File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/markSceme-SL-paper2html
File size: 1.44 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>An arithmetic sequence has first term <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> and common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>th term of the sequence is zero, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> denote the sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the sequence.</p>
<p>Find the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>25</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempting to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>use of a graph or a table to attempt to find the maximum sum&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>750</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><strong><br>EITHER</strong></p>
<p>recognizing maximum occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>25</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>25</mn></msub><mo>=</mo><mfrac><mn>25</mn><mn>2</mn></mfrac><mfenced><mrow><mn>60</mn><mo>+</mo><mn>0</mn></mrow></mfenced><mo>,</mo><mo>&nbsp;</mo><msub><mi>S</mi><mn>25</mn></msub><mo>=</mo><mfrac><mn>25</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>60</mn><mo>+</mo><mn>24</mn><mo>×</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempting to calculate&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>24</mn></msub></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>24</mn></msub><mo>=</mo><mfrac><mn>24</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>×</mo><mn>60</mn><mo>+</mo><mn>23</mn><mo>×</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>750</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></math> of water <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes after being poured into a cup can be modelled by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><msub><mi>T</mi><mn>0</mn></msub><msup><mi mathvariant="normal">e</mi><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><mi>k</mi></math>&nbsp;are positive constants.</p>
<p>The water is initially boiling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math>. When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math>, the temperature of the water is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature of the water when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>15</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> versus <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, clearly indicating any asymptotes with their&nbsp;equations and stating the coordinates of any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time taken for the water to have a temperature of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math>. Give your answer&nbsp;correct to the nearest second.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The model for the temperature of the water can also be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><msub><mi>T</mi><mn>0</mn></msub><msup><mi>a</mi><mfrac><mi>t</mi><mn>10</mn></mfrac></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is a positive constant.</p>
<p>Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mi>T</mi><mo>=</mo><mn>100</mn><mo>⇒</mo><mn>100</mn><mo>=</mo><msub><mi>T</mi><mn>0</mn></msub><msup><mtext>e</mtext><mn>0</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>AG</strong></p>
<p>&nbsp;</p>
<p><strong>[1</strong><strong>&nbsp;mark]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn><mo>,</mo><mo>&nbsp;</mo><mi>T</mi><mo>=</mo><mn>70</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>10</mn><mi>k</mi></mrow></msup></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mn>10</mn><mi>k</mi></mrow></msup><mi mathvariant="normal">=</mi><mfrac><mn>7</mn><mn>10</mn></mfrac></math></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>10</mn><mi>k</mi><mo>=</mo><mi>ln</mi><mfrac><mn>7</mn><mn>10</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfrac><mn>7</mn><mn>10</mn></mfrac><mo>=</mo><mo>-</mo><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>&nbsp; or&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>ln</mi><mfrac><mn>7</mn><mn>10</mn></mfrac><mo>=</mo><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mn>10</mn><mi>k</mi></mrow></msup><mi mathvariant="normal">=</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mi>k</mi><mo>=</mo><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>AG</strong></p>
<p>&nbsp;</p>
<p><strong>[3</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>15</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>58</mn><mo>.</mo><mn>6</mn><mo> </mo><mfenced><mrow><mo>°</mo><mtext>C</mtext></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[2</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>a decreasing exponential&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>100</mn></mrow></mfenced></math> labelled on the graph or stated&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>→</mo><mn>0</mn></math>&nbsp;as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>→</mo><mo>∞</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>horizontal asymptote <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>0</mn></math> labelled on the graph or stated&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>A0</strong> for stating <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> as the horizontal asymptote.</p>
<p>&nbsp;</p>
