File "SL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/SL-paper1html
File size: 530.47 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>The volume of a hemisphere, <em>V</em>, is given by the formula</p>
<p style="text-align: center;"><em>V</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{4\,{S^3}}}{{243\,\pi }}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mn>4</mn>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <msup>
            <mi>S</mi>
            <mn>3</mn>
          </msup>
        </mrow>
      </mrow>
      <mrow>
        <mn>243</mn>
        <mspace width="thinmathspace"></mspace>
        <mi>π<!-- π --></mi>
      </mrow>
    </mfrac>
  </msqrt>
</math></span>,</p>
<p>where <em>S</em> is the total surface area.</p>
<p>The total surface area of a given hemisphere is 350 cm<sup>2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this hemisphere in cm<sup>3</sup>.</p>
<p>Give your answer correct to <strong>one decimal place</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (a) correct to the nearest integer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to <strong>part (b)</strong> in the form <em>a</em> × 10<sup><em>k</em></sup> , where 1 ≤ <em>a</em> &lt; 10 and <em>k </em>∈<em> </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{Z}">
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  = \frac{3}{4}"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta  &gt; 0"> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> <mo>&gt;</mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \frac{\pi }{2}"> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diameter of a spherical planet is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo> </mo><mtext>km</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the radius of the planet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The volume of the planet can be expressed in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mi>a</mi><mo>×</mo><msup><mn>10</mn><mi>k</mi></msup></mrow></mfenced><mo> </mo><msup><mtext>km</mtext><mn>3</mn></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>a</mi><mo>&lt;</mo><mn>10</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> passes through the points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(0,{\text{ }}1,{\text{ }}8)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>8</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(3,{\text{ }}5,{\text{ }}2)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> are perpendicular, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2">
  <mi>p</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {AB} ">
  <mover>
    <mrow>
      <mi>A</mi>
      <mi>B</mi>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>, has equation <strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 1 \\ {13} \\ { - 14} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} p \\ 0 \\ 1 \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>13</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>14</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>s</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>p</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> are perpendicular, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2">
  <mi>p</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> intersect at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C(9,{\text{ }}13,{\text{ }}z)">
  <mi>C</mi>
  <mo stretchy="false">(</mo>
  <mn>9</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>13</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>z</mi>
  <mo stretchy="false">)</mo>
</math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a unit vector in the direction of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find one point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> which is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 5 ">
  <msqrt>
    <mn>5</mn>
  </msqrt>
</math></span> units from C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> have position vectors&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 2} \\   4 \\   { - 4}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  6 \\   8 \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;respectively.</p>
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> has position vector&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 1} \\   k \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.&nbsp;Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}">
  <mrow>
    <mtext>O</mtext>
  </mrow>
</math></span> be the origin.</p>
</div>

<div class="specification">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\widehat {\text{O}}{\text{C}} = {\text{B}}\widehat {\text{O}}{\text{C}}"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AOC}}"> <mrow> <mtext>AOC</mtext> </mrow> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A balloon in the shape of a sphere is filled with helium until the radius is 6 cm.</p>
</div>

<div class="specification">
<p>The volume of the balloon is increased by 40%.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the balloon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of the balloon following this increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylindrical container with a radius of 8 cm is placed on a flat surface. The container is filled with water to a height of 12 cm, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.17.11.png" alt="M17/5/MATSD/SP1/ENG/TZ2/12"></p>
</div>

<div class="specification">
<p>A heavy ball with a radius of 2.9 cm is dropped into the container. As a result, the height of the water increases to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.18.54.png" alt="M17/5/MATSD/SP1/ENG/TZ2/12.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of water in the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Emily’s kite ABCD is hanging in a tree. The plane ABCDE is vertical.</p>
<p>Emily stands at point E at some distance from the tree, such that EAD is a straight line and angle BED = 7°. Emily knows BD = 1.2 metres and angle BDA = 53°, as shown in the diagram</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.18.28.png" alt="N17/5/MATSD/SP1/ENG/TZ0/10"></p>
