File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/markSceme-HL-paper1html
File size: 839.01 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>Three planes have equations:</p>
<p style="padding-left:150px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x - y + z = 5"> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>5</mn> </math></span></p>
<p style="padding-left:150px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 3y - z = 4"> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>y</mi> <mo>−</mo> <mi>z</mi> <mo>=</mo> <mn>4</mn> </math></span>     , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{, }}b \in \mathbb{R}"> <mi>a</mi> <mrow> <mtext>, </mtext> </mrow> <mi>b</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<p style="padding-left:150px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x - 5y + az = b"> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mi>z</mi> <mo>=</mo> <mi>b</mi> </math></span></p>
<p>Find the set of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> such that the three planes have no points of intersection.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to eliminate a variable (or attempt to find det <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>)       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\left. {\begin{array}{*{20}{c}}  2&amp;{ - 1}&amp;1 \\   1&amp;3&amp;{ - 1} \\   3&amp;{ - 5}&amp;a  \end{array}\,} \right|\begin{array}{*{20}{c}}  5 \\   4 \\   b  \end{array}} \right) \to \left( {\left. {\begin{array}{*{20}{c}}  2&amp;{ - 1}&amp;1 \\   0&amp;7&amp;{ - 3} \\   0&amp;{ - 14}&amp;{a + 3}  \end{array}\,} \right|\begin{array}{*{20}{c}}  5 \\   3 \\   {b - 12}  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mrow> <mo stretchy="true" symmetric="true" fence="true"></mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mspace width="thinmathspace"></mspace> </mrow> <mo>|</mo> </mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">→</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo stretchy="true" symmetric="true" fence="true"></mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </mtd> <mtd> <mrow> <mi>a</mi> <mo>+</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> <mspace width="thinmathspace"></mspace> </mrow> <mo>|</mo> </mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>b</mi> <mo>−</mo> <mn>12</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>  (or det <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 14\left( {a - 3} \right)"> <mi>A</mi> <mo>=</mo> <mn>14</mn> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </math></span>)</p>
<p>(or two correct equations in two variables)       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \to \left( {\left. {\begin{array}{*{20}{c}}  2&amp;{ - 1}&amp;1 \\   0&amp;7&amp;{ - 3} \\   0&amp;{ 0}&amp;{a - 3}  \end{array}\,} \right|\begin{array}{*{20}{c}}  5 \\   3 \\   {b - 6}  \end{array}} \right)"> <mo stretchy="false">→</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo stretchy="true" symmetric="true" fence="true"></mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mn>0</mn> </mrow> </mtd> <mtd> <mrow> <mi>a</mi> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> <mspace width="thinmathspace"></mspace> </mrow> <mo>|</mo> </mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>b</mi> <mo>−</mo> <mn>6</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>  (or solving det <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = 0"> <mi>A</mi> <mo>=</mo> <mn>0</mn> </math></span>)</p>
<p>(or attempting to reduce to one variable, e.g. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {a - 3} \right)z = b - 6"> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mi>z</mi> <mo>=</mo> <mi>b</mi> <mo>−</mo> <mn>6</mn> </math></span>)       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3{\text{, }}b \ne 6"> <mi>a</mi> <mo>=</mo> <mn>3</mn> <mrow> <mtext>, </mtext> </mrow> <mi>b</mi> <mo>≠</mo> <mn>6</mn> </math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Two distinct lines, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>, intersect at a point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>. In addition to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>, four distinct points are&nbsp;marked out on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and three distinct points on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>. A mathematician decides to join some of&nbsp;these eight points to form polygons.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> has vector equation <em><strong>r</strong></em><sub>1</sub> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  1 \\   0 \\   1  \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  1 \\   2 \\   1  \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ<!-- λ --></mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; \in \mathbb{R}">
  <mi>λ<!-- λ --></mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>&nbsp;and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> has vector equation&nbsp;<em><strong>r</strong></em><sub>2</sub>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  { - 1} \\   0 \\   2  \end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}  5 \\   6 \\   2  \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>μ<!-- μ --></mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>5</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu&nbsp; \in \mathbb{R}">
  <mi>μ<!-- μ --></mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> has coordinates (4, 6, 4).</p>
</div>

<div class="specification">
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> has coordinates (3, 4, 3) and lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> has coordinates (−1, 0, 2) and lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how many sets of four points can be selected which can form the vertices of a quadrilateral.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how many sets of three points can be selected which can form the vertices of a triangle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> is the point of intersection of the two lines.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span> corresponding to the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PA}}} ">
  <mover>
    <mrow>
      <mtext>PA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PB}}} ">
  <mover>
    <mrow>
      <mtext>PB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> be the point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> with coordinates (1, 0, 1) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> be the point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> with parameter <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  =  - 2">
  <mi>μ</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span>.</p>
<p>Find the area of the quadrilateral <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CDBA}}">
  <mrow>
    <mtext>CDBA</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>appreciation that two points distinct from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}"> <mrow> <mtext>P</mtext> </mrow> </math></span> need to be chosen from each line   <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}^4{C_2} \times {}^3{C_2}"> <msup> <mrow> </mrow> <mn>4</mn> </msup> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> <mo>×</mo> <msup> <mrow> </mrow> <mn>3</mn> </msup> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </math></span></p>
<p>=18    <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>consider cases for triangles including <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> <strong>or</strong> triangles not including <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 \times 4 + 4 \times {}^3{C_2} + 3 \times {}^4{C_2}">
  <mn>3</mn>
  <mo>×</mo>
  <mn>4</mn>
  <mo>+</mo>
  <mn>4</mn>
  <mo>×</mo>
  <msup>
    <mrow>

    </mrow>
    <mn>3</mn>
  </msup>
  <mrow>
    <msub>
      <mi>C</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mo>×</mo>
  <msup>
    <mrow>

    </mrow>
    <mn>4</mn>
  </msup>
  <mrow>
    <msub>
      <mi>C</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>     <em><strong>(A</strong><strong>1)(</strong></em><em><strong>A</strong><strong>1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for 1st term, <em><strong>A1</strong></em> for 2nd &amp; 3rd term.</p>
<p><strong>OR</strong></p>
<p>consider total number of ways to select 3 points and subtract those with 3 points on the same line      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}^8{C_3} - {}^5{C_3} - {}^4{C_3}">
  <msup>
    <mrow>

    </mrow>
    <mn>8</mn>
  </msup>
  <mrow>
    <msub>
      <mi>C</mi>
      <mn>3</mn>
    </msub>
  </mrow>
  <mo>−</mo>
  <msup>
    <mrow>

    </mrow>
    <mn>5</mn>
  </msup>
  <mrow>
    <msub>
      <mi>C</mi>
      <mn>3</mn>
    </msub>
  </mrow>
  <mo>−</mo>
  <msup>
    <mrow>