<p><strong>[4</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup><mo>=</mo><mn>50</mn></math>&nbsp; where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p>uses an appropriate graph to attempt to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>manipulates logs to attempt to solve for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> e.g.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></mrow></mfenced><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>10</mn></mfrac></mstyle><mi>ln</mi><mstyle displaystyle="true"><mfrac><mn>10</mn><mn>7</mn></mfrac></mstyle></mrow></mfrac><mo>=</mo><mn>19</mn><mo>.</mo><mn>433</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p>temperature will be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math> after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn></math> minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>26</mn></math> seconds&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[4</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitutes&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>70</mn></math>&nbsp;into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><msub><mi>T</mi><mn>0</mn></msub><msup><mi>a</mi><mfrac><mi>t</mi><mn>10</mn></mfrac></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo>=</mo><mn>100</mn><msup><mi>a</mi><mfrac><mn>10</mn><mn>10</mn></mfrac></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>7</mn><mn>10</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><msup><mi>a</mi><mfrac><mi>t</mi><mn>10</mn></mfrac></msup><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></math>&nbsp; where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi></mrow></msup><mo>=</mo><msup><mi>a</mi><mfrac><mn>1</mn><mn>10</mn></mfrac></msup><mo>⇒</mo><mi>a</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>10</mn><mi>k</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mfenced><mrow><mi>-</mi><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></mrow></mfenced><mi>t</mi></mrow></msup></mfenced><mfrac><mn>10</mn><mi>t</mi></mfrac></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></mrow></msup><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><msup><mtext>e</mtext><mrow><mi>ln</mi><mfrac><mn>7</mn><mn>10</mn></mfrac></mrow></msup></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>7</mn><mn>10</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[3</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curves&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mn>1</mn><mo>+</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi mathvariant="normal">π</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of the points of intersection of the two curves.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>, of the region enclosed by the two curves.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>attempts to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mn>1</mn><mo>+</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>76</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>54</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong><strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>A1A0</strong> if additional solutions outside the domain are given.</p>
<p>&nbsp;</p>
<p><strong>[3</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><munderover><mo>∫</mo><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>762</mn><mo>…</mo></mrow><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>537</mn><mo>…</mo></mrow></munderover><mfenced><mrow><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mn>1</mn><mo>+</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo> </mo><mi mathvariant="normal">d</mi><mi>x</mi></math>&nbsp;(or equivalent)&nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)(A1)</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>M1</strong> for attempting to form an integrand involving “top curve” − “bottom curve”.</p>
<p>&nbsp;</p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>47</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A2</strong></p>
<p>&nbsp;</p>
<p><strong>[4</strong><strong>&nbsp;marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = (2x + 2)(5 - {x^2})">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>5</mn>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {5^x} + 6x - 6">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>5</mn>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand the expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Draw </strong>the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 \leqslant x \leqslant 3">
  <mo>−</mo>
  <mn>3</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40 \leqslant y \leqslant 20">
  <mo>−</mo>
  <mn>40</mn>
  <mo>⩽</mo>
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>20</mn>
</math></span>. Use a scale of 2 cm to represent 1 unit on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and 1 cm to represent 5 units on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the point of intersection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10x - 2{x^3} + 10 - 2{x^2}">
  <mn>10</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>10</mn>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>The expansion may be seen in part (b)(ii).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10 - 6{x^2} - 4x">
  <mn>10</mn>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>x</mi>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (b)(i). Award <strong><em>(A1)</em>(ft) </strong>for each correct term. Award at most <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A0) </em></strong>if extra terms are seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-14_om_06.23.51.png" alt="N17/5/MATSD/SP2/ENG/TZ0/05.d/M">     <strong><em>(A1)(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1) </em></strong>for correct scale; axes labelled and drawn with a ruler.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for their correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts in approximately correct location.</p>