</div>

<div class="specification">
<p>T is a point at the base of the tree. ET is a horizontal line. The angle of elevation of A from E is 41°.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of EB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the angle of elevation of B from E.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vertical height of B above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a right triangle ABC. Point D lies on AB such that CD&nbsp;bisects AĈB.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;">AĈD = <em>θ</em> and AC = 14 cm</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \frac{3}{5}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,2\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}}"> <mrow> <mtext>BC</mtext> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid glass paperweight consists of a hemisphere of diameter 6 cm on top of a cuboid with a square base of length 6 cm, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The height of the cuboid, <em>x </em>cm, is equal to the height of the hemisphere.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the paperweight.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>1 cm<sup>3</sup> of glass has a mass of 2.56 grams.</p>
<p>Calculate the mass, in grams, of the paperweight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A type of candy is packaged in a right circular cone that has volume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{100 c}}{{\text{m}}^{\text{3}}}">
  <mrow>
    <mtext>100 c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msup>
  </mrow>
</math></span> and vertical height 8 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.14.55.png" alt="M17/5/MATSD/SP1/ENG/TZ1/09"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, of the circular base of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the slant height, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="l">
  <mi>l</mi>
</math></span>, of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the curved surface area of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid right circular cone has a base radius of 21 cm and a slant height of 35 cm.<br>A smaller right circular cone has a height of 12 cm and a slant height of 15 cm, and is removed from the top of the larger cone, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of the base of the cone which has been removed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the curved surface area of the cone which has been removed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the curved surface area of the remaining solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows triangle ABC, with <em>AB</em> = 6 and <em>AC</em> = 8.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\hat A = \frac{5}{6}">
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mover>
      <mi>A</mi>
      <mo stretchy="false">^</mo>
    </mover>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>5</mn>
    <mn>6</mn>
  </mfrac>
</math></span> find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\hat A">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mover>
      <mi>A</mi>
      <mo stretchy="false">^</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle ABC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> passes through points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}( - 3,{\text{ }}4,{\text{ }}2)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>4</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}( - 1,{\text{ }}3,{\text{ }}3)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> also passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}(3,{\text{ }}1,{\text{ }}p)">
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { - 1} \\ 1 \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The point D has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({q^2},{\text{ }}0,{\text{ }}q)"> <mo stretchy="false">(</mo> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>q</mi> <mo stretchy="false">)</mo> </math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{DC}}} "> <mover> <mrow> <mtext>DC</mtext> </mrow> <mo>→</mo> </mover> </math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The position vectors of points P and Q are <strong><em>i</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
  <mo>+</mo>
</math></span> 2 <strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
  <mo>−<!-- − --></mo>
</math></span>&nbsp;<strong><em>k </em></strong>and 7<strong><em>i</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
  <mo>+</mo>
</math></span> 3<strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - ">
  <mo>−<!-- − --></mo>
</math></span> 4<strong><em>k </em></strong>respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line that passes through P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line through P and Q is perpendicular to the vector 2<strong><em>i </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
  <mo>+</mo>
</math></span>&nbsp;<em>n</em><strong><em>k</em></strong>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>-</mo><mfrac><mn>6</mn><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>1</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve the equation  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>3</mn><mo>-</mo><mfrac><mn>6</mn><mrow><mi>sin</mi><mo> </mo><mn>2</mn><mi>θ</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mn>0</mn></math>  for  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>θ</mi><mo>≤</mo><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mi>θ</mi><mo>≠</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A lampshade, in the shape of a cone, has a wireframe consisting of a circular ring and four straight pieces of equal length, attached to the ring at points A, B, C and D.</p>
<p>The ring has its centre at point O and its radius is 20 centimetres. The straight pieces meet at point V, which is vertically above O, and the angle they make with the base of the lampshade is 60°.</p>
