mstyle displaystyle="true"><msup><mfenced><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mfenced><mn>3</mn></msup></mstyle><mn>3</mn></mfrac><mo>+</mo><mfrac><mstyle displaystyle="true"><mn>2</mn><msup><mfenced><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mfenced><mn>5</mn></msup></mstyle><mn>15</mn></mfrac><mfenced><mrow><mo>+</mo><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>n</mi><mo> </mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mo>=</mo><mn>4</mn><mi>n</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac><mo>+</mo><mfrac><msup><mi mathvariant="normal">π</mi><mn>3</mn></msup><mrow><mn>3</mn><msup><mi>n</mi><mn>3</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><msup><mi mathvariant="normal">π</mi><mn>5</mn></msup></mrow><mrow><mn>15</mn><msup><mi>n</mi><mn>5</mn></msup></mrow></mfrac><mfenced><mrow><mo>+</mo><mo>…</mo></mrow></mfenced></mrow></mfenced></math> (or equivalent) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mfenced><mrow><mi mathvariant="normal">π</mi><mo>+</mo><mfrac><msup><mi mathvariant="normal">π</mi><mn>3</mn></msup><mrow><mn>3</mn><msup><mi>n</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><msup><mi mathvariant="normal">π</mi><mn>5</mn></msup></mrow><mrow><mn>15</mn><msup><mi>n</mi><mn>4</mn></msup></mrow></mfrac><mo>+</mo><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mfenced><mrow><mn>4</mn><mi>n</mi><mo> </mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mi>n</mi></mfrac></mrow></mfenced><mo>=</mo><mn>4</mn><mi mathvariant="normal">π</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award a maximum of <em><strong>M1A1A0</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder></math> is not stated anywhere.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>→</mo><mo>∞</mo><mo>,</mo><mo> </mo><mi>P</mi><mo>→</mo><mn>4</mn><mi mathvariant="normal">π</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>→</mo><mn>4</mn><mi mathvariant="normal">π</mi></math>)</p>
<p>the polygon becomes a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>R1</strong></em> for alternative responses such as:<br>the polygon becomes a circle of area <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi mathvariant="normal">π</mi></math> OR<br>the polygon becomes a circle of perimeter <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi mathvariant="normal">π</mi></math> OR<br>the polygon becomes a circle with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>=</mo><mn>4</mn><mi mathvariant="normal">π</mi></math>.<br>Award <em><strong>R0</strong></em> for polygon becomes a circle.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt></math> <em><strong>(A1)(A1)</strong></em></p>
<p>equates their expressions for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>⇒</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi><mo>-</mo><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for isolating <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo><mn>2</mn><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt></math>. This step may be seen later.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi><mo>-</mo><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mi>b</mi></mrow></mfenced><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mo>+</mo><msup><mfenced><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><msup><mi>a</mi><mn>2</mn></msup><mi>b</mi><mo>-</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for attempting to expand their RHS of either <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mo>…</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mo>…</mo></math>.</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>b</mi><mfenced><mrow><mfrac><mn>1</mn><mn>4</mn></mfrac><mi>a</mi><mi>b</mi><mo>-</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>a</mi><mi>b</mi><mo>≠</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac><mi>a</mi><mi>b</mi><mo>-</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>b</mi><mo>-</mo><mn>4</mn><mi>a</mi><mo>=</mo><mn>4</mn><mi>b</mi><mo>-</mo><mn>8</mn></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>a</mi><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><msup><mi>a</mi><mn>2</mn></msup><mi>b</mi><mo>-</mo><mi>a</mi><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mfenced><mrow><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mi>b</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>2</mn><mi>b</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>a</mi><mfenced><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>b</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>8</mn><mi>b</mi><mo>-</mo><mn>4</mn><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>b</mi></mrow><mrow><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>b</mi></mrow></mfrac></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>b</mi><mo>-</mo><mn>8</mn></mrow><mrow><mi>b</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>b</mi><mo>-</mo><mn>16</mn><mo>+</mo><mn>8</mn></mrow><mrow><mi>b</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>8</mn><mrow><mi>b</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>4</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award a maximum of <em><strong>A1A1M1M1M0A0A0</strong></em> for attempting to verify.<br>For example, verifying that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>=</mo><mfrac><mn>16</mn><mrow><mi>b</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>b</mi><mo>+</mo><mn>4</mn></math> gains <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> marks.</p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>using an appropriate method <em><strong>(M1)</strong></em></p>
<p><em>eg</em> substituting values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> or using divisibility properties</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>12</mn><mo>,</mo><mo> </mo><mn>13</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>6</mn><mo>,</mo><mo> </mo><mn>8</mn><mo>,</mo><mo> </mo><mn>10</mn></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> for either one set of three correct side lengths or two sets of two correct side lengths.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>=</mo><mn>30</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mi>P</mi><mo>=</mo><mn>24</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award <em><strong>A1FT</strong></em>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br>