    </mrow>
    <mn>4</mn>
  </msup>
  <mrow>
    <msub>
      <mi>C</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>     <em><strong>(A</strong><strong>1)(</strong></em><em><strong>A</strong><strong>1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for 1st term, <em><strong>A1</strong></em> for 2nd &amp; 3rd term.</p>
<p>56−10−4</p>
<p><strong>THEN</strong></p>
<p>= 42    <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitution of (4, 6, 4) into both equations       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 3">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = 1">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>(4, 6, 4)       <em><strong>AG</strong></em></p>
<p><strong>METHOD 2</strong></p>
<p>attempting to solve two of the three parametric equations      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 3">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = 1">
  <mi>μ</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>       <em><strong>A1</strong></em></p>
<p>check both of the above give (4, 6, 4)       <em><strong>M1</strong></em><em><strong>AG</strong></em></p>
<p><strong>Note:</strong> If they have shown the curve intersects for all three coordinates they only need to check (4,6,4) with one of "<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>" or "<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>".</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 2">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PA}}} = \left( {\begin{array}{*{20}{c}}  { - 1} \\   { - 2} \\   { - 1}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>PA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PB}}} = \left( {\begin{array}{*{20}{c}} { - 5} \\  { - 6} \\  { - 2}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>PB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>5</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>6</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> if both are given as coordinates.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>area triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABP}} = \frac{1}{2}\left| {\overrightarrow {{\text{PB}}}  \times \overrightarrow {{\text{PA}}} } \right|">
  <mrow>
    <mtext>ABP</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>PB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>PA</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>    <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{1}{2}\left| {\left( {\begin{array}{*{20}{c}}  { - 5} \\   { - 6} \\   { - 2}  \end{array}} \right) \times \left( {\begin{array}{*{20}{c}}  { - 1} \\   { - 2} \\   { - 1}  \end{array}} \right)} \right|} \right) = \frac{1}{2}\left| {\left( {\begin{array}{*{20}{c}}  2 \\   { - 3} \\   4  \end{array}} \right)} \right|">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mrow>
        <mo>|</mo>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mtable rowspacing="4pt" columnspacing="1em">
                <mtr>
                  <mtd>
                    <mrow>
                      <mo>−</mo>
                      <mn>5</mn>
                    </mrow>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mrow>
                      <mo>−</mo>
                      <mn>6</mn>
                    </mrow>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mrow>
                      <mo>−</mo>
                      <mn>2</mn>
                    </mrow>
                  </mtd>
                </mtr>
              </mtable>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>×</mo>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mtable rowspacing="4pt" columnspacing="1em">
                <mtr>
                  <mtd>
                    <mrow>
                      <mo>−</mo>
                      <mn>1</mn>
                    </mrow>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mrow>
                      <mo>−</mo>
                      <mn>2</mn>
                    </mrow>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mrow>
                      <mo>−</mo>
                      <mn>1</mn>
                    </mrow>
                  </mtd>
                </mtr>
              </mtable>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mo>|</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mtable rowspacing="4pt" columnspacing="1em">
            <mtr>
              <mtd>
                <mn>2</mn>
              </mtd>
            </mtr>
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>3</mn>
                </mrow>
              </mtd>
            </mtr>
            <mtr>
              <mtd>
                <mn>4</mn>
              </mtd>
            </mtr>
          </mtable>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt {29} }}{2}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>29</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>    <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PC}}}  = 3\overrightarrow {\,{\text{PA}}} ">
  <mover>
    <mrow>
      <mtext>PC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mn>3</mn>
  <mover>
    <mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>PA</mtext>
      </mrow>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PD}}}  = 3\overrightarrow {\,{\text{PB}}} ">
  <mover>
    <mrow>
      <mtext>PD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mn>3</mn>
  <mover>
    <mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>PB</mtext>
      </mrow>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>       <em><strong>(M1)</strong></em></p>
<p>area triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PCD}} = 9 \times ">
  <mrow>
    <mtext>PCD</mtext>
  </mrow>
  <mo>=</mo>
  <mn>9</mn>
  <mo>×</mo>
</math></span> area triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABP}}">
  <mrow>
    <mtext>ABP</mtext>
  </mrow>
</math></span>       <em><strong>(M1)A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{9\sqrt {29} }}{2}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>9</mn>
      <msqrt>
        <mn>29</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>    <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> has coordinates (−11, −12, −2)    <em><strong>A1</strong></em></p>
<p>area triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PCD}} = \frac{1}{2}\left| {\overrightarrow {{\text{PD}}} \times \overrightarrow {{\text{PC}}} } \right| = \frac{1}{2}\left| {\left( {\begin{array}{*{20}{c}}  { - 15} \\   { - 18} \\   { - 6}  \end{array}} \right) \times \left( {\begin{array}{*{20}{c}}  { - 3} \\   { - 6} \\   { - 3}  \end{array}} \right)} \right|">
  <mrow>
    <mtext>PCD</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>PD</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>PC</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mtable rowspacing="4pt" columnspacing="1em">
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>15</mn>
                </mrow>
              </mtd>
            </mtr>
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>18</mn>
                </mrow>
              </mtd>
            </mtr>
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>6</mn>
                </mrow>
              </mtd>
            </mtr>
          </mtable>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mtable rowspacing="4pt" columnspacing="1em">
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>3</mn>
                </mrow>
              </mtd>
            </mtr>
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>6</mn>
                </mrow>
              </mtd>
            </mtr>
            <mtr>
              <mtd>
                <mrow>
                  <mo>−</mo>
                  <mn>3</mn>
                </mrow>
              </mtd>
            </mtr>
          </mtable>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>    <em><strong>M1A1</strong></em></p>
<p><strong>Note: <em>A1</em></strong> is for the correct vectors in the correct formula.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{9\sqrt {29} }}{2}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>9</mn>
      <msqrt>
        <mn>29</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>    <em><strong>A1</strong></em></p>
<p><strong>THEN</strong></p>
<p>area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CDBA}} = \frac{{9\sqrt {29} }}{2} - \frac{{\sqrt {29} }}{2}">
  <mrow>
    <mtext>CDBA</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>9</mn>
      <msqrt>
        <mn>29</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>29</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\sqrt {29} ">
  <mo>=</mo>
  <mn>4</mn>
  <msqrt>
    <mn>29</mn>
  </msqrt>
</math></span>    <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> has coordinates (−11, −12, −2)    <em><strong>A1</strong></em></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left| {\overrightarrow {{\text{CB}}}  \times \overrightarrow {{\text{CA}}} } \right| + \frac{1}{2}\left| {\overrightarrow {{\text{BC}}}  \times \overrightarrow {{\text{BD}}} } \right|">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>CB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>CA</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>BC</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>BD</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for use of correct formula on appropriate non-overlapping triangles.</p>
<p><strong>Note:</strong> Different triangles or vectors could be used.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CB}}} = \left( {\begin{array}{*{20}{c}}  { - 2} \\   0 \\   1  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>CB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CA}}} = \left( {\begin{array}{*{20}{c}}  2 \\   4 \\   2  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>CA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CB}}} \times \overrightarrow {{\text{CA}}} = \left( {\begin{array}{*{20}{c}}  { - 4} \\   6 \\   { - 8}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>CB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>×</mo>
  <mover>
    <mrow>
      <mtext>CA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>8</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{BC}}} = \left( {\begin{array}{*{20}{c}}  2 \\   0 \\   { - 1}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>BC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{BD}}} = \left( {\begin{array}{*{20}{c}}  { - 10} \\   { - 12} \\   { - 4}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>BD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{BC}}} \times \overrightarrow {{\text{BD}}} = \left( {\begin{array}{*{20}{c}}  { - 12} \\   {18} \\   { - 24}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>BC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>×</mo>
  <mover>
    <mrow>
      <mtext>BD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>18</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>24</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Other vectors which might be used are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DA}}} = \left( {\begin{array}{*{20}{c}} {14} \\  {16} \\  {5}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>DA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>14</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>16</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>5</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{BA}}} = \left( {\begin{array}{*{20}{c}} {4} \\  {4} \\  {1}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>BA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} = \left( {\begin{array}{*{20}{c}} {12} \\  {12} \\  {3}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>DC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p><strong>Note:</strong> Previous <em><strong>A1A1A1A1</strong></em> are all dependent on the first <em><strong>M1</strong></em>.</p>
<p>valid attempt to find a value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left| {a \times b} \right|">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>a</mi>
      <mo>×</mo>
      <mi>b</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> <em><strong>M1</strong> </em>independent of triangle chosen.</p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times 2 \times \sqrt {29}  + \frac{1}{2} \times 6 \times \sqrt {29} ">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>2</mn>
  <mo>×</mo>
  <msqrt>
    <mn>29</mn>
  </msqrt>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>6</mn>
  <mo>×</mo>
  <msqrt>
    <mn>29</mn>
  </msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4\sqrt {29} ">
  <mo>=</mo>
  <mn>4</mn>
  <msqrt>
    <mn>29</mn>
  </msqrt>
</math></span>    <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \sqrt {116}  + \frac{1}{2}\sqrt {1044} ">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <msqrt>
    <mn>116</mn>
  </msqrt>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <msqrt>
    <mn>1044</mn>
  </msqrt>
</math></span> or equivalent.</p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em>S</em> be the sum of the roots found in part (a).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^{24}} = 1"> <mrow> <msup> <mi>z</mi> <mrow> <mn>24</mn> </mrow> </msup> </mrow> <mo>=</mo> <mn>1</mn> </math></span> which satisfy the condition <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; {\text{arg}}\left( z \right) &lt; \frac{\pi }{2}"> <mn>0</mn> <mo>&lt;</mo> <mrow> <mtext>arg</mtext> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, expressing your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r{e^{{\text{i}}\theta }}"> <mi>r</mi> <mrow> <msup> <mi>e</mi> <mrow> <mrow> <mtext>i</mtext> </mrow> <mi>θ</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta  \in {\mathbb{R}^ + }"> <mi>θ</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Re <em>S</em> = Im <em>S</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{4} - \frac{\pi }{6}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>, find the value of cos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt a  + \sqrt b }}{c}"> <mfrac> <mrow> <msqrt> <mi>a</mi> </msqrt> <mo>+</mo> <msqrt> <mi>b</mi> </msqrt> </mrow> <mi>c</mi> </mfrac> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> are integers to be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that <em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left( {1 + \sqrt 2 } \right)\left( {1 + \sqrt 3 } \right)\left( {1 + {\text{i}}} \right)"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {r\left( {{\text{cos}}\,\theta  + {\text{i}}\,{\text{sin}}\,\theta } \right)} \right)^{24}} = 1\left( {{\text{cos}}\,0 + {\text{i}}\,{\text{sin}}\,0} \right)"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mn>24</mn> </mrow> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>0</mn> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>use of De Moivre’s theorem      <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^{24}} = 1 \Rightarrow r = 1"> <mrow> <msup> <mi>r</mi> <mrow> <mn>24</mn> </mrow> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mo stretchy="false">⇒</mo> <mi>r</mi> <mo>=</mo> <mn>1</mn> </math></span>      <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="24\theta  = 2\pi n \Rightarrow \theta  = \frac{{\pi n}}{{12}}"> <mn>24</mn> <mi>θ</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mi>n</mi> <mo stretchy="false">⇒</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mi>n</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {n \in \mathbb{Z}} \right)"> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; {\text{arg}}\left( z \right) &lt; \frac{\pi }{2} \Rightarrow n = "> <mn>0</mn> <mo>&lt;</mo> <mrow> <mtext>arg</mtext> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo stretchy="false">⇒</mo> <mi>n</mi> <mo>=</mo> </math></span> 1, 2, 3, 4, 5</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = {\text{e}}\frac{{\pi {\text{i}}}}{{12}}"> <mi>z</mi> <mo>=</mo> <mrow> <mtext>e</mtext> </mrow> <mfrac> <mrow> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{e}}\frac{{2\pi {\text{i}}}}{{12}}"> <mrow> <mtext>e</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{e}}\frac{{3\pi {\text{i}}}}{{12}}"> <mrow> <mtext>e</mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{e}}\frac{{4\pi {\text{i}}}}{{12}}"> <mrow> <mtext>e</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{e}}\frac{{5\pi {\text{i}}}}{{12}}"> <mrow> <mtext>e</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>      <em><strong>A2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> if additional roots are given or if three correct roots are given with no incorrect (or additional) roots.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Re <em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{\pi }{{12}} + {\text{cos}}\frac{{2\pi }}{{12}} + {\text{cos}}\frac{{3\pi }}{{12}} + {\text{cos}}\frac{{4\pi }}{{12}} + {\text{cos}}\frac{{5\pi }}{{12}}"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span></p>
<p>Im <em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{\pi }{{12}} + {\text{sin}}\frac{{2\pi }}{{12}} + {\text{sin}}\frac{{3\pi }}{{12}} + {\text{sin}}\frac{{4\pi }}{{12}} + {\text{sin}}\frac{{5\pi }}{{12}}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for both parts correct.</p>
<p>but <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{{5\pi }}{{12}} = {\text{cos}}\frac{\pi }{{12}}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{{4\pi }}{{12}} = {\text{cos}}\frac{{2\pi }}{{12}}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{{3\pi }}{{12}} = {\text{cos}}\frac{{3\pi }}{{12}}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{{2\pi }}{{12}} = {\text{cos}}\frac{{4\pi }}{{12}}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{\pi }{{12}} = {\text{cos}}\frac{{5\pi }}{{12}}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>      <em><strong>M1A1</strong></em></p>
<p>⇒ Re <em>S</em> = Im <em>S       <strong>AG</strong></em></p>
<p><strong>Note:</strong> Accept a geometrical method.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{\pi }{{12}} = {\text{cos}}\left( {\frac{\pi }{4} - \frac{\pi }{6}} \right) = {\text{cos}}\frac{\pi }{4}{\text{cos}}\frac{\pi }{6} + {\text{sin}}\frac{\pi }{4}{\text{sin}}\frac{\pi }{6}"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span>      <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 2 }}{2}\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 2 }}{2}\frac{1}{2}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 6  + \sqrt 2 }}{4}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span><em>       <strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{{5\pi }}{{12}} = {\text{cos}}\left( {\frac{\pi }{6} + \frac{\pi }{4}} \right) = {\text{cos}}\frac{\pi }{6}{\text{cos}}\frac{\pi }{4} - {\text{sin}}\frac{\pi }{6}{\text{sin}}\frac{\pi }{4}"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mo>+</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span>      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Allow alternative methods <em>eg</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{{5\pi }}{{12}} = {\text{sin}}\frac{\pi }{{12}} = {\text{sin}}\left( {\frac{\pi }{4} - \frac{\pi }{6}} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt 3 }}{2}\frac{{\sqrt 2 }}{2} - \frac{1}{2}\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 6  - \sqrt 2 }}{4}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>−</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span>      <em><strong>(A1)</strong></em></p>
<p>Re <em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{\pi }{{12}} + {\text{cos}}\frac{{2\pi }}{{12}} + {\text{cos}}\frac{{3\pi }}{{12}} + {\text{cos}}\frac{{4\pi }}{{12}} + {\text{cos}}\frac{{5\pi }}{{12}}"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span></p>
<p>Re <em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt 2  + \sqrt 6 }}{4} + \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 6  - \sqrt 2 }}{4}"> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mo>+</mo> <msqrt> <mn>6</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>−</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left( {\sqrt 6  + 1 + \sqrt 2  + \sqrt 3 } \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>+</mo> <mn>1</mn> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left( {1 + \sqrt 2 } \right)\left( {1 + \sqrt 3 } \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><em>S</em> = Re(<em>S</em>)(1 + i) since Re <em>S</em> = Im <em>S</em>,      <em><strong>R1</strong></em></p>
<p><em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left( {1 + \sqrt 2 } \right)\left( {1 + \sqrt 3 } \right)\left( {1 + {\text{i}}} \right)"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 1 - \cos 2\theta - {\text{i}}\sin 2\theta ,{\text{ }}z \in \mathbb{C},{\text{ }}0 \leqslant \theta \leqslant \pi ">
  <mi>z</mi>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−<!-- − --></mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>2</mn>
  <mi>θ<!-- θ --></mi>
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>2</mn>
  <mi>θ<!-- θ --></mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>z</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">C</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>θ<!-- θ --></mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>π<!-- π --></mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sin (x + 60^\circ ) = \cos (x + 30^\circ ),{\text{ }}0^\circ \leqslant x \leqslant 180^\circ ">
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <msup>
    <mn>30</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msup>
    <mn>0</mn>
    <mo>∘</mo>
  </msup>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <msup>
    <mn>180</mn>
    <mo>∘</mo>
  </msup>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 105^\circ + \cos 105^\circ = \frac{1}{{\sqrt 2 }}">
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the modulus and argument of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ</mi>
</math></span>. Express each answer in its simplest form.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cube roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> in modulus-argument form.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sin (x + 60^\circ ) = \cos (x + 30^\circ )">
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <msup>
    <mn>30</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2(\sin x\cos 60^\circ + \cos x\sin 60^\circ ) = \cos x\cos 30^\circ - \sin x\sin 30^\circ ">
  <mn>2</mn>
  <mo stretchy="false">(</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>30</mn>
    <mo>∘</mo>
  </msup>
  <mo>−</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>30</mn>
    <mo>∘</mo>
  </msup>
</math></span>     <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sin x \times \frac{1}{2} + 2\cos x \times \frac{{\sqrt 3 }}{2} = \cos x \times \frac{{\sqrt 3 }}{2} - \sin x \times \frac{1}{2}">
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>+</mo>
  <mn>2</mn>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>=</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>−</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{3}{2}\sin x = - \frac{{\sqrt 3 }}{2}\cos x">
  <mo stretchy="false">⇒</mo>
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>x</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \tan x = - \frac{1}{{\sqrt 3 }}">
  <mo stretchy="false">⇒</mo>
  <mi>tan</mi>
  <mo>⁡</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = 150^\circ ">
  <mo stretchy="false">⇒</mo>
  <mi>x</mi>
  <mo>=</mo>
  <msup>
    <mn>150</mn>
    <mo>∘</mo>
  </msup>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>choosing two appropriate angles, for example 60° and 45°     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 105^\circ = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ ">
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>45</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>45</mn>
    <mo>∘</mo>
  </msup>
</math></span> and</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos 105^\circ = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ ">
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>45</mn>
    <mo>∘</mo>
  </msup>
  <mo>−</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>45</mn>
    <mo>∘</mo>
  </msup>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 105^\circ + \cos 105^\circ = \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }} + \frac{1}{2} \times \frac{1}{{\sqrt 2 }} + \frac{1}{2} \times \frac{1}{{\sqrt 2 }} - \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }}">
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{\sqrt 2 }}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>     <strong><em>AG</em></strong></p>
<p><strong>OR</strong></p>
<p>attempt to square the expression     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(\sin 105^\circ + \cos 105^\circ )^2} = {\sin ^2}105^\circ + 2\sin 105^\circ \cos 105^\circ + {\cos ^2}105^\circ ">
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>sin</mi>
    <mo>⁡</mo>
    <msup>
      <mn>105</mn>
      <mo>∘</mo>
    </msup>
    <mo>+</mo>
    <mi>cos</mi>
    <mo>⁡</mo>
    <msup>
      <mn>105</mn>
      <mo>∘</mo>
    </msup>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>sin</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>cos</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(\sin 105^\circ + \cos 105^\circ )^2} = 1 + \sin 210^\circ ">
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>sin</mi>
    <mo>⁡</mo>
    <msup>
      <mn>105</mn>
      <mo>∘</mo>
    </msup>
    <mo>+</mo>
    <mi>cos</mi>
    <mo>⁡</mo>
    <msup>
      <mn>105</mn>
      <mo>∘</mo>
    </msup>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
  <mo>+</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>210</mn>
    <mo>∘</mo>
  </msup>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 105^\circ + \cos 105^\circ = \frac{1}{{\sqrt 2 }}">
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>   <strong><em>AG</em></strong></p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = (1 - \cos 2\theta ) - {\text{i}}\sin 2\theta ">
  <mi>z</mi>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mn>2</mn>
  <mi>θ</mi>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mn>2</mn>
  <mi>θ</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| z \right| = \sqrt {{{(1 - \cos 2\theta )}^2} + {{(\sin 2\theta )}^2}} ">
  <mrow>
    <mo>|</mo>
    <mi>z</mi>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mo stretchy="false">(</mo>
          <mn>1</mn>
          <mo>−</mo>
          <mi>cos</mi>
          <mo>⁡</mo>
          <mn>2</mn>
          <mi>θ</mi>
          <mo stretchy="false">)</mo>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mo stretchy="false">(</mo>
          <mi>sin</mi>
          <mo>⁡</mo>
          <mn>2</mn>
          <mi>θ</mi>
          <mo stretchy="false">)</mo>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| z \right| = \sqrt {1 - 2\cos 2\theta + {{\cos }^2}2\theta + {{\sin }^2}2\theta } ">
  <mrow>
    <mo>|</mo>
    <mi>z</mi>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mn>1</mn>
    <mo>−</mo>
    <mn>2</mn>
    <mi>cos</mi>
    <mo>⁡</mo>
    <mn>2</mn>
    <mi>θ</mi>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mi>cos</mi>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mn>2</mn>
    <mi>θ</mi>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mi>sin</mi>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mn>2</mn>
    <mi>θ</mi>
  </msqrt>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt 2 \sqrt {(1 - \cos 2\theta )} ">
  <mo>=</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
  <msqrt>
    <mo stretchy="false">(</mo>
    <mn>1</mn>
    <mo>−</mo>
    <mi>cos</mi>
    <mo>⁡</mo>
    <mn>2</mn>
    <mi>θ</mi>
    <mo stretchy="false">)</mo>
  </msqrt>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {2(2{{\sin }^2}\theta )} ">
  <mo>=</mo>
  <msqrt>
    <mn>2</mn>
    <mo stretchy="false">(</mo>
    <mn>2</mn>
    <mrow>
      <msup>
        <mrow>
          <mi>sin</mi>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mi>θ</mi>
    <mo stretchy="false">)</mo>
  </msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\sin \theta ">
  <mo>=</mo>
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
</math></span>     <strong><em>A1</em></strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arg (z) = \alpha ">
  <mi>arg</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>z</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>α</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \alpha = - \frac{{\sin 2\theta }}{{1 - \cos 2\theta }}">
  <mi>tan</mi>
  <mo>⁡</mo>
  <mi>α</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mn>2</mn>
      <mi>θ</mi>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mi>cos</mi>
      <mo>⁡</mo>
      <mn>2</mn>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{ - 2\sin \theta \cos \theta }}{{2{{\sin }^2}\theta }}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>2</mn>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
      <mi>cos</mi>
      <mo>⁡</mo>
      <mi>θ</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mrow>
        <msup>
          <mrow>
            <mi>sin</mi>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mi>θ</mi>
    </mrow>
  </mfrac>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - \cot \theta ">
  <mo>=</mo>
  <mo>−</mo>
  <mi>cot</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arg (z) = \alpha = - \arctan \left( {\tan \left( {\frac{\pi }{2} - \theta } \right)} \right)">
  <mi>arg</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>z</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>α</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>arctan</mi>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>tan</mi>
      <mo>⁡</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mi>π</mi>
            <mn>2</mn>
          </mfrac>
          <mo>−</mo>
          <mi>θ</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \theta - \frac{\pi }{2}">
  <mo>=</mo>
  <mi>θ</mi>
  <mo>−</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = (1 - \cos 2\theta ) - {\text{i}}\sin 2\theta ">
  <mi>z</mi>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mn>2</mn>
  <mi>θ</mi>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mn>2</mn>
  <mi>θ</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2{\sin ^2}\theta - 2{\text{i}}\sin \theta \cos \theta ">
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>sin</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>θ</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\sin \theta (\sin \theta - {\text{i}}\cos \theta )">
  <mo>=</mo>
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo stretchy="false">(</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo>−</mo>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 2{\text{i}}\sin \theta (\cos \theta + {\text{i}}\sin \theta )">
  <mo>=</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo stretchy="false">(</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo>+</mo>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\sin \theta \left( {\cos \left( {\theta - \frac{\pi }{2}} \right) + {\text{i}}\sin \left( {\theta - \frac{\pi }{2}} \right)} \right)">
  <mo>=</mo>
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>cos</mi>
      <mo>⁡</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>θ</mi>
          <mo>−</mo>
          <mfrac>
            <mi>π</mi>
            <mn>2</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>i</mtext>
      </mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>θ</mi>
          <mo>−</mo>
          <mfrac>
            <mi>π</mi>
            <mn>2</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| z \right| = 2\sin \theta ">
  <mrow>
    <mo>|</mo>
    <mi>z</mi>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arg (z) = \theta - \frac{\pi }{2}">
  <mi>arg</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>z</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>θ</mi>
  <mo>−</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to apply De Moivre’s theorem     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(1 - \cos 2\theta - {\text{i}}\sin 2\theta )^{\frac{1}{3}}} = {2^{\frac{1}{3}}}{(\sin \theta )^{\frac{1}{3}}}\left[ {\cos \left( {\frac{{\theta - \frac{\pi }{2} + 2n\pi }}{3}} \right) + {\text{i}}\sin \left( {\frac{{\theta - \frac{\pi }{2} + 2n\pi }}{3}} \right)} \right]">
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>1</mn>
    <mo>−</mo>
    <mi>cos</mi>
    <mo>⁡</mo>
    <mn>2</mn>
    <mi>θ</mi>
    <mo>−</mo>
    <mrow>
      <mtext>i</mtext>
    </mrow>
    <mi>sin</mi>
    <mo>⁡</mo>
    <mn>2</mn>
    <mi>θ</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>sin</mi>
    <mo>⁡</mo>
    <mi>θ</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mfrac>
          <mn>1</mn>
          <mn>3</mn>
        </mfrac>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>[</mo>
    <mrow>
      <mi>cos</mi>
      <mo>⁡</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mi>θ</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mn>2</mn>
              <mi>n</mi>
              <mi>π</mi>
            </mrow>
            <mn>3</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>i</mtext>
      </mrow>
      <mi>sin</mi>
      <mo>⁡</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <mi>θ</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mn>2</mn>
              <mi>n</mi>
              <mi>π</mi>
            </mrow>
            <mn>3</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span>     <strong><em>A1A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     <strong><em>A1 </em></strong>for modulus, <strong><em>A1 </em></strong>for dividing argument of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> by 3 and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2n\pi ">
  <mn>2</mn>
  <mi>n</mi>
  <mi>π</mi>
</math></span>.</p>
<p> </p>
<p>Hence cube roots are the above expression when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = - 1,{\text{ }}0,{\text{ }}1">
  <mi>n</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>1</mn>
</math></span>. Equivalent forms are acceptable.     <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the three planes</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>&#8719;</mo><mn>1</mn></munder></mstyle><mo>:</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>4</mn></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>&#8719;</mo><mn>2</mn></munder></mstyle><mo>:</mo><mo>&#160;</mo><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>+</mo><mn>3</mn><mi>z</mi><mo>=</mo><mn>5</mn></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>&#8719;</mo><mn>3</mn></munder></mstyle><mo>:</mo><mo>-</mo><mn>9</mn><mi>x</mi><mo>+</mo><mn>3</mn><mi>y</mi><mo>-</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>32</mn></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the three planes do not intersect.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> lies on both <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder></mstyle></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder></mstyle></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, the line of intersection of <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder></mstyle></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder></mstyle></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;">attempt to eliminate a variable                 <em><strong>M1</strong></em></p>
<p style="text-align:left;">obtain a pair of equations in two variables</p>
<p style="text-align:left;"><br><strong>EITHER</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mi>x</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>3</mn></math> and          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mi>x</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>44</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mo>-</mo><mn>7</mn></math> and          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>40</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>3</mn></math> and          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>z</mi><mo>=</mo><mo>-</mo><mfrac><mn>79</mn><mn>5</mn></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;">the two lines are parallel (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo>≠</mo><mn>44</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>7</mn><mo>≠</mo><mn>40</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>≠</mo><mo>-</mo><mfrac><mn>79</mn><mn>5</mn></mfrac></math>)          <em><strong>R1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> There are other possible pairs of equations in two variables.<br>To obtain the final <em><strong>R1</strong></em>, at least the initial <em><strong>M1</strong> </em>must have been awarded.</p>
<p style="text-align:left;"> </p>
<p style="text-align:left;">hence the three planes do not intersect          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;">vector product of the two normals <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>  (or equivalent)          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>  (or equivalent)          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Award <em><strong>A0</strong></em> if “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo></math>” is missing. Subsequent marks may still be awarded.</p>
<p style="text-align:left;"> </p>
<p style="text-align:left;">Attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>+</mo><mi>λ</mi><mo>,</mo><mo>-</mo><mn>2</mn><mo>+</mo><mn>5</mn><mi>λ</mi><mo>,</mo><mn>3</mn><mi>λ</mi></mrow></mfenced></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math>                 <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mfenced><mrow><mn>1</mn><mo>+</mo><mi>λ</mi></mrow></mfenced><mo>+</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mn>5</mn><mi>λ</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mn>3</mn><mi>λ</mi></mrow></mfenced><mo>=</mo><mn>32</mn></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>15</mn><mo>=</mo><mn>32</mn></math>, a contradiction          <em><strong>R1</strong></em></p>
<p style="text-align:left;">hence the three planes do not intersect          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 3</strong></p>
<p style="text-align:left;">attempt to eliminate a variable                <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mi>y</mi><mo>+</mo><mn>5</mn><mi>z</mi><mo>=</mo><mn>6</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mi>y</mi><mo>+</mo><mn>5</mn><mi>z</mi><mo>=</mo><mn>100</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mn>94</mn></math>, a contradiction           <em><strong>R1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Accept other equivalent alternatives. Accept other valid methods.<br>To obtain the final <em><strong>R1</strong></em>, at least the initial <em><strong>M1</strong> </em>must have been awarded.</p>
<p style="text-align:left;"> </p>
<p style="text-align:left;">hence the three planes do not intersect          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder><mo>:</mo><mn>2</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>=</mo><mn>4</mn></mstyle></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder><mo>:</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>0</mn><mo>=</mo><mn>5</mn></mstyle></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;">attempt to find the vector product of the two normals          <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>×</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>          <em><strong>A1A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Award <em><strong>A1A0</strong></em> if “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo></math>” is missing.<br>Accept any multiple of the direction vector.<br>Working for (b)(ii) may be seen in part (a) Method 2. In this case penalize lack of “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo></math>” only once.</p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;">attempt to eliminate a variable from <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder></mstyle></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder></mstyle></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>3</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>y</mi><mo>-</mo><mn>5</mn><mi>z</mi><mo>=</mo><mo>-</mo><mn>6</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>=</mo><mn>7</mn></math></p>
<p style="text-align:left;">Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>t</mi></math></p>
<p style="text-align:left;">substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>t</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>z</mi><mo>=</mo><mn>3</mn></math> to obtain</p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>+</mo><mn>3</mn><mi>t</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>5</mn><mi>t</mi><mo>-</mo><mn>7</mn></math> (for all three variables in parametric form)          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>7</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math>          <em><strong>A1A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Award <em><strong>A1A0</strong></em> if “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo></math>” is missing.<br>Accept any multiple of the direction vector. Accept other position vectors which satisfy both the planes <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder></mstyle></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder></mstyle></math> .</p>
<p style="text-align:left;"> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;">the line connecting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math></p>
<p style="text-align:left;">attempt to substitute position and direction vector to form <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">s</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;">substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mn>9</mn><mi>t</mi><mo>,</mo><mo>-</mo><mn>2</mn><mo>+</mo><mn>3</mn><mi>t</mi><mo>,</mo><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mfenced></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math>             <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mfenced><mrow><mn>1</mn><mo>-</mo><mn>9</mn><mi>t</mi></mrow></mfenced><mo>+</mo><mn>3</mn><mfenced><mrow><mo>-</mo><mn>2</mn><mo>+</mo><mn>3</mn><mi>t</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mn>32</mn></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>94</mn><mi>t</mi><mo>=</mo><mn>47</mn><mo>⇒</mo><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;">attempt to find distance between <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> and their point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mfrac><mn>7</mn><mn>2</mn></mfrac><mo>,</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="|" close="|"><mrow><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mtable><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msqrt><msup><mfenced><mrow><mo>-</mo><mn>9</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><msqrt><mn>94</mn></msqrt><mn>2</mn></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;">unit normal vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mtable><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced></mrow><msqrt><mn>81</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>4</mn></msqrt></mfrac></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>32</mn><msqrt><mn>94</mn></msqrt></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;">let <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>4</mn></munder></mstyle></math> be the plane parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math> and passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, <br>then the normal vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>4</mn></munder></mstyle></math> is given by</p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mo>-</mo><mn>15</mn></math>             <em><strong>M1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;">unit normal vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>4</mn></munder></mstyle></math> is given by</p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mtable><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr><mtr><mtd><mi>z</mi></mtd></mtr></mtable></mfenced></mrow><msqrt><mn>81</mn><mo>+</mo><mn>9</mn><mo>+</mo><mn>4</mn></msqrt></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>15</mn></mrow><msqrt><mn>94</mn></msqrt></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;">distance between the planes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>32</mn><msqrt><mn>94</mn></msqrt></mfrac><mo>-</mo><mfrac><mrow><mo>-</mo><mn>15</mn></mrow><msqrt><mn>94</mn></msqrt></mfrac></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>47</mn><msqrt><mn>94</mn></msqrt></mfrac><mfenced><mrow><mo>=</mo><mfrac><msqrt><mn>94</mn></msqrt><mn>2</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was well attempted using a variety of approaches. Most candidates were able to gain marks for part (a) through attempts to eliminate a variable with many subsequently making algebraic errors. Part (b)(i) was well done. For part (b)(ii) few successful attempts were noted, many candidates failed to use an appropriate notation "<em>r</em> =" while giving the vector equation of a line. Part (c) proved to be challenging for most candidates with very few correct answers seen. Many candidates did not attempt part (c).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the following diagram, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}} ">
  <mover>
    <mrow>
      <mtext>OA</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = <strong><em>a</em></strong>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}} ">
  <mover>
    <mrow>
      <mtext>OB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = <strong><em>b</em></strong>. C is the midpoint of [OA] and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OF}}}&nbsp; = \frac{1}{6}\overrightarrow {{\text{FB}}} ">
  <mover>
    <mrow>
      <mtext>OF</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
  <mover>
    <mrow>
      <mtext>FB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_14.26.10.png" alt="N17/5/MATHL/HP1/ENG/TZ0/09"></p>
</div>