<p>Award <strong><em>(A1) </em></strong>for correct minimum and maximum points in approximately correct location.</p>
<p>Award <strong><em>(A1) </em></strong>for a smooth continuous curve with approximate correct shape. The curve should be in the given domain.</p>
<p>Follow through from part (a) for the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1.49,{\text{ }}13.9){\text{ }}\left( {(1.48702 \ldots ,{\text{ }}13.8714 \ldots )} \right)">
  <mo stretchy="false">(</mo>
  <mn>1.49</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>13.9</mn>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>1.48702</mn>
      <mo>…</mo>
      <mo>,</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mn>13.8714</mn>
      <mo>…</mo>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(G1)</em>(ft)<em>(G1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(G1) </em></strong>for 1.49 and <strong><em>(G1) </em></strong>for 13.9 written as a coordinate pair. Award at most <strong><em>(G0)(G1) </em></strong>if parentheses are missing. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.49">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1.49</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 13.9">
  <mi>y</mi>
  <mo>=</mo>
  <mn>13.9</mn>
</math></span>. Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{3}{x^3} + \frac{3}{4}{x^2} - x - 1">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The function has one local maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span> and one local minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = q">
  <mi>x</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> for −3 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ 3 and −4 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> ≤ 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>−1    <strong><em>(A1)</em></strong></p>
<p><strong>Note:</strong> Accept (0, −1).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">   <strong><em>(A1)(A1)(A1)(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for correct window and axes labels, −3 to 3 should be indicated on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and −4 to 12 on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.<br><strong><em>    (A1)</em></strong>) for smooth curve with correct cubic shape;<br><strong><em>    (A1)</em></strong> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts: one close to −3, the second between −1 and 0, and third between 1 and 2; and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept at approximately −1;<br><strong><em>    (A1)</em></strong> for local minimum in the 4th quadrant and maximum in the 2nd quadrant, in approximately correct positions.<br>Graph paper does not need to be used. If window not given award at most <em><strong>(A0)(A1)(A0)(A1)</strong></em>.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1.27 \leqslant {\text{ }}f\left( x \right) \leqslant 1.33\,\,\,\left( { - 1.27083 \ldots  \leqslant {\text{ }}f\left( x \right) \leqslant 1.33333 \ldots {\text{,}}\,\, - \frac{{61}}{{48}} \leqslant {\text{ }}f\left( x \right) \leqslant \frac{4}{3}} \right)">
  <mo>−</mo>
  <mn>1.27</mn>
  <mo>⩽</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>⩽</mo>
  <mn>1.33</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>1.27083</mn>
      <mo>…</mo>
      <mo>⩽</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mi>f</mi>
      <mrow>
        <mo>(</mo>
        <mi>x</mi>
        <mo>)</mo>
      </mrow>
      <mo>⩽</mo>
      <mn>1.33333</mn>
      <mo>…</mo>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mfrac>
        <mrow>
          <mn>61</mn>
        </mrow>
        <mrow>
          <mn>48</mn>
        </mrow>
      </mfrac>
      <mo>⩽</mo>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mi>f</mi>
      <mrow>
        <mo>(</mo>
        <mi>x</mi>
        <mo>)</mo>
      </mrow>
      <mo>⩽</mo>
      <mfrac>
        <mn>4</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>     <strong><em>(A1)</em>(ft)</strong><strong><em>(A1)</em>(ft)</strong><strong><em>(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for −1.27 seen, <strong><em>(A1)</em></strong> for 1.33 seen, and <strong><em>(A1)</em></strong> for correct weak inequalities with <strong>their</strong> endpoints in the correct order. For example, award <em><strong>(A0)(A0)(A0)</strong></em> for answers like <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 \leqslant {\text{ }}f\left( x \right) \leqslant 2">
  <mn>5</mn>
  <mo>⩽</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>⩽</mo>
  <mn>2</mn>
</math></span>. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> in place of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>. Accept alternative correct notation such as [−1.27, 1.33].</p>
<p>Follow through from their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span> values from part (g) only if their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( p \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>p</mi>
    <mo>)</mo>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( q \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>q</mi>
    <mo>)</mo>
  </mrow>
</math></span> values are between −4 and 12. Award <em><strong>(A0)(A0)(A0)</strong></em> if their values from (g) are given as the endpoints.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on the circumference of the circle.</p>