<p>This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.16.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/03"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of one of the straight pieces in the wireframe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total length of wire needed to construct this wireframe. Give your answer in centimetres correct to the nearest millimetre.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>+</mo><mi>cos</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>2</mn><mi mathvariant="normal">π</mi></math>.</p>
<p>&nbsp;</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Three airport runways intersect to form a triangle, ABC. The length of AB is 3.1 km, AC is 2.6 km, and BC is 2.4 km.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A&nbsp;company is hired to cut the grass that grows in triangle ABC, but they need to know the area.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size, in degrees, of angle BÂC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area, in km<sup>2</sup>, of triangle ABC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows a circle with centre O and radius<em> r</em> cm.</p>
<p><img src=""></p>
<p>The points A and B lie on the circumference of the circle, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{O}}\limits^ \wedge  {\text{B}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>O</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> = <em>θ</em>. The area of the shaded sector AOB is 12 cm<sup>2</sup> and the length of arc AB is 6 cm.</p>
<p>Find the value of <em>r</em>.</p>
</div>
<br><hr><br><div class="question">
<p>Solve <span class="mjpage"><math alttext="{\log _2}(2\sin x) + {\log _2}(\cos x) =  - 1" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, for <span class="mjpage"><math alttext="2\pi  &lt; x &lt; \frac{{5\pi }}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mn>2</mn> <mi>π</mi> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a ball attached to the end of a spring, which is suspended from a ceiling.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of the ball above the ground at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after being released can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mi>t</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>.</mo><mn>8</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the ball above the ground when it is released.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum height of the ball above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the ball takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> seconds to return to its initial height above the ground for the first time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the first 2 seconds of its motion, determine the amount of time that the ball is less than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math>&nbsp;metres above the ground.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the rate of change of the ball’s height above the ground when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>.&nbsp;Give your answer in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi mathvariant="normal">π</mi><msqrt><mi>q</mi></msqrt><mo> </mo><msup><mi>ms</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron in the asteroid <em>16 Psyche</em> is said to be valued at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8973</mn></math> quadrillion euros <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtext>EUR</mtext></mfenced></math>,&nbsp;where one quadrillion <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mn>10</mn><mn>15</mn></msup></math>.</p>
</div>

<div class="specification">
<p>James believes the asteroid is approximately spherical with radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>113</mn><mo> </mo><mtext>km</mtext></math>. He uses this&nbsp;information to estimate its volume.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the iron in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>×</mo><msup><mn>10</mn><mi>k</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>a</mi><mo>&lt;</mo><mn>10</mn><mo> </mo><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate James’s estimate of its volume, in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>km</mtext><mn>3</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The actual volume of the asteroid is found to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>074</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup><mo> </mo><msup><mtext>km</mtext><mn>3</mn></msup></math>.</p>
<p>Find the percentage error in James’s estimate of the volume.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors&nbsp;<em><strong>a</strong></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   3 \\   p  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>p</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   6 \\   {18}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>18</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> for which <em><strong>a</strong></em> and <em><strong>b</strong></em> are</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>parallel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>perpendicular.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylinder with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> and height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The sum of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> for this cylinder is 12 cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation for the area, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, of the <strong>curved</strong> surface in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>A</mi>
    </mrow>
    <mrow>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mi>r</mi>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> when the area of the curved surface is maximized.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> be an <strong>obtuse</strong> angle such that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta&nbsp; = \frac{3}{5}">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ<!-- θ --></mi>
  <mo>=</mo>
  <mfrac>
    <mn>3</mn>