<div class="specification">
<p>It is given also that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AD}}}&nbsp; = \lambda \overrightarrow {{\text{AF}}} ">
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mi>λ<!-- λ --></mi>
  <mover>
    <mrow>
      <mtext>AF</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}}&nbsp; = \mu \overrightarrow {{\text{CB}}} ">
  <mover>
    <mrow>
      <mtext>CD</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mi>μ<!-- μ --></mi>
  <mover>
    <mrow>
      <mtext>CB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ,{\text{ }}\mu&nbsp; \in \mathbb{R}">
  <mi>λ<!-- λ --></mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>μ<!-- μ --></mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <strong><em>a </em></strong>and <strong><em>b </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OF}}} ">
  <mover>
    <mrow>
      <mtext>OF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <strong><em>a </em></strong>and <strong><em>b </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AF}}} ">
  <mover>
    <mrow>
      <mtext>AF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OD}}} ">
  <mover>
    <mrow>
      <mtext>OD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> in terms of <strong><em>a</em></strong>, <strong><em>b </em></strong>and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OD}}} ">
  <mover>
    <mrow>
      <mtext>OD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> in terms of <strong><em>a</em></strong>, <strong><em>b </em></strong>and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = \frac{1}{{13}}">
  <mi>μ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span>, and find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} ">
  <mover>
    <mrow>
      <mtext>CD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> in terms of <strong><em>a </em></strong>and <strong><em>b </em></strong>only.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {\text{OAB}} = k({\text{area }}\Delta {\text{CAD}})">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>OAB</mtext>
  </mrow>
  <mo>=</mo>
  <mi>k</mi>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>CAD</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OF}}}  = \frac{1}{7}">
  <mover>
    <mrow>
      <mtext>OF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>7</mn>
  </mfrac>
</math></span><strong><em>b</em></strong>     <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AF}}}  = \overrightarrow {{\text{OF}}}  - \overrightarrow {{\text{OA}}} ">
  <mover>
    <mrow>
      <mtext>AF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mtext>OF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>−</mo>
  <mover>
    <mrow>
      <mtext>OA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{7}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>7</mn>
  </mfrac>
</math></span><strong><em>b</em></strong> – <strong><em>a     </em></strong><strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OD}}}  = ">
  <mover>
    <mrow>
      <mtext>OD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
</math></span> <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + \lambda \left( {\frac{1}{7}b -a} \right){\text{ }}\left( { = (1 - \lambda )a + \frac{\lambda }{7}b} \right)">
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>7</mn>
      </mfrac>
      <mi>b</mi>
      <mo>−</mo>
      <mi>a</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mo stretchy="false">(</mo>
      <mn>1</mn>
      <mo>−</mo>
      <mi>λ</mi>
      <mo stretchy="false">)</mo>
      <mi>a</mi>
      <mo>+</mo>
      <mfrac>
        <mi>λ</mi>
        <mn>7</mn>
      </mfrac>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OD}}}  = \frac{1}{2}">
  <mover>
    <mrow>
      <mtext>OD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + \mu \left( { - \frac{1}{2}a + b} \right){\text{ }}\left( { = \left( {\frac{1}{2} - \frac{\mu }{2}} \right)a + \mu b} \right)">
  <mo>+</mo>
  <mi>μ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>a</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
          <mo>−</mo>
          <mfrac>
            <mi>μ</mi>
            <mn>2</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mi>a</mi>
      <mo>+</mo>
      <mi>μ</mi>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equating coefficients:     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\lambda }{7} = \mu ,{\text{ }}1 - \lambda  = \frac{{1 - \mu }}{2}">
  <mfrac>
    <mi>λ</mi>
    <mn>7</mn>
  </mfrac>
  <mo>=</mo>
  <mi>μ</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>1</mn>
  <mo>−</mo>
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mi>μ</mi>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p>solving simultaneously:     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{7}{{13}},{\text{ }}\mu  = \frac{1}{{13}}">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>7</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>μ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>A1AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}}  = \frac{1}{{13}}\overrightarrow {{\text{CB}}} ">
  <mover>
    <mrow>
      <mtext>CD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
  <mover>
    <mrow>
      <mtext>CB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{13}}\left( {b - \frac{1}{2}a} \right){\text{ }}\left( { =  - \frac{1}{{26}}a + \frac{1}{{13}}b} \right)">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>a</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>26</mn>
        </mrow>
      </mfrac>
      <mi>a</mi>
      <mo>+</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>13</mn>
        </mrow>
      </mfrac>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>M1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area }}\Delta {\text{ACD}} = \frac{1}{2}{\text{CD}} \times {\text{AC}} \times \sin {\rm{A\hat CB}}">
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>ACD</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mtext>CD</mtext>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mtext>AC</mtext>
  </mrow>
  <mo>×</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">C</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area }}\Delta {\text{ACB}} = \frac{1}{2}{\text{CB}} \times {\text{AC}} \times \sin {\rm{A\hat CB}}">
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>ACB</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mtext>CB</mtext>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mtext>AC</mtext>
  </mrow>
  <mo>×</mo>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">C</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ratio }}\frac{{{\text{area }}\Delta {\text{ACD}}}}{{{\text{area }}\Delta {\text{ACB}}}} = \frac{{{\text{CD}}}}{{{\text{CB}}}} = \frac{1}{{13}}">
  <mrow>
    <mtext>ratio </mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>area </mtext>
      </mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <mtext>ACD</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>area </mtext>
      </mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <mtext>ACB</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>CD</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>CB</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{{{\text{area }}\Delta {\text{OAB}}}}{{{\text{area }}\Delta {\text{CAD}}}} = \frac{{13}}{{{\text{area }}\Delta {\text{CAB}}}} \times {\text{area }}\Delta {\text{OAB}}">
  <mi>k</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>area </mtext>
      </mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <mtext>OAB</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>area </mtext>
      </mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <mtext>CAD</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>13</mn>
    </mrow>
    <mrow>
      <mrow>
        <mtext>area </mtext>
      </mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <mtext>CAB</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>OAB</mtext>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 13 \times 2 = 26">
  <mo>=</mo>
  <mn>13</mn>
  <mo>×</mo>
  <mn>2</mn>
  <mo>=</mo>
  <mn>26</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area }}\Delta {\text{OAB}} = \frac{1}{2}\left| {a \times b} \right|">
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>OAB</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>a</mi>
      <mo>×</mo>
      <mi>b</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area }}\Delta {\text{CAD}} = \frac{1}{2}\left| {\overrightarrow {{\text{CA}}}  \times \overrightarrow {{\text{CD}}} } \right|">
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>CAD</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>CA</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>CD</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left| {\overrightarrow {{\text{CA}}}  \times \overrightarrow {{\text{AD}}} } \right|">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>CA</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>AD</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left| {\frac{1}{2}a \times \left( { - \frac{1}{{26}}a + \frac{1}{{13}}b} \right)} \right|">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>a</mi>
      <mo>×</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mfrac>
            <mn>1</mn>
            <mrow>
              <mn>26</mn>
            </mrow>
          </mfrac>
          <mi>a</mi>
          <mo>+</mo>
          <mfrac>
            <mn>1</mn>
            <mrow>
              <mn>13</mn>
            </mrow>
          </mfrac>
          <mi>b</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left| {\frac{1}{2}a \times \left( { - \frac{1}{{26}}a} \right) + \frac{1}{2}a \times \frac{1}{{13}}b} \right|">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>a</mi>
      <mo>×</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mfrac>
            <mn>1</mn>
            <mrow>
              <mn>26</mn>
            </mrow>
          </mfrac>
          <mi>a</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mi>a</mi>
      <mo>×</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>13</mn>
        </mrow>
      </mfrac>
      <mi>b</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{{13}}\left| {a \times b} \right|{\text{ }}\left( { = \frac{1}{{52}}\left| {a \times b} \right|} \right)">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>a</mi>
      <mo>×</mo>
      <mi>b</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mn>1</mn>
        <mrow>
          <mn>52</mn>
        </mrow>
      </mfrac>
      <mrow>
        <mo>|</mo>
        <mrow>
          <mi>a</mi>
          <mo>×</mo>
          <mi>b</mi>
        </mrow>
        <mo>|</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area }}\Delta {\text{OAB}} = k({\text{area }}\Delta {\text{CAD}})">
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>OAB</mtext>
  </mrow>
  <mo>=</mo>
  <mi>k</mi>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>CAD</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left| {a \times b} \right| = k\frac{1}{{52}}\left| {a \times b} \right|">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>a</mi>
      <mo>×</mo>
      <mi>b</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <mi>k</mi>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>52</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>a</mi>
      <mo>×</mo>
      <mi>b</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 26">
  <mi>k</mi>
  <mo>=</mo>
  <mn>26</mn>
</math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)^2} = 1 + {\text{sin}}\,2x"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sec}}\,2x + {\text{tan}}\,2x = \frac{{{\text{cos}}\,x + {\text{sin}}\,x}}{{{\text{cos}}\,x - {\text{sin}}\,x}}"> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{\frac{\pi }{6}} {\left( {{\text{sec}}\,2x + {\text{tan}}\,2x} \right)} {\text{d}}x"> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {a + \sqrt b } \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{Z}"> <mi>b</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)^2} = {\text{si}}{{\text{n}}^2}\,x + 2{\text{sin}}\,x\,{\text{cos}}\,x + {\text{co}}{{\text{s}}^2}\,x"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>      <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Do not award the <em><strong>M1</strong></em> for just <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^2}\,x + {\text{co}}{{\text{s}}^2}\,x"> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>.</p>
<p><strong><span style="background-color: #ffffff;">Note: </span></strong><span style="background-color: #ffffff;">Do not award <em><strong>A1</strong> </em>if correct expression is followed by incorrect working.</span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1 + {\text{sin}}\,2x"> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>      <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sec}}\,2x + {\text{tan}}\,2x = \frac{1}{{{\text{cos}}\,2x}} + \frac{{{\text{sin}}\,2x}}{{{\text{cos}}\,2x}}"> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </math></span>     <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> <em><strong>M1</strong></em> is for an attempt to change both terms into sine and cosine forms (with the same argument) or both terms into functions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,x"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{1}} + {\text{sin}}\,2x}}{{{\text{cos}}\,2x}}"> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>1</mtext> </mrow> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{{\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)}^2}}}{{{\text{co}}{{\text{s}}^2}\,x - {\text{si}}{{\text{n}}^2}\,x}}"> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> </math></span>         <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for numerator, <em><strong>A1</strong></em> for denominator.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{{\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)}^2}}}{{\left( {{\text{cos}}\,x - {\text{sin}}\,x} \right)\left( {{\text{cos}}\,x + {\text{sin}}\,x} \right)}}"> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{cos}}\,x + {\text{sin}}\,x}}{{{\text{cos}}\,x - {\text{sin}}\,x}}"> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> </math></span>      <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Apply MS in reverse if candidates have worked from RHS to LHS.</p>
<p><strong>Note:</strong> Alternative method using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2x"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sec}}\,2x"> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,x"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{\frac{\pi }{6}} {\left( {\frac{{{\text{cos}}\,x + {\text{sin}}\,x}}{{{\text{cos}}\,x - {\text{sin}}\,x}}} \right)} {\text{d}}x"> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>       <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct expression with or without limits.</p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ { - {\text{ln}}\left( {{\text{cos}}\,x - {\text{sin}}\,x} \right)} \right]_0^{\frac{\pi }{6}}"> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> </msubsup> </math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{ln}}\left( {{\text{cos}}\,x - {\text{sin}}\,x} \right)} \right]_{\frac{\pi }{6}}^0"> <msubsup> <mrow> <mo>[</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mn>0</mn> </msubsup> </math></span>       <em><strong>(M1)</strong><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for integration by inspection or substitution, <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{ln}}\left( {{\text{cos}}\,x - {\text{sin}}\,x} \right)}"> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math></span>, <em><strong>A1</strong></em> for completely correct expression including limits.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - {\text{ln}}\left( {{\text{cos}}\,\frac{\pi }{6} - {\text{sin}}\,\frac{\pi }{6}} \right) + {\text{ln}}\left( {{\text{cos}}\,0 - {\text{sin}}\,0} \right)"> <mo>=</mo> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>0</mn> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for substitution of limits into their integral and subtraction.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - {\text{ln}}\left( {\frac{{\sqrt 3 }}{2} - \frac{1}{2}} \right)"> <mo>=</mo> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {\text{cos}}\,x - {\text{sin}}\,x"> <mi>u</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}u}}{{{\text{d}}x}} =  - {\text{sin}}\,x - {\text{cos}}\,x =  - \left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \int_1^{\frac{{\sqrt 3 }}{2} - \frac{1}{2}} {\left( {\frac{1}{u}} \right)} {\text{d}}u"> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>1</mn> <mrow> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>u</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>u</mi> </math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct limits even if seen later, <em><strong>A1</strong></em> for integral.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ { - {\text{ln}}\,u} \right]_1^{\frac{{\sqrt 3 }}{2} - \frac{1}{2}}"> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>u</mi> </mrow> <mo>]</mo> </mrow> <mn>1</mn> <mrow> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{ln}}\,u} \right]_{\frac{{\sqrt 3 }}{2} - \frac{1}{2}}^1"> <msubsup> <mrow> <mo>[</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>u</mi> </mrow> <mo>]</mo> </mrow> <mrow> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mn>1</mn> </msubsup> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - {\text{ln}}\left( {\frac{{\sqrt 3 }}{2} - \frac{1}{2}} \right)\left( {{\text{ + ln}}\,1} \right)"> <mo>=</mo> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext> + ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>M1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ln}}\left( {\frac{2}{{\sqrt 3  - 1}}} \right)"> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mrow> <msqrt> <mn>3</mn> </msqrt> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for both putting the expression over a common denominator and for correct use of law of logarithms.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ln}}\left( {1 + \sqrt 3 } \right)"> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>(M1)</strong><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {\frac{1}{2}{\text{ln}}\left( {{\text{tan}}\,2x + {\text{sec}}\,2x} \right) - \frac{1}{2}{\text{ln}}\left( {{\text{cos}}\,2x} \right)} \right]_0^{\frac{\pi }{6}}"> <msubsup> <mrow> <mo>[</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> </msubsup> </math></span>      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}{\text{ln}}\left( {\sqrt 3  + 2} \right) - \frac{1}{2}{\text{ln}}\left( {\frac{1}{2}} \right) - 0"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>0</mn> </math></span>       <em><strong>A1</strong></em><em><strong>A1(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}{\text{ln}}\left( {4 + 2\sqrt 3 } \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <mo>+</mo> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}{\text{ln}}\left( {{{\left( {1 + \sqrt 3 } \right)}^2}} \right)"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>M1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ln}}\left( {1 + \sqrt 3 } \right)"> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p> </p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following figure shows a square based pyramid with vertices at O(0, 0, 0), A(1, 0, 0), B(1, 1, 0), C(0, 1, 0) and D(0, 0, 1).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The Cartesian equation of the plane&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _2}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π<!-- Π --></mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>,&nbsp;passing through the points B , C and D , is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + z = 1">
  <mi>y</mi>
  <mo>+</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The plane&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π<!-- Π --></mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>&nbsp;passes through O and is normal to the line BD.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π<!-- Π --></mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>&nbsp;cuts AD and BD at the points P and Q respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _1}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>, passing through the points A , B and D.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle between the faces ABD and BCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that P is the midpoint of AD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the triangle OPQ.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>recognising normal to plane or attempting to find cross product of two vectors lying in the plane      <em><strong>(M1)</strong></em></p>
<p>for example, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to \,\, \times \mathop {{\text{AD}}}\limits^ \to = \left( \begin{gathered}  0 \hfill \\  1 \hfill \\  0 \hfill \\  \end{gathered} \right) \times \left( \begin{gathered}  - 1 \hfill \\  \,0 \hfill \\  \,1 \hfill \\  \end{gathered} \right) = \left( \begin{gathered}  1 \hfill \\  0 \hfill \\  1 \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo>×</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _1}\,{\text{:}}\,\,x + z = 1">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  1 \hfill \\  0 \hfill \\  1 \hfill \\  \end{gathered} \right) \bullet \left( \begin{gathered}  0 \hfill \\  1 \hfill \\  1 \hfill \\  \end{gathered} \right) = 1 = \sqrt 2 \sqrt 2 \,{\text{cos}}\,\theta ">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>∙</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
  <mo>=</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
  <msqrt>
    <mn>2</mn>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>    <em><strong> M1A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\left( \begin{gathered}  1 \hfill \\  0 \hfill \\  1 \hfill \\  \end{gathered} \right) \times \left( \begin{gathered}  0 \hfill \\  1 \hfill \\  1 \hfill \\  \end{gathered} \right)} \right| = \sqrt 3 = \sqrt 2 \sqrt 2 \,{\text{sin}}\,\theta ">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
          <mtr>
            <mtd>
              <mn>1</mn>
            </mtd>
          </mtr>
          <mtr>
            <mtd>
              <mn>0</mn>
            </mtd>
          </mtr>
          <mtr>
            <mtd>
              <mn>1</mn>
            </mtd>
          </mtr>
        </mtable>
        <mo>)</mo>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mo>(</mo>
        <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
          <mtr>
            <mtd>
              <mn>0</mn>
            </mtd>
          </mtr>
          <mtr>
            <mtd>
              <mn>1</mn>
            </mtd>
          </mtr>
          <mtr>
            <mtd>
              <mn>1</mn>
            </mtd>
          </mtr>
        </mtable>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mn>3</mn>
  </msqrt>
  <mo>=</mo>
  <msqrt>
    <mn>2</mn>
  </msqrt>
  <msqrt>
    <mn>2</mn>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>     <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> <em><strong>M1</strong> </em>is for an attempt to find the scalar or vector product of the two normal vectors.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \theta  = 60^\circ \left( { = \frac{\pi }{3}} \right)">
  <mo stretchy="false">⇒</mo>
  <mi>θ</mi>
  <mo>=</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mi>π</mi>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p>angle between faces is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20^\circ \left( { = \frac{{2\pi }}{3}} \right)">
  <msup>
    <mn>20</mn>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>2</mn>
          <mi>π</mi>
        </mrow>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{DB}}}\limits^ \to = \left( \begin{gathered}  \,1 \hfill \\  \,1 \hfill \\  - 1 \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>DB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{BD}}}\limits^ \to = \left( \begin{gathered}  - 1 \hfill \\  - 1 \hfill \\  \,1 \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>BD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}\,{\text{:}}\,\,x + y - z = k">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>3</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>−</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mi>k</mi>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}\,{\text{:}}\,\,x + y - z = 0">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>3</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>−</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>line AD : (<strong>r</strong> =)<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  0 \hfill \\  0 \hfill \\  1 \hfill \\  \end{gathered} \right) + \lambda \left( \begin{gathered}  \,1 \hfill \\  \,0 \hfill \\  - 1 \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>M1A1</strong></em></p>
<p>intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  - \left( {1 - \lambda } \right) = 0">
  <mi>λ</mi>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mi>λ</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <em><strong>M1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{1}{2}">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>     <em><strong>A1</strong></em></p>
<p>hence P is the midpoint of AD      <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>midpoint of AD is (0.5, 0, 0.5)      <em><strong>(M1)A1</strong></em></p>
<p>substitute into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y - z = 0">
  <mi>x</mi>
  <mo>+</mo>
  <mi>y</mi>
  <mo>−</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>    <em><strong> M1</strong></em></p>
<p>0.5 + 0.5 − 0.5 = 0     <em><strong>A1</strong></em></p>
<p>hence P is the midpoint of AD    <em><strong> AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OP}} = \frac{1}{{\sqrt 2 }},\,\,{\text{O}}\mathop {\text{P}}\limits^ \wedge  {\text{Q}} = 90^\circ ,\,\,{\text{O}}\mathop {\text{Q}}\limits^ \wedge  {\text{P}} = 60^\circ ">
  <mrow>
    <mtext>OP</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>O</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>P</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>Q</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>90</mn>
    <mo>∘</mo>
  </msup>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>O</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>Q</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
</math></span>      <em><strong>A1A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{PQ}} = \frac{1}{{\sqrt 6 }}">
  <mrow>
    <mtext>PQ</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>6</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>    <em><strong> A1</strong></em></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{2\sqrt {12} }} = \frac{1}{{4\sqrt 3 }} = \frac{{\sqrt 3 }}{{12}}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>2</mn>
      <msqrt>
        <mn>12</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>4</mn>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span>     <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>line BD : (<strong>r </strong> =)<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  1 \hfill \\  1 \hfill \\  0 \hfill \\  \end{gathered} \right) + \lambda \left( \begin{gathered}  - 1 \hfill \\  - 1 \hfill \\  \,1 \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \lambda  = \frac{2}{3}">
  <mo stretchy="false">⇒</mo>
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
</math></span>     <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OQ}}}\limits^ \to = \left( \begin{gathered}  \frac{1}{3} \hfill \\  \frac{1}{3} \hfill \\  \frac{2}{3} \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>OQ</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mfrac>
            <mn>1</mn>
            <mn>3</mn>
          </mfrac>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mfrac>
            <mn>1</mn>
            <mn>3</mn>
          </mfrac>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mfrac>
            <mn>2</mn>
            <mn>3</mn>
          </mfrac>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p>area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left| {\mathop {{\text{OP}}}\limits^ \to  \, \times \mathop {{\text{OQ}}}\limits^ \to  } \right|">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mrow>
            <mtext>OP</mtext>
          </mrow>
        </mrow>
        <mo stretchy="false">→</mo>
      </mover>
      <mspace width="thinmathspace"></mspace>
      <mo>×</mo>
      <mover>
        <mrow>
          <mrow>
            <mtext>OQ</mtext>
          </mrow>
        </mrow>
        <mo stretchy="false">→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OP}}}\limits^ \to = \left( \begin{gathered}  \frac{1}{2} \hfill \\  0 \hfill \\  \frac{1}{2} \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>OP</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: This <em><strong>A1</strong> </em>is dependent on <em><strong>M1</strong></em>.</p>
<p>area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt 3 }}{{12}}">
  <mfrac>
    <mrow>
      <msqrt>
        <mn>3</mn>
      </msqrt>
    </mrow>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\pi }{4} + \sin \frac{{3\pi }}{4} + \sin \frac{{5\pi }}{4} + \sin \frac{{7\pi }}{4} + \sin \frac{{9\pi }}{4}"> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - \cos 2x}}{{2\sin x}} \equiv \sin x,{\text{ }}x \ne k\pi "> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>≡</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>≠</mo> <mi>k</mi> <mi>π</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the principle of mathematical induction to prove that</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x +  \ldots  + \sin (2n - 1)x = \frac{{1 - \cos 2nx}}{{2\sin x}},{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}x \ne k\pi "> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>n</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>n</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>≠</mo> <mi>k</mi> <mi>π</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x = \cos x"> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </math></span> in the interval <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \pi "> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mi>π</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\pi }{4} + \sin \frac{{3\pi }}{4} + \sin \frac{{5\pi }}{4} + \sin \frac{{7\pi }}{4} + \sin \frac{{9\pi }}{4} = \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{2}"> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span>    <strong><em>(M1)A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for 5 equal terms with \) + \) or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - "> <mo>−</mo> </math></span> signs.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - \cos 2x}}{{2\sin x}} \equiv \frac{{1 - (1 - 2{{\sin }^2}x)}}{{2\sin x}}"> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{2{{\sin }^2}x}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \sin x"> <mo>≡</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </math></span>    <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(n):\sin x + \sin 3x +  \ldots  + \sin (2n - 1)x \equiv \frac{{1 - \cos 2nx}}{{2\sin x}}"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>n</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span></p>
<p>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 1"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(1):\frac{{1 - \cos 2x}}{{2\sin x}} \equiv \sin x"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>:</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>≡</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </math></span> which is true (as proved in part (b))     <strong><em>R1</em></strong></p>
<p>assume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(k)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </math></span> true, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x +  \ldots  + \sin (2k - 1)x \equiv \frac{{1 - \cos 2kx}}{{2\sin x}}"> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>     <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Only award <strong><em>M1 </em></strong>if the words “assume” and “true” appear. Do not award <strong><em>M1 </em></strong>for “let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </math></span><em>” </em>only. Subsequent marks are independent of this <strong><em>M1</em></strong><em>.</em></p>
<p> </p>
<p>consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(k + 1)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span>:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(k + 1):\sin x + \sin 3x +  \ldots  + \sin (2k - 1)x + \sin (2k + 1)x \equiv \frac{{1 - \cos 2(k + 1)x}}{{2\sin x}}"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>:</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="LHS = \sin x + \sin 3x +  \ldots  + \sin (2k - 1)x + \sin (2k + 1)x"> <mi>L</mi> <mi>H</mi> <mi>S</mi> <mo>=</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - \cos 2kx}}{{2\sin x}} + \sin (2k + 1)x"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> </math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - \cos 2kx + 2\sin x\sin (2k + 1)x}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - \cos 2kx + 2\sin x\cos x\sin 2kx + 2{{\sin }^2}x\cos 2kx}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - \left( {(1 - 2{{\sin }^2}x)\cos 2kx - \sin 2x\sin 2kx} \right)}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - (\cos 2x\cos 2kx - \sin 2x\sin 2kx)}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - \cos (2kx + 2x)}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv \frac{{1 - \cos 2(k + 1)x}}{{2\sin x}}"> <mo>≡</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span></p>
<p>so if true for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </math></span> , then also true for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k + 1"> <mi>n</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p>as true for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 1"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </math></span> then true for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }"> <mi>n</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span>     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept answers using transformation formula for product of sines if steps are shown clearly.</p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>R1 </em></strong>only if candidate is awarded at least 5 marks in the previous steps.</p>
<p> </p>
<p><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x = \cos x \Rightarrow \frac{{1 - \cos 4x}}{{2\sin x}} = \cos x"> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo stretchy="false">⇒</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>4</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 1 - \cos 4x = 2\sin x\cos x,{\text{ }}(\sin x \ne 0)"> <mo stretchy="false">⇒</mo> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>4</mn> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>≠</mo> <mn>0</mn> <mo stretchy="false">)</mo> </math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 1 - (1 - 2{\sin ^2}2x) = \sin 2x"> <mo stretchy="false">⇒</mo> <mn>1</mn> <mo>−</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \sin 2x(2\sin 2x - 1) = 0"> <mo stretchy="false">⇒</mo> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span>    <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \sin 2x = 0"> <mo stretchy="false">⇒</mo> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x = \frac{1}{2}"> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = \pi ,{\text{ }}2x = \frac{\pi }{6}"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mi>π</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = \frac{{5\pi }}{6}"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> </math></span></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x = \cos x \Rightarrow 2\sin 2x\cos x = \cos x"> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo stretchy="false">⇒</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </math></span>    <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow (2\sin 2x - 1)\cos x = 0,{\text{ }}(\sin x \ne 0)"> <mo stretchy="false">⇒</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>≠</mo> <mn>0</mn> <mo stretchy="false">)</mo> </math></span>    <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \sin 2x = \frac{1}{2}"> <mo stretchy="false">⇒</mo> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span> of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos x = 0"> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = \frac{\pi }{6},{\text{ }}2x = \frac{{5\pi }}{6}"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{2}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore x = \frac{\pi }{2},{\text{ }}x = \frac{\pi }{{12}}"> <mo>∴</mo> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{5\pi }}{{12}}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Do not award the final <strong><em>A1 </em></strong>if extra solutions are seen.</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the binomial theorem to expand&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></math>.&nbsp;Give your answer in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mi mathvariant="normal">i</mi></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp;are expressed in terms of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use de Moivre’s theorem and the result from part (a) to show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the identity from part (b) to show that the quadratic equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;has roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a quadratic equation with integer coefficients, having roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p style="text-align:left;">uses the binomial theorem on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mmultiscripts><mi>C</mi><mn>0</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mmultiscripts><mi>C</mi><mn>1</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mfenced><mrow><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>2</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mfenced><mrow><msup><mi mathvariant="normal">i</mi><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>3</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mfenced><mrow><msup><mi mathvariant="normal">i</mi><mn>3</mn></msup><mo> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>4</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mfenced><mrow><msup><mi mathvariant="normal">i</mi><mn>4</mn></msup><mo> </mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mfenced><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mi mathvariant="normal">i</mi><mfenced><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">(using de Moivre’s theorem with&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>&nbsp;gives)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p style="text-align:left;">equates both the real and imaginary parts of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mi mathvariant="normal">i</mi><mfenced><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo mathvariant="italic">-</mo><mn>4</mn><mo mathvariant="italic"> </mo><mi>cos</mi><mo mathvariant="italic"> </mo><mi>θ</mi><mo mathvariant="italic"> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo mathvariant="italic"> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; and&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi></math></p>
<p style="text-align:left;">recognizes that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow><mrow><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p style="text-align:left;">substitutes for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp;into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow><mrow><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo mathvariant="italic">-</mo><mn>4</mn><mo mathvariant="italic"> </mo><mi>cos</mi><mo mathvariant="italic"> </mo><mi>θ</mi><mo mathvariant="italic"> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo mathvariant="italic"> </mo><mi>θ</mi></mrow></mfrac></math></p>
<p style="text-align:left;">divides the numerator and denominator by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp;to obtain</p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow><mrow><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo mathvariant="italic">-</mo><mn>4</mn><mo mathvariant="italic"> </mo><mi>cos</mi><mo mathvariant="italic"> </mo><mi>θ</mi><mo mathvariant="italic"> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo mathvariant="italic"> </mo><mi>θ</mi></mrow><mrow><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfrac></mstyle></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">setting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>0</mn></math>&nbsp;and putting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp;in the numerator of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>&nbsp;gives&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;">attempts to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo>…</mo><mo>&nbsp;</mo><mfenced><mrow><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Do not award the final <strong>A1</strong> if solutions other than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp;are listed.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;">finding the roots of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>0</mn><mo>&nbsp;</mo><mfenced><mrow><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></mrow></mfenced></math>&nbsp;corresponds to finding the roots of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>R1</strong></p>
<p style="text-align:left;">so the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> as roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">attempts to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn><mo>±</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>&gt;</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp;has the smaller value of the two roots&nbsp; &nbsp; &nbsp; &nbsp; <strong>R1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Award <strong>R1</strong> for an alternative convincing valid reason.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;">so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac><mo>=</mo><mn>3</mn><mo>-2</mo><msqrt><mn>2</mn></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math></p>
<p style="text-align:left;">uses&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>1</mn></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn><mo>⇒</mo><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>6</mn><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>y</mi><mo>+</mo><mn>8</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In the following diagram, the points&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span>&nbsp;are on the circumference of a circle with centre <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}">
  <mrow>
    <mtext>O</mtext>
  </mrow>
</math></span> and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{AC}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>AC</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span>&nbsp;is a diameter of the circle.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = r">
  <mrow>
    <mtext>BC</mtext>
  </mrow>
  <mo>=</mo>
  <mi>r</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}} = {\text{CD}}">
  <mrow>
    <mtext>AD</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>CD</mtext>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge&nbsp; {\text{C}} = {\text{A}}\mathop {\text{D}}\limits^ \wedge&nbsp; {\text{C}} = 90^\circ ">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>D</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>90</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,75^\circ  = q"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> <mo>=</mo> <mi>q</mi> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,105^\circ  =  - q"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>105</mn> <mo>∘</mo> </msup> <mo>=</mo> <mo>−</mo> <mi>q</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{D}} = 75^\circ "> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>D</mtext> </mrow> <mo>=</mo> <msup> <mn>75</mn> <mo>∘</mo> </msup> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABD}}"> <mrow> <mtext>ABD</mtext> </mrow> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2} = 5{r^2} - 2{r^2}q\sqrt 6 "> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>D</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>5</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>q</mi> <msqrt> <mn>6</mn> </msqrt> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CBD}}"> <mrow> <mtext>CBD</mtext> </mrow> </math></span>, find another expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2}"> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>D</mtext> </mrow> <mn>2</mn> </msup> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to part (c) to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,75^\circ  = \frac{1}{{\sqrt 6  + \sqrt 2 }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,105^\circ  = {\text{cos}}\left( {180^\circ  - 75^\circ } \right) =  - {\text{cos}}\,75^\circ "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>105</mn> <mo>∘</mo> </msup> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mn>180</mn> <mo>∘</mo> </msup> <mo>−</mo> <msup> <mn>75</mn> <mo>∘</mo> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> </math></span>      <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - q"> <mo>=</mo> <mo>−</mo> <mi>q</mi> </math></span>       <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Accept arguments using the unit circle or graphical/diagrammatical considerations.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}} = {\text{CD}} \Rightarrow {\text{C}}\mathop {\text{A}}\limits^ \wedge  {\text{D}} = 45^\circ "> <mrow> <mtext>AD</mtext> </mrow> <mo>=</mo> <mrow> <mtext>CD</mtext> </mrow> <mo stretchy="false">⇒</mo> <mrow> <mtext>C</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>D</mtext> </mrow> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </math></span>      <em><strong>A1</strong></em></p>
<p>valid method to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{C}}"> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>C</mtext> </mrow> </math></span>        <em><strong>(M1)</strong></em></p>
<p>for example: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = r \Rightarrow {\text{B}}\mathop {\text{C}}\limits^ \wedge  {\text{A}} = 60^\circ "> <mrow> <mtext>BC</mtext> </mrow> <mo>=</mo> <mi>r</mi> <mo stretchy="false">⇒</mo> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>C</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>A</mtext> </mrow> <mo>=</mo> <msup> <mn>60</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{C}} = 30^\circ "> <mo stretchy="false">⇒</mo> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <msup> <mn>30</mn> <mo>∘</mo> </msup> </math></span>      <em><strong>A1</strong></em></p>
<p>hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{D}} = 45^\circ  + 30^\circ  = 75^\circ "> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>D</mtext> </mrow> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> <mo>+</mo> <msup> <mn>30</mn> <mo>∘</mo> </msup> <mo>=</mo> <msup> <mn>75</mn> <mo>∘</mo> </msup> </math></span>      <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = r\sqrt 3 "> <mrow> <mtext>AB</mtext> </mrow> <mo>=</mo> <mi>r</mi> <msqrt> <mn>3</mn> </msqrt> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}} = \left( {{\text{CD}}} \right) = r\sqrt 2 "> <mrow> <mtext>AD</mtext> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>CD</mtext> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>r</mi> <msqrt> <mn>2</mn> </msqrt> </math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>applying cosine rule        <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2} = {\left( {r\sqrt 3 } \right)^2} + {\left( {r\sqrt 2 } \right)^2} - 2\left( {r\sqrt 3 } \right)\left( {r\sqrt 2 } \right){\text{cos}}\,75^\circ "> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>D</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3{r^2} + 2{r^2} - 2{r^2}\sqrt 6 \,{\text{cos}}\,75^\circ "> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <msqrt> <mn>6</mn> </msqrt> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5{r^2} - 2{r^2}q\sqrt 6 "><mo>=</mo><mn>5</mn><msup><mi>r</mi><mn>2</mn></msup><mo>−</mo><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup><mi>q</mi><msqrt><mn>6</mn></msqrt></math></span>       <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{C}}\limits^ \wedge  {\text{D}} = 105^\circ "> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>C</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>D</mtext> </mrow> <mo>=</mo> <msup> <mn>105</mn> <mo>∘</mo> </msup> </math></span>        <em><strong>(A1)</strong></em></p>
<p>attempt to use cosine rule on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {\text{BCD}}"> <mi mathvariant="normal">Δ</mi> <mrow> <mtext>BCD</mtext> </mrow> </math></span>        <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2} = {r^2} + {\left( {r\sqrt 2 } \right)^2} - 2r\left( {r\sqrt 2 } \right){\text{cos}}\,105^\circ "> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>D</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>105</mn> <mo>∘</mo> </msup> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3{r^2} + 2{r^2}q\sqrt 2 "> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>q</mi> <msqrt> <mn>2</mn> </msqrt> </math></span>       <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5{r^2} - 2{r^2}q\sqrt 6  = 3{r^2} + 2{r^2}q\sqrt 2 "> <mn>5</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>q</mi> <msqrt> <mn>6</mn> </msqrt> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>q</mi> <msqrt> <mn>2</mn> </msqrt> </math></span>        <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{r^2} = 2{r^2}q\left( {\sqrt 6  + \sqrt 2 } \right)"> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>q</mi> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for any correct intermediate step seen using only two terms.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = \frac{1}{{\sqrt 6  + \sqrt 2 }}"> <mi>q</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> </mfrac> </math></span>       <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if follow through is being applied.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Given any two non-zero vectors,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi></math>, show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>×</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi mathvariant="bold-italic">a</mi><mo>·</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>use of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>×</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mo>=</mo><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mi>sin</mi><mo> </mo><mi>θ</mi></math>&nbsp;on the LHS&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>×</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><mo>-</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><mo>-</mo><msup><mfenced><mrow><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi mathvariant="bold-italic">a</mi><mo>·</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>use of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>·</mo><mi mathvariant="bold-italic">b</mi><mo>=</mo><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mi>cos</mi><mo> </mo><mi>θ</mi></math>&nbsp;on the RHS&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><mo>-</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>×</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> If candidates attempt this question using cartesian vectors, e.g</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><mfenced><mtable><mtr><mtd><msub><mi>a</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mi>a</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>a</mi><mn>3</mn></msub></mtd></mtr></mtable></mfenced></math>&nbsp; <strong>and&nbsp;&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi><mo>=</mo><mfenced><mtable><mtr><mtd><msub><mi>b</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><msub><mi>b</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>b</mi><mn>3</mn></msub></mtd></mtr></mtable></mfenced></math>,</p>
<p style="padding-left:30px;">award full marks if fully developed solutions are seen.<br>Otherwise award no marks.</p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>,&nbsp;with asymptotes at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>4</mn></mfrac></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a sequence of transformations that transforms the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan </mtext><mi>x</mi></math> to the&nbsp;graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>p</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi><mo>≡</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mi>q</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>&lt;</mo><mn>1</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan </mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>arctan </mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi mathvariant="normal">+</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using mathematical induction and the result from part (b), prove that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong><br>horizontal stretch/scaling with scale factor&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><br><strong>Note:</strong> Do not allow ‘shrink’ or ‘compression’</p>
<p><br>followed by a horizontal translation/shift&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp;units to the left&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Do not allow ‘move’</p>
<p><br><em><strong>OR</strong></em></p>
<p>horizontal translation/shift&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit to the left</p>
<p>followed by horizontal stretch/scaling with scale factor&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>vertical translation/shift up by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;(or translation through&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><br>(may be seen anywhere)</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mi>p</mi></math></strong> and&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>M1</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mtext>tan</mtext><mo> </mo><mi>α</mi></math>&nbsp;</strong>and&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mtext>tan</mtext><mo> </mo><mi>β</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>(A1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>p</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi><mo>≡</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mi>q</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>&lt;</mo><mn>1</mn></math>.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn></math>&nbsp;(or equivalent)<strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mfenced><mn>1</mn></mfenced></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi><mo>+</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>x</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>=</mo><mn>1</mn></math>&nbsp;(or equivalent)<strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>Consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>+1</mo><mo>-</mo><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mfrac><mrow><mi>x</mi><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+1</mo></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>x</mi></mstyle><mstyle displaystyle="true"><mi>x</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>x</mi><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mstyle></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan 1</mtext></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>tan </mtext><mfenced><mrow><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mi mathvariant="normal">=</mi><mi>tan</mi><mo> </mo><mfenced><mrow><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi mathvariant="normal">+</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>=</mo><mn>1</mn></math>&nbsp;(or equivalent)<strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>LHS</mtext><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext><mo>=</mo><mfrac><mrow><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mrow></mfrac><mfenced><mrow><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>n</mi></mfenced></math> be the proposition that&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math></p>
<p>consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced></math></p>
<p>when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mn>1</mn></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>=</mo><mtext>RHS</mtext></math>&nbsp;and so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced></math> is true&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></p>
<p>assume&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math>&nbsp;is true, ie.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi>&nbsp;</mi><mfenced><mrow><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> for statements such as “let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>”.<br><strong>Note:</strong> Subsequent marks after this <em><strong>M1</strong></em> are independent of this mark and can be&nbsp;awarded.</p>
<p>&nbsp;</p>
<p>consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>+</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>+</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mi mathvariant="normal">+</mi><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mstyle><mrow><mn>1</mn><mo>-</mo><mfenced><mstyle displaystyle="true"><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfenced><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mstyle></mfenced></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mi>k</mi></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct numerator, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi mathvariant="normal">k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math> factored. Denominator does not&nbsp;need to be simplified</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>2</mn><msup><mi>k</mi><mn>3</mn></msup><mo>+</mo><mn>6</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for denominator correctly expanded. Numerator does not need to&nbsp;be simplified. These two <em><strong>A</strong></em> marks may be awarded in any order</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> The word ‘arctan’ must be present to be able to award the last three A marks</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp;is true whenever&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math>&nbsp;is true and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced></math>&nbsp;is true, so</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>n</mi></mfenced></math>&nbsp;is true for&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award the final <em><strong>R1</strong></em> mark provided at least four of the previous marks have&nbsp;been awarded.<br><strong>Note:</strong> To award the final <em><strong>R1</strong></em>, the truth of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math> must be mentioned. ‘<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math> implies <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>’ is insufficient to award the mark.</p>
<p>&nbsp;</p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> defined by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}:">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo>:</mo>
</math></span>&nbsp;<em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="&nbsp;= \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ a \end{array}} \right) + \beta \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>a</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>β<!-- β --></mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}:\frac{{6 - x}}{3} = \frac{{y - 2}}{4} = 1 - z">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mo>:</mo>
  <mfrac>
    <mrow>
      <mn>6</mn>
      <mo>−<!-- − --></mo>
      <mi>x</mi>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>y</mi>
      <mo>−<!-- − --></mo>
      <mn>2</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−<!-- − --></mo>
  <mi>z</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant.</p>
<p>Given that the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> intersect at a point P,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>;</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the coordinates of the point of intersection P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}:">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo>:</mo>
</math></span><strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ a \end{array}} \right) = \beta \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}} {x = - 3 + \beta } \\ {y = - 2 + 4\beta } \\ {z = a + 2\beta } \end{array}} \right.">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>a</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>β</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mn>3</mn>
              <mo>+</mo>
              <mi>β</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>y</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mn>2</mn>
              <mo>+</mo>
              <mn>4</mn>
              <mi>β</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>z</mi>
              <mo>=</mo>
              <mi>a</mi>
              <mo>+</mo>
              <mn>2</mn>
              <mi>β</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 - ( - 3 + \beta )}}{3} = \frac{{( - 2 + 4\beta ) - 2}}{4} \Rightarrow 4 = \frac{{4\beta }}{3} \Rightarrow \beta  = 3">
  <mfrac>
    <mrow>
      <mn>6</mn>
      <mo>−</mo>
      <mo stretchy="false">(</mo>
      <mo>−</mo>
      <mn>3</mn>
      <mo>+</mo>
      <mi>β</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mo>−</mo>
      <mn>2</mn>
      <mo>+</mo>
      <mn>4</mn>
      <mi>β</mi>
      <mo stretchy="false">)</mo>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
  <mo stretchy="false">⇒</mo>
  <mn>4</mn>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mi>β</mi>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo stretchy="false">⇒</mo>
  <mi>β</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span>    <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6 - ( - 3 + \beta )}}{3} = 1 - (a + 2\beta ) \Rightarrow 2 =  - 5 - a \Rightarrow a =  - 7">
  <mfrac>
    <mrow>
      <mn>6</mn>
      <mo>−</mo>
      <mo stretchy="false">(</mo>
      <mo>−</mo>
      <mn>3</mn>
      <mo>+</mo>
      <mi>β</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>β</mi>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">⇒</mo>
  <mn>2</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mn>5</mn>
  <mo>−</mo>
  <mi>a</mi>
  <mo stretchy="false">⇒</mo>
  <mi>a</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>7</mn>
</math></span>    <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ {\begin{array}{*{20}{l}} { - 3 + \beta = 6 - 3\lambda } \\ { - 2 + 4\beta = 4\lambda + 2} \\ {a + 2\beta = 1 - \lambda } \end{array}} \right.">
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
              <mo>+</mo>
              <mi>β</mi>
              <mo>=</mo>
              <mn>6</mn>
              <mo>−</mo>
              <mn>3</mn>
              <mi>λ</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
              <mo>+</mo>
              <mn>4</mn>
              <mi>β</mi>
              <mo>=</mo>
              <mn>4</mn>
              <mi>λ</mi>
              <mo>+</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>a</mi>
              <mo>+</mo>
              <mn>2</mn>
              <mi>β</mi>
              <mo>=</mo>
              <mn>1</mn>
              <mo>−</mo>
              <mi>λ</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
</math></span>    <strong><em>M1</em></strong></p>
<p>attempt to solve     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = 2,{\text{ }}\beta  = 3">
  <mi>λ</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>β</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 1 - \lambda  - 2\beta  =  - 7">
  <mi>a</mi>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mi>λ</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>β</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>7</mn>
</math></span>    <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OP}}} = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ { - 7} \end{array}} \right) + 3 \bullet \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>OP</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>7</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mo>∙</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} 0 \\ {10} \\ { - 1} \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore {\text{P}}(0,{\text{ 10, }} - 1)">
  <mo>∴</mo>
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> 10, </mtext>
  </mrow>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a triangle OAB such that O has coordinates (0, 0, 0), A has coordinates&nbsp;(0, 1, 2) and B has coordinates (2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> − 1) where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> &lt; 0.</p>
</div>

