File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/markSceme-HL-paper2html
File size: 738.17 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering limits, show that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a horizontal asymptote and state its equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> and the result <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfenced open="|" close="|"><mi>x</mi></mfenced></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math>.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, justifying your answer.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>a sketch graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> with line symmetry in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis indicated <em><strong>R1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> is an even function. <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>±</mo><mo>∞</mo><mo>,</mo><mo> </mo><mo> </mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>→</mo><mtext>arcsin</mtext><mo> </mo><mn>1</mn><mfenced><mrow><mo>→</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so the horizontal asymptote is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to use the quotient rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>2</mn><mi>x</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempting to use the chain rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arcsin</mtext><mo> </mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>u</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mi>u</mi><mn>2</mn></msup></msqrt></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mfenced><mstyle displaystyle="true"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mn>1</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mn>1</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><mfenced open="|" close="|"><mi>x</mi></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math></p>
<p><br><strong>EITHER</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn><mo>,</mo><mo> </mo><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>></mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo><</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo><</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo><</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>R1</strong></em> for stating that in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>, the numerator is negative, and the denominator is positive.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Do not accept a graphical solution</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⇒</mo><msup><mi>y</mi><mn>2</mn></msup><mo> </mo><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p>domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math> and so the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>≥</mo><mn>0</mn></math></p>
<p>hence the positive root is taken (or the negative root is rejected) <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong></em> is dependent on the above<em><strong> A1</strong></em>.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><msqrt><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow></mfrac></msqrt></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The final <em><strong>A1</strong></em> is not dependent on <em><strong>R1</strong></em> mark.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>≤</mo><mi>x</mi><mo><</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept correct alternative notations, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⌊</mo><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>,</mo><mo> </mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>⌊</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⌊</mo><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>,</mo><mo> </mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>)</mo></mstyle></math>.<br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>57</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>57</mn><mo>[</mo></math> if correct to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> s.f.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:<em> A1</em></strong> for correct domain and correct range and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn></math><br><em><strong> A1</strong></em> for asymptotic behaviour <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math><br><em><strong> A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math><br> Coordinates are not required. <br> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57</mn></math> or other inexact values.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \,{\text{cot}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfy the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\,2\theta } \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the results from parts (b) and (c) find the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p>Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + b\sqrt 3 ">
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{Z}">
<mi>b</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>stating the relationship between <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cot ">
<mi>cot</mi>
</math></span></span> and <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan ">
<mi>tan</mi>
</math></span></span> and stating the identity for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2\theta ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{1}{{{\text{tan}}\,2\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2\theta = \frac{{2\,{\text{tan}}\,\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p>attempting to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and using the result from (a) <em><strong>M1</strong></em></p>
<p>LHS = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^2}\,\theta + 2\,{\text{tan}}\,\theta \left( {\frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}} \right) - 1">
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>+</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^2}\,\theta + 1 - {\text{ta}}{{\text{n}}^2}\,\theta - 1 = 0">
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>+</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>(= RHS) <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfies the equation <em><strong>AG</strong></em></p>
<p>attempting to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \,{\text{cot}}\,\theta ">
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and using the result from (a) <em><strong>M1</strong></em></p>
<p>LHS = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{t}}^2}\,\theta - 2\,{\text{cot}}\,\theta \left( {\frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}} \right) - 1">
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>t</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{{\text{ta}}{{\text{n}}^2}\,\theta }} - \left( {\frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{\,{\text{ta}}{{\text{n}}^2}\,\theta }}} \right) - 1">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \frac{1}{{{\text{ta}}{{\text{n}}^2}\,\theta }} - \frac{1}{{{\text{ta}}{{\text{n}}^2}\,\theta }} + 1 - 1 = 0">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mn>1</mn>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>(= RHS) <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \,{\text{cot}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfies the equation <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = {\text{tan}}\,\theta ">
<mi>α</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta = - \,{\text{cot}}\,\theta ">
<mi>β</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span></p>
<p>attempting to find the sum of roots <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha + \beta = {\text{tan}}\,\theta - \frac{1}{{{\text{tan}}\,\theta }}">
<mi>α</mi>
<mo>+</mo>
<mi>β</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{ta}}{{\text{n}}^2}\,\theta - 1}}{{{\text{tan}}\,\theta }}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> </span><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>A1</strong></em></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 2\,{\text{cot}}\,2\theta ">
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</math></span> (from part (a)) <em><strong>A1</strong></em></p>
<p>attempting to find the product of roots <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha \beta = {\text{tan}}\,\theta \times \left( { - \,{\text{cot}}\,\theta } \right)">
<mi>α</mi>
<mi>β</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>= −1 <em><strong>A1</strong></em></p>
<p>the coefficient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and the constant term in the quadratic are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2\,{\text{cot}}\,2\theta }">
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
</math></span> and −1 respectively <em><strong>R1</strong></em></p>
<p>hence the two roots are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = {\text{tan}}\,\theta ">
<mi>α</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta = - \,{\text{cot}}\,\theta ">
<mi>β</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\frac{\pi }{{12}}">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - {\text{cot}}\frac{\pi }{{12}}">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> are roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\frac{\pi }{{6}}} \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>6</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>if only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\frac{\pi }{{12}}">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> is stated as a root of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\frac{\pi }{{6}}} \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>6</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 2\sqrt 3 x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to solve <strong>their</strong> quadratic equation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \sqrt 3 \pm 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
<mo>±</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} > 0">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>></mo>
<mn>0</mn>
</math></span> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{cot}}\frac{\pi }{{12}} < 0">
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo><</mo>
<mn>0</mn>
</math></span>) <em><strong>R1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>attempting to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{{12}}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> into the identity for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2\theta ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{6} = \frac{{2\,{\text{tan}}\frac{\pi }{{12}}}}{{1 - {\text{ta}}{{\text{n}}^2}\frac{\pi }{{12}}}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^2}\frac{\pi }{{12}} + 2\sqrt 3 \,{\text{tan}}\frac{\pi }{{12}} - 1 = 0">
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to solve <strong>their </strong>quadratic equation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = - \sqrt 3 \pm 2">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
<mo>±</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} > 0">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>></mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> is the sum of the roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\frac{\pi }{{12}}} \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}} = - 2\,{\text{cot}}\frac{\pi }{{12}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{ - 2}}{{2 - \sqrt 3 }}">
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mrow>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to rationalise <strong>their</strong> denominator <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 4 - 2\sqrt 3 ">
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has a probability density function given by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable><mtr><mtd><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math></p>
<p>The median of this distribution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mfenced open="|" close="|"><mrow><mi>X</mi><mo>-</mo><mi>m</mi></mrow></mfenced><mo>≤</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>, determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mi>m</mi></munderover><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo> </mo><mtext>arccos</mtext><mo> </mo><mi>m</mi><mo>-</mo><msqrt><mn>1</mn><mo>-</mo><msup><mi>m</mi><mn>2</mn></msup></msqrt><mo>-</mo><mfenced><mrow><mn>0</mn><mo>-</mo><msqrt><mn>1</mn></msqrt></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>360</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to find at least one endpoint (limit) both in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> (or their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi><mo>≤</mo><mi>X</mi><mo>≤</mo><mi>m</mi><mo>+</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>-</mo><mi>a</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mi>x</mi><mo> </mo><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo>-</mo><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></mrow></mfenced><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>-</mo><mi>a</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>+</mo><mi>a</mi></mrow></msubsup></math></p>
<p>attempts to solve their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> The above <em><strong>(M1)</strong></em> is dependent on the first <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>124861</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><menclose notation="left"><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><menclose notation="left"><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></menclose></menclose></math> <em><strong>(M1)(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only award <em><strong>(M1)</strong></em> if at least one limit has been translated correctly.</p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><menclose notation="left"><mi>x</mi><mo>-</mo><mi>m</mi><menclose notation="left"><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></menclose></menclose></math>.</p>
<p><br>attempts to solve their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>124861</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><strong>EITHER </strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only award <em><strong>(M1)</strong></em> if at least one limit has been translated correctly.</p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>+</mo><mi>m</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>2</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo>-</mo><mi>a</mi></mrow><mrow><mn>2</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)(A1)</strong></em></p>
<p><strong><br>Note:</strong> Only award <em><strong>(M1)</strong></em> if at least one limit has been translated correctly.</p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>2</mn><mi>m</mi><mo>-</mo><mi>a</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>-</mo><mi>m</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><br><strong>THEN</strong></p>
<p>attempts to solve their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> The above <em><strong>(M1)</strong></em> is dependent on the first <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>124861</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The height of water, in metres, in Dungeness harbour is modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo> </mo><mi>sin</mi><mo>(</mo><mi>b</mi><mo>(</mo><mi>t</mi><mo>-</mo><mi>c</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of hours after midnight, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are constants, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>></mo><mn>0</mn></math>.</p>
<p>The following graph shows the height of the water for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> hours, starting at midnight.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first high tide occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>04</mn><mo>:</mo><mn>30</mn></math> and the next high tide occurs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> hours later. Throughout the day, the height of the water fluctuates between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p>All heights are given correct to one decimal place.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the water at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>:</mo><mn>00</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of hours, over a 24-hour period, for which the tide is higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A fisherman notes that the water height at nearby Folkestone harbour follows the same sinusoidal pattern as that of Dungeness harbour, with the exception that high tides (and low tides) occur <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> minutes earlier than at Dungeness.</p>
<p>Find a suitable equation that may be used to model the tidal height of water at Folkestone harbour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>b</mi></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>12</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mtext>max</mtext><mo>-</mo><mtext>min</mtext></mrow><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mtext>max</mtext><mo>+</mo><mtext>min</mtext></mrow><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>8</mn></math> for example into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math></p>
<p>attempt to solve their equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>using horizontal translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>12</mn><mn>4</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi><mo>=</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mfenced><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>attempts to solve their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>'</mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mfenced><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>12</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, graphically or algebraically <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>87365</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>87</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p>times are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>91852</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>08147</mn><mo>…</mo><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mi>t</mi><mo>=</mo><mn>13</mn><mo>.</mo><mn>9185</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>t</mi><mo>=</mo><mn>19</mn><mo>.</mo><mn>0814</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>total time is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mfenced><mrow><mn>7</mn><mo>.</mo><mn>081</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>919</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>3258</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>10</mn><mo>.</mo><mn>3</mn></math> (hours) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>11</mn><mn>3</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>8</mn></math> into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and attempts to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mfrac><mn>11</mn><mn>3</mn></mfrac><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn><mo>⇒</mo><mi>c</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong><br>uses their horizontal translation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>12</mn><mn>4</mn></mfrac><mo>=</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>11</mn><mn>3</mn></mfrac><mo>-</mo><mi>c</mi><mo>=</mo><mn>3</mn><mo>⇒</mo><mi>c</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in seconds.</p>
</div>
<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>×<!-- × --></mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The average power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
<mi>t</mi>
<mo>=</mo>
<mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>0</mn>
<mi>T</mi>
</msubsup>
<mrow>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
<mi>T</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> ≥ 3.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span>(0.007).</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</math></span> > 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> > 0.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>d</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> > 0, use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3, −3 <em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis invariant), scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 0.003} \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>0.003</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (shift to the left by 0.003) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Can be done in either order.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape over correct domain with correct endpoints <em><strong>A1</strong></em><br>first maximum at (0.0035, 4.76) <em><strong>A1</strong></em><br>first minimum at (0.0085, −1.24) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> ≥ 3 between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.0016762 and 0.0053238 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.011676 and 0.015324 <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for either interval.</p>
<p>= 0.00730 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}} = \frac{1}{{0.007}}\int_0^{0.007} {6\,{\text{sin}}\left( {100\pi t} \right)} {\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right){\text{d}}t">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</mfrac>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</msubsup>
<mrow>