<p style="text-align: left;">Chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AB</mtext></mfenced></math>&nbsp;has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mi>θ</mi></math>&nbsp;radians.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>3</mn><mi>θ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><msqrt><mn>18</mn><mo>-</mo><mn>18</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></msqrt></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> is twice the length of chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AB</mtext></mfenced></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><strong>EITHER</strong></p>
<p>uses the arc length formula&nbsp; &nbsp; &nbsp; &nbsp; <strong>(M1)</strong></p>
<p>arc length is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mrow><mn>2</mn><mi mathvariant="normal">π</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>length of arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>&nbsp;is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>the sum of the lengths of arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math> and arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi mathvariant="normal">π</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p>so arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>3</mn><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>AG</strong></p>
<p>&nbsp;</p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>uses the cosine rule &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>L</mi><mn>2</mn></msup><mo>=</mo><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><msup><mn>3</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mn>3</mn></mfenced><mfenced><mn>3</mn></mfenced><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><msqrt><mn>18</mn><mo>-</mo><mn>18</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p>&nbsp;</p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>3</mn><mi>θ</mi><mo>=</mo><mn>2</mn><msqrt><mn>18</mn><mo>-</mo><mn>18</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>attempts to solve for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>49</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> lie on opposite banks of a river, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext></math> is the shortest distance&nbsp;across the river. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> represents the centre of a city which is located on the riverbank.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PB</mtext><mo>=</mo><mn>215</mn><mo>&#8202;</mo><mtext>km</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext><mo>=</mo><mn>65</mn><mo>&#8202;</mo><mtext>km</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>P</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>90</mn><mo>&#176;</mo></math>.</p>
<p>The following diagram shows this information.</p>
<p><img src=""></p>
<p>A boat travels at an average speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>42</mn><mo>&#8202;</mo><msup><mtext>km&#8202;h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>. A bus travels along the straight road&nbsp;between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at an average speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>84</mn><mo>&#8202;</mo><msup><mtext>km&#8202;h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>Find the travel time, in hours, from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> given that</p>
</div>

<div class="specification">
<p>There is a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, which lies on the road from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext><mo>=</mo><mi>x</mi><mo>&#8202;</mo><mtext>km</mtext></math>. The boat travels&nbsp;from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, and the bus travels from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>

<div class="specification">
<p>An excursion involves renting the boat and the bus. The cost to rent the boat is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo>&#8202;</mo><mn>200</mn></math>&nbsp;per hour, and the cost to rent the bus is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo>&#8202;</mo><mn>150</mn></math> per hour.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the boat is taken from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, and the bus from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the boat travels directly to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for the travel time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is a minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the new value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> so that the total cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> to travel from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> via <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> is a minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum total cost for this journey.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>AP</mtext><mn>42</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>215</mn><mn>84</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>65</mn><mn>42</mn></mfrac><mo>+</mo><mfrac><mn>215</mn><mn>84</mn></mfrac></math>                 <em><strong>(M1)</strong></em></p>
<p>time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>10714</mn><mo>…</mo></math> (hours)</p>
<p>time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>11</mn></math> (hours)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><msqrt><msup><mn>215</mn><mn>2</mn></msup><mo>+</mo><msup><mn>65</mn><mn>2</mn></msup></msqrt><mfenced><mrow><mo>=</mo><mn>224</mn><mo>.</mo><mn>610</mn><mo>…</mo></mrow></mfenced></math>                 <em><strong>(A1)</strong></em></p>
<p>time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>5</mn><mo>.</mo><mn>34787</mn><mo>…</mo></math> (hours)</p>