<div class="specification">
<p>Let M be the midpoint of the line segment [OB].</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, a Cartesian equation of the plane <em>Π</em> containing this triangle.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, the equation of the line <em>L</em> which passes through M and is perpendicular to the plane <em>П</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that<em> L</em> does not intersect the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis for any negative value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = \left( {\begin{array}{*{20}{c}}  0 \\   1 \\   2  \end{array}} \right) \times \left( {\begin{array}{*{20}{c}}  {2b} \\   0 \\   {b - 1}  \end{array}} \right)">
  <mi>n</mi>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>×</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mn>2</mn>
              <mi>b</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>b</mi>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  {b - 1} \\   {4b} \\   { - 2b}  \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>b</mi>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>4</mn>
              <mi>b</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
              <mi>b</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)A1</strong></em></p>
<p>(0, 0, 0) on <em>Π</em> so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {b - 1} \right)x + 4by - 2bz = 0">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>x</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>y</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>b</mi>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>(M1)A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>using equation of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="px + qy + rz = 0">
  <mi>p</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>q</mi>
  <mi>y</mi>
  <mo>+</mo>
  <mi>r</mi>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>(M1)</strong></em></p>
<p>(0, 1, 2) on <em>Π</em> ⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q + 2r = 0">
  <mi>q</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>r</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p>(2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> − 1) on <em>Π</em> ⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2bp + r\left( {b - 1} \right) = 0">
  <mn>2</mn>
  <mi>b</mi>
  <mi>p</mi>
  <mo>+</mo>
  <mi>r</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)A1</strong></em> for both equations seen.</p>
<p>solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {b - 1} \right)x + 4by - 2bz = 0">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>x</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mi>b</mi>
  <mi>y</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>b</mi>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>M has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {b,\,\,0,\,\,\frac{{b - 1}}{2}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mi>b</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(A1)</strong></em></p>
<p><em><strong>r</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  b \\   0 \\   {\frac{{b - 1}}{2}}  \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  {b - 1} \\   {4b} \\   { - 2b}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>b</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mfrac>
                <mrow>
                  <mi>b</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>b</mi>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>4</mn>
              <mi>b</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
              <mi>b</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong></em> if <em><strong>r</strong></em> = (or equivalent) is not seen.</p>
<p><strong>Note:</strong> Allow equivalent forms such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x - b}}{{b - 1}} = \frac{y}{{4b}} = \frac{{2z - b + 1}}{{ - 4b}}">
  <mfrac>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mi>y</mi>
    <mrow>
      <mn>4</mn>
      <mi>b</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>z</mi>
      <mo>−</mo>
      <mi>b</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mo>−</mo>
      <mn>4</mn>
      <mi>b</mi>
    </mrow>
  </mfrac>
</math></span>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = z = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 0">
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> or both.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b + \lambda \left( {b - 1} \right) = 0">
  <mi>b</mi>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{b - 1}}{2} - 2\lambda b = 0">
  <mfrac>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>−</mo>
  <mn>2</mn>
  <mi>λ</mi>
  <mi>b</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p>attempt to eliminate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow  - \frac{b}{{b - 1}} = \frac{{b - 1}}{{4b}}">
  <mo stretchy="false">⇒</mo>
  <mo>−</mo>
  <mfrac>
    <mi>b</mi>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>4</mn>
      <mi>b</mi>
    </mrow>
  </mfrac>
</math></span>      <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4{b^2} = {\left( {b - 1} \right)^2}">
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>b</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>b</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p>consideration of the signs of LHS and RHS       <em><strong>(M1)</strong></em></p>
<p>the LHS is negative and the RHS must be positive (or equivalent statement)       <em><strong>R1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4{b^2} = {b^2} - 2b + 1">
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>b</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>b</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>b</mi>
  <mo>+</mo>
  <mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 5{b^2} - 2b + 1 = 0">
  <mo stretchy="false">⇒</mo>
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>b</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>b</mi>
  <mo>+</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta  = {\left( { - 2} \right)^2} - 4 \times 5 \times 1 =  - 16\,\left( { &lt; 0} \right)">
  <mi mathvariant="normal">Δ</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mo>−</mo>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>5</mn>
  <mo>×</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mn>16</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>&lt;</mo>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore ">
  <mo>∴</mo>
</math></span> no real solutions       <em><strong>R1</strong></em></p>
<p><strong>THEN</strong></p>
<p>so no point of intersection       <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = z = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 0">
  <mi>z</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> or both.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b + \lambda \left( {b - 1} \right) = 0">
  <mi>b</mi>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{b - 1}}{2} - 2\lambda b = 0">
  <mfrac>
    <mrow>
      <mi>b</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>−</mo>
  <mn>2</mn>
  <mi>λ</mi>
  <mi>b</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p>attempt to eliminate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{\lambda }{{1 + \lambda }} = \frac{1}{{1 - 4\lambda }}">
  <mo stretchy="false">⇒</mo>
  <mfrac>
    <mi>λ</mi>
    <mrow>
      <mn>1</mn>
      <mo>+</mo>
      <mi>λ</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mn>4</mn>
      <mi>λ</mi>
    </mrow>
  </mfrac>
</math></span>      <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4{\lambda ^2} = 1\left( { \Rightarrow {\lambda ^2} =  - \frac{1}{4}} \right)">
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>λ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>1</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">⇒</mo>
      <mrow>
        <msup>
          <mi>λ</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>=</mo>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p>consideration of the signs of LHS and RHS       <em><strong>(M1)</strong></em></p>
<p>there are no real solutions (or equivalent statement)       <em><strong>R1</strong></em></p>
<p>so no point of intersection      <em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let <em>θ</em> be the angle between&nbsp;the two given sides. The triangle has an area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5\sqrt {15} }}{2}">
  <mfrac>
    <mrow>
      <mn>5</mn>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span> cm<sup>2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \frac{{\sqrt {15} }}{4}">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two possible values for the length of the third side.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5\sqrt {15} }}{2} = \frac{1}{2} \times 4 \times 5\,{\text{sin}}\,\theta ">
  <mfrac>
    <mrow>
      <mn>5</mn>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>5</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p>height of triangle is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5\sqrt {15} }}{4}">
  <mfrac>
    <mrow>
      <mn>5</mn>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> if using 4 as the base or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sqrt {15} }">
  <mrow>
    <msqrt>
      <mn>15</mn>
    </msqrt>
  </mrow>
</math></span> if using 5 as the base      <em><strong>A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \frac{{\sqrt {15} }}{4}">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>        <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let the third side be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = {4^2} + {5^2} - 2 \times 4 \times 5 \times {\text{cos}}\,\theta ">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>4</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mn>5</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>5</mn>
  <mo>×</mo>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>       <em><strong>M1</strong></em></p>
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta ">
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Do not accept writing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {{\text{arcsin}}\left( {\frac{{\sqrt {15} }}{4}} \right)} \right)">
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>arcsin</mtext>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mrow>
              <msqrt>
                <mn>15</mn>
              </msqrt>
            </mrow>
            <mn>4</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> as a valid method.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta = \pm \sqrt {1 - \frac{{15}}{{16}}} ">
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
  <mo>=</mo>
  <mo>±</mo>
  <msqrt>
    <mn>1</mn>
    <mo>−</mo>
    <mfrac>
      <mrow>
        <mn>15</mn>
      </mrow>
      <mrow>
        <mn>16</mn>
      </mrow>
    </mfrac>
  </msqrt>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{4}{\text{,}}\,\, - \frac{1}{4}">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = 16 + 25 - 2 \times 4 \times 5 \times  \pm \frac{1}{4}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>16</mn>
  <mo>+</mo>
  <mn>25</mn>
  <mo>−</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>5</mn>
  <mo>×</mo>
  <mo>±</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt {31} ">
  <mi>x</mi>
  <mo>=</mo>
  <msqrt>
    <mn>31</mn>
  </msqrt>
</math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {51} ">
  <msqrt>
    <mn>51</mn>
  </msqrt>
</math></span>       <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The points A and B are given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(0,{\text{ }}3,{\text{ }} - 6)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(6,{\text{ }} - 5,{\text{ }}11)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>11</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p>The plane <em>Π</em>&nbsp;is defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x - 3y + 2z = 20">
  <mn>4</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mi>y</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mn>20</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line <em>L </em>passing through the points A and B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point of intersection of the line <em>L </em>with the plane <em>Π</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>8</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>17</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong><em>r </em></strong>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   3 \\   { - 6} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>6</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>8</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>17</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> or <strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  6 \\   { - 5} \\   {11} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>5</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>11</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>8</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>17</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>M1A0 </em></strong>if <strong><em>r </em></strong>= is not seen (or equivalent).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitute line <em>L </em>in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi :4(6\lambda ) - 3(3 - 8\lambda ) + 2( - 6 + 17\lambda ) = 20">
  <mi mathvariant="normal">Π</mi>
  <mo>:</mo>
  <mn>4</mn>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mi>λ</mi>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>−</mo>
  <mn>8</mn>
  <mi>λ</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>6</mn>
  <mo>+</mo>
  <mn>17</mn>
  <mi>λ</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>20</mn>
</math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="82\lambda  = 41">
  <mn>82</mn>
  <mi>λ</mi>
  <mo>=</mo>
  <mn>41</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{1}{2}">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   3 \\   { - 6} \end{array}} \right) + \frac{1}{2}\left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  3 \\   { - 1} \\   {\frac{5}{2}} \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>6</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>8</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>17</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>so coordinate is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3,{\text{ }} - 1,{\text{ }}\frac{5}{2}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo>−</mo>
      <mn>1</mn>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mfrac>
        <mn>5</mn>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept coordinate expressed as position vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3 \\   { - 1} \\   {\frac{5}{2}} \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{cos}}{\,^2}x">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <msup>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>x</mi>
</math></span>, where 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 5.&nbsp;The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is shown on the following graph which has local maximum points at A and C and touches the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at B and D.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use integration by parts to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x{\text{d}}x = } \frac{{2{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{5}{\text{cos}}\,2x + c"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>c</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c \in \mathbb{R}"> <mi>c</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}{\,^2}x{\text{d}}x = } \frac{{{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{{10}}{\text{cos}}\,2x + \frac{{{{\text{e}}^x}}}{2} + c"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <msup> <mspace width="thinmathspace"></mspace> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>c</mi> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c \in \mathbb{R}"> <mi>c</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinates of A and of C , giving your answers in the form&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + {\text{arctan}}\,b"> <mi>a</mi> <mo>+</mo> <mrow> <mtext>arctan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>b</mi> </math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{R}"> <mi>b</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by the curve and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis between B and D, as shaded on the diagram.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>attempt at integration by parts with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {{\text{e}}^x}"> <mi>u</mi> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}v}}{{{\text{d}}x}} = {\text{cos}}\,2x"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x = } \frac{{{{\text{e}}^x}}}{2}{\text{sin}}\,2x\,{\text{d}}x - \int {\frac{{{{\text{e}}^x}}}{2}} {\text{sin}}\,2x\,{\text{d}}x"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>      <em><strong>A1</strong></em></p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{e}}^x}}}{2}{\text{sin}}\,2x - \frac{1}{2}\left( { - \frac{{{{\text{e}}^x}}}{2}{\text{cos}}\,2x + \int {\frac{{{{\text{e}}^x}}}{2}} {\text{cos}}\,2x} \right)"> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mo>∫</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>M1A1</strong></em></p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\text{e}}^x}}}{2}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{4}{\text{cos}}\,2x - \frac{1}{4}\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x} "> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore \frac{5}{4}\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x}  = \frac{{{{\text{e}}^x}}}{2}{\text{sin}}\,2x\, + \frac{{{{\text{e}}^x}}}{4}{\text{cos}}\,2x"> <mo>∴</mo> <mfrac> <mn>5</mn> <mn>4</mn> </mfrac> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>4</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x}  = \frac{{2{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{5}{\text{cos}}\,2x\left( { + c} \right)"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>+</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </math></span>    <em><strong>AG</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt at integration by parts with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = {\text{cos}}\,2x"> <mi>u</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}v}}{{{\text{d}}x}} = {{\text{e}}^x}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>v</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x = } {{\text{e}}^x}\,{\text{cos}}\,2x + 2\int {{{\text{e}}^x}\,{\text{sin}}\,2x\,{\text{d}}x} "> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {{\text{e}}^x}\,{\text{cos}}\,2x + 2\left( {{{\text{e}}^x}\,{\text{sin}}\,2x - 2\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x} } \right)"> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {{\text{e}}^x}\,{\text{cos}}\,2x + 2{{\text{e}}^x}\,{\text{sin}}\,2x - 4\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x} "> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore 5\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x}  = {{\text{e}}^x}\,{\text{cos}}\,2x + 2{{\text{e}}^x}\,{\text{sin}}\,2x"> <mo>∴</mo> <mn>5</mn> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x}  = \frac{{2{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{5}{\text{cos}}\,2x\left( { + c} \right)"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>+</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </math></span>    <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>attempt at use of table      <em><strong>M1</strong></em></p>
<p><em>eg</em></p>
<p><img src="">      <em><strong>A1</strong></em><em><strong>A1</strong> </em></p>
<p><strong>Note:</strong> <em><strong>A1</strong> </em>for first 2 lines correct, <em><strong>A1</strong> </em>for third line correct.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x = \,} {{\text{e}}^x}\,{\text{cos}}\,2x + 2{{\text{e}}^x}\,{\text{sin}}\,2x - 4\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x} "> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mspace width="thinmathspace"></mspace> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore 5\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x}  = {{\text{e}}^x}\,{\text{cos}}\,2x + 2{{\text{e}}^x}\,{\text{sin}}\,2x"> <mo>∴</mo> <mn>5</mn> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x\,{\text{d}}x}  = \frac{{2{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{5}{\text{cos}}\,2x\left( { + c} \right)"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>+</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </math></span>    <em><strong>AG</strong></em></p>
<p> </p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{co}}{{\text{s}}^2}\,x{\text{d}}x = } \int {\frac{{{{\text{e}}^x}}}{2}} \left( {{\text{cos}}\,2x + 1} \right){\text{d}}x"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mo>∫</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>&nbsp;&nbsp; &nbsp;&nbsp;<em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left( {\frac{{{\text{2}}{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{5}{\text{cos}}\,2x} \right) + \frac{{{{\text{e}}^x}}}{2}"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <mtext>2</mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{{10}}{\text{cos}}\,2x + \frac{{{{\text{e}}^x}}}{2}\left( { + c} \right)"> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>+</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Do not accept solutions where the RHS is differentiated.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = {{\text{e}}^x}\,{\text{co}}{{\text{s}}^{\text{2}}}\,x - 2{{\text{e}}^x}\,{\text{sin}}\,x\,{\text{cos}}\,x"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mtext>2</mtext> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for an attempt at both the product rule and the chain rule.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x}\,{\text{cos}}\,x\left( {{\text{cos}}\,x - 2\,{\text{sin}}\,x} \right) = 0"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for an attempt to factorise&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{cos}}\,x}"> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </math></span>&nbsp;or divide by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x\left( {{\text{cos}}\,x \ne 0} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>≠</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>discount&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x = 0"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>&nbsp;(as this would also be a zero of the function)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{cos}}\,x - 2\,{\text{sin}}\,x = 0"> <mo stretchy="false">⇒</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{tan}}\,x = \frac{1}{2}"> <mo stretchy="false">⇒</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = {\text{arctan}}\left( {\frac{1}{2}} \right)"> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mrow> <mtext>arctan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> (at A) and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi&nbsp; + {\text{arctan}}\left( {\frac{1}{2}} \right)"> <mi>x</mi> <mo>=</mo> <mi>π</mi> <mo>+</mo> <mrow> <mtext>arctan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp;(at C)&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct answer. If extra values are seen award <em><strong>A1A0</strong></em>.</p>
<p>&nbsp;</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x = 0 \Rightarrow x = \frac{\pi }{2}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span> or&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\pi }}{2}"> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span>&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> The <em><strong>A1</strong></em>may be awarded for work seen in part (c).</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{{\text{e}}^x}\,{\text{co}}{{\text{s}}^{\text{2}}}\,x} \right)} \,{\text{d}}x = \left[ {\frac{{{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{{10}}{\text{cos}}\,2x + \frac{{{{\text{e}}^x}}}{2}} \right]_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}}"> <msubsup> <mo>∫</mo> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mrow> <mtext>2</mtext> </mrow> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msubsup> </math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( { - \frac{{{{\text{e}}^{\frac{{3\pi }}{2}}}}}{{10}} + \frac{{{{\text{e}}^{\frac{{3\pi }}{2}}}}}{2}} \right) - \left( { - \frac{{{{\text{e}}^{\frac{\pi }{2}}}}}{{10}} + \frac{{{{\text{e}}^{\frac{\pi }{2}}}}}{2}} \right)\left( { = \frac{{{\text{2}}{{\text{e}}^{\frac{{3\pi }}{2}}}}}{5} - \frac{{{\text{2}}{{\text{e}}^{\frac{\pi }{2}}}}}{5}} \right)"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>2</mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <mrow> <mtext>2</mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1(A1</strong><strong>)</strong><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for substitution of the end points and subtracting, <em><strong>(A1)</strong></em> for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,3\pi&nbsp; = {\text{sin}}\,\pi&nbsp; = 0"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mi>π</mi> <mo>=</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>π</mi> <mo>=</mo> <mn>0</mn> </math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,3\pi&nbsp; = {\text{cos}}\,\pi&nbsp; =&nbsp; - 1"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mi>π</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>π</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>&nbsp;and <em><strong>A1</strong></em> for a completely correct answer.</p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The points A, B, C and D have position vectors <em><strong>a</strong></em>, <em><strong>b</strong></em>, <em><strong>c</strong></em> and <em><strong>d</strong></em>, relative to the origin O.</p>
<p>It is given that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to&nbsp; &nbsp;= \mathop {{\text{DC}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>DC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span>.</p>
</div>