<mn>6</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 2.87 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in each cycle the area under the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis is smaller than area above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis <em><strong>R1</strong></em></p>
<p>the curve begins with the positive part of the cycle <em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{4.76 - \left( { - 1.24} \right)}}{2}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3.00">
<mi>a</mi>
<mo>=</mo>
<mn>3.00</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = \frac{{4.76 + \left( { - 1.24} \right)}}{2}">
<mi>d</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = 1.76">
<mi>d</mi>
<mo>=</mo>
<mn>1.76</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{0.01}}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>0.01</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 628\left( { = 200\pi } \right)">
<mi>b</mi>
<mo>=</mo>
<mn>628</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>200</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.0035 - \frac{{0.01}}{4}">
<mi>c</mi>
<mo>=</mo>
<mn>0.0035</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>0.01</mn>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.00100">
<mi>c</mi>
<mo>=</mo>
<mn>0.00100</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the rectangle OABC such that AB = OC = 10 and BC = OA = 1 , with the points P , Q and R placed on the line OC such that OP = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, OQ = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> and OR = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, such that 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> < 10.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>p</mi>
</msub>
</mrow>
</math></span> be the angle APO, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _q}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>q</mi>
</msub>
</mrow>
</math></span> be the angle AQO and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _r}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>r</mi>
</msub>
</mrow>
</math></span> be the angle ARO.</p>
</div>
<div class="specification">
<p>Consider the case when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\theta _q} + {\theta _r}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>p</mi>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>q</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>r</mi>
</msub>
</mrow>
</math></span> and QR = 1.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p}"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{{q^2} + q - 1}}{{2q + 1}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By sketching the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> as a function of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>, determine the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> for which there are possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>use of tan <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,{\theta _p} = \frac{1}{p}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\text{arctan}}\left( {\frac{1}{p}} \right)"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>arctan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>AP <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {{p^2} + 1} "> <mo>=</mo> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </math></span> <em><strong>(A1)</strong></em></p>
<p>use of sin, cos, sine rule or cosine rule using the correct length of AP <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\text{arcsin}}\left( {\frac{1}{{\sqrt {{p^2} + 1} }}} \right)"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>arcsin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\text{arccos}}\left( {\frac{p}{{\sqrt {{p^2} + 1} }}} \right)"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>p</mi> <mrow> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>QR = 1 ⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = q + 1"> <mi>r</mi> <mo>=</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> This may be seen anywhere.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,{\theta _p} = {\text{tan}}\left( {{\theta _q} + {\theta _r}} \right)"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>θ</mi> <mi>q</mi> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>attempt to use compound angle formula for tan <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,{\theta _p} = \frac{{{\text{tan}}\,{\theta _q} + {\text{tan}}\,{\theta _r}}}{{1 - {\text{tan}}\,{\theta _q}\,{\text{tan}}\,{\theta _r}}}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>q</mi> </msub> </mrow> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>q</mi> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> </mrow> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{p} = \frac{{\frac{1}{q} + \frac{1}{r}}}{{1 - \left( {\frac{1}{q}} \right)\left( {\frac{1}{r}} \right)}}"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{p} = \frac{{\frac{1}{q} + \frac{1}{{q + 1}}}}{{1 - \left( {\frac{1}{q}} \right)\left( {\frac{1}{{q + 1}}} \right)}}"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{1 - \left( {\frac{1}{q}} \right)\left( {\frac{1}{{q + 1}}} \right)}}{{\left( {\frac{1}{q}} \right) + \left( {\frac{1}{{q + 1}}} \right)}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{p} = \frac{{q + q + 1}}{{q\left( {q + 1} \right) - 1}}"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>q</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>q</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for multiplying top and bottom by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{q\left( {q + 1} \right)}"> <mrow> <mi>q</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{{q^2} + q - 1}}{{2q + 1}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>increasing function with positive <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>-intercept <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept curves which extend beyond the domain shown above.</p>
<p> </p>
<p>(0.618 <) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> < 9 <em><strong>(A1)</strong></em></p>
<p>⇒ range is (0 <) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> < 4.68 <strong>(A1)</strong></p>
<p>0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> < 4.68 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>−</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>−</mo><mn>13</mn></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> has vector equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo> </mo><mo>,</mo><mo> </mo><mi>λ</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> contains the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> meets <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the shortest distance from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math>, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo mathvariant="bold">.</mo><mi mathvariant="bold-italic">n</mi><mo>=</mo><mi>d</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the acute angle between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mi>λ</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>2</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mn>4</mn><mi>λ</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>13</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mn>3</mn><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>10</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(M1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mo>-</mo><mn>8</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>10</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Do not award the final <em><strong>A1</strong></em> if a vector given instead of coordinates</p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p>substituting into equation of the plane <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mi>μ</mi><mo>+</mo><mi>μ</mi><mo>+</mo><mi>μ</mi><mo>=</mo><mo>-</mo><mn>13</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mo>-</mo><mfrac><mn>13</mn><mn>11</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>18</mn><mo>…</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>13</mn><msqrt><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt></mrow><mn>11</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>13</mn><msqrt><mn>11</mn></msqrt></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>13</mn><msqrt><mn>11</mn></msqrt></mrow><mn>11</mn></mfrac><mo>=</mo><mn>3</mn><mo>.</mo><mn>92</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong><br>METHOD 2</strong></p>
<p>choice of any point on the plane, eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>8</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>10</mn></mrow></mfenced></math> to use in distance formula <em><strong>(M1)</strong></em></p>
<p>so distance <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mtable><mtr><mtd><mo>-</mo><mn>8</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>10</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></mrow><msqrt><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mfrac></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for numerator, <em><strong>A1</strong></em> for denominator.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>24</mn><mo>-</mo><mn>1</mn><mo>-</mo><mn>10</mn></mrow><msqrt><mn>11</mn></msqrt></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>13</mn><msqrt><mn>11</mn></msqrt></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>13</mn><msqrt><mn>11</mn></msqrt></mrow><mn>11</mn></mfrac><mo>=</mo><mn>3</mn><mo>.</mo><mn>92</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>identify two vectors <em><strong>(A1)</strong></em></p>
<p><em>eg</em>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">n</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>×</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><br>identify three points in the plane <em><strong>(A1)</strong></em></p>
<p><em>eg</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></math> gives <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p>solving system of equations <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mi mathvariant="bold-italic">r</mi><mo>.</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>+</mo><mn>5</mn><mi>z</mi><mo>=</mo><mn>0</mn></math>.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>vector normal to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> is eg <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">n</mi><mn mathvariant="bold-italic">1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p>vector normal to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> is eg <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">n</mi><mn mathvariant="bold-italic">2</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>required angle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mfrac><mrow><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></mrow><mrow><msqrt><mn>11</mn></msqrt><msqrt><mn>65</mn></msqrt></mrow></mfrac></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>21</mn><mrow><msqrt><mn>11</mn></msqrt><msqrt><mn>65</mn></msqrt></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>785</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>667526</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>668</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>38</mn><mo>.</mo><mn>2</mn><mo>°</mo></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award the penultimate <em><strong>(A1)</strong></em> but not the final <em><strong>A1</strong></em> for the obtuse angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>47406</mn><mo>…</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>142</mn><mo>°</mo></math>.</p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> moves in a straight line such that after time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, its velocity, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>−</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mo> </mo><mi>t</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> has displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>; at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>At successive times when the acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mn>0</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo> </mo></math>, the velocities of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> form a geometric sequence. The acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is zero at times <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>3</mn></msub></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><msub><mi>t</mi><mn>2</mn></msub><mo><</mo><msub><mi>t</mi><mn>3</mn></msub></math> and the respective velocities are <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>v</mi><mn>3</mn></msub></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> comes to instantaneous rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum displacement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, in metres, from its initial position.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> seconds of its motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, at these times, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mn>2</mn></msub><msub><mi>v</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>v</mi><mn>3</mn></msub><msub><mi>v</mi><mn>2</mn></msub></mfrac><mo>=</mo><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>524</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>05</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use integration by parts <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mo>∫</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math></p>
<p><strong><br>EITHER</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mo>∫</mo><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mo>∫</mo><mo>-</mo><mn>4</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>3</mn></mfrac><mo>+</mo><mn>4</mn><mi>s</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>s</mi><mo>=</mo><mfrac><mrow><mo>-3</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>-</mo><mn>6</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>9</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>6</mn></mfrac><mo>-</mo><mo>∫</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>6</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mo>∫</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>6</mn></mfrac><mo>-</mo><mfenced><mrow><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>12</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mi>s</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>4</mn></mfrac><mi>s</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> cos</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow><mn>12</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mfenced><mrow><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow></mfenced></mrow><mn>15</mn></mfrac><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>s</mi><mo>=</mo><mn>0</mn><mo>⇒</mo><mn>0</mn><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mo>+</mo><mi>c</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mtext> </mtext><mfenced><mrow><mtext> sin</mtext><mo> </mo><mn>6</mn><mi>t</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>cos</mtext><mo> </mo><mn>6</mn><mi>t</mi></mrow></mfenced></mrow><mn>15</mn></mfrac></math></p>
<p><em><strong><br>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>s</mi><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mo>-</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle></mrow></msup><mtext> </mtext><mfenced><mrow><mtext> sin</mtext><mo> </mo><mi mathvariant="normal">π</mi><mo>+</mo><mn>2</mn><mo> </mo><mtext>cos</mtext><mo> </mo><mi mathvariant="normal">π</mi></mrow></mfenced></mrow><mn>15</mn></mfrac></mrow></mfenced></math></p>
<p><br><strong>OR</strong><br><br></p>
<p>using GDC to find maximum value <em><strong>(M1)</strong></em><br><br></p>
<p><strong>OR</strong></p>
<p>evaluating <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></msubsup><mi>v</mi><mtext>d</mtext><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>161</mn><mfenced><mrow><mo>=</mo><mfrac><mn>2</mn><mn>15</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle></mrow></msup></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em> </p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 </strong></p>
<p><strong><br>EITHER</strong></p>
<p>distance required <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></munderover><mfenced open="|" close="|"><mrow><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></mrow></mfenced><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>distance required <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munderover><mo>∫</mo><mn>0</mn><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></munderover><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi><mo>+</mo><mfenced open="|" close="|"><mrow><munderover><mo>∫</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></munderover><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></mrow></mfenced><mo>+</mo><munderover><mo>∫</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></munderover><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo> </mo><mtext>d</mtext><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>16105</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>033479</mn><mo>…</mo><mo>+</mo><mn>0</mn><mo>.</mo><mn>006806</mn><mo>…</mo></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>201</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><br>using successive minimum and maximum values on the displacement graph <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>16105</mn><mo>…</mo><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>16105</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>12757</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>13453</mn><mo>…</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>12757</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>201</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac></math> using product rule and set <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>d</mtext><mi>v</mi></mrow><mrow><mtext>d</mtext><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to evaluate <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>3</mn></msub></math> in exact form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mfenced><mrow><mo>⇒</mo><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo> </mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mi mathvariant="normal">π</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mfenced><mrow><mo>⇒</mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo> </mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>3</mn></msub><mo>=</mo><mn>2</mn><mi mathvariant="normal">π</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn><mfenced><mrow><mo>⇒</mo><msub><mi>t</mi><mn>3</mn></msub><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo> </mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>A1</strong></em> is for any two consecutive correct, or showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><msub><mi>t</mi><mn>3</mn></msub><mo>=</mo><mi mathvariant="normal">π</mi><mo>+</mo><mn>6</mn><msub><mi>t</mi><mn>2</mn></msub></math>.</p>
<p><br>showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>6</mn><msub><mi>t</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>-</mo><mi>sin</mi><mo> </mo><mn>6</mn><msub><mi>t</mi><mi>n</mi></msub></math></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn><mo>⇒</mo><mi>sin</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mo>±</mo><mfrac><mn>2</mn><msqrt><mn>5</mn></msqrt></mfrac></math> <em><strong>M1A1</strong></em></p>
<p>showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><msub><mi>t</mi><mrow><mi>n</mi><mo>+1</mo></mrow></msub></mrow></msup><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><msub><mi>t</mi><mi>n</mi></msub></mrow></msup></mfrac><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math> <em><strong>M1</strong></em></p>
<p>eg <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>+</mo><mi>k</mi></mrow></mfenced></mrow></msup><mo>÷</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>3</mn><mi>k</mi></mrow></msup><mo>=</mo><msup><mtext>e</mtext><mrow><mi>-</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math></p>
<p><br><strong>Note:</strong> Award the <em><strong>A1</strong></em> for any two consecutive terms.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mn>3</mn></msub><msub><mi>v</mi><mn>2</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>v</mi><mn>2</mn></msub><msub><mi>v</mi><mn>1</mn></msub></mfrac><mo>=</mo><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the set of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> that satisfy the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The triangle ABC is shown in the following diagram. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B < \frac{1}{4}"> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo><</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>, find the range of possible values for AB.</p>
<p><img src="images/Schermafbeelding_2017-08-09_om_18.13.24.png" alt="M17/5/MATHL/HP2/ENG/TZ2/04.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(k - 4)(k + 3) < 0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo><</mo> <mn>0</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < k < 4"> <mo>−</mo> <mn>3</mn> <mo><</mo> <mi>k</mi> <mo><</mo> <mn>4</mn> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B = \frac{{{2^2} + {c^2} - {4^2}}}{{4c}}{\text{ }}({\text{or }}16 = {2^2} + {c^2} - 4c\cos B)"> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>or </mtext> </mrow> <mn>16</mn> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>c</mi> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{{{c^2} - 12}}{{4c}} < \frac{1}{4}"> <mo stretchy="false">⇒</mo> <mfrac> <mrow> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>12</mn> </mrow> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> <mo><</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {c^2} - c - 12 < 0"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>c</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span></p>