<p>time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>5</mn><mo>.</mo><mn>35</mn></math> (hours)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AD</mtext><mo>=</mo><msqrt><msup><mfenced><mrow><mn>215</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>65</mn><mn>2</mn></msup></msqrt></math>                 <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><msqrt><msup><mfenced><mrow><mn>215</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>65</mn><mn>2</mn></msup></msqrt><mn>42</mn></mfrac></math>                 <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mfrac><msqrt><msup><mfenced><mrow><mn>215</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>65</mn><mn>2</mn></msup></msqrt><mn>42</mn></mfrac><mo>+</mo><mfrac><mi>x</mi><mn>84</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>430</mn><mi>x</mi><mo>+</mo><mn>50450</mn></msqrt><mn>42</mn></mfrac><mo>+</mo><mfrac><mi>x</mi><mn>84</mn></mfrac></mrow></mfenced></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find the minimum for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> (may be seen in (iii))                 <em><strong>(M1)</strong></em></p>
<p>graph of  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>'</mo><mo>=</mo><mn>0</mn></math>  OR  graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>'</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>177</mn><mo>.</mo><mn>472</mn><mo>…</mo><mo> </mo><mtext>km</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>177</mn><mo> </mo><mtext>km</mtext></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>89980</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>90</mn></math> (hours)                 <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Only allow <strong><em>FT</em></strong> in (b)(ii) and (iii) for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>215</mn></math> and a function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> that has a minimum in that interval.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>200</mn><mo>·</mo><mfrac><msqrt><msup><mfenced><mrow><mn>215</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>65</mn><mn>2</mn></msup></msqrt><mn>42</mn></mfrac><mo>+</mo><mn>150</mn><mo>·</mo><mfrac><mi>x</mi><mn>84</mn></mfrac></math>                 <em><strong>(A1)</strong></em></p>
<p>valid approach to find the minimum for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mfenced><mi>x</mi></mfenced></math>  (may be seen in (ii))                 <em><strong>(M1)</strong></em></p>
<p>graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>'</mo><mo>=</mo><mn>0</mn></math>  OR  graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>'</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>188</mn><mo>.</mo><mn>706</mn><mo>…</mo><mo> </mo><mtext>km</mtext></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>189</mn><mo> </mo><mtext>km</mtext></math>                 <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Only allow <em><strong>FT</strong></em> from (b) if the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> has a minimum in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>215</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>670</mn><mo>.</mo><mn>864</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mo>$</mo><mn>671</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only allow <em><strong>FT</strong></em> from (c)(i) if the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> has a minimum in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>215</mn></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to form composite (in any order)       <strong><em>(M1)</em></strong></p>
<p>eg    <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo> </mo><mo>,</mo><mo> </mo><mi>g</mi><mfenced><mrow><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo>-</mo><msup><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></math>      <em><strong>A1  N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach using GDC      <strong><em>(M1)</em></strong></p>
<p>eg     <img src=""> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>85</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>85</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>85056</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>85</mn></math>      <em><strong>A1  N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – (using properties of functions)</strong></p>
<p>recognizing inverse relationship       <strong><em>(M1)</em></strong></p>
<p>eg     <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mi>a</mi></mrow></mfenced></math></p>
<p>equating <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>a</mi></math> to their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> from (i)       <strong><em>(A1)</em></strong></p>
<p>eg     <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>a</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>85056</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>42528</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>43</mn></math>       <em><strong>A1  N2</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – (finding inverse)</strong></p>
<p>interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (seen anywhere)       <strong><em>(M1)</em></strong></p>
<p>eg     <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>y</mi><mn>3</mn></msup><mo> </mo><mo>,</mo><mo> </mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mroot><mrow><mn>4</mn><mo>-</mo><mi>x</mi></mrow><mn>3</mn></mroot></math></p>
<p>correct working       <strong><em>(A1)</em></strong></p>