<div class="specification">
<p>The position vectors&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OA}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OA</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OC}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OD}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span> are given by</p>
<p style="padding-left: 150px;"><em><strong>a</strong></em> = <em><strong>i</strong></em> + 2<em><strong>j</strong></em>&nbsp;− 3<em><strong>k</strong></em></p>
<p style="padding-left: 150px;"><em><strong>b</strong></em> = 3<em><strong>i</strong></em> − <em><strong>j</strong></em> + <em>p<strong>k</strong></em></p>
<p style="padding-left: 150px;"><em><strong>c</strong></em> = <em>q<strong>i</strong></em> + <em><strong>j</strong></em> + 2<em><strong>k</strong></em></p>
<p style="padding-left: 150px;"><em><strong>d</strong></em> =&nbsp;−<em><strong>i</strong></em> + <em>r<strong>j</strong></em> − 2<em><strong>k</strong></em></p>
<p>where <em>p</em> , <em>q</em> and <em>r</em> are constants.</p>
</div>

<div class="specification">
<p>The point where the diagonals of ABCD intersect is denoted by M.</p>
</div>

<div class="specification">
<p>The plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi ">
  <mi mathvariant="normal">Π<!-- Π --></mi>
</math></span> cuts the <em>x</em>, <em>y</em> and <em>z</em> axes at X , Y and Z respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why ABCD is a parallelogram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using vector algebra, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>BC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>p</em> = 1, <em>q</em> = 1 and <em>r</em> = 4.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the parallelogram ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector equation of the straight line passing through M and normal to the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi ">
  <mi mathvariant="normal">Π</mi>
</math></span> containing ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi ">
  <mi mathvariant="normal">Π</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of X, Y and Z.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find YZ.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a pair of opposite sides have equal length and are parallel      <em><strong>R1</strong></em></p>
<p>hence ABCD is a parallelogram      <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to rewrite the given information in vector form       <em><strong>M1</strong></em></p>
<p><em><strong>b</strong></em> − <em><strong>a</strong></em> = <em><strong>c</strong></em> − <em><strong>d</strong></em>      <em><strong>A1</strong></em></p>
<p>rearranging <em><strong>d</strong></em> − <em><strong>a</strong></em> = <em><strong>c</strong></em> − <em><strong>b      </strong> <strong>M1</strong></em></p>
<p>hence  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>BC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>     <em><strong>AG</strong></em></p>
<p><strong>Note</strong>: Candidates may correctly answer part i) by answering part ii) correctly and then deducing there<br>are two pairs of parallel sides.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to   = \mathop {{\text{DC}}}\limits^ \to  ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>DC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  2 \hfill \\  - 3 \hfill \\  p + 3 \hfill \\  \end{gathered} \right) = \left( \begin{gathered}  q + 1 \hfill \\  1 - r \hfill \\  4 \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>3</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mi>p</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mi>q</mi>
          <mo>+</mo>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
          <mo>−</mo>
          <mi>r</mi>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>4</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>A1A1</strong></em></p>
<p><strong>OR</strong></p>
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>BC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  - 2 \hfill \\  r - 2 \hfill \\  1 \hfill \\  \end{gathered} \right) = \left( \begin{gathered}  q - 3 \hfill \\  2 \hfill \\  2 - p \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mi>r</mi>
          <mo>−</mo>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mi>q</mi>
          <mo>−</mo>
          <mn>3</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>2</mn>
          <mo>−</mo>
          <mi>p</mi>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong> A1A1</strong></em></p>
<p><strong>THEN</strong></p>
<p>attempt to compare coefficients of <em><strong>i</strong></em>, <em><strong>j</strong></em>, and <em><strong>k</strong></em> in their equation or statement to that effect       <em><strong>M1</strong></em></p>
<p>clear demonstration that the given values satisfy their equation       <em><strong>A1</strong></em><br><em>p</em> = 1, <em>q</em> = 1, <em>r</em> = 4       <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at computing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to  \, \times \mathop {{\text{AD}}}\limits^ \to  ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mspace width="thinmathspace"></mspace>
  <mo>×</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span> (or equivalent)       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  - 11 \hfill \\  - 10 \hfill \\  - 2 \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>11</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>10</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>2</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left| {\mathop {{\text{AB}}}\limits^ \to  \, \times \mathop {{\text{AD}}}\limits^ \to  } \right|\left( { = \sqrt {225} } \right)">
  <mo>=</mo>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mrow>
            <mtext>AB</mtext>
          </mrow>
        </mrow>
        <mo stretchy="false">→</mo>
      </mover>
      <mspace width="thinmathspace"></mspace>
      <mo>×</mo>
      <mover>
        <mrow>
          <mrow>
            <mtext>AD</mtext>
          </mrow>
        </mrow>
        <mo stretchy="false">→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <msqrt>
        <mn>225</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p>= 15       <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OM}}}\limits^ \to   = \left( {\frac{1}{2}\left( {a + c} \right)} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>OM</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>a</mi>
          <mo>+</mo>
          <mi>c</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  1 \hfill \\  \frac{3}{2} \hfill \\  - \frac{1}{2} \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mfrac>
            <mn>3</mn>
            <mn>2</mn>
          </mfrac>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>     <em><strong>A1</strong></em></p>
<p>the equation is</p>
<p><em><strong>r</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  1 \hfill \\  \frac{3}{2} \hfill \\  - \frac{1}{2} \hfill \\  \end{gathered} \right) + t\left( \begin{gathered}  11 \hfill \\  10 \hfill \\  2 \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mfrac>
            <mn>3</mn>
            <mn>2</mn>
          </mfrac>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>11</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>10</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span> or equivalent       <em><strong>M1A1</strong></em></p>
<p><strong>Note</strong>: Award maximum <em><strong>M1A0</strong></em> if '<em><strong>r</strong></em> = …' (or equivalent) is not seen.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to obtain the equation of the plane in the form <em>ax</em> + <em>by</em> + <em>cz</em> = <em>d</em>       <em><strong>M1</strong></em></p>
<p>11<em>x</em> + 10<em>y</em> + 2<em>z</em> = 25      <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> <em><strong>A1</strong> </em>for right hand side, <em><strong>A1</strong></em> for left hand side.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>putting two coordinates equal to zero       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{X}}\left( {\frac{{25}}{{11}},\,0,\,0} \right),\,\,{\text{Y}}\left( {0,\,\frac{5}{2},\,0} \right),\,\,{\text{Z}}\left( {0,\,0,\,\frac{{25}}{2}} \right)">
  <mrow>
    <mtext>X</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>25</mn>
        </mrow>
        <mrow>
          <mn>11</mn>
        </mrow>
      </mfrac>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>Y</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mn>5</mn>
        <mn>2</mn>
      </mfrac>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>Z</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mn>25</mn>
        </mrow>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{YZ}} = \sqrt {{{\left( {\frac{5}{2}} \right)}^2} + {{\left( {\frac{{25}}{2}} \right)}^2}} ">
  <mrow>
    <mtext>YZ</mtext>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mfrac>
                <mrow>
                  <mn>25</mn>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {\frac{{325}}{2}} \left( { = \frac{{5\sqrt {104} }}{4} = \frac{{5\sqrt {26} }}{2}} \right)">
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>325</mn>
      </mrow>
      <mn>2</mn>
    </mfrac>
  </msqrt>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>5</mn>
          <msqrt>
            <mn>104</mn>
          </msqrt>
        </mrow>
        <mn>4</mn>
      </mfrac>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>5</mn>
          <msqrt>
            <mn>26</mn>
          </msqrt>
        </mrow>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#62;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>The inverse of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfrac><mi>x</mi><mn>2</mn></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p>Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mfrac><mi>q</mi><mn>2</mn></mfrac><msqrt><mi>r</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><img src=""></strong></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept an indication of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p><br>vertical asymptotes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>          <em><strong>A1</strong></em></p>
<p>horizontal asymptote <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>          <em><strong>A1</strong></em></p>
<p>uses a valid method to find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the local maximum point          <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> For example, uses the axis of symmetry or attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<p><br>local maximum point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)A0</strong></em> for a local maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> and coordinates not given.</p>
<p><br>three correct branches with correct asymptotic behaviour and the key features in approximately correct relative positions to each other          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>           <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (this can be done at a later stage).</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>attempts to complete the square           <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>3</mn><mo>=</mo><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>=</mo><mfrac><mn>1</mn><mi>x</mi></mfrac><mfenced><mrow><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>4</mn><mo>+</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>1</mn><mo>=</mo><mo>±</mo><msqrt><mn>4</mn><mo>+</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></msqrt><mo> </mo><mfenced><mrow><mo>=</mo><mo>±</mo><msqrt><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mi>x</mi></mfrac></msqrt></mrow></mfenced></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mi>y</mi><mo>-</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></msqrt></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math>         <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>even if <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> (in <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo></math>) is missing</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>±</mo><msqrt><mn>16</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi></msqrt></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>±</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&gt;</mo><mn>3</mn></math> and hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math> is rejected                <em><strong>R1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for concluding that the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> must have the ‘<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo></math>’ sign.<br>The <em><strong>R1</strong> </em>may be awarded earlier for using the condition <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>3</mn></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>         <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac></mfenced></mrow></mfenced></math>          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow><mn>2</mn></mfrac></mfenced><mi mathvariant="normal">=</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><mfenced><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac></mfenced><mi mathvariant="normal">=</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p>attempts to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><mn>2</mn><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mfrac><mo>=</mo><mn>2</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>2</mn></mfenced></math>         <em><strong>A1</strong></em></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>2</mn></mfenced></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mfenced><mn>2</mn></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn></msqrt><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award all available marks to this stage if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mo>-</mo><mn>7</mn><mo>=</mo><mn>0</mn></math>         <em><strong>A1</strong></em></p>
<p>attempts to solve their quadratic equation         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mfenced><mn>2</mn></mfenced><mfenced><mn>7</mn></mfenced></msqrt></mrow><mn>4</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>4</mn><mo>±</mo><msqrt><mn>72</mn></msqrt></mrow><mn>4</mn></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award all available marks to this stage if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msqrt><mn>2</mn></msqrt></math>  (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&gt;</mo><mn>3</mn></math>)         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>=</mo><mn>2</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msqrt><mn>18</mn></msqrt></math>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>=</mo><mn>18</mn></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was generally well done. It was pleasing to see how often candidates presented complete sketches here. Several decided to sketch using the reciprocal function. Occasionally, candidates omitted the upper branches or forgot to calculate the <em>y</em>-coordinate of the maximum.</p>
<p>Part (b): The majority of candidates knew how to start finding the inverse, and those who attempted completing the square or using the quadratic formula to solve for y made good progress (both methods equally seen). Otherwise, they got lost in the algebra. Very few explicitly justified the rejection of the negative root.</p>
<p>Part (c) was well done in general, with some algebraic errors seen in occasions.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>By using the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mtext>sec</mtext><mo> </mo><mi>x</mi></math> or otherwise, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mfrac><mi>π</mi><mn>3</mn></mfrac></munderover><msup><mtext>sec</mtext><mi>n</mi></msup><mo> </mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is a non-zero real number.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mtext>sec</mtext><mo> </mo><mi>x</mi><mo>⇒</mo><mo>d</mo><mi>u</mi><mo>=</mo><mtext>sec</mtext><mo> </mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi></math>         <em><strong>(A1)</strong></em></p>
<p>attempts to express the integral in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>1</mn><mn>2</mn></msubsup><msup><mi>u</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>d</mo><mi>u</mi></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><msubsup><mfenced open="[" close="]"><msup><mi>u</mi><mi>n</mi></msup></mfenced><mn>1</mn><mn>2</mn></msubsup><mo> </mo><mo> </mo><mo>(</mo><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><msubsup><mfenced open="[" close="]"><mrow><msup><mtext>sec</mtext><mi>n</mi></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>0</mn><mfrac><mi>π</mi><mn>3</mn></mfrac></msubsup><mo>)</mo></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Condone the absence of or incorrect limits up to this point.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>-</mo><msup><mn>1</mn><mi>n</mi></msup></mrow><mi>n</mi></mfrac></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>-</mo><mn>1</mn></mrow><mi>n</mi></mfrac></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct substitution of <span style="text-decoration:underline;"><strong>their</strong></span> limits for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math> into their antiderivative for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math> (or given limits for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> into their antiderivative for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>).</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><msup><mtext>sec</mtext><mi>n</mi></msup><mo> </mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mo>∫</mo><msup><mtext>sec</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><mi>x</mi><mo> </mo><mtext>sec</mtext><mo> </mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi></math>         <em><strong>(A1)</strong></em></p>
<p>applies integration by inspection         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><msubsup><mfenced open="[" close="]"><mrow><msup><mtext>sec</mtext><mi>n</mi></msup><mo> </mo><mi>x</mi></mrow></mfenced><mn>0</mn><mfrac><mi>π</mi><mn>3</mn></mfrac></msubsup></math>          <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A2</strong></em> if the limits are not stated.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mfenced><mrow><msup><mtext>sec</mtext><mi>n</mi></msup><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>-</mo><msup><mtext>sec</mtext><mi>n</mi></msup><mo> </mo><mn>0</mn></mrow></mfenced></math>         <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for correct substitution into their antiderivative.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mn>2</mn><mi>n</mi></msup><mo>-</mo><mn>1</mn></mrow><mi>n</mi></mfrac></math>          <em><strong>A1</strong></em></p>
<p>  </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A straight line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_\theta }"> <mrow> <msub> <mi>L</mi> <mi>θ</mi> </msub> </mrow> </math></span>, has vector equation <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  5 \\   0 \\   0  \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  5 \\   {{\text{sin}}\,\theta } \\   {{\text{cos}}\,\theta }  \end{array}} \right){\text{, }}\lambda {\text{, }}\theta \in \mathbb{R}"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>λ</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mi>λ</mi> <mrow> <mtext>, </mtext> </mrow> <mi>θ</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<p>The plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _p}"><msub><mi>Π</mi><mi>p</mi></msub></math></span>, has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p{\text{, }}p \in \mathbb{R}"> <mi>x</mi> <mo>=</mo> <mi>p</mi> <mrow> <mtext>, </mtext> </mrow> <mi>p</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<p>Show that the angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_\theta }"> <mrow> <msub> <mi>L</mi> <mi>θ</mi> </msub> </mrow> </math></span> and <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _p}"><msub><mi>Π</mi><mi>p</mi></msub></math> is independent of both <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>a vector normal to <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _p}"><msub><mi>Π</mi><mi>p</mi></msub></math> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   0 \\   0  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>(A</strong><strong>1)</strong></em></p>
<p><strong>Note:</strong> Allow any scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\  0 \\  0  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>, including <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  p \\   0 \\   0  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>attempt to find scalar product (or vector product) of direction vector of line with any scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\  0 \\  0  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>        <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   0 \\   0  \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}  5 \\   {{\text{sin}}\,\theta } \\   {{\text{cos}}\,\theta }  \end{array}} \right) = 5"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>5</mn> </math></span>  (or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   0 \\   0  \end{array}} \right) \times \left( {\begin{array}{*{20}{c}}  5 \\   {{\text{sin}}\,\theta } \\   {{\text{cos}}\,\theta }  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  0 \\   { - {\text{cos}}\,\theta } \\   {{\text{sin}}\,\theta }  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>)       <em><strong>A1</strong></em></p>
<p>(if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span> is the angle between the line and the normal to the plane)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\alpha  = \frac{5}{{1 \times \sqrt {25 + {\text{si}}{{\text{n}}^2}\,\theta  + {\text{co}}{{\text{s}}^2}\,\theta } }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo>=</mo> <mfrac> <mn>5</mn> <mrow> <mn>1</mn> <mo>×</mo> <msqrt> <mn>25</mn> <mo>+</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>+</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </msqrt> </mrow> </mfrac> </math></span> (or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\alpha  = \frac{1}{{1 \times \sqrt {25 + {\text{si}}{{\text{n}}^2}\,\theta  + {\text{co}}{{\text{s}}^2}\,\theta } }}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>×</mo> <msqrt> <mn>25</mn> <mo>+</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>+</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </msqrt> </mrow> </mfrac> </math>)</span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{cos}}\,\alpha  = \frac{5}{{\sqrt {26} }}"> <mo stretchy="false">⇒</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo>=</mo> <mfrac> <mn>5</mn> <mrow> <msqrt> <mn>26</mn> </msqrt> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\alpha  = \frac{1}{{\sqrt {26} }}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>26</mn> </msqrt> </mrow> </mfrac> </math></span>       <em><strong>A1</strong></em></p>
<p>this is independent of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>, hence the angle between the line and the plane, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {90 - \alpha } \right)"> <mrow> <mo>(</mo> <mrow> <mn>90</mn> <mo>−</mo> <mi>α</mi> </mrow> <mo>)</mo> </mrow> </math></span>, is also independent of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>       <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> The final <em><strong>R</strong></em> mark is independent, but is conditional on the candidate obtaining a value independent of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>.</p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The lines <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> have the following vector equations where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>,</mo><mo> </mo><mi>μ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub><mo> </mo><mo>:</mo><mo> </mo><msub><mi mathvariant="bold-italic">r</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable></mfenced><mo>&nbsp;</mo><msub><mi>l</mi><mn>2</mn></msub><mo> </mo><mo>:</mo><mo> </mo><msub><mi mathvariant="bold-italic">r</mi><mn>2</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>m</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>m</mi></mtd></mtr></mtable></mfenced></math></p>
</div>