<p>from result in (a)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < {\text{AB}} < 4"> <mn>0</mn> <mo><</mo> <mrow> <mtext>AB</mtext> </mrow> <mo><</mo> <mn>4</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < {\text{AB}} < 4"> <mo>−</mo> <mn>3</mn> <mo><</mo> <mrow> <mtext>AB</mtext> </mrow> <mo><</mo> <mn>4</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>but AB must be at least 2</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 2 < {\text{AB}} < 4"> <mo stretchy="false">⇒</mo> <mn>2</mn> <mo><</mo> <mrow> <mtext>AB</mtext> </mrow> <mo><</mo> <mn>4</mn> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Allow <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \leqslant {\text{AB}}"> <mo>⩽</mo> <mrow> <mtext>AB</mtext> </mrow> </math></span> for either of the final two <strong><em>A </em></strong>marks.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two airplanes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, have position vectors with respect to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> given respectively by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mtext mathvariant="bold-italic">A</mtext></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>19</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> represents the time in minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Entries in each column vector give the displacement east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, the displacement north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the distance above sea level, all measured in kilometres.</p>
</div>
<div class="specification">
<p>The two airplanes’ lines of flight cross at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the three-figure bearing on which airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is travelling.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between the two airplanes’ lines of flight. Give your answer in degrees.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the length of time between the first airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and the second airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> represent the distance between airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Find the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi></math> be the required angle (bearing)</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mn>90</mn><mo>°</mo><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for a labelled sketch.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>ϕ</mi><mo>=</mo><mfrac><mrow><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></mrow><mrow><msqrt><mn>1</mn></msqrt><mo>×</mo><msqrt><mn>20</mn></msqrt></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>4472</mn><mo>…</mo><mo>,</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>5</mn></msqrt></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mtext>arccos</mtext><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4472</mn><mo>…</mo></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>.</mo><mn>6</mn><mo>°</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>63</mn><mo>.</mo><mn>4</mn><mo>°</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><msup><mn>10</mn><mi>c</mi></msup></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced></math> be the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced></math> be the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></p>
<p>attempts to find the speed of one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>19</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>0</mn><mn>2</mn></msup><mo>+</mo><msup><mn>12</mn><mn>2</mn></msup></msqrt></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><mn>7</mn><mo>.</mo><mn>48</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>56</mn></msqrt></mrow></mfenced></math> (km min<sup>-1</sup>) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><mn>4</mn><mo>.</mo><mn>89</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>24</mn></msqrt></mrow></mfenced></math> (km min<sup>-1</sup>) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>></mo><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>speed</mtext><mo>=</mo><mfrac><mtext>distance</mtext><mtext>time</mtext></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>A</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced><mo>-</mo><msub><mi>r</mi><mi>A</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced></mrow></mfenced><mrow><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>B</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced><mo>-</mo><msub><mi>r</mi><mi>B</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced></mrow></mfenced><mrow><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p>for example:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>A</mi></msub><mfenced><mn>1</mn></mfenced><mo>-</mo><msub><mi>r</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced></mrow></mfenced><mn>1</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>B</mi></msub><mfenced><mn>1</mn></mfenced><mo>-</mo><msub><mi>r</mi><mi>B</mi></msub><mfenced><mn>0</mn></mfenced></mrow></mfenced><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mn>1</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup></msqrt><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mn>7</mn><mo>.</mo><mn>48</mn><mo>…</mo><mfenced><mrow><mn>2</mn><msqrt><mn>14</mn></msqrt></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>89</mn><mo>…</mo><mfenced><msqrt><mn>24</mn></msqrt></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>></mo><msub><mtext>speed</mtext><mi>B</mi></msub></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to use the angle between two direction vectors formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mfenced><mn>4</mn></mfenced><mo>+</mo><mfenced><mn>2</mn></mfenced><mfenced><mn>2</mn></mfenced><mo>+</mo><mfenced><mn>4</mn></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mrow><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>7637</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><msqrt><mn>84</mn></msqrt></mfrac></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mtext>arccos</mtext><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7637</mn><mo>…</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>4399</mn><mo>…</mo></mrow></mfenced></math></p>
<p>attempts to find the acute angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo><mo>-</mo><mi>θ</mi></math> using their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>40</mn><mo>.</mo><mn>2</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example, sets <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced><mo>=</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced></math> and forms at least two equations <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn><mo>-</mo><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>12</mn><mo>-</mo><mn>2</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for equations involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> only.</p>
<p><br><strong>EITHER</strong></p>
<p>attempts to solve the system of equations for one of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts to solve the system of equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> value into the corresponding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>7</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>9</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OP</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd></mtr></mtable></mfenced></math>. Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> km east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> km north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> km above sea level.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> minutes (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> seconds) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>18</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><msup><mfenced><mrow><mn>10</mn><mi>t</mi><mo>-</mo><mn>18</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>+</mo><msup><mfenced><mrow><mn>11</mn><mo>-</mo><mn>6</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>18</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>11</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><msup><mfenced><mrow><mn>18</mn><mo>-</mo><mn>10</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>11</mn><mo>+</mo><mn>6</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0M0A0</strong></em> for expressions using two different time parameters.</p>
<p><br><strong>THEN</strong></p>
<p>either attempts to find the local minimum point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> or attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>'</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> (or equivalent) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>8088</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>123</mn><mn>68</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>01459</mn><mo>…</mo></math></p>
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>01</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><msqrt><mn>1190</mn></msqrt><mn>34</mn></mfrac></mrow></mfenced></math> (km) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for attempts at the shortest distance between two lines.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>General comment about this question: many candidates were not exposed to this setting of vectors question and were rather lost.</p>
<p>Part (a) Probably the least answered question on the whole paper. Many candidates left it blank, others tried using 3D vectors. Out of those who calculated the angle correctly, only a small percentage were able to provide the correct true bearing as a 3-digit figure.</p>
<p>Part (b) Well done by many candidates who used the direction vectors to calculate and compare the speeds. A number of candidates tried to use the average rate of change but mostly unsuccessfully.</p>
<p>Part (c) Most candidates used the correct vectors and the formula to obtain the obtuse angle. Then only some read the question properly to give the acute angle in degrees, as requested.</p>
<p>Part (d) Well done by many candidates who used two different parameters. They were able to solve and obtain two values for time, the difference in minutes and the correct point of intersection. A number of candidates only had one parameter, thus scoring no marks in part (d) (i). The frequent error in part (d)(ii) was providing incorrect units.</p>
<p>Part (e) Many correct answers were seen with an efficient way of setting the question and using their GDC to obtain the answer, graphically or numerically. Some gave time only instead of actually giving the minimal distance. A number of candidates tried to find the distance between two skew lines ignoring the fact that the lines intersect.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The volume of water is increasing at a constant rate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}">
<mn>0.0008</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}({{\text{m}}^3})">
<mi>V</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> in the trough in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{3}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>area of segment <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times {0.5^2} \times (\theta - \sin \theta )">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = {\text{area of segment}} \times 10">
<mi>V</mi>
<mo>=</mo>
<mrow>
<mtext>area of segment</mtext>
</mrow>
<mo>×</mo>
<mn>10</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \frac{5}{4}(\theta - \sin \theta )">
<mi>V</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{5}{4}(1 - \cos \theta )\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008 = \frac{5}{4}\left( {1 - \cos \frac{\pi }{3}} \right)\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mn>0.0008</mn>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128{\text{ }}({\text{rad}}\,{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}V}}{{{\text{d}}\theta }} = \frac{5}{4}(1 - \cos \theta )">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>V</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{4 \times 0.0008}}{{5\left( {1 - \cos \frac{\pi }{3}} \right)}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mo>×</mo>
<mn>0.0008</mn>
</mrow>
<mrow>
<mn>5</mn>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128\left( {\frac{4}{{3125}}} \right)({\text{rad }}{s^{ - 1}})">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0.00128</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>4</mn>
<mrow>
<mn>3125</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>rad </mtext>
</mrow>
<mrow>
<msup>
<mi>s</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 3x\arccos (x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x \leqslant 1">
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>></mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-01_om_06.12.12.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.a/M"></p>
<p>correct shape passing through the origin and correct domain <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Endpoint coordinates are not required. The domain can be indicated by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1">
<mo>−</mo>
<mn>1</mn>
</math></span> and 1 marked on the axis.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0.652,{\text{ }}1.68)">
<mo stretchy="false">(</mo>
<mn>0.652</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.68</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p>two correct intercepts (coordinates not required) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>A graph passing through the origin is sufficient for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}0)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[-9.42,{\text{ }}1.68]{\text{ }}({\text{or }} - 3\pi ,{\text{ }}1.68])">
<mo stretchy="false">[</mo>
<mo>−</mo>
<mn>9.42</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.68</mn>
<mo stretchy="false">]</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>or </mtext>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>π</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.68</mn>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1A0 </em></strong>for open or semi-open intervals with correct endpoints. Award <strong><em>A1A0 </em></strong>for closed intervals with one correct endpoint.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to solve either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>></mo>
<mn>1</mn>
</math></span> (or equivalent) or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| = 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> (or equivalent) (<em>eg</em>. graphically) <strong><em>(M1)</em></strong></p>
<p><img src="images/Schermafbeelding_2017-03-01_om_06.22.47.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.c/M"></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 0.189,{\text{ }}0.254,{\text{ }}0.937">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.189</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.254</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.937</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x < - 0.189{\text{ or }}0.254 < x < 0.937">
<mo>−</mo>
<mn>1</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>0.189</mn>
<mrow>
<mtext> or </mtext>
</mrow>
<mn>0.254</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>0.937</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < - 0.189">
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>0.189</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>sin</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>7</mn>
<mi>sin</mi>
<mo><!-- --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \tan x">
<mi>u</mi>
<mo>=</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate(s) of the point(s) of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, labelling these clearly on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x"> <mi>sin</mi> <mo></mo> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu "><mi>u</mi></math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0"> <mrow> <msup> <mi>u</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>15</mn> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span>, giving your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arctan k"> <mi>arctan</mi> <mo></mo> <mi>k</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 4\sin x\cos x + 14\cos 2x + {\sec ^2}x"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>+</mo> <mn>14</mn> <mi>cos</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mi>sec</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> </math></span> (or equivalent) <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.47.49.png" alt="N17/5/MATHL/HP2/ENG/TZ0/11.a.ii/M"> <strong><em>A1A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct behaviour at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>, <strong><em>A1 </em></strong>for correct domain and correct behaviour for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \frac{\pi }{2}"> <mi>x</mi> <mo stretchy="false">→</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, <strong><em>A1 </em></strong>for two clear intersections with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and minimum point, <strong><em>A1 </em></strong>for clear maximum point.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.0736"> <mi>x</mi> <mo>=</mo> <mn>0.0736</mn> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.13"> <mi>x</mi> <mo>=</mo> <mn>1.13</mn> </math></span> <strong><em>A1</em></strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to write <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x"> <mi>sin</mi> <mo></mo> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span> only <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x = \frac{u}{{\sqrt {1 + {u^2}} }}"> <mi>sin</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mfrac> <mi>u</mi> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos x = \frac{1}{{\sqrt {1 + {u^2}} }}"> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = 2\sin x\cos x{\text{ }}\left( { = 2\frac{u}{{\sqrt {1 + {u^2}} }}\frac{1}{{\sqrt {1 + {u^2}} }}} \right)"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo></mo> <mi>x</mi> <mi>cos</mi> <mo></mo> <mi>x</mi> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>2</mn> <mfrac> <mi>u</mi> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = \frac{{2u}}{{1 + {u^2}}}"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>u</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{\sin ^2}x + 7\sin 2x + \tan x - 9 = 0"> <mn>2</mn> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mn>7</mn> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>tan</mi> <mo></mo> <mi>x</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{u^2}}}{{1 + {u^2}}} + \frac{{14u}}{{1 + {u^2}}} + u - 9{\text{ }}( = 0)"> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>14</mn> <mi>u</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2{u^2} + 14u + u(1 + {u^2}) - 9(1 + {u^2})}}{{1 + {u^2}}} = 0"> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>14</mn> <mi>u</mi> <mo>+</mo> <mi>u</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mo>−</mo> <mn>9</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span> (or equivalent) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0"> <mrow> <msup> <mi>u</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>15</mn> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 1"> <mi>u</mi> <mo>=</mo> <mn>1</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = 3"> <mi>u</mi> <mo>=</mo> <mn>3</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \arctan (1)"> <mi>x</mi> <mo>=</mo> <mi>arctan</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \arctan (3)"> <mi>x</mi> <mo>=</mo> <mi>arctan</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Only accept answers given the required form.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two submarines A and B have their routes planned so that their positions at time <em>t</em> hours, 0 ≤ <em>t</em> < 20 , would be defined by the position vectors <em><strong>r</strong><sub>A</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,2 \hfill \\ \,4 \hfill \\ - 1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 1 \hfill \\ \,1 \hfill \\ - 0.15 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.15</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>r</strong><sub>B</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,0 \hfill \\ \,3.2 \hfill \\ - 2 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 0.5 \hfill \\ \,1.2 \hfill \\ \,0.1 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>3.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.5</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> relative to a fixed point on the surface of the ocean (all lengths are in kilometres).</p>
</div>
<div class="specification">
<p>To avoid the collision submarine B adjusts its velocity so that its position vector is now given by</p>
<p style="padding-left: 120px;"><em><strong>r</strong><sub>B</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,0 \hfill \\ \,3.2 \hfill \\ - 2 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 0.45 \hfill \\ \,1.08 \hfill \\ \,0.09 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>3.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.45</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.08</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.09</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the two submarines would collide at a point P and write down the coordinates of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that submarine B travels in the same direction as originally planned.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>t</em> when submarine B passes through P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the distance between the two submarines in terms of <em>t</em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>t</em> when the two submarines are closest together.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between the two submarines at this time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em><strong>r</strong><sub>A </sub>= <strong>r</strong><sub>B <strong>(M1)</strong></sub></em></p>