    <mn>5</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{sin}}\,x - \frac{{3x}}{4}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mi>x</mi>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> passes through the origin and has a gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta "> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>. Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>  for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 3. Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is a tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at point P.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M"> <mi>M</mi> </math></span> is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>4</mn><mo>&#8202;</mo><mi>sin</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo>&#8202;</mo><mi>sin</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mfrac><mrow><mn>3</mn><mi>&#960;</mi></mrow><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>+</mo><mi>q</mi></math>,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is obtained by two transformations of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe these two transformations.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>)</mo></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mn>7</mn></math>, find the smallest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo>&#8202;</mo><mi>cos</mi><mo>&#8202;</mo><mi>x</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mn>3</mn><mo>&#8202;</mo><mi>cos</mi><mo>&#8202;</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo>&#8202;</mo><msup><mi>cos</mi><mn>2</mn></msup><mo>&#8202;</mo><mn>2</mn><mi>x</mi><mo>-</mo><msup><mi>cos</mi><mn>3</mn></msup><mo>&#8202;</mo><mn>2</mn><mi>x</mi></mrow></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand and simplify <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>a</mi><mo>)</mo></mrow><mn>3</mn></msup></math> in ascending powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable substitution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>3</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>-</mo><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>8</mn><mo> </mo><msup><mi>sin</mi><mn>6</mn></msup><mo> </mo><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mi>m</mi></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>32</mn><mn>7</mn></mfrac><msup><mi>sin</mi><mn>7</mn></msup><mo> </mo><mi>m</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is a positive real constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mi>m</mi><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></msubsup><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>127</mn><mn>28</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>AC is a vertical communications tower with its base at C.</p>
<p>The tower has an observation deck, D, three quarters of the way to the top of the tower, A.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_10.32.25.png" alt="N16/5/MATSD/SP1/ENG/TZ0/11"></p>
<p>From a point B, on horizontal ground 250 m from C, the angle of elevation of D is 48°.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate CD, the height of the observation deck above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle of depression from A to B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> have coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>9</mn><mo>,</mo><mo>&nbsp;</mo><mi>m</mi><mo>,</mo><mo>&nbsp;</mo><mo>-</mo><mn>6</mn></mrow></mfenced></math> respectively.</p>
</div>

<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, which passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, has equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>19</mn></mtd></mtr><mtr><mtd><mn>24</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>s</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider a unit vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">u</mi><mo>=</mo><mi>p</mi><mi mathvariant="bold-italic">i</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi mathvariant="bold-italic">j</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi mathvariant="bold-italic">k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>BC</mtext><mo>→</mo></mover><mo>=</mo><mn>9</mn><mi mathvariant="bold-italic">u</mi></math>.</p>
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn></math>&nbsp;may be written in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>-</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, solve the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>10</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>2</mn><mi>x</mi></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Given that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mover><mtext>C</mtext><mo>^</mo></mover><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math>,&nbsp;find the area of the triangle.</p>
<p>Give your answer in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>p</mi><msqrt><mi>q</mi></msqrt></mrow><mn>2</mn></mfrac></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mi>q</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
</div>
<br><hr><br><div class="question">
<p>Find the least positive value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mfenced><mrow><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></math>.</p>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, all lengths are in metres and time is in seconds.</strong></p>
<p>Consider two particles, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math>, which start to move at the same time.</p>
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> moves in a straight line such that its displacement from a fixed-point is given&nbsp;by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>10</mn><mo>-</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Particle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> also moves in a straight line. The position of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math>.</p>
<p>The speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>1</mn></msub></math> is greater than the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>2</mn></msub></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>&gt;</mo><mi>q</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \theta &nbsp;= \frac{{\sqrt 5 }}{3}">