<div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> has Cartesian equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mn>4</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mi>p</mi></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>&nbsp;</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> have no points in common, find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> are never perpendicular to each other.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the condition on the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>attempts to calculate&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>m</mi></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msup><mi>m</mi><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>m</mi><mn>2</mn></msup><mo>≥</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mo>-</mo><mn>1</mn><mo>-</mo><msup><mi>m</mi><mn>2</mn></msup><mo>&lt;</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>R1</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;are never perpendicular to each other&nbsp; &nbsp; &nbsp; &nbsp; <strong>AG</strong></p>
<p>&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(since <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> is perpendicular to the normal of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> and so)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>R1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mn>4</mn><mo>-</mo><mi>m</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>since there are no points in common, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>&nbsp;does not lie in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;</p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p>substitutes&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>&nbsp;into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mn>4</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo> </mo><mfenced><mrow><mo>≠</mo><mi>p</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mfenced><mrow><mo>≠</mo><mi>p</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>≠</mo><mo>-</mo><mn>5</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> defined by the Cartesian equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mi>y</mi><mo>=</mo><mn>3</mn><mo>-</mo><mi>z</mi></math>.</p>
</div>

<div class="specification">
<p>Consider a second line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> defined by the vector equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> when the acute angle between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that the lines&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> have a unique point of intersection, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mi>k</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, and find the coordinates of the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>1</mn><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>=</mo><mn>3</mn><mo>-</mo><mn>3</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math>&nbsp;lies on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to set equal to a parameter or rearrange cartesian form&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mi>y</mi><mo>=</mo><mn>3</mn><mo>-</mo><mi>z</mi><mo>=</mo><mi>λ</mi><mo>⇒</mo><mi>x</mi><mo>=</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mi>y</mi><mo>=</mo><mi>λ</mi><mo>,</mo><mo>&nbsp;</mo><mi>z</mi><mo>=</mo><mn>3</mn><mo>-</mo><mi>λ</mi></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mn>0</mn></mrow><mn>1</mn></mfrac><mo>=</mo><mfrac><mrow><mi>z</mi><mo>-</mo><mn>3</mn></mrow><mrow><mo>-</mo><mn>1</mn></mrow></mfrac></math></p>
<p>correct direction vector&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp;or equivalent seen in vector form&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp;(or equivalent)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="bold-italic">r</mi></math> is omitted.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use the scalar product formula&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>∙</mo><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mo>±</mo></mfenced><msqrt><mn>6</mn></msqrt><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></msqrt><mo> </mo><mi>cos</mi><mo> </mo><mn>45</mn><mo>°</mo></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(A1)(A1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for LHS and <em><strong>A1</strong></em> for RHS</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn><mo>=</mo><mfrac><mrow><mfenced><mo>±</mo></mfenced><msqrt><mn>6</mn></msqrt><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></msqrt><msqrt><mn>2</mn></msqrt></mrow><mn>2</mn></mfrac><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>a</mi><mo>+</mo><mn>2</mn><mo>=</mo><mfenced><mo>±</mo></mfenced><msqrt><mn>3</mn></msqrt><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;Award&nbsp;<em><strong>A1</strong></em>&nbsp;for LHS and&nbsp;<em><strong>A1</strong></em>&nbsp;for RHS</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><mi>a</mi><mo>+</mo><mn>4</mn><mo>=</mo><mn>3</mn><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><mi>a</mi><mo>-</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p>attempt to solve their quadratic</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>8</mn><mo>±</mo><msqrt><mn>64</mn><mo>+</mo><mn>8</mn></msqrt></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mo>-</mo><mn>8</mn><mo>±</mo><msqrt><mn>72</mn></msqrt></mrow><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mo>-</mo><mn>4</mn><mo>±</mo><mn>3</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt to equate the parametric forms of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close><mtable><mtr><mtd><mn>2</mn><mi>λ</mi><mo>-</mo><mn>1</mn><mo>=</mo><mi>t</mi><mi>a</mi></mtd></mtr><mtr><mtd><mi>λ</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>t</mi></mtd></mtr><mtr><mtd><mn>3</mn><mo>-</mo><mi>λ</mi><mo>=</mo><mn>2</mn><mo>-</mo><mi>t</mi></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>attempt to solve equations by eliminating&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>-</mo><mn>1</mn><mo>=</mo><mi>t</mi><mi>a</mi><mo>⇒</mo><mn>1</mn><mo>=</mo><mi>t</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>λ</mi><mo>-</mo><mn>1</mn><mo>=</mo><mfenced><mrow><mi>λ</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>a</mi><mo>⇒</mo><mi>a</mi><mo>-</mo><mn>1</mn><mo>=</mo><mi>λ</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math></p>
<p>Solutions exist unless&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>-</mo><mn>2</mn><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> This <em><strong>A1</strong></em> is independent of the following marks.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mstyle displaystyle="true"><mi>a</mi></mstyle><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>-</mo><mfrac><mn>1</mn><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mfenced><mrow><mfrac><mi>a</mi><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mfrac><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mfrac><mrow><mn>2</mn><mi>a</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award<em><strong> A1</strong></em> for any two correct coordinates seen or final answer in vector&nbsp;form.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>no unique point of intersection implies direction vectors of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>&nbsp;parallel</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;This&nbsp;<em><strong>A1</strong></em>&nbsp;is independent of the following marks.</p>
<p>&nbsp;</p>
<p>attempt to equate the parametric forms of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close><mtable><mtr><mtd><mn>2</mn><mi>λ</mi><mo>-</mo><mn>1</mn><mo>=</mo><mi>t</mi><mi>a</mi></mtd></mtr><mtr><mtd><mi>λ</mi><mo>=</mo><mn>1</mn><mo>+</mo><mi>t</mi></mtd></mtr><mtr><mtd><mn>3</mn><mo>-</mo><mi>λ</mi><mo>=</mo><mn>2</mn><mo>-</mo><mi>t</mi></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>attempt to solve equations by eliminating&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mn>2</mn><mi>t</mi><mo>-</mo><mn>1</mn><mo>=</mo><mi>t</mi><mi>a</mi><mo>⇒</mo><mn>1</mn><mo>=</mo><mi>t</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>λ</mi><mo>-</mo><mn>1</mn><mo>=</mo><mfenced><mrow><mi>λ</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>a</mi><mo>⇒</mo><mi>a</mi><mo>-</mo><mn>1</mn><mo>=</mo><mi>λ</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mstyle displaystyle="true"><mi>a</mi></mstyle><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mn>2</mn><mo>-</mo><mfrac><mn>1</mn><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mfenced><mrow><mfrac><mi>a</mi><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mfrac><mrow><mi>a</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mfrac><mrow><mn>2</mn><mi>a</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>a</mi><mo>-</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;Award<em><strong>&nbsp;A1</strong></em>&nbsp;for any two correct coordinates seen or final answer in vector&nbsp;form.</p>
<p>&nbsp;</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>(0 , 0 , 10) , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>(0 , 10 , 0) , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span>(10 , 0 , 0) , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}">
  <mrow>
    <mtext>V</mtext>
  </mrow>
</math></span>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>) form the vertices of a tetrahedron.</p>
</div>

<div class="specification">
<p>Consider the case where the faces <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABV}}">
  <mrow>
    <mtext>ABV</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ACV}}">
  <mrow>
    <mtext>ACV</mtext>
  </mrow>
</math></span> are perpendicular.</p>
</div>