<p>2 − <em>t</em> = − 0.5t ⇒ <em>t</em> = 4 <strong>A1</strong></p>
<p>checking <em>t</em> = 4 satisfies 4 + <em>t</em> = 3.2 + 1.2<em>t</em> and − 1 − 0.15<em>t</em> = − 2 + 0.1<em>t <strong>R1</strong></em></p>
<p>P(−2, 8, −1.6) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award final <em><strong>A1</strong></em> if answer given as column vector.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.9 \times \left( \begin{gathered} - 0.5 \hfill \\ \,1.2 \hfill \\ \,0.1 \hfill \\ \end{gathered} \right) = \left( \begin{gathered} - 0.45 \hfill \\ \,1.08 \hfill \\ \,0.09 \hfill \\ \end{gathered} \right)">
<mn>0.9</mn>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−</mo>
<mn>0.5</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−</mo>
<mn>0.45</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.08</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.09</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept use of cross product equalling zero.</p>
<p>hence in the same direction <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \, - 0.45t \hfill \\ 3.2 + 1.08t \hfill \\ - 2 + 0.09t \hfill \\ \end{gathered} \right) = \left( \begin{gathered} - 2 \hfill \\ \,8 \hfill \\ - 1.6 \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>0.45</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3.2</mn>
<mo>+</mo>
<mn>1.08</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>2</mn>
<mo>+</mo>
<mn>0.09</mn>
<mi>t</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−</mo>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>8</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>1.6</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> The <strong><em>M1</em></strong> can be awarded for any one of the resultant equations.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow t = \frac{{40}}{9} = 4.44 \ldots ">
<mo stretchy="false">⇒</mo>
<mi>t</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>40</mn>
</mrow>
<mn>9</mn>
</mfrac>
<mo>=</mo>
<mn>4.44</mn>
<mo>…</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>r</strong><sub>A</sub></em> − <em><strong>r</strong><sub>B</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered} \,2 - t \hfill \\ \,4 + t \hfill \\ - 1 - 0.15t \hfill \\ \end{gathered} \right) - \left( \begin{gathered} \, - 0.45t \hfill \\ 3.2 + 1.08t \hfill \\ - 2 + 0.09t \hfill \\ \end{gathered} \right)">
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mo>−</mo>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>4</mn>
<mo>+</mo>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>1</mn>
<mo>−</mo>
<mn>0.15</mn>
<mi>t</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>0.45</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3.2</mn>
<mo>+</mo>
<mn>1.08</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−</mo>
<mn>2</mn>
<mo>+</mo>
<mn>0.09</mn>
<mi>t</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong> (M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,2 - 0.55t \hfill \\ \,0.8 - 0.08t \hfill \\ 1 - 0.24t \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mo>−</mo>
<mn>0.55</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.8</mn>
<mo>−</mo>
<mn>0.08</mn>
<mi>t</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
<mo>−</mo>
<mn>0.24</mn>
<mi>t</mi>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(A1)</strong></em></p>
<p><strong>Note</strong>: Accept <em><strong>r</strong><sub>A</sub></em> − <em><strong>r</strong><sub>B</sub></em>.</p>
<p>distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = \sqrt {{{\left( {2 - 0.55t} \right)}^2} + {{\left( {0.8 - 0.08t} \right)}^2} + {{\left( {1 - 0.24t} \right)}^2}} ">
<mi>D</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mo>−</mo>
<mn>0.55</mn>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.8</mn>
<mo>−</mo>
<mn>0.08</mn>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mn>0.24</mn>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</math></span> <em><strong> M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \sqrt {8.64 - 2.688t + 0.317{t^2}} } \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<msqrt>
<mn>8.64</mn>
<mo>−</mo>
<mn>2.688</mn>
<mi>t</mi>
<mo>+</mo>
<mn>0.317</mn>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimum when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}D}}{{{\text{d}}t}} = 0">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>D</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><em>t</em> = 3.83 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.511 (km) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The points A, B and C have the following position vectors with respect to an origin O.</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OA}}} = 2">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">A</mi>
</mrow>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
<mn>2</mn>
</math></span><strong><em>i</em></strong> + <strong><em>j</em></strong> – 2<strong><em>k</em></strong></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OB}}} = 2">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">B</mi>
</mrow>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
<mn>2</mn>
</math></span><strong><em>i</em></strong> – <strong><em>j</em></strong> + 2<strong><em>k</em></strong></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OC}}} = ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
</math></span> <strong><em>i</em></strong> + 3<strong><em>j</em></strong> + 3<strong><em>k</em></strong></p>
</div>
<div class="specification">
<p>The plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span> contains the points O, A and B and the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span> contains the points O, A and C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector equation of the line (BC).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether or not the lines (OA) and (BC) intersect.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1">
<msub>
<mi></mi>
<mn>1</mn>
</msub>
</math></span>, which passes through C and is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OA}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">A</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the line (BC) lies in the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1">
<msub>
<mi></mi>
<mn>1</mn>
</msub>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that 2<strong><em>j </em></strong>+ <strong><em>k </em></strong>is perpendicular to the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector perpendicular to the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between the planes <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span> and <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{BC}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">B</mi>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span> = (<strong><em>i</em></strong> + 3<strong><em>j</em></strong> + 3<strong><em>k</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> (2<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> <strong><em>j</em></strong> + 2<strong><em>k</em></strong>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span><strong><em>i</em></strong> + 4<strong><em>j</em></strong> + <strong><em>k</em></strong> <strong><em>(A1)</em></strong></p>
<p><strong><em>r</em></strong> = (2<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> <strong><em>j</em></strong> + 2<strong><em>k</em></strong>) + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span><strong><em>i</em></strong> + 4<strong><em>j</em></strong> + <strong><em>k</em></strong>)</p>
<p>(or <strong><em>r</em></strong> = (<strong><em>i</em></strong> + 3<strong><em>j</em></strong> + 3<strong><em>k</em></strong>) + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span><strong><em>i</em></strong> + 4<strong><em>j </em></strong>+ <strong><em>k</em></strong>) <strong><em>(M1)A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong><em>A1 </em></strong>unless <strong><em>r </em></strong>= or equivalent correct notation seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to write in parametric form using two different parameters <strong>AND </strong>equate <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\mu = 2 - \lambda ">
<mn>2</mn>
<mi>μ</mi>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<mi>λ</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu = - 1 + 4\lambda ">
<mi>μ</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mn>4</mn>
<mi>λ</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2\mu = 2 + \lambda ">
<mo>−</mo>
<mn>2</mn>
<mi>μ</mi>
<mo>=</mo>
<mn>2</mn>
<mo>+</mo>
<mi>λ</mi>
</math></span> <strong><em>A1</em></strong></p>
<p>attempt to solve first pair of simultaneous equations for two parameters <strong><em>M1</em></strong></p>
<p>solving first two equations gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = \frac{4}{9},{\text{ }}\mu = \frac{7}{9}">
<mi>λ</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>μ</mi>
<mo>=</mo>
<mfrac>
<mn>7</mn>
<mn>9</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p>substitution of these two values in third equation <strong><em>(M1)</em></strong></p>
<p>since the values do not fit, the lines do not intersect <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Candidates may note that adding the first and third equations immediately leads to a contradiction and hence they can immediately deduce that the lines do not intersect.</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>plane is of the form <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> (2<strong><em>i</em></strong> + <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 2<strong><em>k</em></strong>) = <em>d</em> <strong><em>(A1)</em></strong></p>
<p><em>d </em>= (<strong><em>i</em></strong> + 3<strong><em>j</em></strong> + 3<strong><em>k</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> (2<strong><em>i</em></strong> + <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 2<strong><em>k</em></strong>) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span>1 <strong><em>(M1)</em></strong></p>
<p>hence Cartesian form of plane is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + y - 2z = - 1">
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−</mo>
<mn>2</mn>
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>plane is of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + y - 2z = d">
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−</mo>
<mn>2</mn>
<mi>z</mi>
<mo>=</mo>
<mi>d</mi>
</math></span> <strong><em>(A1)</em></strong></p>
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}3,{\text{ }}3)">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span> (to find gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + 3 - 6 = - 1">
<mn>2</mn>
<mo>+</mo>
<mn>3</mn>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span>) <strong><em>(M1)</em></strong></p>
<p>hence Cartesian form of plane is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + y - 2z = - 1">
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−</mo>
<mn>2</mn>
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt scalar product of direction vector BC with normal to plane <strong><em>M1</em></strong></p>
<p>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span><strong><em>i</em></strong> + 4<strong><em>j</em></strong> + <strong><em>k</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> (2<strong><em>i</em></strong> + <strong><em>j</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 2<strong><em>k</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 2 + 4 - 2">
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mo>+</mo>
<mn>4</mn>
<mo>−</mo>
<mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0">
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>hence BC lies in <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1">
<msub>
<mi></mi>
<mn>1</mn>
</msub>
</math></span> <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>substitute eqn of line into plane <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{line }}r = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 2 \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}} { - 1} \\ 4 \\ 1 \end{array}} \right).{\text{ Plane }}{\pi _1}:2x + y - 2z = - 1">
<mrow>
<mtext>line </mtext>
</mrow>
<mi>r</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>λ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>.</mo>
<mrow>
<mtext> Plane </mtext>
</mrow>
<mrow>
<msub>
<mi>π</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>:</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>−</mo>
<mn>2</mn>
<mi>z</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2(2 - \lambda ) + ( - 1 + 4\lambda ) - 2(2 + \lambda )">
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>−</mo>
<mi>λ</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mn>4</mn>
<mi>λ</mi>
<mo stretchy="false">)</mo>
<mo>−</mo>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>λ</mi>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 1">
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p>hence BC lies in <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1">
<msub>
<mi></mi>
<mn>1</mn>
</msub>
</math></span> <strong><em>AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Candidates may also just substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2i - j + 2k">
<mn>2</mn>
<mi>i</mi>
<mo>−</mo>
<mi>j</mi>
<mo>+</mo>
<mn>2</mn>
<mi>k</mi>
</math></span> into the plane since they are told C lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\pi _1}">
<mrow>
<msub>
<mi>π</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong><em>A1FT</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>applying scalar product to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OA}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">A</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OB}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">B</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span> <strong><em>M1</em></strong></p>
<p>(2<strong><em>j</em></strong> + <strong><em>k</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> (2<strong><em>i</em></strong> + <strong><em>j </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 2<strong><em>k</em></strong>) = 0 <strong><em>A1</em></strong></p>
<p>(2<strong><em>j</em></strong> + <strong><em>k</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
<mo>∙</mo>
</math></span> (2<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> <strong><em>j</em></strong> + 2<strong><em>k</em></strong>) =0 <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>attempt to find cross product of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OA}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">A</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OB}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">B</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span> <strong><em>M1</em></strong></p>
<p>plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span> has normal <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}} \times \overrightarrow {{\text{OB}}} ">
<mover>
<mrow>
<mtext>OA</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>×</mo>
<mover>
<mrow>
<mtext>OB</mtext>
</mrow>
<mo>→</mo>
</mover>
</math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 8<strong><em>j </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 4<strong><em>k</em></strong> <strong><em>A1</em></strong></p>
<p>since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span>8<strong><em>j </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 4<strong><em>k </em></strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span>4(2<strong><em>j</em></strong> + <strong><em>k</em></strong>), 2<strong><em>j </em></strong>+ <strong><em>k </em></strong>is perpendicular to the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span> <strong><em>R1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span> has normal <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}} \times \overrightarrow {{\text{OC}}} ">
<mover>
<mrow>
<mtext>OA</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>×</mo>
<mover>
<mrow>
<mtext>OC</mtext>
</mrow>
<mo>→</mo>
</mover>
</math></span> = 9<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> 8<strong><em>j</em></strong> + 5<strong><em>k</em></strong> <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use dot product of normal vectors <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta = \frac{{(2j + k) \bullet (9i - 8j + 5k)}}{{\left| {2j + k} \right|\left| {9i - 8j + 5k} \right|}}">
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>j</mi>
<mo>+</mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
<mo>∙</mo>
<mo stretchy="false">(</mo>
<mn>9</mn>
<mi>i</mi>
<mo>−</mo>
<mn>8</mn>
<mi>j</mi>
<mo>+</mo>
<mn>5</mn>
<mi>k</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow>
<mo>|</mo>
<mrow>
<mn>2</mn>
<mi>j</mi>
<mo>+</mo>
<mi>k</mi>
</mrow>
<mo>|</mo>
</mrow>
<mrow>
<mo>|</mo>
<mrow>
<mn>9</mn>
<mi>i</mi>
<mo>−</mo>
<mn>8</mn>
<mi>j</mi>
<mo>+</mo>
<mn>5</mn>
<mi>k</mi>
</mrow>
<mo>|</mo>
</mrow>
</mrow>
</mfrac>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{ - 11}}{{\sqrt 5 \sqrt {170} }}\,\,\,( = - 0.377 \ldots )">
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>11</mn>
</mrow>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
<msqrt>
<mn>170</mn>
</msqrt>
</mrow>
</mfrac>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mo>−</mo>
<mn>0.377</mn>
<mo>…</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{11}}{{\sqrt 5 \sqrt {170} }}">
<mfrac>
<mrow>
<mn>11</mn>
</mrow>
<mrow>
<msqrt>
<mn>5</mn>
</msqrt>
<msqrt>
<mn>170</mn>
</msqrt>
</mrow>
</mfrac>
</math></span>. acute angle between planes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 67.8^\circ \,\,\,{\text{(}} = 1.18^\circ )">
<mo>=</mo>
<msup>
<mn>67.8</mn>
<mo>∘</mo>
</msup>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>(</mtext>
</mrow>
<mo>=</mo>
<msup>
<mn>1.18</mn>
<mo>∘</mo>
</msup>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the planes <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> with the following equations.</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub><mtext>: </mtext><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>6</mn></math></p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub><mtext>: </mtext><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>4</mn></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a Cartesian equation of the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>3</mn></msub></math> which is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> and passes through the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>3</mn></msub></math> intersect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to find a vector perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> using a cross product <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>×</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mi mathvariant="bold-italic">i</mi><mo>+</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mi mathvariant="bold-italic">j</mi><mo>+</mo><mfenced><mrow><mo>-</mo><mn>6</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mi mathvariant="bold-italic">k</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>8</mn></mtd></mtr></mtable></mfenced><mfenced><mrow><mo>=</mo><mn>2</mn><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>equation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>8</mn><mi>z</mi><mo>=</mo><mn>0</mn><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>-</mo><mn>4</mn><mi>z</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> simultaneous equations in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> variables <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>41</mn><mn>21</mn></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>10</mn><mn>21</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mn>23</mn><mn>21</mn></mfrac></mrow></mfenced><mfenced><mrow><mo>=</mo><mfenced><mrow><mn>1</mn><mo>.</mo><mn>95</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>476</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>10</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Iqbal attempts three practice papers in mathematics. The probability that he passes the first paper is 0.6. Whenever he gains a pass in a paper, his confidence increases so that the probability of him passing the next paper increases by 0.1. Whenever he fails a paper the probability of him passing the next paper is 0.6.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the given probability tree diagram for Iqbal’s three attempts, labelling each branch with the correct probability.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that Iqbal passes at least two of the papers he attempts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Iqbal passes his third paper, given that he passed only one previous paper.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><em><img src=""> <strong>A1A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct column of probabilities.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>probability (at least twice) =</p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.6 \times 0.7 \times 0.8} \right) + \left( {0.6 \times 0.7 \times 0.2} \right) + \left( {0.6 \times 0.3 \times 0.6} \right) + \left( {0.4 \times 0.6 \times 0.7} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.7</mn> <mo>×</mo> <mn>0.8</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.7</mn> <mo>×</mo> <mn>0.2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.3</mn> <mo>×</mo> <mn>0.6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.4</mn> <mo>×</mo> <mn>0.6</mn> <mo>×</mo> <mn>0.7</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.6 \times 0.7} \right) + \left( {0.6 \times 0.3 \times 0.6} \right) + \left( {0.4 \times 0.6 \times 0.7} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.7</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.3</mn> <mo>×</mo> <mn>0.6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.4</mn> <mo>×</mo> <mn>0.6</mn> <mo>×</mo> <mn>0.7</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award<em><strong> M1</strong></em> for summing all required probabilities.</p>