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>θ<!-- θ --></mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>5</mn>
      </msqrt>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> is acute.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta ">
  <mi>cos</mi>
  <mo>⁡</mo>
  <mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos 2\theta ">
  <mi>cos</mi>
  <mo>⁡</mo>
  <mn>2</mn>
  <mi>θ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A triangular postage stamp, ABC, is shown in the diagram below, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 5{\text{ cm}},{\rm{ B\hat AC}} = 34^\circ ,{\rm{ A\hat BC}} = 26^\circ ">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>5</mn>
  <mrow>
    <mtext>&nbsp;cm</mtext>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>34</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
  <mo>,</mo>
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">B</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>26</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat CB}} = 120^\circ ">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">C</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>120</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.34.31.png" alt="M17/5/MATSD/SP1/ENG/TZ1/13"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of BC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the postage stamp.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows triangle ABC, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 3{\text{ cm}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <mtext>&nbsp;cm</mtext>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = 8{\text{ cm}}">
  <mrow>
    <mtext>BC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>8</mn>
  <mrow>
    <mtext>&nbsp;cm</mtext>
  </mrow>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat BC = }}\frac{\pi }{3}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">B</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
      <mo>=</mo>
    </mrow>
  </mrow>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>3</mn>
  </mfrac>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.17.57.png" alt="N17/5/MATME/SP1/ENG/TZ0/04"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 7{\text{ cm}}">
  <mrow>
    <mtext>AC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>7</mn>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_10.50.00.png" alt="N17/5/MATME/SP1/ENG/TZ0/04.b"></p>
<p>Find the exact perimeter of this shape.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.<br>This is shown in the following diagram.</p>
<p><img src=""></p>
<p>The vectors <em><strong>p</strong></em> , <em><strong>q</strong></em> and <em><strong>r</strong></em> are shown on the diagram.</p>
<p>Find <em><strong>p</strong></em>•(<em><strong>p</strong></em> + <em><strong>q</strong></em> + <em><strong>r</strong></em>).</p>
</div>
<br><hr><br><div class="specification">
<p>Point A has coordinates (−4, −12, 1) and point B has coordinates (2, −4, −4).</p>
</div>

<div class="specification">
<p>The line <em>L</em> passes through A and B.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered}  \,6 \hfill \\  \,8 \hfill \\  - 5 \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>6</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mspace width="thinmathspace"></mspace>
          <mn>8</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mo>−</mo>
          <mn>5</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <em>L</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point <em>C</em> (<em>k</em> , 12 , −<em>k</em>) is on <em>L</em>. Show that <em>k</em> = 14.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to&nbsp; \, \bullet \mathop {{\text{AB}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mspace width="thinmathspace"></mspace>
  <mo>∙</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of angle OBA.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point D is also on <em>L</em> and has coordinates (8, 4, −9).</p>
<p>Find the area of triangle OCD.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>6</mn><mo>+</mo><mn>6</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>x</mi></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn><mi>π</mi></math>.</p>
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> touches the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, as shown. The shaded region is&nbsp;enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, between the points&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>

<div class="specification">
<p>The right cone in the following diagram has a total surface area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi mathvariant="normal">π</mi></math>, equal to the shaded&nbsp;area in the previous diagram.</p>
<p>The cone has a base radius of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>, height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, and slant height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area of the shaded region is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi mathvariant="normal">π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>l</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the volume of the cone.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A calculator fits into a cuboid case with height 29 mm, width 98 mm and length 186 mm.</p>
</div>

<div class="question">
<p>Find the volume, in cm<sup>3</sup>, of this calculator case.</p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on the circumference of the circle, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>1</mn><mo>&nbsp;</mo><mtext>radian</mtext></math>.</p>
<p style="text-align: left;">The perimeter of the shaded region is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the exact area of the <strong>non-shaded</strong> region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_9}\left( {{\text{cos}}\,2x + 2} \right) = {\text{lo}}{{\text{g}}_3}\sqrt {{\text{cos}}\,2x + 2} ">
  <mrow>
    <mtext>lo</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mn>9</mn>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>cos</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>lo</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mn>3</mn>