<div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>. The maximum point is shown by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{X}}">
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AV}}} = - 10\left( {\begin{array}{*{20}{c}}  {10 - 2p} \\   p \\   p  \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and find a similar expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}}  \times \overrightarrow {{\text{AV}}} "> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that, if the angle between the faces <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABV}}"> <mrow> <mtext>ABV</mtext> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ACV}}"> <mrow> <mtext>ACV</mtext> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>, then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{p\left( {3p - 20} \right)}}{{6{p^2} - 40p + 100}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>p</mi> <mo>−</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>40</mn> <mi>p</mi> <mo>+</mo> <mn>100</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two possible coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}"> <mrow> <mtext>V</mtext> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the positions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}"> <mrow> <mtext>V</mtext> </mrow> </math></span> in relation to the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABC}}"> <mrow> <mtext>ABC</mtext> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{X}}"> <mrow> <mtext>X</mtext> </mrow> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the horizontal asymptote of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AV}}} = \left( {\begin{array}{*{20}{c}}  p \\   p \\   {p - 10}  \end{array}} \right)"> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AV}}} = \left( {\begin{array}{*{20}{c}}  0 \\   {10} \\   { - 10}  \end{array}} \right) \times \left( {\begin{array}{*{20}{c}}  p \\   p \\   {p - 10}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  {10\left( {p - 10} \right) + 10p} \\   { - 10p} \\   { - 10p}  \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>−</mo> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  {20p - 100} \\   { - 10p} \\   { - 10p}  \end{array}} \right) = - 10\left( {\begin{array}{*{20}{c}}  {10 - 2p} \\   p \\   p  \end{array}} \right)"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>20</mn> <mi>p</mi> <mo>−</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>AG</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AV}}} = \left( {\begin{array}{*{20}{c}}  {10} \\   0 \\   { - 10}  \end{array}} \right) \times \left( {\begin{array}{*{20}{c}}  p \\   p \\   {p - 10}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  {10p} \\   {100 - 20p} \\   {10p}  \end{array}} \right)\left( { = 10\left( {\begin{array}{*{20}{c}}  p \\   {10 - 2p} \\   p  \end{array}} \right)} \right)"> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mo>−</mo> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>100</mn> <mo>−</mo> <mn>20</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find a scalar product        <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 10\left( {\begin{array}{*{20}{c}}  {10 - 2p} \\   p \\   p  \end{array}} \right) \bullet 10\left( {\begin{array}{*{20}{c}}  p \\   {10 - 2p} \\   p  \end{array}} \right) = 100\left( {3{p^2} - 20p} \right)"> <mo>−</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>100</mn> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>20</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong>OR</strong>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \left( {\begin{array}{*{20}{c}}  {10 - 2p} \\   p \\   p  \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}  p \\   {10 - 2p} \\   p  \end{array}} \right) = 3{p^2} - 20p"> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>20</mn> <mi>p</mi> </math></span>      <em><strong>A1</strong></em></p>
<p>attempt to find magnitude of either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}}  \times \overrightarrow {{\text{AV}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> </math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}}  \times \overrightarrow {{\text{AV}}} "> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> </math></span>        <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| { - 10\left( {\begin{array}{*{20}{c}}  {10 - 2p} \\   p \\   p  \end{array}} \right)} \right| = \left| {10\left( {\begin{array}{*{20}{c}}  p \\   {10 - 2p} \\   p  \end{array}} \right)} \right| = 10\sqrt {{{\left( {10 - 2p} \right)}^2} + 2{p^2}} "> <mrow> <mo>|</mo> <mrow> <mo>−</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>10</mn> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>        <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="100\left( {3{p^2} - 20p} \right) = 100{\left( {\sqrt {{{\left( {10 - 2p} \right)}^2} + 2{p^2}} } \right)^2}{\text{cos}}\,\theta "> <mn>100</mn> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>20</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>100</mn> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{3{p^2} - 20p}}{{{{\left( {10 - 2p} \right)}^2} + 2{p^2}}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>20</mn> <mi>p</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>        <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for any intermediate step leading to the correct answer.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{p\left( {3p - 20} \right)}}{{6{p^2} - 40p + 100}}"> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>p</mi> <mo>−</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>40</mn> <mi>p</mi> <mo>+</mo> <mn>100</mn> </mrow> </mfrac> </math></span>      <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Do not allow FT marks from part (a)(i).</p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( {3p - 20} \right) = 0 \Rightarrow p = 0"> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>p</mi> <mo>−</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mi>p</mi> <mo>=</mo> <mn>0</mn> </math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{20}}{3}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mn>20</mn> </mrow> <mn>3</mn> </mfrac> </math></span>        <em><strong>M1A1</strong></em></p>
<p>coordinates are (0, 0, 0) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{20}}{3}{\text{, }}\frac{{20}}{3}{\text{, }}\frac{{20}}{3}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>20</mn> </mrow> <mn>3</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>20</mn> </mrow> <mn>3</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mfrac> <mrow> <mn>20</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not allow column vectors for the final <em><strong>A</strong></em> mark.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two points are mirror images in the plane<br>or opposite sides of the plane<br>or equidistant from the plane<br>or the line connecting the two Vs is perpendicular to the plane      <em><strong> R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>geometrical consideration or attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 = \frac{{p\left( {3p - 20} \right)}}{{6{p^2} - 40p + 100}}"> <mo>−</mo> <mn>1</mn> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>p</mi> <mo>−</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>40</mn> <mi>p</mi> <mo>+</mo> <mn>100</mn> </mrow> </mfrac> </math></span>       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{10}}{3}{\text{, }}\theta  = \pi "> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </mfrac> <mrow> <mtext>, </mtext> </mrow> <mi>θ</mi> <mo>=</mo> <mi>π</mi> </math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta  = 180^\circ "> <mi>θ</mi> <mo>=</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> </math></span>      <em><strong> A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p \to \infty  \Rightarrow {\text{cos}}\,\theta  \to \frac{1}{2}"> <mi>p</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> <mo stretchy="false">⇒</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo stretchy="false">→</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>         <em><strong>M1</strong></em></p>
<p>hence the asymptote has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta  = \frac{\pi }{3}"> <mi>θ</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span>     <em><strong>   A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Find the coordinates of the point of intersection of the planes defined by the equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + z = 3,{\text{ }}x - y + z = 5"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>x</mi> <mo>−</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>5</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + 2z = 6"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mo>=</mo> <mn>6</mn> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>for eliminating one variable from two equations &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ {\begin{array}{*{20}{l}} {(x + y + z = 3)} \\ {2x + 2z = 8} \\ {2x + 3z = 11} \end{array}} \right."> <mrow> <mo>{</mo> <mrow> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mo>=</mo> <mn>8</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>z</mi> <mo>=</mo> <mn>11</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>for finding correctly one coordinate</p>
<p><em>eg</em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ {\begin{array}{*{20}{l}} {(x + y + z = 3)} \\ {(2x + 2z = 8)} \\ {z = 3} \end{array}} \right."> <mrow> <mo>{</mo> <mrow> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mo>=</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>for finding correctly the other two coordinates &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \left\{ {\begin{array}{*{20}{l}} {x = 1} \\ {y = - 1} \\ {z = 3} \end{array}} \right."> <mo stretchy="false">⇒</mo> <mrow> <mo>{</mo> <mrow> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </math></span></p>
<p>the intersection point has coordinates&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }} - 1,{\text{ }}3)"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </math></span></p>
<p><strong>METHOD 2</strong></p>
<p>for eliminating two variables from two equations or using row reduction &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ {\begin{array}{*{20}{l}} {(x + y + z = 3)} \\ { - 2 = 2} \\ {z = 3} \end{array}} \right."> <mrow> <mo>{</mo> <mrow> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> <mo>=</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </math></span>&nbsp;<strong>or</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1&amp;1&amp;1 \\ 0&amp;{ - 2}&amp;0 \\ 0&amp;0&amp;1 \end{array}\left| {\begin{array}{*{20}{c}} 3 \\ 2 \\ 3 \end{array}} \right.} \right)"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mrow> <mo>|</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>for finding correctly the other coordinates &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \left\{ {\begin{array}{*{20}{l}} {x = 1} \\ {y = - 1} \\ {(z = 3)} \end{array}} \right."> <mo stretchy="false">⇒</mo> <mrow> <mo>{</mo> <mrow> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </math></span>&nbsp;<strong>or</strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1&amp;0&amp;0 \\ 0&amp;1&amp;0 \\ 0&amp;0&amp;1 \end{array}\left| {\begin{array}{*{20}{c}} 1 \\ { - 1} \\ 3 \end{array}} \right.} \right)"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mrow> <mo>|</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>the intersection point has coordinates&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }} - 1,{\text{ }}3)"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </math></span></p>
<p><strong>METHOD 3</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\begin{array}{*{20}{c}} 1&amp;1&amp;1 \\ 1&amp;{ - 1}&amp;1 \\ 1&amp;1&amp;2 \end{array}} \right| = - 2"> <mrow> <mo>|</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span> &nbsp; &nbsp;<strong><em>(A1)</em></strong></p>
<p>attempt to use Cramer’s rule &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{\left| {\begin{array}{*{20}{c}} 3&amp;1&amp;1 \\ 5&amp;{ - 1}&amp;1 \\ 6&amp;1&amp;2 \end{array}} \right|}}{{ - 2}} = \frac{{ - 2}}{{ - 2}} = 1"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>6</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{\left| {\begin{array}{*{20}{c}} 1&amp;3&amp;1 \\ 1&amp;5&amp;1 \\ 1&amp;6&amp;2 \end{array}} \right|}}{{ - 2}} = \frac{2}{{ - 2}} = - 1"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>6</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = \frac{{\left| {\begin{array}{*{20}{c}} 1&amp;1&amp;3 \\ 1&amp;{ - 1}&amp;5 \\ 1&amp;1&amp;6 \end{array}} \right|}}{{ - 2}} = \frac{{ - 6}}{{ - 2}} = 3"> <mi>z</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>=</mo> <mn>3</mn> </math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>only if candidate attempts to determine at least one of the variables using this method.</p>
<p>&nbsp;</p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4\,{\text{cos}}\,x + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
</math></span>,&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \leqslant x \leqslant \frac{\pi }{2}">
  <mi>a</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < \frac{\pi }{2}">
  <mi>a</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - \frac{\pi }{2}"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>. Indicate clearly the maximum and minimum values of the function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> has an inverse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""></p>
<p>concave down and symmetrical over correct domain       <em><strong>A1</strong></em></p>
<p>indication of maximum and minimum values of the function (correct range)       <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 0      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 0 only if consistent with their graph.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant x \leqslant 5"> <mn>1</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>5</mn> </math></span>     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow FT from their graph.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4\,{\text{cos}}\,x + 1"> <mi>y</mi> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4\,{\text{cos}}\,y + 1"> <mi>x</mi> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x - 1}}{4} = {\text{cos}}\,y"> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow y = {\text{arccos}}\left( {\frac{{x - 1}}{4}} \right)"> <mo stretchy="false">⇒</mo> <mi>y</mi> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {g^{ - 1}}\left( x \right) = {\text{arccos}}\left( {\frac{{x - 1}}{4}} \right)"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
  <mo>=</mo>
</math></span>&nbsp;<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ }}3">
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
</math></span><strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ }}2">
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
</math></span><strong><em>k</em></strong>, <strong><em>b</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = &nbsp;- {\text{ }}3">
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
</math></span><strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + {\text{ }}2">
  <mo>+</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
</math></span><strong><em>k</em></strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <strong><em>a</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span>&nbsp;<strong><em>b</em></strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the Cartesian equation of the plane containing the vectors <strong><em>a </em></strong>and <strong><em>b</em></strong>, and passing through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}0,{\text{ }} - 1)">
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong><em>a</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span>&nbsp;<strong><em>b</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = &nbsp;- 12">
  <mo>=</mo>
  <mo>−</mo>
  <mn>12</mn>
</math></span><strong><em>i</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ }}2">
  <mo>−</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
</math></span><strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ }}3">
  <mo>−</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
</math></span><strong><em>k &nbsp; &nbsp; </em></strong><strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 12x - 2y - 3z = d">
  <mo>−</mo>
  <mn>12</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>y</mi>
  <mo>−</mo>
  <mn>3</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mi>d</mi>
</math></span> &nbsp; &nbsp;<strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 12 \times 1 - 2 \times 0 - 3( - 1) = d">
  <mo>−</mo>
  <mn>12</mn>
  <mo>×</mo>
  <mn>1</mn>
  <mo>−</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>0</mn>
  <mo>−</mo>
  <mn>3</mn>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>d</mi>
</math></span> &nbsp; &nbsp;<strong>(<em>M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow d = &nbsp;- 9">
  <mo stretchy="false">⇒</mo>
  <mi>d</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>9</mn>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 12x - 2y - 3z = &nbsp;- 9{\text{ }}({\text{or }}12x + 2y + 3z = 9)">
  <mo>−</mo>
  <mn>12</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>y</mi>
  <mo>−</mo>
  <mn>3</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>9</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>or&nbsp;</mtext>
  </mrow>
  <mn>12</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>y</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} x \\ y \\ z \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} { - 12} \\ { - 2} \\ { - 3} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ { - 1} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} { - 12} \\ { - 2} \\ { - 3} \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>x</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>y</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>z</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>∙</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>∙</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>12</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> &nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 12x - 2y - 3z = &nbsp;- 9{\text{ }}({\text{or }}12x + 2y + 3z = 9)">
  <mo>−</mo>
  <mn>12</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>y</mi>
  <mo>−</mo>
  <mn>3</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>9</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>or&nbsp;</mtext>
  </mrow>
  <mn>12</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>y</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
</math></span> &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span> are acute angles such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,A = \frac{2}{3}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,B = \frac{1}{3}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </math></span>.</p>
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {2A + B} \right) =  - \frac{{2\sqrt 2 }}{{27}} - \frac{{4\sqrt 5 }}{{27}}"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>4</mn> <msqrt> <mn>5</mn> </msqrt> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {2A + B} \right) = {\text{cos}}\,2A\,{\text{cos}}\,B - {\text{sin}}\,2A\,{\text{sin}}\,B"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> </math></span> (may be seen later)       <em><strong>M1</strong></em></p>
<p>attempt to use any double angle formulae (seen anywhere)       <em><strong>M1</strong></em></p>
<p>attempt to find either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,A"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,B"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> </math></span> (seen anywhere)       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,A = \frac{2}{3} \Rightarrow {\text{sin}}\,A\left( { = \sqrt {1 - \frac{4}{9}} } \right) = \frac{{\sqrt 5 }}{3}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo stretchy="false">⇒</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mfrac> <mn>4</mn> <mn>9</mn> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>5</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span>       <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,B = \frac{1}{3} \Rightarrow {\text{cos}}\,B\left( { = \sqrt {1 - \frac{1}{9}}  = \frac{{\sqrt 8 }}{3}} \right) = \frac{{2\sqrt 2 }}{3}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mo stretchy="false">⇒</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> </msqrt> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>8</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,2A\left( { = 2\,{\text{co}}{{\text{s}}^2}\,A - 1} \right) =  - \frac{1}{9}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2A\left( { = 2\,{\text{sin}}\,A\,{\text{cos}}\,A} \right) = \frac{{4\sqrt 5 }}{9}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <msqrt> <mn>5</mn> </msqrt> </mrow> <mn>9</mn> </mfrac> </math></span>       <em><strong>A1</strong></em></p>
<p>So  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {2A + B} \right) = \left( { - \frac{1}{9}} \right)\left( {\frac{{2\sqrt 2 }}{3}} \right) - \left( {\frac{{4\sqrt 5 }}{9}} \right)\left( {\frac{1}{3}} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>4</mn> <msqrt> <mn>5</mn> </msqrt> </mrow> <mn>9</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - \frac{{2\sqrt 2 }}{{27}} - \frac{{4\sqrt 5 }}{{27}}"> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>4</mn> <msqrt> <mn>5</mn> </msqrt> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> </math></span>       <em><strong>AG</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The acute angle between the vectors 3<em><strong>i</strong></em> − 4<em><strong>j</strong></em> − 5<em><strong>k</strong></em> and 5<em><strong>i</strong></em> − 4<em><strong>j</strong></em> + 3<em><strong>k</strong></em> is denoted by <em>θ</em>.</p>
<p>Find cos <em>θ</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>cos&nbsp;<em>θ</em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left( {3i - 4j - 5k} \right) \bullet \left( {5i - 4j + 3k} \right)}}{{\left| {3i - 4j - 5k} \right|\left| {5i - 4j + 3k} \right|}}">
  <mfrac>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>3</mn>
          <mi>i</mi>
          <mo>−</mo>
          <mn>4</mn>
          <mi>j</mi>
          <mo>−</mo>
          <mn>5</mn>
          <mi>k</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>∙</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>5</mn>
          <mi>i</mi>
          <mo>−</mo>
          <mn>4</mn>
          <mi>j</mi>
          <mo>+</mo>
          <mn>3</mn>
          <mi>k</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>|</mo>
        <mrow>
          <mn>3</mn>
          <mi>i</mi>
          <mo>−</mo>
          <mn>4</mn>
          <mi>j</mi>
          <mo>−</mo>
          <mn>5</mn>
          <mi>k</mi>
        </mrow>
        <mo>|</mo>
      </mrow>
      <mrow>
        <mo>|</mo>
        <mrow>
          <mn>5</mn>
          <mi>i</mi>
          <mo>−</mo>
          <mn>4</mn>
          <mi>j</mi>
          <mo>+</mo>
          <mn>3</mn>
          <mi>k</mi>
        </mrow>
        <mo>|</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{16}}{{\sqrt {50} \sqrt {50} }}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
    </mrow>
    <mrow>
      <msqrt>
        <mn>50</mn>
      </msqrt>
      <msqrt>
        <mn>50</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> <em><strong>A1</strong></em> for correct numerator and <em><strong>A1</strong> </em>for correct denominator.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{8}{{25}}\left( { = \frac{{16}}{{50}} = 0.32} \right)">
  <mo>=</mo>
  <mfrac>
    <mn>8</mn>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mrow>
          <mn>16</mn>
        </mrow>
        <mrow>
          <mn>50</mn>
        </mrow>
      </mfrac>
      <mo>=</mo>
      <mn>0.32</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp;<em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>ABCD is a parallelogram, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = –<strong><em>i</em></strong> + 2<strong><em>j</em></strong> + 3<strong><em>k</em></strong> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AD}}} ">
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = 4<strong><em>i</em></strong> – <strong><em>j</em></strong> – 2<strong><em>k</em></strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the parallelogram ABCD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable scalar product of two vectors, determine whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat BC}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">B</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
</math></span> is acute or obtuse.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AD}}} = - ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>×</mo>
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mo>−</mo>
</math></span><strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 10">
  <mo>+</mo>
  <mn>10</mn>
</math></span><strong><em>j</em></strong> – 7<strong><em>k</em></strong>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = \left| {\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AD}}} } \right|{\text{ = }}\sqrt {{1^2} + {{10}^2} + {7^2}} ">
  <mrow>
    <mtext>area</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>AB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>AD</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mrow>
    <mtext>&nbsp;=&nbsp;</mtext>
  </mrow>
  <msqrt>
    <mrow>
      <msup>
        <mn>1</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mn>7</mn>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
</math></span></p>
<p>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 5\sqrt 6 \left( {\sqrt {150} } \right)">
  <mo>=</mo>
  <mn>5</mn>
  <msqrt>
    <mn>6</mn>
  </msqrt>
  <mrow>
    <mo>(</mo>
    <mrow>
      <msqrt>
        <mn>150</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AD}}} = - 4 - 2 - 6">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>∙</mo>
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mo>−</mo>
  <mn>4</mn>
  <mo>−</mo>
  <mn>2</mn>
  <mo>−</mo>
  <mn>6</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 12">
  <mo>=</mo>
  <mo>−</mo>
  <mn>12</mn>
</math></span></p>
<p>considering the sign of the answer</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \bullet \overrightarrow {{\text{AD}}} < 0">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>∙</mo>
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>&lt;</mo>
  <mn>0</mn>
</math></span>, therefore angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{D\hat AB}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">D</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
</math></span> is obtuse&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>(as it is a parallelogram), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat BC}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">B</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
</math></span> is acute&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{BC}}} = + 4 + 2 + 6">
  <mover>
    <mrow>
      <mtext>BA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>∙</mo>
  <mover>
    <mrow>
      <mtext>BC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mo>+</mo>
  <mn>4</mn>
  <mo>+</mo>
  <mn>2</mn>
  <mo>+</mo>
  <mn>6</mn>
</math></span>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 12">
  <mo>=</mo>
  <mn>12</mn>
</math></span> considering the sign of the answer&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{BA}}} \bullet \overrightarrow {{\text{BC}}} > 0 \Rightarrow {\rm{A\hat BC}}">
  <mover>
    <mrow>
      <mtext>BA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>∙</mo>
  <mover>
    <mrow>
      <mtext>BC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">B</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
</math></span> is acute&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cosec</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><mfrac><mstyle displaystyle="true"><mn>3</mn><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mn>2</mn></mstyle></mfrac></math>. Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>attempt to use a right angled triangle       <em><strong> M1</strong></em></p>
<p><img src=""></p>
<p>correct placement of all three values and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> seen in the triangle       <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>&lt;</mo><mn>0</mn></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cosec</mtext><mo> </mo><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math> puts <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> in the second quadrant)       <em><strong> R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math>       <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1R0A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math> seen as the final answer<br>         The <em><strong>R1</strong></em> should be awarded independently for a negative value only given as a final answer.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>Attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><msup><mtext>cosec</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>       <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>9</mn><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><msup><mo> </mo><mn>2</mn></msup><mi>θ</mi><mo>=</mo><mfrac><mn>5</mn><mn>4</mn></mfrac></math>       <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mo>±</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>&lt;</mo><mn>0</mn></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cosec</mtext><mo> </mo><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math> puts <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> in the second quadrant)       <em><strong> R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math>       <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1R0A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math> seen as the final answer<br>         The <em><strong>R1</strong></em> should be awarded independently for a negative value only given as a final answer.</p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sin</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>sin</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mtext>cos</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn></math>       <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>9</mn></mfrac><mo>+</mo><msup><mtext>cos</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cos</mtext><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>5</mn><mn>9</mn></mfrac></math>       <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cos</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mo>±</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cos</mtext><mo> </mo><mi>θ</mi><mo>&lt;</mo><mn>0</mn></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cosec</mtext><mo> </mo><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math> puts <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> in the second quadrant)       <em><strong> R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cos</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math>       <em><strong> A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1A1R0A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><msqrt><mn>5</mn></msqrt><mn>2</mn></mfrac></math> seen as the final answer<br>         The <em><strong>R1</strong></em> should be awarded independently for a negative value only given as a final answer.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Let <em><strong>a</strong></em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  2 \\   k \\   { - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 3} \\   {k + 2} \\   k  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>k</mi>
              <mo>+</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
  <mi>k</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>Given that <em><strong>a</strong></em> and <em><strong>b</strong></em> are perpendicular, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em><strong>a </strong></em>•<em><strong> </strong></em><em><strong>b</strong></em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  2 \\   k \\   { - 1}  \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}  { - 3} \\   {k + 2} \\   k  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>∙</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>k</mi>
              <mo>+</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =&nbsp; - 6 + k\left( {k + 2} \right) - k">
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
  <mo>+</mo>
  <mi>k</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mi>k</mi>
</math></span>&nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p><em><strong>a </strong></em>•<em><strong> </strong></em><em><strong>b</strong></em>&nbsp;= 0&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} + k - 6 = 0">
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
  <mo>−</mo>
  <mn>6</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p>attempt at solving their quadratic equation&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k + 3} \right)\left( {k - 2} \right) = 0">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>+</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>k</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k =&nbsp; - 3{\text{,}}\,\,2">
  <mi>k</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
</math></span>&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Attempt at solving using |<em><strong>a</strong></em>||<em><strong>b</strong></em>|&nbsp;= |<em><strong>a</strong></em> × <em><strong>b</strong></em>| will be <em><strong>M1A0A0A0</strong></em> if neither answer found <em><strong>M1(A1)A1A0</strong></em><br>for one correct answer and <strong><em>M1(A1)A1A1</em></strong> for two correct answers.</p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Three points in three-dimensional space have coordinates A(0, 0, 2), B(0, 2, 0) and&nbsp;C(3, 1, 0).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} ">
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the area of the triangle ABC.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}}  0 \\   2 \\   { - 2}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note: </strong>Accept row vectors or equivalent.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}} 3 \\  1 \\   { - 2}  \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note: </strong>Accept row vectors or equivalent.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt at vector product using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} ">
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.      <em><strong>(M1)</strong></em></p>
<p>±(2<em><strong>i</strong></em> + 6<em><strong>j</strong></em> +6<em><strong>k</strong></em>)      <em><strong>A1</strong></em></p>
<p>attempt to use area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left| {\overrightarrow {{\text{AB}}}  \times \overrightarrow {{\text{AC}}} } \right|">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>AB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>AC</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt {76} }}{2}\,\,\,\left( { = \sqrt {19} } \right)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>76</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <msqrt>
        <mn>19</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}}  \bullet \overrightarrow {{\text{AC}}}  = \left| {\overrightarrow {{\text{AB}}} } \right|\left| {\overrightarrow {{\text{AC}}} } \right|{\text{cos}}\,\theta ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>∙</mo>
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>AB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>AC</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   2 \\   { - 2}  \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}  3 \\   1 \\   { - 2}  \end{array}} \right) = \sqrt {{0^2} + {2^2} + {{\left( { - 2} \right)}^2}} \sqrt {{3^2} + {1^2} + {{\left( { - 2} \right)}^2}} {\text{cos}}\,\theta ">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>⋅</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msup>
        <mn>0</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mn>2</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
  <msqrt>
    <mrow>
      <msup>
        <mn>3</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mn>1</mn>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mrow>
      <msup>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mo>−</mo>
              <mn>2</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mn>2</mn>
      </msup>
    </mrow>
  </msqrt>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 = \sqrt 8 \sqrt {14} \,{\text{cos}}\,\theta ">
  <mn>6</mn>
  <mo>=</mo>
  <msqrt>
    <mn>8</mn>
  </msqrt>
  <msqrt>
    <mn>14</mn>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{6}{{\sqrt 8 \sqrt {14} }} = \frac{6}{{\sqrt {112} }}">
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <msqrt>
        <mn>8</mn>
      </msqrt>
      <msqrt>
        <mn>14</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <msqrt>
        <mn>112</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span></p>
<p>attempt to use area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left| {\overrightarrow {{\text{AB}}}  \times \overrightarrow {{\text{AC}}} } \right|{\text{sin}}\,\theta ">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>AB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
      <mo>×</mo>
      <mover>
        <mrow>
          <mtext>AC</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
</math></span>       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\sqrt 8 \sqrt {14} \sqrt {1 - \frac{{36}}{{112}}} \,\left( { = \frac{1}{2}\sqrt 8 \sqrt {14} \sqrt {\frac{{76}}{{112}}} } \right)">
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <msqrt>
    <mn>8</mn>
  </msqrt>
  <msqrt>
    <mn>14</mn>
  </msqrt>
  <msqrt>
    <mn>1</mn>
    <mo>−</mo>
    <mfrac>
      <mrow>
        <mn>36</mn>
      </mrow>
      <mrow>
        <mn>112</mn>
      </mrow>
    </mfrac>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
      <msqrt>
        <mn>8</mn>
      </msqrt>
      <msqrt>
        <mn>14</mn>
      </msqrt>
      <msqrt>
        <mfrac>
          <mrow>
            <mn>76</mn>
          </mrow>
          <mrow>
            <mn>112</mn>
          </mrow>
        </mfrac>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt {76} }}{2}\,\,\,\left( { = \sqrt {19} } \right)">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>76</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <msqrt>
        <mn>19</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sec ^2}x + 2\tan x = 0,{\text{ }}0 \leqslant x \leqslant 2\pi "> <mrow> <msup> <mi>sec</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>2</mn> <mi>π</mi> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sec ^2}x = {\tan ^2}x + 1"> <mrow> <msup> <mi>sec</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>=</mo> <mrow> <msup> <mi>tan</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\tan ^2}x + 2\tan x + 1 = 0"> <mrow> <msup> <mi>tan</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(\tan x + 1)^2} = 0"> <mrow> <mo stretchy="false">(</mo> <mi>tan</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span>     <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x =  - 1"> <mi>tan</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4},{\text{ }}\frac{{7\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span>     <em><strong>A1A1</strong></em></p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{{\cos }^2}x}} + \frac{{2\sin x}}{{\cos x}} = 0"> <mfrac> <mn>1</mn> <mrow> <mrow> <msup> <mrow> <mi>cos</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + 2\sin x\cos x = 0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x =  - 1"> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>     <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = \frac{{3\pi }}{2},{\text{ }}\frac{{7\pi }}{2}"> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{3\pi }}{4},{\text{ }}\frac{{7\pi }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span>     <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:     </strong>Award <em><strong>A1A0 </strong></em>if extra solutions given or if solutions given in degrees (or both).</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The lines <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> have the following vector equations where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>,</mo><mo>&nbsp;</mo><mi>μ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub><mo>:</mo><msub><mi mathvariant="bold-italic">r</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub><mo>:</mo><msub><mi mathvariant="bold-italic">r</mi><mn>2</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> do not intersect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum distance between&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>setting at least two components of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> equal&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>+</mo><mn>2</mn><mi>λ</mi><mo>=</mo><mn>2</mn><mo>+</mo><mi>μ</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mn>1</mn></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>-</mo><mn>2</mn><mi>λ</mi><mo>=</mo><mo>-</mo><mi>μ</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mn>2</mn></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>λ</mi><mo>=</mo><mn>4</mn><mo>+</mo><mi>μ</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mo> </mo><mfenced><mn>3</mn></mfenced></math></p>