<p><strong>THEN</strong></p>
<p>= 0.696<em> <strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P(passes third paper given only one paper passed before)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{P}}\,\left( {{\text{passes third AND only one paper passed before}}} \right)}}{{{\text{P}}\,\left( {{\text{passes once in first two papers}}} \right)}}"> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>P</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>passes third AND only one paper passed before</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mtext>P</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>passes once in first two papers</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\left( {0.6 \times 0.3 \times 0.6} \right) + \left( {0.4 \times 0.6 \times 0.7} \right)}}{{\left( {0.6 \times 0.3} \right) + \left( {0.4 \times 0.6} \right)}}"> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.3</mn> <mo>×</mo> <mn>0.6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.4</mn> <mo>×</mo> <mn>0.6</mn> <mo>×</mo> <mn>0.7</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>0.6</mn> <mo>×</mo> <mn>0.3</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.4</mn> <mo>×</mo> <mn>0.6</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p>= 0.657<em> <strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows two circles with centres at the points A and B and radii <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2r">
<mn>2</mn>
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, respectively. The point B lies on the circle with centre A. The circles intersect at the points C and D.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_17.29.37.png" alt="N16/5/MATHL/HP2/ENG/TZ0/09"></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α<!-- α --></mi>
</math></span> be the measure of the angle CAD and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be the measure of the angle CBD in radians.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the shaded area in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}">
<mi>α</mi>
<mo>=</mo>
<mn>4</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> given that the shaded area is equal to 4.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 2(\alpha - \sin \alpha ){r^2} + \frac{1}{2}(\theta - \sin \theta ){r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mi>α</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>α</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1A1A1 </em></strong>for alternative correct expressions <em>eg</em>. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 4\left( {\frac{\alpha }{2} - \sin \frac{\alpha }{2}} \right){r^2} + \frac{1}{2}\theta {r^2}">
<mi>A</mi>
<mo>=</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>θ</mi>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>consider for example triangle ADM where M is the midpoint of BD <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\alpha }{4} = \frac{1}{4}">
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\alpha }{4} = \arcsin \frac{1}{4}">
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}">
<mi>α</mi>
<mo>=</mo>
<mn>4</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>attempting to use the cosine rule (to obtain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \cos \frac{\alpha }{2} = \frac{1}{8}">
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>) <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\alpha }{4} = \frac{1}{4}">
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> (obtained from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\alpha }{4} = \sqrt {\frac{{1 - \cos \frac{\alpha }{2}}}{2}} ">
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mn>2</mn>
</mfrac>
</msqrt>
</math></span>) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\alpha }{4} = \arcsin \frac{1}{4}">
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}">
<mi>α</mi>
<mo>=</mo>
<mn>4</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \left( {\frac{\pi }{2} - \frac{\alpha }{4}} \right) = 2\sin \frac{\alpha }{2}">
<mi>sin</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\theta }{2} = \frac{\pi }{2} - \frac{\alpha }{4}">
<mfrac>
<mi>θ</mi>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \frac{\alpha }{4} = 4\sin \frac{\alpha }{4}\cos \frac{\alpha }{4}">
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mn>4</mn>
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mi>cos</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>either for use of the double angle formula or the conversion from sine to cosine.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4} = \sin \frac{\alpha }{4}">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mi>sin</mi>
<mo></mo>
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\alpha }{4} = \arcsin \frac{1}{4}">
<mfrac>
<mi>α</mi>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}">
<mi>α</mi>
<mo>=</mo>
<mn>4</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(from triangle ADM), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \pi - \frac{\alpha }{2}{\text{ }}\left( { = \pi - 2\arcsin \frac{1}{4} = 2\arcsin \frac{1}{4} = 2.6362 \ldots } \right)">
<mi>θ</mi>
<mo>=</mo>
<mi>π</mi>
<mo>−</mo>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mi>π</mi>
<mo>−</mo>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mn>2.6362</mn>
<mo>…</mo>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p>attempting to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2(\alpha - \sin \alpha ){r^2} + \frac{1}{2}(\theta - \sin \theta ){r^2} = 4">
<mn>2</mn>
<mo stretchy="false">(</mo>
<mi>α</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>α</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo stretchy="false">(</mo>
<mi>θ</mi>
<mo>−</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mo stretchy="false">)</mo>
<mrow>
<msup>
<mi>r</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>4</mn>
</math></span></p>
<p>with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}">
<mi>α</mi>
<mo>=</mo>
<mn>4</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \pi - \frac{\alpha }{2}{\text{ }}\left( { = 2\arccos \frac{1}{4}} \right)">
<mi>θ</mi>
<mo>=</mo>
<mi>π</mi>
<mo>−</mo>
<mfrac>
<mi>α</mi>
<mn>2</mn>
</mfrac>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>2</mn>
<mi>arccos</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 1.69">
<mi>r</mi>
<mo>=</mo>
<mn>1.69</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The plane <em>П</em><sub>1</sub> contains the points P(1, 6, −7) , Q(0, 1, 1) and R(2, 0, −4).</p>
</div>
<div class="specification">
<p>The Cartesian equation of the plane <em>П</em><sub>2</sub> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 3y - z = 3">
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mi>y</mi>
<mo>−<!-- − --></mo>
<mi>z</mi>
<mo>=</mo>
<mn>3</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The Cartesian equation of the plane <em>П</em><sub>3</sub> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + cz = 1">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>c</mi>
<mi>z</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the case that <em>П</em><sub>3</sub> contains <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of the plane containing P, Q and R.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>П</em><sub>1</sub> and <em>П</em><sub>2</sub> meet in a line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>, verify that the vector equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> can be given by <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} {\frac{5}{4}} \\ 0 \\ { - \frac{7}{4}} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}} {\frac{1}{2}} \\ 1 \\ { - \frac{5}{2}} \end{array}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>λ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>П</em><sub>3</sub> is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b - 5c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>−</mo>
<mn>5</mn>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5a - 7c = 4">
<mn>5</mn>
<mi>a</mi>
<mo>−</mo>
<mn>7</mn>
<mi>c</mi>
<mo>=</mo>
<mn>4</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>П</em><sub>3</sub> is equally inclined to both <em>П</em><sub>1</sub> and <em>П</em><sub>2</sub>, determine two distinct possible Cartesian equations for <em>П</em><sub>3</sub>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>for example</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PQ}}} = \left( {\begin{array}{*{20}{c}} { - 1} \\ { - 5} \\ 8 \end{array}} \right)">
<mover>
<mrow>
<mtext>PQ</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>8</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PR}}} = \left( {\begin{array}{*{20}{c}} 1 \\ { - 6} \\ 3 \end{array}} \right)">
<mover>
<mrow>
<mtext>PR</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PQ}}} \times \overrightarrow {{\text{PR}}} ">
<mover>
<mrow>
<mtext>PQ</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>×</mo>
<mover>
<mrow>
<mtext>PR</mtext>
</mrow>
<mo>→</mo>
</mover>
</math></span> = 33<em><strong>i</strong></em> + 11<em><strong>j</strong></em> + 11<em><strong>k (M1)A1</strong></em></p>
<p><em><strong>r.n</strong></em> = <em><strong>a.n</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="33x + 11y + 11z = \left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ 1 \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} {33} \\ {11} \\ {11} \end{array}} \right) = 22">
<mn>33</mn>
<mi>x</mi>
<mo>+</mo>
<mn>11</mn>
<mi>y</mi>
<mo>+</mo>
<mn>11</mn>
<mi>z</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>⋅</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mn>33</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>11</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>11</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>22</mn>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 3x + y + z = 2">
<mo stretchy="false">⇒</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>+</mo>
<mi>z</mi>
<mo>=</mo>
<mn>2</mn>
</math></span> or equivalent <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>assume plane can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + cz = 1">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>c</mi>
<mi>z</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>M1</strong></em></p>
<p>substituting each set of coordinates gives the system of equations:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 6b - 7c = 1">
<mi>a</mi>
<mo>+</mo>
<mn>6</mn>
<mi>b</mi>
<mo>−</mo>
<mn>7</mn>
<mi>c</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0a + b + c = 1">
<mn>0</mn>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2a + 0b - 4c = 1">
<mn>2</mn>
<mi>a</mi>
<mo>+</mo>
<mn>0</mn>
<mi>b</mi>
<mo>−</mo>
<mn>4</mn>
<mi>c</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>solving by GDC <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{3}{2}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{1}{2}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = \frac{1}{2}">
<mi>C</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{3}{2}x + \frac{1}{2}y + \frac{1}{2}z = 1">
<mo stretchy="false">⇒</mo>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>y</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>z</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> or equivalent</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitution of equation of line into both equations of planes <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{5}{4} + \frac{\lambda }{2}} \right) + \left( { - \frac{7}{4} - \frac{{5\lambda }}{2}} \right) = 2">
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mi>λ</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>λ</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{5}{4} + \frac{\lambda }{2}} \right) - 3\lambda - \left( { - \frac{7}{4} - \frac{{5\lambda }}{2}} \right) = 3">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mi>λ</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>λ</mi>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>λ</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>adding <em>Π</em><sub>1</sub> and <em>Π</em><sub>2</sub> gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x - 2y = 5">
<mn>4</mn>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
<mi>y</mi>
<mo>=</mo>
<mn>5</mn>
</math></span> <em><strong>M1</strong></em></p>
<p>given <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \lambda \Rightarrow x = \frac{5}{4} + \frac{\lambda }{2}">
<mi>y</mi>
<mo>=</mo>
<mi>λ</mi>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mi>λ</mi>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 2 - y - 3x = - \frac{7}{4} - \frac{{5\lambda }}{2}">
<mi>z</mi>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<mi>y</mi>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>5</mn>
<mi>λ</mi>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>⇒<em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} {\frac{5}{4}} \\ 0 \\ { - \frac{7}{4}} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}} {\frac{1}{2}} \\ 1 \\ { - \frac{5}{2}} \end{array}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>λ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><em><strong>n</strong></em><sub>1</sub> × <em><strong>n</strong></em><sub>2</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 2 \\ 4 \\ { - 10} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>10</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\left( {\begin{array}{*{20}{c}} {\frac{1}{2}} \\ 1 \\ { - \frac{5}{2}} \end{array}} \right)">
<mo>=</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>R1</strong></em></p>
<p>common point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{4} - 3\left( 0 \right) - \left( { - \frac{7}{4}} \right) = 3">
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3\left( {\frac{5}{4}} \right) - 0 - \left( { - \frac{7}{4}} \right) = - 2">
<mo>−</mo>
<mn>3</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>0</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>normal to <em>П</em><sub>3</sub> is perpendicular to direction of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \left( {\begin{array}{*{20}{c}} a \\ b \\ c \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 5} \end{array}} \right) = 0">
<mo stretchy="false">⇒</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>a</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>b</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>c</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>⋅</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>5</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><strong>⇒</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b - 5c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>−</mo>
<mn>5</mn>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {\frac{5}{4}} \\ 0 \\ { - \frac{7}{4}} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> into <em>П</em><sub>3</sub>: <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5a}}{4} - \frac{{7c}}{4} = 1">
<mfrac>
<mrow>
<mn>5</mn>
<mi>a</mi>
</mrow>
<mn>4</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>7</mn>
<mi>c</mi>
</mrow>
<mn>4</mn>
</mfrac>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5a - 7c = 4">
<mn>5</mn>
<mi>a</mi>
<mo>−</mo>
<mn>7</mn>
<mi>c</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find scalar products for <em>П</em><sub>1</sub> and <em>П</em><sub>3</sub>, <em>П</em><sub>2</sub> and <em>П</em><sub>3</sub>.</p>
<p>and equating <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3a + b + C}}{{\sqrt {11} \sqrt {{a^2} + {b^2} + {c^2}} }} = \frac{{a - 3b - c}}{{\sqrt {11} \sqrt {{a^2} + {b^2} + {c^2}} }}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mi>C</mi>
</mrow>
<mrow>
<msqrt>
<mn>11</mn>
</msqrt>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mo>−</mo>
<mn>3</mn>
<mi>b</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mrow>
<msqrt>
<mn>11</mn>
</msqrt>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3a + b + c = a - 3b - c">
<mn>3</mn>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mi>a</mi>
<mo>−</mo>
<mn>3</mn>
<mi>b</mi>
<mo>−</mo>
<mi>c</mi>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow a + 2b + c = 0">
<mo stretchy="false">⇒</mo>
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b + c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b - 5c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>−</mo>
<mn>5</mn>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5a - 7c = 4">
<mn>5</mn>
<mi>a</mi>
<mo>−</mo>
<mn>7</mn>
<mi>c</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow a = \frac{4}{5}{\text{,}}\,\,b = - \frac{2}{5}{\text{,}}\,\,c = 0">
<mo stretchy="false">⇒</mo>
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mn>2</mn>
<mn>5</mn>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>hence equation is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4x}}{5} - \frac{{2y}}{5} = 1">
<mfrac>
<mrow>
<mn>4</mn>
<mi>x</mi>
</mrow>
<mn>5</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>y</mi>
</mrow>
<mn>5</mn>
</mfrac>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p>for second equation:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3a + b + C}}{{\sqrt {11} \sqrt {{a^2} + {b^2} + {c^2}} }} = - \frac{{a - 3b - c}}{{\sqrt {11} \sqrt {{a^2} + {b^2} + {c^2}} }}">
<mfrac>
<mrow>
<mn>3</mn>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>+</mo>
<mi>C</mi>
</mrow>
<mrow>
<msqrt>
<mn>11</mn>
</msqrt>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mo>−</mo>
<mn>3</mn>
<mi>b</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mrow>
<msqrt>
<mn>11</mn>
</msqrt>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 2a - b = 0">
<mo stretchy="false">⇒</mo>
<mn>2</mn>
<mi>a</mi>
<mo>−</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2a - b = 0">
<mn>2</mn>
<mi>a</mi>
<mo>−</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b - 5c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>−</mo>
<mn>5</mn>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5a - 7c = 4">
<mn>5</mn>
<mi>a</mi>
<mo>−</mo>
<mn>7</mn>
<mi>c</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <em><strong>M1</strong></em></p>
<p>⇒<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - 2">
<mi>a</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = - 4">
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = - 2">
<mi>c</mi>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>hence equation is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="- 2x - 4y - 2z = 1">
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mi>y</mi>
<mo>−</mo>
<mn>2</mn>
<mi>z</mi>
<mo>=</mo>
<mn>1</mn>
</math></span></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species. He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>B</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
</div>
<div class="specification">
<p>Use the scientist’s models to find the initial height of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, prove that Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math> (cm) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>sin</mi><mfenced><mn>6</mn></mfenced><mo>+</mo><mn>27</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7205</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7</mn></math> (cm) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>0074</mn><mo>…</mo><mo>,</mo><mn>4</mn><mo>.</mo><mn>7034</mn><mo>…</mo><mo>,</mo><mn>5</mn><mo>.</mo><mn>88332</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>01</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>70</mn><mo>,</mo><mn>5</mn><mo>.</mo><mn>88</mn></math> (weeks) <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>+</mo><mi>t</mi><mo>-</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn><mo>,</mo><mo> </mo><mi>t</mi><mo>-</mo><mn>5</mn><mo>></mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>and as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>≥</mo><mo>-</mo><mn>1</mn><mo>⇒</mo><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>></mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p>so for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>t</mi><mo>-</mo><mn>6</mn><mo>></mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>hence for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> are required <em><strong>(M1)</strong></em></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award full marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfenced><mrow><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo> </mo><mfrac><mrow><mn>10</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>11</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><em>Award</em> subsequent marks for correct use of these exact values.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>attempts to calculate the total amount of time <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mrow><mn>2</mn><mo>.</mo><mn>2359</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>1887</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>14</mn><mo> </mo><mfenced><mrow><mo>=</mo><mi mathvariant="normal">π</mi></mrow></mfenced></math> (weeks) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) In general, very well done, most students scored full marks. Some though had an incorrect answer for part(a)(ii) because they had their GDC in degrees.</p>