    </msub>
  </mrow>
  <msqrt>
    <mrow>
      <mtext>cos</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mn>2</mn>
    <mi>x</mi>
    <mo>+</mo>
    <mn>2</mn>
  </msqrt>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_3}\left( {{\text{2}}\,{\text{sin}}\,x} \right) = {\text{lo}}{{\text{g}}_9}\left( {{\text{cos}}\,2x + 2} \right)">
  <mrow>
    <mtext>lo</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mn>3</mn>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>sin</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>lo</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mn>9</mn>
    </msub>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>cos</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \frac{\pi }{2}">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,x = \frac{1}{3}">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \frac{\pi }{2}">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,4x">
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>4</mn>
  <mi>x</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p><strong>Note: In this question, distance is in metres and time is in seconds.</strong></p>
<p>Two particles <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}">
  <mrow>
    <msub>
      <mi>P</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_2}">
  <mrow>
    <msub>
      <mi>P</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> start moving from a point A at the same time, along different straight lines.</p>
<p>After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds, the position of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}">
  <mrow>
    <msub>
      <mi>P</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> is given by <strong><em>r</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ { - 1} \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>Two seconds after leaving A, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}">
  <mrow>
    <msub>
      <mi>P</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> is at point B.</p>
</div>

<div class="specification">
<p>Two seconds after leaving A, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_2}">
  <mrow>
    <msub>
      <mi>P</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> is at point C, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}}&nbsp; = \left( {\begin{array}{*{20}{c}} 3 \\ 0 \\ 4 \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AB}}} } \right|"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos {\rm{B\hat AC}}"> <mi>cos</mi> <mo>⁡</mo> <mrow> <mrow> <mi mathvariant="normal">B</mi> <mrow> <mover> <mi mathvariant="normal">A</mi> <mo stretchy="false">^</mo> </mover> </mrow> <mi mathvariant="normal">C</mi> </mrow> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the distance between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_1}"> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_2}"> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> </math></span> two seconds after they leave A.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A ladder on a fire truck has its base at point B which is 4 metres above the ground. The ladder is extended and its other end rests on a vertical wall at point C, 16 metres above the ground. The horizontal distance between B and C is 9 metres.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation from B to C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second truck arrives whose ladder, when fully extended, is 30 metres long. The base of this ladder is also 4 metres above the ground. For safety reasons, the maximum angle of elevation that the ladder can make is 70º.</p>
<p>Find the maximum height on the wall that can be reached by the ladder on the second truck.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OA}}}\limits^ \to = \left( \begin{gathered}  2 \hfill \\  1 \hfill \\  3 \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>OA</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>3</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered}  1 \hfill \\  3 \hfill \\  1 \hfill \\  \end{gathered} \right)">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>3</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>1</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;where O is the origin. <em>L</em><sub>1</sub> is the line that passes through A and B.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation for <em>L</em><sub>1</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( \begin{gathered}  2 \hfill \\  p \hfill \\  0 \hfill \\  \end{gathered} \right)">
  <mrow>
    <mo>(</mo>
    <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
      <mtr>
        <mtd>
          <mn>2</mn>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mi>p</mi>
        </mtd>
      </mtr>
      <mtr>
        <mtd>
          <mn>0</mn>
        </mtd>
      </mtr>
    </mtable>
    <mo>)</mo>
  </mrow>
</math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>.&nbsp;Find the value of <em>p</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A park in the form of a triangle, ABC, is shown in the following diagram. AB is 79 km and BC is 62 km. Angle A<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\text{B}}\limits^ \wedge&nbsp; ">
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
</math></span>C is 52°.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of side AC in km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the park.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The vectors <strong><em>a</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and <strong><em>b</em></strong> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {k + 3} \\ k \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>k</mi>