<p>attempt to solve two of the equations eg. adding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mn>1</mn></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mn>2</mn></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p>gives a contradiction (no solution), eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> do not intersect&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> For an error within the equations award <em><strong>M0M1R0</strong></em>.<br><strong>Note:</strong> The contradiction must be correct to award the <em><strong>R1</strong></em>.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;are parallel, so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;are either identical or distinct.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>Attempt to subtract two position vectors from each line,</p>
<p>e.g.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mfenced><mrow><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>≠</mo><mi>k</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;are parallel (as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>&nbsp;is a multiple of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>)</p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>&nbsp;on <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn></mrow></mfenced></math>&nbsp;on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math></p>
<p>Attempt to find vector&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mfenced><mrow><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>Distance required is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">v</mi><mo>×</mo><mover><mtext>AB</mtext><mo>→</mo></mover></mrow></mfenced><mfenced open="|" close="|"><mi mathvariant="bold-italic">v</mi></mfenced></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mfenced open="|" close="|"><mrow><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>×</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mfenced open="|" close="|"><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>minimum distance is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>18</mn></msqrt><mfenced><mrow><mo>=</mo><mn>3</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;are parallel (as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math>&nbsp;is a multiple of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math>)</p>
<p>let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;be&nbsp;a fixed point on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;eg&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>&nbsp;and let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;be a general point&nbsp;on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>+</mo><mi>μ</mi><mo>,</mo><mo> </mo><mo>-</mo><mi>μ</mi><mo>,</mo><mo> </mo><mn>4</mn><mo>+</mo><mi>μ</mi></mrow></mfenced></math></p>
<p>attempt to find vector&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&nbsp;</mo><mfenced><mrow><mi>μ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mover><mtext>AB</mtext><mo>→</mo></mover></mfenced><mo>=</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>1</mn><mo>+</mo><mi>μ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn><mo>-</mo><mi>μ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mn>5</mn><mo>+</mo><mi>μ</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><msqrt><mn>3</mn><msup><mi>μ</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>μ</mi><mo>+</mo><mn>30</mn></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p>null&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mover><mtext>AB</mtext><mo>→</mo></mover></mfenced><mo>=</mo><msqrt><mn>3</mn><msup><mfenced><mrow><mi>μ</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>18</mn></msqrt></math>&nbsp;to obtain&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><strong><br>THEN</strong></p>
<p>minimum distance is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>18</mn></msqrt><mfenced><mrow><mo>=</mo><mn>3</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p>let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;be&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>&nbsp;on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;be&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>+</mo><mi>μ</mi><mo>,</mo><mo> </mo><mo>-</mo><mi>μ</mi><mo>,</mo><mo> </mo><mn>4</mn><mo>+</mo><mi>μ</mi></mrow></mfenced></math>&nbsp;on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>(or let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;be&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn></mrow></mfenced></math>&nbsp;on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>&nbsp;and let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;be&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>+</mo><mn>2</mn><mi>λ</mi><mo>,</mo><mo> </mo><mn>2</mn><mo>-</mo><mn>2</mn><mi>λ</mi><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>λ</mi></mrow></mfenced></math>&nbsp;on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>5</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>&nbsp;</mo><mfenced><mrow><mi>μ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></mrow></mfenced></math>&nbsp; (or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2</mn><mi>λ</mi><mo>+</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>λ</mi><mo>+</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn><mi>λ</mi><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>μ</mi><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>μ</mi><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>μ</mi><mo>+</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>&nbsp; (or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn><mi>λ</mi><mo>+</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>λ</mi><mo>+</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn><mi>λ</mi><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>=</mo><mn>0</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>1</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>minimum distance is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>18</mn></msqrt><mfenced><mrow><mo>=</mo><mn>3</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = {\text{sin}}\,b,\,\,0 &lt; b &lt; \frac{\pi }{2}">
  <mi>a</mi>
  <mo>=</mo>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>b</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<p>Find, in terms of <em>b</em>, the solutions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2x =  - a,\,\,0 \leqslant x \leqslant \pi ">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>a</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>0</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mi>π</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2x =  - {\text{sin}}\,b">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
</math></span></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2x = {\text{sin}}\left( { - b} \right)">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2x = {\text{sin}}\left( {\pi  + b} \right)">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>π</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2x = {\text{sin}}\left( {2\pi  - b} \right)">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
      <mo>−</mo>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> …      <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for any one of the above, <em><strong>A1</strong> </em>for having final two.</p>
<p><strong>OR</strong></p>
<p><img src="">     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for one of the angles shown with b clearly labelled, <em><strong>A1</strong></em> for both angles shown. Do not award <em><strong>A1</strong></em> if an angle is shown in the second quadrant and subsequent <em><strong>A1</strong></em> marks not awarded.</p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = \pi  + b">
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mi>π</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x = 2\pi  - b">
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>π</mi>
  <mo>−</mo>
  <mi>b</mi>
</math></span>     <em><strong>(A1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{2} + \frac{b}{2},\,\,x = \pi  - \frac{b}{2}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mi>b</mi>
    <mn>2</mn>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>=</mo>
  <mi>π</mi>
  <mo>−</mo>
  <mfrac>
    <mi>b</mi>
    <mn>2</mn>
  </mfrac>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> defined on the domain&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < 2\pi ">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
  <mi>π<!-- π --></mi>
</math></span> by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 3\,{\text{cos}}\,2x">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4 - 11\,{\text{cos}}\,x">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mo>−<!-- − --></mo>
  <mn>11</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span>.</p>
<p>The following diagram shows the graphs of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinates of the points of intersection of the two graphs.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact area of the shaded region, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\pi  + q\sqrt 3 "> <mi>p</mi> <mi>π</mi> <mo>+</mo> <mi>q</mi> <msqrt> <mn>3</mn> </msqrt> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{Q}"> <mi>q</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Q</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the points A and B on the diagram, the gradients of the two graphs are equal.</p>
<p>Determine the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-coordinate of A on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,{\text{cos}}\,2x = 4 - 11\,{\text{cos}}\,x"> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mn>4</mn> <mo>−</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span></p>
<p>attempt to form a quadratic in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {2\,{\text{co}}{{\text{s}}^2}\,x - 1} \right) = 4 - 11\,{\text{cos}}\,x"> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mo>−</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {6\,{\text{co}}{{\text{s}}^2}\,x + 11\,{\text{cos}}\,x - 7 = 0} \right)"> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>7</mn> <mo>=</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>valid attempt to solve their quadratic     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3\,{\text{cos}}\,x + 7} \right)\left( {2\,{\text{cos}}\,x - 1} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x = \frac{1}{2}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{3}{\text{,}}\,\,\frac{{5\pi }}{3}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span>     <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Ignore any “extra” solutions.</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider (±) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_{\frac{\pi }{3}}^{\frac{{5\pi }}{3}} {\left( {4 - 11\,{\text{cos}}\,x - 3\,{\text{cos}}\,2x} \right)} \,{\text{d}}x"> <munderover> <mo>∫</mo> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </munderover> <mrow> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <mo>−</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left(  \pm  \right)\left[ {4x - 11\,{\text{sin}}\,x - \frac{3}{2}{\text{sin}}\,2x} \right]_{\frac{\pi }{3}}^{\frac{{5\pi }}{3}}"> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mo>)</mo> </mrow> <msubsup> <mrow> <mo>[</mo> <mrow> <mn>4</mn> <mi>x</mi> <mo>−</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>]</mo> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> <mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </msubsup> </math></span>     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Ignore lack of or incorrect limits at this stage.</p>
<p>attempt to substitute their limits into their integral     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{20\pi }}{3} - 11\,{\text{sin}}\frac{{5\pi }}{3} - \frac{3}{2}{\text{sin}}\frac{{10\pi }}{3} - \left( {\frac{{4\pi }}{3} - 11\,{\text{sin}}\frac{\pi }{3} - \frac{3}{2}{\text{sin}}\frac{{2\pi }}{3}} \right)"> <mo>=</mo> <mfrac> <mrow> <mn>20</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>−</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>10</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>−</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{16\pi }}{3} + \frac{{11\sqrt 3 }}{2} + \frac{{3\sqrt 3 }}{4} + \frac{{11\sqrt 3 }}{2} + \frac{{3\sqrt 3 }}{4}"> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>11</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>11</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{16\pi }}{3} + \frac{{25\sqrt 3 }}{2}"> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>25</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span>     <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate both functions and equate     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6\,{\text{sin}}\,2x = 11\,{\text{sin}}\,x"> <mo>−</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span>     <em><strong>A1</strong></em></p>
<p>attempt to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11\,{\text{sin}}\,x + 12\,{\text{sin}}\,x\,{\text{cos}}\,x = 0"> <mn>11</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>12</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x\left( {11 + 12\,{\text{cos}}\,x} \right) = 0"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mn>11</mn> <mo>+</mo> <mn>12</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,x =  - \frac{{11}}{{12}}\,\,\left( {{\text{or}}\,\,{\text{sin}}\,x = 0\,} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>11</mn> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>or</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace"></mspace> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow y = 4 - 11\left( { - \frac{{11}}{{12}}} \right)"> <mo stretchy="false">⇒</mo> <mi>y</mi> <mo>=</mo> <mn>4</mn> <mo>−</mo> <mn>11</mn> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mn>11</mn> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{169}}{{12}}\,\left( { = 14\frac{1}{{12}}} \right)"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mn>169</mn> </mrow> <mrow> <mn>12</mn> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>14</mn> <mfrac> <mn>1</mn> <mrow> <mn>12</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider quadrilateral <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQRS</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>PQ</mi></mfenced></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>SR</mi></mfenced></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">In <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQRS</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQ</mi><mo>=</mo><mi>x</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>SR</mi><mo>=</mo><mi>y</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">R</mi><mover><mi mathvariant="normal">S</mi><mo>^</mo></mover><mi mathvariant="normal">P</mi><mo>=</mo><mi>α</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Q</mi><mover><mi mathvariant="normal">R</mi><mo>^</mo></mover><mi mathvariant="normal">S</mi><mo>=</mo><mi>β</mi></math>.</p>
<p style="text-align:left;">Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>,</mo><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><strong>METHOD 1</strong></p>
<p>from vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi></math>, draws a line parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>QR</mi></mfenced></math> that meets <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>SR</mi></mfenced></math> at a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">X</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>(M1)</strong></p>
<p>uses the sine rule in&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ΔPSX</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>PS</mi><mrow><mi>sin</mi><mo> </mo><mi>β</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>sin</mi><mo> </mo><mfenced><mrow><mn>180</mn><mo>°</mo><mo>-</mo><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mfenced><mrow><mn>180</mn><mo>°</mo><mo>-</mo><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mo> </mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></mrow><mrow><mi>sin</mi><mo> </mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>let the height of quadrilateral <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQRS</mi></math> be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mi>PS</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>α</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>attempts to find a second expression for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi><mo>-</mo><mi>PS</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>α</mi></mrow></mfenced><mo> </mo><mi>tan</mi><mo> </mo><mi>β</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>α</mi><mo>=</mo><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi><mo>-</mo><mi>PS</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>α</mi></mrow></mfenced><mo> </mo><mi>tan</mi><mo> </mo><mi>β</mi></math></p>
<p>writes&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mi>β</mi></math>&nbsp;as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>sin</mi><mo> </mo><mi>β</mi></mrow><mrow><mi>cos</mi><mo> </mo><mi>β</mi></mrow></mfrac></math>,&nbsp;multiplies through by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>β</mi></math>&nbsp;and expands the RHS&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>α</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>β</mi><mo>=</mo><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi><mo>-</mo><mi>PS</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>α</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></mrow><mrow><mi>sin</mi><mo> </mo><mi>α</mi><mo> </mo><mi>cos</mi><mo> </mo><mi>β</mi><mo>+</mo><mi>cos</mi><mo> </mo><mi>α</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>y</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></mrow><mrow><mo> </mo><mi>sin</mi><mo> </mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[5 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the complex numbers&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>b</mi><mtext>i</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mn>2</mn><mi>b</mi><mtext>i</mtext></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8800;</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arg</mtext><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>b</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>2</mn><mi>b</mi></mrow></mfenced><mtext>i</mtext></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mtext>i</mtext><mn>2</mn></msup><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mtext>i</mtext><mfenced><mrow><mo>-</mo><mn>2</mn><mi>b</mi><mo>+</mo><mi>b</mi><mo>-</mo><msup><mi>b</mi><mn>3</mn></msup></mrow></mfenced></math>             <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mtext>i</mtext><mfenced><mrow><mo>-</mo><mi>b</mi><mo>-</mo><msup><mi>b</mi><mn>3</mn></msup></mrow></mfenced></math>            <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> and A1 for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>b</mi><mtext>i</mtext><mo>-</mo><msup><mi>b</mi><mn>3</mn></msup><mtext>i</mtext></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arg</mtext><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mo>-</mo><mi>b</mi><mo>-</mo><msup><mi>b</mi><mn>3</mn></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>            <em><strong>(M1)</strong></em></p>
<p><br><strong>EITHER</strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mrow><mo>-</mo><mi>b</mi></mrow></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>≠</mo><mn>0</mn></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>)            <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>b</mi><mo>-</mo><msup><mi>b</mi><mn>3</mn></msup><mo>=</mo><mn>1</mn><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>  (or equivalent)            <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>            <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was generally well done with many completely correct answers seen. Part (b) proved to be challenging with many candidates incorrectly equating the ratio of their imaginary and real parts to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>π</mi><mn>4</mn></mfrac></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfrac><mi>π</mi><mn>4</mn></mfrac></math>. Stronger candidates realized that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mi>π</mi><mn>4</mn></mfrac></math>, it forms an isosceles right-angled triangle and equated the real and imaginary parts to obtain the value of <em>b</em> .</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The vectors <strong><em>a</em></strong> and <em><strong>b</strong></em> are defined by <strong><em>a&nbsp;</em></strong>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   1 \\   t  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>t</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<strong><em>b</em><em>&nbsp;</em></strong>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   { - t} \\   {4t}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mi>t</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>4</mn>
              <mi>t</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \in \mathbb{R}">
  <mi>t</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find and simplify an expression for <em><strong>a</strong></em> • <em><strong>b</strong></em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> for which the angle between<em><strong> a</strong></em> and <em><strong>b</strong></em> is obtuse .</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><em><strong>a</strong></em> • <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 \times 0} \right) + \left( {1 \times  - t} \right) + \left( {t \times 4t} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1</mn>
      <mo>×</mo>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1</mn>
      <mo>×</mo>
      <mo>−</mo>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>t</mi>
      <mo>×</mo>
      <mn>4</mn>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(M1)</strong></em></p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - t + 4{t^2}">
  <mo>−</mo>
  <mi>t</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that<em><strong>  a</strong></em> • <em><strong>b</strong></em> = |<em><strong>a</strong></em>||<em><strong>b</strong></em>|cos <em>θ </em>     <em><strong>(M1)</strong></em></p>
<p><em><strong>a</strong></em> • <em><strong>b</strong></em> &lt; 0 or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - t + 4{t^2}">
  <mo>−</mo>
  <mi>t</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>t</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> &lt; 0 or cos <em>θ </em>&lt; 0     <em><strong> R1</strong></em></p>
<p><strong>Note:</strong> Allow ≤ for <em><strong>R1</strong></em>.</p>
<p> </p>
<p>attempt to solve using sketch or sign diagram      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; t &lt; \frac{1}{4}">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>t</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mn>1</mn><mo>+</mo><mi>x</mi></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mrow></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use mathematical induction to prove that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mfenced><mi>n</mi></mfenced></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>n</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>n</mi></mrow></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup><mo>,</mo><mo>&nbsp;</mo><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>×</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mo>-</mo><mn>1</mn></math>.</p>
<p>It is given that the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> term in the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a coefficient of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac></math>.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use the chain rule&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>M1A0A0</strong></em> for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>+</mo><mi>x</mi></msqrt></mfrac></math> or equivalent seen</p>
<p>&nbsp;&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mo>''</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mrow></mfrac><mo>=</mo></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mn>1</mn></msup><mfrac><mrow><mn>1</mn><mo>!</mo></mrow><mrow><mn>0</mn><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>R0</strong></em> for not starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math>. Award subsequent marks as&nbsp;appropriate.</p>
<p>&nbsp;</p>
<p>assume true for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>, (so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mfenced><mi>k</mi></mfenced></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi></mrow></msup></math>)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Do not award <em><strong>M1</strong></em> for statements such as “let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>” or “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math> is true”.&nbsp;Subsequent marks can still be awarded.</p>
<p>&nbsp;</p>
<p>consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>LHS</mtext><mo>=</mo><msup><mi>f</mi><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>d</mi><mfenced><mrow><msup><mi>f</mi><mfenced><mi>k</mi></mfenced></msup><mfenced><mi>x</mi></mfenced></mrow></mfenced></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi></mrow></mfenced><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;(or equivalent)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext><mo>=</mo><msup><mi>f</mi><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mi>k</mi></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;(or equivalent)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mi>k</mi></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for leading coefficient of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p><strong>Note:</strong> The following <em><strong>A</strong></em> marks can be awarded in any order.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><mfenced><mfrac><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi>k</mi></mrow><mn>2</mn></mfrac></mfenced><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for isolating <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math> correctly.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;Award&nbsp;<em><strong>A1</strong></em>&nbsp;for multiplying top and bottom by <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math>.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;Award&nbsp;<em><strong>A1</strong></em>&nbsp;for&nbsp;leading coefficient of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mi>k</mi></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>k</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></msup><mo>=</mo><mtext>RHS</mtext></math></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p>since true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math>, and true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></math>&nbsp;if true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>, the statement is&nbsp;true for all,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math>&nbsp; by mathematical induction&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:&nbsp;</strong>To obtain the final <em><strong>R1</strong></em>, at least four of the previous marks must have been&nbsp;awarded.</p>
<p>&nbsp;</p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mn>1</mn><mo>+</mo><mi>x</mi><mo> </mo></msqrt><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup></math></p>
<p>using product rule to find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mn>1</mn><mo>+</mo><mi>x</mi><mo> </mo></msqrt><mi>m</mi><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup><mi mathvariant="normal">+</mi><mfrac><mn>1</mn><mrow><mn>2</mn><msqrt><mn>1</mn><mo>+</mo><mi mathvariant="normal">x</mi></msqrt></mrow></mfrac><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>m</mi><mfenced><mrow><msqrt><mn>1</mn><mo>+</mo><mi>x</mi><mo> </mo></msqrt><mi>m</mi><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup><mi mathvariant="normal">+</mi><mfrac><mn>1</mn><mrow><mn>2</mn><msqrt><mn>1</mn><mo>+</mo><mi mathvariant="normal">x</mi></msqrt></mrow></mfrac><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup></mrow></mfenced><mo>+</mo><mfrac><mn>1</mn><mrow><mn>2</mn><msqrt><mn>1</mn><mo>+</mo><mi mathvariant="normal">x</mi></msqrt></mrow></mfrac><mi>m</mi><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mrow></mfrac><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>substituting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mo>'</mo><mfenced><mi>x</mi></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>m</mi><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced><mrow><mo>=</mo><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mi>m</mi><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>h</mi><mfenced><mn>0</mn></mfenced><mo>+</mo><mi>x</mi><mi>h</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>+</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced><mo>+</mo><mo>…</mo></math></p>
<p>equating <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> coefficient to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced></mrow><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mo>=</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><mo>&nbsp;</mo><mfenced><mrow><mo>⇒</mo><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>m</mi><mo>-</mo><mn>15</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>m</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p>attempt to find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>f</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>,</mo><mo>&nbsp;</mo><mi>f</mi><mo>''</mo><mfenced><mn>0</mn></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mi>f</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>attempt to apply binomial theorem for rational exponents&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mfenced><mfenced><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mrow></mfenced></mrow><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mo>…</mo></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mi>m</mi><mi>x</mi><mo>+</mo><mfrac><msup><mi>m</mi><mn>2</mn></msup><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>+</mo><mi>m</mi><mi>x</mi><mo>+</mo><mfrac><msup><mi>m</mi><mn>2</mn></msup><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>coefficient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mi>m</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>m</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>attempt to set equal to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac></math> and solve&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mi>m</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>m</mi><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>8</mn></mfrac><mo>=</mo><mfrac><mn>7</mn><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>m</mi><mo>-</mo><mn>15</mn><mo>=</mo><mn>0</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>m</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></math>&nbsp; </strong></em>or&nbsp;&nbsp;<em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>m</mi><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>m</mi><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>h</mi><mfenced><mn>0</mn></mfenced><mo>+</mo><mi>x</mi><mi>h</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>+</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced><mo>+</mo><mo>…</mo></math></p>
<p>equating&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math>&nbsp;coefficient to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced></mrow><mrow><mn>2</mn><mo>!</mo></mrow></mfrac><mo>=</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><mo>&nbsp;</mo><mfenced><mrow><mo>⇒</mo><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p>using product rule to find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>''</mo><mfenced><mi>x</mi></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>+</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mi>g</mi><mfenced><mi>x</mi></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>+</mo><mn>2</mn><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>+</mo><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mi>g</mi><mfenced><mi>x</mi></mfenced></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;A1</strong></em></p>
<p>substituting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>''</mo><mfenced><mi>x</mi></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>''</mo><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>f</mi><mfenced><mn>0</mn></mfenced><mi>g</mi><mo>''</mo><mfenced><mn>0</mn></mfenced><mo>+</mo><mn>2</mn><mi>g</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mi>f</mi><mo>'</mo><mfenced><mn>0</mn></mfenced><mo>+</mo><mi>g</mi><mfenced><mn>0</mn></mfenced><mi>f</mi><mo>''</mo><mfenced><mn>0</mn></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>×</mo><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>m</mi><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mn>1</mn><mo>×</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mi>m</mi><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>m</mi><mo>-</mo><mn>15</mn><mo>=</mo><mn>0</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>m</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></math>&nbsp;&nbsp;</strong></em>or&nbsp;&nbsp;<em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn><mi mathvariant="normal">π</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to use&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p>attempting to factorise&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>−</mo><mn>2</mn><mo>)</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>attempting to use the quadratic formula&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>±</mo><msqrt><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>2</mn><mo>×</mo><mn>2</mn></msqrt></mrow><mn>4</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>5</mn><mo>±</mo><mn>3</mn></mrow><mn>4</mn></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>6</mn></mfrac></math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A sector of a circle with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> &gt; 0, is shown on the following diagram.<br>The sector has an angle of 1 radian at the centre.</p>
<p style="text-align: center;"><img src=""></p>
<p>Let the area of the sector be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> cm<sup>2</sup> and the perimeter be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span> cm. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = P">
  <mi>A</mi>
  <mo>=</mo>
  <mi>P</mi>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = P">
  <mi>A</mi>
  <mo>=</mo>
  <mi>P</mi>
</math></span></p>
<p>use of the correct formula for area and arc length       <em><strong>(M1)</strong></em></p>
<p>perimeter is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r\theta  + 2r">
  <mi>r</mi>
  <mi>θ</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>r</mi>
</math></span>       <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> <em><strong>A1</strong> </em>independent of previous <em><strong>M1</strong></em>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{r^2}\left( 1 \right) = r\left( 1 \right) + 2r">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>r</mi>
  <mrow>
    <mo>(</mo>
    <mn>1</mn>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>r</mi>
</math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^2} - 6r = 0">
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>6</mn>
  <mi>r</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 6">
  <mi>r</mi>
  <mo>=</mo>
  <mn>6</mn>
</math></span>  (as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> &gt; 0)        <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award final <em><strong>A1</strong></em> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 0">
  <mi>r</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> is included.</p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The plane <em>П</em> has the Cartesian equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + y + 2z = 3"> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mo>=</mo> <mn>3</mn> </math></span></p>
<p>The line <em>L</em> has the vector equation <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  3 \\   { - 5} \\   1  \end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}  1 \\   { - 2} \\   p  \end{array}} \right){\text{,}}\,\,\mu {\text{,}}\,p \in \mathbb{R}"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>μ</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>μ</mi> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>. The acute angle between the line <em>L</em> and the plane <em>П</em> is 30°.</p>
<p>Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>recognition that the angle between the normal and the line is 60° (seen anywhere)       <em><strong>R1</strong></em></p>
<p>attempt to use the formula for the scalar product       <em><strong>M1</strong></em></p>
<p>cos 60° = <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left| {\left( {\begin{array}{*{20}{c}}   2 \\    1 \\    2  \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}   1 \\    { - 2} \\    p  \end{array}} \right)} \right|}}{{\sqrt 9  \times \sqrt {1 + 4 + {p^2}} }}"> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>∙</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <msqrt> <mn>9</mn> </msqrt> <mo>×</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} = \frac{{\left| {2p} \right|}}{{3\sqrt {5 + {p^2}} }}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mn>3</mn> <msqrt> <mn>5</mn> <mo>+</mo> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\sqrt {5 + {p^2}}  = 4\left| p \right|"> <mn>3</mn> <msqrt> <mn>5</mn> <mo>+</mo> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>=</mo> <mn>4</mn> <mrow> <mo>|</mo> <mi>p</mi> <mo>|</mo> </mrow> </math></span></p>
<p>attempt to square both sides         <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9\left( {5 + {p^2}} \right) = 16{p^2} \Rightarrow 7{p^2} = 45"> <mn>9</mn> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mo>+</mo> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>16</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">⇒</mo> <mn>7</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>45</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p =  \pm 3\sqrt {\frac{5}{7}} "> <mi>p</mi> <mo>=</mo> <mo>±</mo> <mn>3</mn> <msqrt> <mfrac> <mn>5</mn> <mn>7</mn> </mfrac> </msqrt> </math></span> (or equivalent)       <em><strong>A1A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>