<p>Part (b) Well attempted. Some accuracy errors and not all candidates listed all three values.</p>
<p>Part (c) Most students tried a graphical approach (but this would only get them one out of three marks) and only some provided a convincing algebraic justification. Many candidates tried to explain in words without a convincing mathematical justification or used numerical calculations with specific time values. Some arrived at the correct simplified equation for the difference in heights but could not do much with it. Then only a few provided a correct mathematical proof.</p>
<p>Part (d) In general, well attempted by many candidates. The common error was giving the answer as 3.15 due to the pre-mature rounding. Some candidates only provided the values of time when the rates are equal, some intervals rather than the total time.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is denoted by P. The circular arc AB has centre, M, the midpoint of [CP].</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find AM.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}}">
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>M</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> in radians.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>PC <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 3 }}{2}">
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> or 0.8660 <em><strong>(M1)</strong></em></p>
<p>PM <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>PC <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 3 }}{4}">
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> or 0.4330 <strong>(A1)</strong></p>
<p>AM <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {\frac{1}{4} + \frac{3}{{16}}} ">
<mo>=</mo>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mn>3</mn>
<mrow>
<mn>16</mn>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 7 }}{4}">
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>7</mn>
</msqrt>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> or 0.661 (m) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>using the cosine rule</p>
<p>AM<sup>2</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {1^2} + {\left( {\frac{{\sqrt 3 }}{4}} \right)^2} - 2 \times \frac{{\sqrt 3 }}{4} \times {\text{cos}}\left( {30^\circ } \right)">
<mo>=</mo>
<mrow>
<msup>
<mn>1</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mo>×</mo>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>4</mn>
</mfrac>
<mo>×</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mn>30</mn>
<mo>∘</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p>AM <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 7 }}{4}">
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>7</mn>
</msqrt>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> or 0.661 (m) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>tan (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}}">
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>M</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{2}{{\sqrt 3 }}">
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> or equivalent <em><strong>(M1)</strong></em></p>
<p>= 0.857 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{A}}{{\text{M}}^2}\left( {2\,{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}} - {\text{sin}}\left( {2\,{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}}} \right)} \right)">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>M</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>M</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>M</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>P</mtext>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p><strong>OR </strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{A}}{{\text{M}}^2} \times 2\,{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}} - = \frac{{\sqrt 3 }}{8}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>M</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>×</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>M</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo>−</mo>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
<mn>8</mn>
</mfrac>
</math></span> <em><strong>(M1)A1</strong></em></p>
<p>= 0.158(m<sup>2</sup>) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to calculate area of a sector minus area of a triangle.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \pi } \right){\text{cos}}\left( {x - \frac{\pi }{2}} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> in terms of sin <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and cos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\left( {x + \pi } \right) = \tan x\left( { = \frac{{{\text{sin}}\,x}}{{{\text{cos}}\,x}}} \right)">
<mrow>
<mtext>tan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>tan</mi>
<mo></mo>
<mi>x</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span><em><strong> (M1)A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {x - \frac{\pi }{2}} \right) = {\text{sin}}\,x">
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>sin</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span><em><strong> (M1)A1</strong></em></p>
<p><strong>Note:</strong> The two <em><strong>M1</strong></em>s can be awarded for observation or for expanding.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\left( {x + \pi } \right) = {\text{cos}}\left( {x - \frac{\pi }{2}} \right) = \frac{{{\text{si}}{{\text{n}}^2}\,x}}{{{\text{cos}}\,x}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>si</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mo>=</mo><mn>15</mn></math>.</p>
</div>
<div class="specification">
<p>Consider the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi><mo>=</mo><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible range of values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced></math> is a minimum, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>|</mo><mi mathvariant="bold-italic">q</mi><mo>|</mo><mo>=</mo><mo>|</mo><mi mathvariant="bold-italic">b</mi><mo>|</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mo>=</mo><msqrt><msup><mn>12</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mfenced><mrow><mo>=</mo><mn>13</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>≤</mo><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mo>≤</mo><mn>28</mn></math> (accept min <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> and max <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn></math>) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn></math> seen with no indication that they are the endpoints of an interval.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi></math> is a negative multiple of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi><mo>=</mo><mo>-</mo><mn>2</mn><mover><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">^</mo></mover></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi><mo>=</mo><mo>-</mo><mfrac><mn>15</mn><mn>13</mn></mfrac><mi mathvariant="bold-italic">a</mi><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>15</mn><mn>13</mn></mfrac><mfenced><mtable><mtr><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><mn>13</mn></mfrac><mfenced><mtable><mtr><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mfenced><mrow><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn><mo>.</mo><mn>85</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>769</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi mathvariant="bold-italic">q</mi></math> is in the direction <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo>=</mo><mi>k</mi><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfenced open="|" close="|"><mi mathvariant="bold-italic">q</mi></mfenced><mo>=</mo></mrow></mfenced><msqrt><msup><mfenced><mrow><mn>5</mn><mi>k</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>12</mn><mi>k</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mo>=</mo><mn>15</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>15</mn><mn>13</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo>=</mo><mfrac><mn>15</mn><mn>13</mn></mfrac><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mfenced><mrow><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>75</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>180</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn><mo>.</mo><mn>77</mn></mtd></mtr><mtr><mtd><mn>13</mn><mo>.</mo><mn>8</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempt to set scalar product <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo mathvariant="bold">.</mo><mi mathvariant="bold-italic">a</mi><mo>=</mo><mn>0</mn></math> OR product of gradients <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>x</mi><mo>-</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>0</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfenced open="|" close="|"><mi mathvariant="bold-italic">q</mi></mfenced><mo>=</mo></mrow></mfenced><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></msqrt><mo>=</mo><mn>15</mn></math></p>
<p>attempt to solve simultaneously to find a quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mfenced><mfrac><mrow><mn>12</mn><mi>x</mi></mrow><mn>5</mn></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><msup><mn>15</mn><mn>2</mn></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mrow><mn>5</mn><mi>y</mi></mrow><mn>12</mn></mfrac></mfenced><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mn>15</mn><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mfrac><mn>75</mn><mn>13</mn></mfrac></mtd></mtr><mtr><mtd><mfrac><mn>180</mn><mn>13</mn></mfrac></mtd></mtr></mtable></mfenced><mfenced><mrow><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn><mo>.</mo><mn>77</mn></mtd></mtr><mtr><mtd><mn>13</mn><mo>.</mo><mn>8</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> independently for each value. Accept values given as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>75</mn><mn>13</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>180</mn><mn>13</mn></mfrac></math> or equivalent.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Three points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>B</mtext><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>7</mn></mrow></mfenced></math> lie on the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math>.</p>
</div>
<div class="specification">
<p>Plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>+</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>3</mn></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> intersect at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="specification">
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> and the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math>, expressing your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>c</mi><mi>z</mi><mo>=</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the intersection of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math>. Verify that the vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>,</mo><mo> </mo><mi>λ</mi><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the reflection of the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> in the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the vector equation of the line formed when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is reflected in the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempts to find either <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>×</mo><mover><mtext>AC</mtext><mo>→</mo></mover></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>×</mo><mover><mtext>AC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>14</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>21</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p>equation of plane is of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mi>x</mi><mo>-</mo><mn>21</mn><mi>y</mi><mo>-</mo><mn>7</mn><mi>z</mi><mo>=</mo><mi>d</mi><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mi>d</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>substitutes a valid point e.g <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> to obtain a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>42</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>d</mi><mo>=</mo><mn>6</mn></mrow></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p>attempts to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>·</mo><mi mathvariant="bold-italic">n</mi><mo>=</mo><mi mathvariant="bold-italic">a</mi><mo>·</mo><mi mathvariant="bold-italic">n</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>·</mo><mfenced><mtable><mtr><mtd><mn>14</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>21</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>14</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>21</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mi mathvariant="bold-italic">r</mi><mo>·</mo><mfenced><mtable><mtr><mtd><mn>14</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>21</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>42</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>·</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mi mathvariant="bold-italic">r</mi><mo>·</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>6</mn></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mi>x</mi><mo>-</mo><mn>21</mn><mi>y</mi><mo>-</mo><mn>7</mn><mi>z</mi><mo>=</mo><mn>42</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>6</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>equation of plane is of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>s</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempts to form equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>,</mo><mo> </mo><mi>z</mi><mo> </mo></math>in terms of their parameters <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn><mo>-</mo><mn>3</mn><mi>s</mi><mo>-</mo><mn>2</mn><mi>t</mi><mo> </mo><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mi>s</mi><mo>+</mo><mi>t</mi><mo> </mo><mo>,</mo><mo> </mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>7</mn><mi>t</mi></math> <em><strong>A1</strong></em></p>
<p>eliminates at least one of their parameters <em><strong>(M1)</strong></em></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>6</mn><mo>-</mo><mn>7</mn><mi>t</mi><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>6</mn><mo>+</mo><mi>z</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>6</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> into their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> (given) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub><mo>:</mo><mo> </mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mi>λ</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>=</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mn>3</mn><mi>λ</mi><mo>-</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(M1)A0</strong></em> for correct verification using a specific value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math>.</p>
<p>so the vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> <em><strong>AG</strong></em></p>
<p><br><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>×</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd></mtr></mtable></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>-</mo><mn>3</mn><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mrow><mn>3</mn><mo>-</mo><mn>1</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub><mo>:</mo><mo> </mo><mn>2</mn><mfenced><mn>0</mn></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mn>3</mn><mfenced><mn>0</mn></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>so the vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>+</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>2</mn></math> <em><strong>(M1)</strong></em></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mi>λ</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>-</mo><mi>λ</mi><mo>,</mo><mo> </mo><mi>z</mi><mo>=</mo><mi>λ</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <strong>A1</strong> for substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>0</mn></math>) into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> and solving simultaneously. For example, solving <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>y</mi><mo>+</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>2</mn></math> to obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>0</mn></math>.</p>
<p>so the vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> into the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>λ</mi><mo>+</mo><mn>2</mn><mi>λ</mi><mo>=</mo><mn>3</mn><mo>⇒</mo><mn>4</mn><mi>λ</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>3</mn><mn>4</mn></mfrac><mo>,</mo><mo>-</mo><mfrac><mn>5</mn><mn>4</mn></mfrac><mo>,</mo><mo>-</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>normal to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">n</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> May be seen or used anywhere.</p>
<p><br>considers the line normal to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>0</mn><mo>,</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p>finding the point on the normal line that intersects <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math><br>attempts to solve simultaneously with plane <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>3</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>μ</mi><mo>+</mo><mn>4</mn><mi>μ</mi><mo>=</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mfrac><mn>3</mn><mn>8</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>3</mn><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>-</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfenced><mtable><mtr><mtd><mn>2</mn><mi>μ</mi></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>μ</mi></mtd></mtr></mtable></mfenced><mo>-</mo><mfenced><mtable><mtr><mtd><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>5</mn><mn>4</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr></mtable></mfenced></mrow></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>μ</mi><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo><mn>4</mn><mi>μ</mi><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mfrac><mn>3</mn><mn>8</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts to find the equation of the plane parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> containing <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>'</mo><mo> </mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>3</mn></mrow></mfenced></math> and solve simultaneously with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>μ</mi><mo>'</mo><mo>+</mo><mn>2</mn><mi>μ</mi><mo>'</mo><mo>=</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>'</mo><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>so, another point on the reflected line is given by</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mtext>B</mtext><mo>'</mo><mfenced><mrow><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempts to find the direction vector of the reflected line using their <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B'</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mtext>PB</mtext><mo>'</mo></mrow><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr></mtable></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p>attempts to find their direction vector of the reflected line using a vector approach <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mrow><mtext>PB</mtext><mo>'</mo></mrow><mo>→</mo></mover><mo>=</mo><mover><mtext>PB</mtext><mo>→</mo></mover><mo>+</mo><mover><mrow><mtext>BB</mtext><mo>'</mo></mrow><mo>→</mo></mover><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mfenced><mtable><mtr><mtd><mstyle displaystyle="false"><mn>1</mn></mstyle></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mfenced><mtable><mtr><mtd><mstyle displaystyle="false"><mn>1</mn></mstyle></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>2</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>2</mn></mfrac></mstyle></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr><mtr><mtd><mo>-</mo><mstyle displaystyle="false"><mfrac><mn>3</mn><mn>4</mn></mfrac></mstyle></mtd></mtr></mtable></mfenced></math> (or equivalent) <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A0</strong></em> for either '<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo></math>' or '<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>=</mo></math>' not stated. Award <em><strong>A0 </strong></em>for '<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>'</mo><mo>=</mo></math>'</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>5</mn></mrow></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mfenced><mrow><mn>7</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>4</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></mrow></mfenced></math> are the vertices of a right-pyramid.</p>
</div>
<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vectors <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use a vector method to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the Cartesian equation of the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> that contains the triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the minimum distance, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mtext>min</mtext></msub></math>, from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of right-pyramid <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCD</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p style="color:#999;font-size:90%;font-style:italic;"> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mtext>B</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mfrac><mrow><mover><mtext>AB</mtext><mo>→</mo></mover><mo>·</mo><mover><mtext>AC</mtext><mo>→</mo></mover></mrow><mrow><mfenced open="|" close="|"><mover><mtext>AB</mtext><mo>→</mo></mover></mfenced><mfenced open="|" close="|"><mover><mtext>AC</mtext><mo>→</mo></mover></mfenced></mrow></mfrac></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced></mrow><mrow><msqrt><mn>72</mn></msqrt><mo>×</mo><msqrt><mn>72</mn></msqrt></mrow></mfrac></math> <strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <strong>A1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find a vector normal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> <strong>M1</strong></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>×</mo><mover><mtext>AC</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>36</mn></mtd></mtr><mtr><mtd><mn>36</mn></mtd></mtr><mtr><mtd><mn>36</mn></mtd></mtr></mtable></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>36</mn><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> leading to <strong>A1</strong></p>