              <mo>+</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> are perpendicular to each other.</p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <strong><em>c</em></strong> = <strong><em>a</em></strong> + 2<strong><em>b</em></strong>, find <strong><em>c</em></strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two fixed points, A and B, are 40 m apart on horizontal ground. Two straight ropes, AP and BP, are attached to the same point, P, on the base of a hot air balloon which is vertically above the line AB. The length of BP is 30 m and angle BAP is 48°.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Angle APB is acute.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label with an <em>x</em> the angle of depression of B from P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle APB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of the angle of depression of B from P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A line,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>,&nbsp;has equation&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}}  { - 3} \\   9 \\   {10}  \end{array}} \right) + s\left( {\begin{array}{*{20}{c}}  6 \\   0 \\   2  \end{array}} \right)">
  <mi>r</mi>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>9</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>10</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>s</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>. Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {15{\text{,}}\,\,9{\text{,}}\,\,c} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>15</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>9</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>c</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> lies on&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>, is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and passes through (1, 2, 3).</p>
<p>Write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mi>cos</mi><mo>&#8202;</mo><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mi>&#960;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the vectors <em><strong>a</strong></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3 \\   {2p}  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {p + 1} \\   8  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>Find the possible values of <em>p</em> for which <strong><em>a</em></strong> and <strong><em>b</em></strong> are parallel.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 2\,{\text{sin}}\,x">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span>,&nbsp; 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
  <mn>2</mn>
  <mi>π<!-- π --></mi>
</math></span> . The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> intersects the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =&nbsp; - 1">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span> exactly twice, at point A and point B. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question">
<p>Consider the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 2\,{\text{sin}}\,px"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mi>x</mi> </math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi "> <mn>2</mn> <mi>π</mi> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> &gt; 0.</p>
<p>Find the greatest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> such that the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> does not intersect the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 1"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>A buoy is floating in the sea and can be seen from the top of a vertical cliff. A boat is travelling from the base of the cliff directly towards the buoy.</p>
<p>The top of the cliff is 142 m above sea level. Currently the boat is 100 metres from the buoy and the angle of depression from the top of the cliff to the boat is 64°.</p>
<p><img src=""></p>
</div>

<div class="question">
<p>Draw and label the angle of depression on the diagram.</p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>15</mn><mo> </mo><mtext>cm</mtext><mo>,</mo><mo>&nbsp;</mo><mtext>BC</mtext><mo>=</mo><mn>10</mn><mo> </mo><mtext>cm</mtext></math>, and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mi>θ</mi></math>.</p>
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>&nbsp;</mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>3</mn></mfrac></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext></math> is acute, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mfenced><mrow><mn>2</mn><mo>×</mo><mtext>C</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>B</mtext></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The magnitudes of two vectors, <em><strong>u</strong></em> and <em><strong>v</strong></em>, are 4 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt 3 "> <msqrt> <mn>3</mn> </msqrt> </math></span> respectively. The angle between <em><strong>u</strong></em> and <em><strong>v</strong></em> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{6}"> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span>.</p>
<p>Let <em><strong>w</strong></em> = <em><strong>u</strong></em> − <em><strong>v</strong></em>. Find the magnitude of <em><strong>w</strong></em>.</p>
</div>
<br><hr><br><div class="specification">
<p>Julio is making a wooden pencil case in the shape of a large pencil. The pencil case consists of a cylinder attached to a cone, as shown.</p>
<p>The cylinder has a radius of <em>r</em> cm and a height of 12 cm.</p>
<p>The cone has a base radius of <em>r</em> cm and a height of 10 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the slant height of the cone <strong>in terms of <em>r</em></strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total external surface area of the pencil case rounded to 3 significant figures is 570 cm<sup>2</sup>.</p>
<p>Using your graphic display calculator, calculate the value of <em>r</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4\,{\text{cos}}\left( {\frac{x}{2}} \right) + 1"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 6\pi "> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>6</mn> <mi>π</mi> </math></span>. Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) &gt; 2\sqrt 2  + 1"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> <mo>+</mo> <mn>1</mn> </math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows triangle PQR.</p>
<p><img src="images/Schermafbeelding_2017-08-11_om_09.36.55.png" alt="M17/5/MATME/SP1/ENG/TZ1/03"></p>
<p>Find PR.</p>
</div>
<br><hr><br>