<p>a vector normal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">n</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>5</mn></mrow></mfenced></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>) into <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mi>d</mi></math> and attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mo>-</mo><mn>5</mn><mo>-</mo><mn>2</mn><mo>+</mo><mn>5</mn><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>2</mn></mrow></mfenced></math> <strong>M1</strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo mathvariant="bold">·</mo><mi mathvariant="bold-italic">n</mi><mo>=</mo><mi mathvariant="bold-italic">a</mi><mo mathvariant="bold">·</mo><mi mathvariant="bold-italic">n</mi></math> <strong>M1</strong></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>leading to the Cartesian equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> <strong>AG</strong></p>
<p> </p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo> </mo><mfenced><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>7</mn><mo>-</mo><mi>λ</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>4</mn><mo>+</mo><mi>λ</mi><mo>,</mo><mo> </mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>+</mo><mi>λ</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>2</mn></math> <strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfenced><mrow><mn>7</mn><mo>-</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mo>-</mo><mn>4</mn><mo>+</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mo>-</mo><mn>3</mn><mo>+</mo><mi>λ</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><mo> </mo><mfenced><mrow><mn>3</mn><mi>λ</mi><mo>=</mo><mn>12</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>4</mn></math> <strong>A1</strong></p>
<p>shows a correct calculation for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mtext>min</mtext></msub></math>, for example, attempts to find</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mn>4</mn><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math> <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mtext>min</mtext></msub><mo>=</mo><mn>4</mn><msqrt><mn>3</mn></msqrt><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mo>.</mo><mn>93</mn></mrow></mfenced></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mrow><mover><mtext>AB</mtext><mo>→</mo></mover><mo>×</mo><mover><mtext>AC</mtext><mo>→</mo></mover></mrow></mfenced></math>, for example <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>36</mn></mtd></mtr><mtr><mtd><mn>36</mn></mtd></mtr><mtr><mtd><mn>36</mn></mtd></mtr></mtable></mfenced></mfenced></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced open="|" close="|"><mover><mtext>AB</mtext><mo>→</mo></mover></mfenced><mfenced open="|" close="|"><mover><mtext>AC</mtext><mo>→</mo></mover></mfenced><mi>sin</mi><mo> </mo><mi>θ</mi></math>, for example <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><msqrt><mn>2</mn></msqrt><mo>×</mo><mn>6</mn><msqrt><mn>2</mn></msqrt><mo>×</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math> (where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac></math>)</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>18</mn><msqrt><mn>3</mn></msqrt><mo> </mo><mfenced><mrow><mo>=</mo><mn>31</mn><mo>.</mo><mn>2</mn></mrow></mfenced></math> <strong>A1</strong></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>A</mi><mi>h</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><msub><mi>d</mi><mtext>min</mtext></msub></math> <strong>M1</strong></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>×</mo><mn>18</mn><msqrt><mn>3</mn></msqrt><mo>×</mo><mn>4</mn><msqrt><mn>3</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>72</mn></math> <strong>A1</strong></p>
<p> </p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>In triangle ABC, AB = 5, BC = 14 and AC = 11.</p>
<p>Find all the interior angles of the triangle. Give your answers in degrees to one decimal place.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to apply cosine rule <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,{\text{A}} = \frac{{{5^2} + {{11}^2} - {{14}^2}}}{{2 \times 5 \times 11}} = - 0.4545 \ldots "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mn>5</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mn>11</mn> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mrow> <mn>14</mn> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>5</mn> <mo>×</mo> <mn>11</mn> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>0.4545</mn> <mo>…</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{A}} = 117.03569 \ldots ^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <mn>117.03569</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{A}} = 117.0^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <msup> <mn>117.0</mn> <mo>∘</mo> </msup> </math></span> <em><strong> A1</strong></em></p>
<p>attempt to apply sine rule or cosine rule: <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{sin}}\,117.03569 \ldots ^\circ }}{{14}} = \frac{{{\text{sin}}\,{\text{B}}}}{{11}}"> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>117.03569</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </mrow> <mrow> <mn>14</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>B</mtext> </mrow> </mrow> <mrow> <mn>11</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{B}} = 44.4153 \ldots ^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>B</mtext> </mrow> <mo>=</mo> <mn>44.4153</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{B}} = 44.4^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>B</mtext> </mrow> <mo>=</mo> <msup> <mn>44.4</mn> <mo>∘</mo> </msup> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}} = 180^\circ - {\text{A}} - {\text{B}}"> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> <mo>−</mo> <mrow> <mtext>A</mtext> </mrow> <mo>−</mo> <mrow> <mtext>B</mtext> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}} = 18.5^\circ "> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <msup> <mn>18.5</mn> <mo>∘</mo> </msup> </math></span> <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Candidates may attempt to find angles in any order of their choosing.</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following shape consists of three arcs of a circle, each with centre at the opposite vertex of an equilateral triangle as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">For this shape, calculate</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the perimeter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the area.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>each arc has length <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r\theta = 6 \times \frac{\pi }{3} = 2\pi \,\left( { = 6.283 \ldots } \right)"> <mi>r</mi> <mi>θ</mi> <mo>=</mo> <mn>6</mn> <mo>×</mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>6.283</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p>perimeter is therefore <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6\pi \,\left( { = 18.8} \right)"> <mn>6</mn> <mi>π</mi> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>18.8</mn> </mrow> <mo>)</mo> </mrow> </math></span> (cm) <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>area of sector, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s"> <mi>s</mi> </math></span>, is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{r^2}\theta = 18 \times \frac{\pi }{3} = 6\pi \,\left( { = 18.84 \ldots } \right)"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>=</mo> <mn>18</mn> <mo>×</mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>=</mo> <mn>6</mn> <mi>π</mi> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>18.84</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p>area of triangle, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>, is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times 3\sqrt 3 = 9\sqrt 3 \,\left( { = 15.58 \ldots } \right)"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> <mo>=</mo> <mn>9</mn> <msqrt> <mn>3</mn> </msqrt> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>15.58</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> area of segment, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>, is 3.261… implies area of triangle</p>
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3s - 2t"> <mn>3</mn> <mi>s</mi> <mo>−</mo> <mn>2</mn> <mi>t</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3k + t"> <mn>3</mn> <mi>k</mi> <mo>+</mo> <mi>t</mi> </math></span> or similar</p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3s - 2t = 18\pi - 18\sqrt 3 \,\left( { = 25.4} \right)"> <mo>=</mo> <mn>3</mn> <mi>s</mi> <mo>−</mo> <mn>2</mn> <mi>t</mi> <mo>=</mo> <mn>18</mn> <mi>π</mi> <mo>−</mo> <mn>18</mn> <msqrt> <mn>3</mn> </msqrt> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>25.4</mn> </mrow> <mo>)</mo> </mrow> </math></span> (cm<sup>2</sup>) <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Barry is at the top of a cliff, standing 80 m above sea level, and observes two yachts in the sea.<br>“<em>Seaview</em>” <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(S)"> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </math></span> is at an angle of depression of 25°.<br>“<em>Nauti Buoy</em>” <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(N)"> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </math></span> is at an angle of depression of 35°.<br>The following three dimensional diagram shows Barry and the two yachts at S and N.<br>X lies at the foot of the cliff and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{SXN}} = "> <mrow> <mtext>SXN</mtext> </mrow> <mo>=</mo> </math></span> 70°.</p>
<p><img src="images/Schermafbeelding_2018-02-08_om_11.45.43.png" alt="N17/5/MATHL/HP2/ENG/TZ0/05"></p>
<p>Find, to 3 significant figures, the distance between the two yachts.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to use tan, or sine rule, in triangle BXN or BXS <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{NX}} = 80\tan 55{\rm{^\circ }}\left( { = \frac{{80}}{{\tan 35{\rm{^\circ }}}} = 114.25} \right)"> <mrow> <mtext>NX</mtext> </mrow> <mo>=</mo> <mn>80</mn> <mi>tan</mi> <mo></mo> <mn>55</mn> <mrow> <mrow> <msup> <mi></mi> <mo>∘</mo> </msup> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>80</mn> </mrow> <mrow> <mi>tan</mi> <mo></mo> <mn>35</mn> <mrow> <mrow> <msup> <mi></mi> <mo>∘</mo> </msup> </mrow> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>114.25</mn> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{SX}} = 80\tan 65{\rm{^\circ }}\left( { = \frac{{80}}{{\tan 25{\rm{^\circ }}}} = 171.56} \right)"> <mrow> <mtext>SX</mtext> </mrow> <mo>=</mo> <mn>80</mn> <mi>tan</mi> <mo></mo> <mn>65</mn> <mrow> <mrow> <msup> <mi></mi> <mo>∘</mo> </msup> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>80</mn> </mrow> <mrow> <mi>tan</mi> <mo></mo> <mn>25</mn> <mrow> <mrow> <msup> <mi></mi> <mo>∘</mo> </msup> </mrow> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>171.56</mn> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)</em></strong></p>
<p>Attempt to use cosine rule <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{S}}{{\text{N}}^2} = {171.56^2} + {114.25^2} - 2 \times 171.56 \times 114.25\cos 70"> <mrow> <mtext>S</mtext> </mrow> <mrow> <msup> <mrow> <mtext>N</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mn>171.56</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>114.25</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mo>×</mo> <mn>171.56</mn> <mo>×</mo> <mn>114.25</mn> <mi>cos</mi> <mo></mo> <mn>70</mn> </math></span>° <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{SN}} = 171{\text{ }}({\text{m}})"> <mrow> <mtext>SN</mtext> </mrow> <mo>=</mo> <mn>171</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>m</mtext> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p>Note: Award final <strong><em>A1 </em></strong>only if the correct answer has been given to 3 significant figures.</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>k</mi></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a finite limit only exists for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using l’Hôpital’s rule, show algebraically that the value of the limit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(as <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>, the indeterminate form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>0</mn><mn>0</mn></mfrac></math> is required for the limit to exist)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfenced><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mn>1</mn><mo>-</mo><mi>k</mi><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>k</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>M1A0</strong></em> for using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> to show the limit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>0</mn><mn>0</mn></mfrac></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mstyle displaystyle="true"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mstyle></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>0</mn><mn>0</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfrac></mstyle><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for a correct numerator and <em><strong>A1</strong> </em>for a correct denominator.</p>
<p><br>recognises to apply l’Hôpital’s rule again <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfrac></mstyle><mrow><mn>2</mn><mi>x</mi></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>0</mn><mn>0</mn></mfrac></mrow></mfenced></math></p>
<p><strong><br>Note:</strong> Award <em><strong>M0</strong></em> if their limit is not the indeterminate form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>0</mn><mn>0</mn></mfrac></math>.</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>cos</mi><mo> </mo><mi>x</mi><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></mfrac></mstyle><mn>2</mn></mfrac><mo> </mo></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for a correct first term in the numerator and <em><strong>A1</strong> </em>for a correct second term in the numerator.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>-</mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>2</mn><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mn>4</mn><mi>x</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfrac><mo> </mo></math> <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for a correct numerator and <em><strong>A1</strong> </em>for a correct denominator.</p>
<p><strong><br>THEN</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> into the correct expression to evaluate the limit <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> The final <em><strong>A1</strong> </em>is dependent on all previous marks.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) Many candidates recognised the indeterminate form and provided a nice algebraic proof. Some verified by substituting the given value. Therefore, there is a need to teach the candidates the difference between proof and verification. Only a few candidates were able to give a complete 'show that' proof.</p>
<p>Part (b) Many candidates realised that they needed to apply the L'Hôpital's rule twice. There were many mistakes in differentiation using the chain rule. Not all candidates clearly showed the final substitution.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Given that <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>c</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \ne ">
<mo>≠</mo>
</math></span> <strong>0 </strong>prove that <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>c</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <em>s<strong>b </strong></em>where <em>s </em>is a scalar.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong> = <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>c</em></strong></p>
<p>(<strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
<mo>−</mo>
</math></span> (<strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>c</em></strong>) = 0</p>
<p>(<strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong>) + (<strong><em>c</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong>) = 0 <strong><em>M1A1</em></strong></p>
<p>(<strong><em>a</em></strong> + <strong><em>c</em></strong>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong> = 0 <strong><em>A1</em></strong></p>
<p>(<strong><em>a</em></strong> + <strong><em>c</em></strong>) is parallel to <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow ">
<mo stretchy="false">⇒</mo>
</math></span> <strong><em>a</em></strong> + <strong><em>c</em></strong> = <em>s<strong>b</strong></em> <strong><em>R1AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Condone absence of arrows, underlining, or other otherwise “correct” vector notation throughout this question.</p>
<p> </p>
<p><strong>Note:</strong> Allow “is in the same direction to”, for the final <strong><em>R </em></strong>mark.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong> = <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>c</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \left( {\begin{array}{*{20}{c}} {{a_2}{b_3} - {a_3}{b_2}} \\ {{a_3}{b_1} - {a_1}{b_3}} \\ {{a_1}{b_2} - {a_2}{b_1}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{b_2}{c_3} - {b_3}{c_2}} \\ {{b_3}{c_1} - {b_1}{c_3}} \\ {{b_1}{c_2} - {b_2}{c_1}} \end{array}} \right)">
<mo stretchy="false">⇒</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_2}{b_3} - {a_3}{b_2} = {b_2}{c_3} - {b_3}{c_2} \Rightarrow {b_3}({a_2} + {c_2}) = {b_2}({a_3} + {c_3})">
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_3}{b_1} - {a_1}{b_3} = {b_3}{c_1} - {b_1}{c_3} \Rightarrow {b_1}({a_3} + {c_3}) = {b_3}({a_1} + {c_1})">
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_1}{b_2} - {a_2}{b_1} = {b_1}{c_2} - {b_2}{c_1} \Rightarrow {b_2}({a_1} + {c_1}) = {b_1}({a_2} + {c_2})">
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{({a_1} + {c_1})}}{{{b_1}}} = \frac{{({a_2} + {c_2})}}{{{b_2}}} = \frac{{({a_3} + {c_3})}}{{{b_3}}} = s">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mi>s</mi>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {a_1} + {c_1} = s{b_1}">
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {a_2} + {c_2} = s{b_2}">
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {a_3} + {c_3} = s{b_3}">
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \left( {\begin{array}{*{20}{c}} {{a_1}} \\ {{a_2}} \\ {{a_3}} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {{c_1}} \\ {{c_2}} \\ {{c_3}} \end{array}} \right) = s\left( {\begin{array}{*{20}{c}} {{b_1}} \\ {{b_2}} \\ {{b_3}} \end{array}} \right)">
<mo stretchy="false">⇒</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>c</mi>
<mn>3</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mn>3</mn>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow ">
<mo stretchy="false">⇒</mo>
</math></span> <strong><em>a</em></strong> + <strong><em>c</em></strong> = <em>s<strong>b</strong></em> <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two ships, A and B , are observed from an origin O. Relative to O, their position vectors at time <em>t</em> hours after midday are given by</p>
<p style="padding-left:180px;"><em><strong>r</strong></em><sub>A</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 5 \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="padding-left:180px;"><em><strong>r</strong></em><sub>B</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ { - 3} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 0 \\ {12} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>12</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>where distances are measured in kilometres.</p>
<p>Find the minimum distance between the two ships.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempting to find <em><strong>r</strong></em><sub>B</sub> − <em><strong>r</strong></em><sub>A</sub> for example <em><strong>(M1)</strong></em></p>
<p><em><strong>r</strong></em><sub>B</sub> − <em><strong>r</strong></em><sub>A</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\ { - 6} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { - 5} \\ 4 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> </p>
<p>attempting to find |<em><strong>r</strong></em><sub>B</sub> − <em><strong>r</strong></em><sub>A</sub>| <em><strong>M1</strong></em></p>
<p>distance <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d\left( t \right) = \sqrt {{{\left( {3 - 5t} \right)}^2} + {{\left( {4t - 6} \right)}^2}} \left( { = \sqrt {41{t^2} - 78t + 45} } \right)"> <mi>d</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mo>−</mo> <mn>5</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <mi>t</mi> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <msqrt> <mn>41</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>78</mn> <mi>t</mi> <mo>+</mo> <mn>45</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>using a graph to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> − coordinate of the local minimum <em><strong>M1</strong></em></p>
<p>the minimum distance between the ships is 2.81 (km) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{{11\sqrt {41} }}{{41}}\,\left( {{\text{km}}} \right)} \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>11</mn> <msqrt> <mn>41</mn> </msqrt> </mrow> <mrow> <mn>41</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>km</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>In a triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABC, AB}} = 4{\text{ cm, BC}} = 3{\text{ cm}}">
<mrow>
<mtext>ABC, AB</mtext>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mrow>
<mtext> cm, BC</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AC}} = \frac{\pi }{9}">
<mrow>
<mrow>
<mi mathvariant="normal">B</mi>
<mrow>
<mover>
<mi mathvariant="normal">A</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>9</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cosine rule to find the two possible values for AC.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the areas of the two possible triangles ABC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = x"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{3^2} = {x^2} + {4^2} - 8x\cos \frac{\pi }{9}"> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>8</mn> <mi>x</mi> <mi>cos</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> <strong><em>M1A1</em></strong></p>
<p>attempting to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.09,{\text{ }}6.43"> <mi>x</mi> <mo>=</mo> <mn>1.09</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6.43</mn> </math></span> <strong><em>A1A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = x"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mi>x</mi> </math></span></p>
<p>using the sine rule to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C"> <mi>C</mi> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{4^2} = {x^2} + {3^2} - 6x\cos (152.869 \ldots ^\circ ) \Rightarrow x = 1.09"> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mi>cos</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>152.869</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mn>1.09</mn> </math></span> <strong><em>(M1)A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{4^2} = {x^2} + {3^2} - 6x\cos (27.131 \ldots ^\circ ) \Rightarrow x = 6.43"> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mi>x</mi> <mi>cos</mi> <mo></mo> <mo stretchy="false">(</mo> <mn>27.131</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mn>6.43</mn> </math></span> <strong><em>(M1)A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = x"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mi>x</mi> </math></span></p>
<p>using the sine rule to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span> and a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C"> <mi>C</mi> </math></span> <strong><em>M1</em></strong></p>
<p>obtaining <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B = 132.869 \ldots ^\circ ,{\text{ }}7.131 \ldots ^\circ "> <mi>B</mi> <mo>=</mo> <mn>132.869</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7.131</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 27.131 \ldots ^\circ ,{\text{ }}152.869 \ldots ^\circ "> <mi>C</mi> <mo>=</mo> <mn>27.131</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>152.869</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(B = 2.319 \ldots ,{\text{ }}0.124 \ldots "> <mo stretchy="false">(</mo> <mi>B</mi> <mo>=</mo> <mn>2.319</mn> <mo>…</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.124</mn> <mo>…</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 0.473 \ldots ,{\text{ }}2.668 \ldots )"> <mi>C</mi> <mo>=</mo> <mn>0.473</mn> <mo>…</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2.668</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span></p>
<p>attempting to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> using the cosine rule <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.09,{\text{ }}6.43"> <mi>x</mi> <mo>=</mo> <mn>1.09</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6.43</mn> </math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1A0(M1)A1A0 </em></strong>for one correct value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span></p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi }{9}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>6.428</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi }{9}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>1.088</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> <strong><em>(A1)</em></strong></p>
<p>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4.39747 \ldots "> <mn>4.39747</mn> <mo>…</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.744833 \ldots "> <mn>0.744833</mn> <mo>…</mo> </math></span>)</p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D"> <mi>D</mi> </math></span> be the difference between the two areas</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = \frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi }{9} - \frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi }{9}"> <mi>D</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>6.428</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mn>1.088</mn> <mo>…</mo> <mo>×</mo> <mi>sin</mi> <mo></mo> <mfrac> <mi>π</mi> <mn>9</mn> </mfrac> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(D = 4.39747 \ldots - 0.744833 \ldots )"> <mo stretchy="false">(</mo> <mi>D</mi> <mo>=</mo> <mn>4.39747</mn> <mo>…</mo> <mo>−</mo> <mn>0.744833</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3.65{\text{ (c}}{{\text{m}}^2})"> <mo>=</mo> <mn>3.65</mn> <mrow> <mtext> (c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two boats <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> travel due north.</p>
<p>Initially, boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is positioned <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> metres due east of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p>The distances travelled by boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> metres respectively. The angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is the radian measure of the bearing of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> from boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. This information is shown on the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>50</mn><mo> </mo><mtext>cot</mtext><mo> </mo><mi>θ</mi></math> .</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, the following conditions are true.</p>
<p style="padding-left:60px;">Boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has travelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> metres further than boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.<br>Boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is travelling at double the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.<br>The rate of change of the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> radians per second.</p>
<p>Find the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>50</mn><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mn>50</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>50</mn><mo> </mo><mtext>cot</mtext><mo> </mo><mi>θ</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mi>x</mi></math> may be identified as a length on a diagram, and not written explicitly.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>50</mn><msup><mfenced><mrow><mtext>cosec</mtext><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>θ</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p>attempt to set speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> equal to double the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>50</mn><msup><mfenced><mrow><mtext>cosec</mtext><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>θ</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>50</mn><msup><mfenced><mrow><mtext>cosec</mtext><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup><mfrac><mrow><mo>d</mo><mi>θ</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>5</mn><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>373</mn><mo>…</mo><mo>=</mo><mn>78</mn><mo>.</mo><mn>69</mn><mo>…</mo><mo>°</mo></mrow></mfenced></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cosec</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mfenced><mfrac><mn>1</mn><mn>5</mn></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mfrac><mn>26</mn><mn>25</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> This <em><strong>A1</strong></em> can be awarded independently of previous marks.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>50</mn><mfenced><mfrac><mn>26</mn><mn>25</mn></mfrac></mfenced><mo>×</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></p>
<p>So the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>2</mn><mo> </mo><mfenced><msup><mtext>ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>20</mn></math> from the use of inexact values.</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>This diagram shows a metallic pendant made out of four equal sectors of a larger circle of radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OB}} = 9{\text{ cm}}">
<mrow>
<mtext>OB</mtext>
</mrow>
<mo>=</mo>
<mn>9</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and four equal sectors of a smaller circle of radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OA}} = 3{\text{ cm}}">
<mrow>
<mtext>OA</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>.<br>The angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BOC}} = ">
<mrow>
<mtext>BOC</mtext>
</mrow>
<mo>=</mo>
</math></span> 20°.</p>
<p><img src="images/Schermafbeelding_2018-02-08_om_11.16.43.png" alt="N17/5/MATHL/HP2/ENG/TZ0/03"></p>
<p>Find the area of the pendant.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>area = (four sector areas radius 9) + (four sector areas radius 3) <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\left( {\frac{1}{2}{9^2}\frac{\pi }{9}} \right) + 4\left( {\frac{1}{2}{3^2}\frac{{7\pi }}{{18}}} \right)">
<mo>=</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mn>9</mn>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mn>3</mn>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mrow>
<mn>7</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>18</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 18\pi + 7\pi ">
<mo>=</mo>
<mn>18</mn>
<mi>π</mi>
<mo>+</mo>
<mn>7</mn>
<mi>π</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 25\pi {\text{ }}( = 78.5{\text{ c}}{{\text{m}}^2})">
<mo>=</mo>
<mn>25</mn>
<mi>π</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mn>78.5</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>area =</p>
<p>(area of circle radius 3) + (four sector areas radius 9) – (four sector areas radius 3) <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {3^2} + 4\left( {\frac{1}{2}{9^2}\frac{\pi }{9}} \right) - 4\left( {\frac{1}{2}{3^2}\frac{\pi }{9}} \right)">
<mi>π</mi>
<mrow>
<msup>
<mn>3</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mn>9</mn>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mrow>
<msup>
<mn>3</mn>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mn>9</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for the second term and <strong><em>A1 </em></strong>for the third term.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 9\pi + 18\pi - 2\pi ">
<mo>=</mo>
<mn>9</mn>
<mi>π</mi>
<mo>+</mo>
<mn>18</mn>
<mi>π</mi>
<mo>−</mo>
<mn>2</mn>
<mi>π</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 25\pi {\text{ }}( = {\text{ }}78.5{\text{ c}}{{\text{m}}^2})">
<mo>=</mo>
<mn>25</mn>
<mi>π</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mo>=</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>78.5</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept working in degrees.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Find the Cartesian equation of plane <em>Π</em> containing the points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( {6,{\text{ }}2,{\text{ }}1} \right)">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {3,{\text{ }} - 1,{\text{ }}1} \right)">
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and perpendicular to the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 2y - z - 6 = 0">
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>y</mi>
<mo>−</mo>
<mi>z</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 3} \\ 0 \end{array}} \right)">
<mover>
<mrow>
<mtext>AB</mtext>
</mrow>
<mo>→</mo>
</mover>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 3} \\ { - 3} \\ 0 \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} 3 \\ { - 3} \\ { - 3} \end{array}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - y - z = k">
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>−</mo>
<mi>z</mi>
<mo>=</mo>
<mi>k</mi>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3">
<mi>k</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> equation of plane <em>Π</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - y - z = 3">
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>−</mo>
<mi>z</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> or equivalent <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>let plane <em>Π</em> be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + cz = d">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>c</mi>
<mi>z</mi>
<mo>=</mo>
<mi>d</mi>
</math></span></p>
<p>attempt to form one or more simultaneous equations: <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b - c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>−</mo>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> (1) <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6a + 2b + c = d">
<mn>6</mn>
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mi>d</mi>
</math></span> (2)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3a - b + c = d">
<mn>3</mn>
<mi>a</mi>
<mo>−</mo>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mi>d</mi>
</math></span> (3) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award second <strong><em>A1 </em></strong>for equations (2) and (3).</p>
<p> </p>
<p>attempt to solve <strong><em>M1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>using GDC gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{d}{3},{\text{ }}b = - \frac{d}{3},{\text{ }}c = - \frac{d}{3}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mi>d</mi>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mi>d</mi>
<mn>3</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>c</mi>
<mo>=</mo>
<mo>−</mo>
<mfrac>
<mi>d</mi>
<mn>3</mn>
</mfrac>
</math></span> <strong><em>(A1)</em></strong></p>
<p>equation of plane <em>Π</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - y - z = 3">
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>−</mo>
<mi>z</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> or equivalent <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>row reduction <strong><em>M1</em></strong></p>
<p>equation of plane <em>Π</em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - y - z = 3">
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>−</mo>
<mi>z</mi>
<mo>=</mo>
<mn>3</mn>
</math></span> or equivalent <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Find the acute angle between the planes with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + z = 3"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x - z = 2"> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mi>z</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong><em>n</em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1 = \left( {\begin{array}{*{20}{c}} 1 \\ 1 \\ 1 \end{array}} \right)"> <msub> <mi></mi> <mn>1</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <strong><em>n</em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2 = \left( {\begin{array}{*{20}{c}} 2 \\ 0 \\ { - 1} \end{array}} \right)"> <msub> <mi></mi> <mn>2</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)(A1)</em></strong></p>
<p><strong>EITHER </strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \arccos \left( {\frac{{{n_1} \bullet {n_2}}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)\left( {\cos \theta = \frac{{{n_1} \bullet {n_2}}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)"> <mi>θ</mi> <mo>=</mo> <mi>arccos</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> <mo>∙</mo> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> <mo>∙</mo> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \arccos \left( {\frac{{2 + 0 - 1}}{{\sqrt 3 \sqrt 5 }}} \right)\left( {\cos \theta = \frac{{2 + 0 - 1}}{{\sqrt 3 \sqrt 5 }}} \right)"> <mo>=</mo> <mi>arccos</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>0</mn> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mn>3</mn> </msqrt> <msqrt> <mn>5</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>0</mn> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mn>3</mn> </msqrt> <msqrt> <mn>5</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \arccos \left( {\frac{1}{{\sqrt {15} }}} \right)\left( {\cos \theta = \frac{1}{{\sqrt {15} }}} \right)"> <mo>=</mo> <mi>arccos</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>15</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>15</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \arcsin \left( {\frac{{\left| {{n_1} \times {n_2}} \right|}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)\left( {\sin \theta = \frac{{\left| {{n_1} \times {n_2}} \right|}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)"> <mi>θ</mi> <mo>=</mo> <mi>arcsin</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> <mo>×</mo> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> <mo>×</mo> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>1</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mrow> <msub> <mi>n</mi> <mn>2</mn> </msub> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \arcsin \left( {\frac{{\sqrt {14} }}{{\sqrt 3 \sqrt 5 }}} \right)\left( {\sin \theta = \frac{{\sqrt {14} }}{{\sqrt 3 \sqrt 5 }}} \right)"> <mo>=</mo> <mi>arcsin</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msqrt> <mn>14</mn> </msqrt> </mrow> <mrow> <msqrt> <mn>3</mn> </msqrt> <msqrt> <mn>5</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>14</mn> </msqrt> </mrow> <mrow> <msqrt> <mn>3</mn> </msqrt> <msqrt> <mn>5</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \arcsin \left( {\frac{{\sqrt {14} }}{{\sqrt {15} }}} \right)\left( {\sin \theta = \frac{{\sqrt {14} }}{{\sqrt {15} }}} \right)"> <mo>=</mo> <mi>arcsin</mi> <mo></mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msqrt> <mn>14</mn> </msqrt> </mrow> <mrow> <msqrt> <mn>15</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo></mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>14</mn> </msqrt> </mrow> <mrow> <msqrt> <mn>15</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 75.0^\circ {\text{ (or 1.31)}}"> <mo>=</mo> <msup> <mn>75.0</mn> <mo>∘</mo> </msup> <mrow> <mtext> (or 1.31)</mtext> </mrow> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Boat A is situated 10km away from boat B, and each boat has a marine radio transmitter on board. The range of the transmitter on boat A is 7km, and the range of the transmitter on boat B is 5km. The region in which both transmitters can be detected is represented by the shaded region in the following diagram. Find the area of this region.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">use of cosine rule <em><strong>(M1)</strong></em></p>
<p style="text-align: left;">CÂB = arccos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{49 + 100 - 25}}{{2 \times 7 \times 10}}} \right) = 0.48276 \ldots \left( { = 27.660 \ldots ^\circ } \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>49</mn> <mo>+</mo> <mn>100</mn> <mo>−</mo> <mn>25</mn> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>7</mn> <mo>×</mo> <mn>10</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.48276</mn> <mo>…</mo> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>27.660</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p style="text-align: left;">C<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\text{B}}\limits^ \wedge "> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> </math></span>A = arccos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{25 + 100 - 49}}{{2 \times 5 \times 10}}} \right) = 0.70748 \ldots \left( { = 40.535 \ldots ^\circ } \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>25</mn> <mo>+</mo> <mn>100</mn> <mo>−</mo> <mn>49</mn> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mn>5</mn> <mo>×</mo> <mn>10</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.70748</mn> <mo>…</mo> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>40.535</mn> <msup> <mo>…</mo> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p style="text-align: left;">attempt to subtract triangle area from sector area <em><strong>(M1)</strong></em></p>
<p style="text-align: left;">area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times 49\left( {2{\text{C}}\mathop {\text{A}}\limits^ \wedge {\text{B}} - {\text{sin}}\,{\text{2C}}\mathop {\text{A}}\limits^ \wedge {\text{B}}} \right)\, + \frac{1}{2} \times 25\left( {2{\text{C}}\mathop {\text{B}}\limits^ \wedge {\text{A}} - {\text{sin}}\,{\text{2C}}\mathop {\text{B}}\limits^ \wedge {\text{A}}} \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>49</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mtext>C</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>B</mtext> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>2C</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>B</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>25</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mtext>C</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>A</mtext> </mrow> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>2C</mtext> </mrow> <mover> <mrow> <mtext>B</mtext> </mrow> <mo>∧</mo> </mover> <mo></mo> <mrow> <mtext>A</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="text-align: left;">= 3.5079… + 5.3385… <em><strong>(A1)</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Award this <em><strong>A1</strong></em> for either of these two values.</p>
<p style="text-align: left;">= 8.85 (km<sup>2</sup>) <em><strong>A1</strong></em></p>
<p style="text-align: left;"><strong>Note:</strong> Accept all answers that round to 8.8 or 8.9.</p>
<p style="text-align: left;"> </p>
<p style="text-align: left;"><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>