<p>eg     <math xmlns="http://www.w3.org/1998/Math/MathML"><mroot><mrow><mn>4</mn><mo>-</mo><mn>2</mn><mi>a</mi></mrow><mn>3</mn></mroot><mo>=</mo><mi>ln</mi><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced></math>, sketch showing intersection of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>42528</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>43</mn></math>       <em><strong>A1  N2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 2<em>x</em><sup>3</sup>&nbsp;− 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2, for&nbsp;−1 &lt; <em>x</em> &lt; 3</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve for −1 &lt; <em>x</em> &lt; 3 and −2 &lt; <em>y</em> &lt; 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A teacher asks her students to make some observations about the curve.</p>
<p>Three students responded.<br><strong>Nadia</strong> said <em>“The x-intercept of the curve is between −1 and zero”.</em><br><strong>Rick</strong> said <em>“The curve is decreasing when x &lt; 1 ”.</em><br><strong>Paula</strong> said <em>“The gradient of the curve is less than zero between x = 1 and x = 2 ”.</em></p>
<p>State the name of the student who made an <strong>incorrect</strong> observation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{dy}}}}{{{\text{dx}}}}"> <mfrac> <mrow> <mrow> <mtext>dy</mtext> </mrow> </mrow> <mrow> <mrow> <mtext>dx</mtext> </mrow> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the stationary points of the curve are at <em>x</em> = 1 and <em>x</em> = 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2 = <em>k</em> has <strong>three</strong> solutions, find the possible values of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""><em><strong>(A1)(A1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct window (condone a window which is slightly off) and axes labels. An indication of window is necessary. −1 to 3 on the <em>x</em>-axis and −2 to 12 on the <em>y</em>-axis and a graph in that window.<br><em><strong>(A1)</strong></em> for correct shape (curve having cubic shape and must be smooth).<br><em><strong>(A1)</strong></em> for both stationary points in the 1<sup>st</sup> quadrant with approximate correct position,<br><em><strong>(A1)</strong></em> for intercepts (negative <em>x</em>-intercept and positive <em>y</em> intercept) with approximate correct position.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rick     <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if extra names stated.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6<em>x</em><sup>2</sup> − 18<em>x</em> + 12     <strong><em>(A1)(A1)(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for each correct term. Award at most <strong><em>(A1)(A1)(A0)</em></strong> if extra terms seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6<em>x</em><sup>2</sup> − 18<em>x</em> + 12 = 0     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their derivative to 0. If the derivative is not explicitly equated to 0, but a subsequent solving of their correct equation is seen, award <em><strong>(M1)</strong></em>.</p>
<p>6(<em>x </em> − 1)(<em>x</em> − 2) = 0  (or equivalent)      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award (M1) for correct factorization. The final <em><strong>(M1)</strong></em> is awarded only if answers are clearly stated.</p>
<p>Award <em><strong>(M0)(M0)</strong></em> for substitution of 1 and of 2 in their derivative.</p>
<p><em>x =</em> 1, <em>x =</em> 2 <em><strong>(AG)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 &lt; <em>k</em> &lt; 7     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for an inequality with 6, award <em><strong>(A1)</strong></em><strong>(ft)</strong> for an inequality with 7 from their part (c) provided it is greater than 6, <em><strong>(A1)</strong></em> for their correct strict inequalities. Accept ]6, 7[ or (6, 7).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Tommaso plans to compete in a regional bicycle race after he graduates, however he needs to buy a racing bicycle. He finds a bicycle that costs 1100 euro (EUR). Tommaso has 950 EUR and invests this money in an account that pays 5 % interest per year, <strong>compounded monthly</strong>.</p>
</div>

<div class="specification">
<p>The cost of the bicycle, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>, can be modelled by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20x + 1100">
  <mi>C</mi>
  <mo>=</mo>
  <mn>20</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1100</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is the number of years since Tommaso invested his money.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amount that he will have in his account after 3 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the cost of the bicycle and the amount of money in Tommaso’s account after 3 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> complete <strong>months</strong> Tommaso will, for the first time, have enough money in his account to buy the bicycle.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="950 \times {\left( {1 + \frac{5}{{12 \times 100}}} \right)^{12 \times 3}}">
  <mn>950</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mfrac>
            <mn>5</mn>
            <mrow>
              <mn>12</mn>
              <mo>×</mo>
              <mn>100</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mn>12</mn>
        <mo>×</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>    <strong><em>(M1)</em></strong><strong><em>(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for substitution in the compound interest formula: <em><strong>(A1)</strong></em> for correct substitution.</p>
<p><strong>OR</strong></p>
<p>N = 3<br>I% = 5<br>PV = 950<br>P/Y = 1<br>C/Y = 12    <strong><em>(A1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for C/Y = 12 seen, <em><strong>(M1)</strong></em> for other correct entries.</p>
<p><strong>OR</strong></p>
<p>N = 36<br>I% = 5<br>PV = 950<br>P/Y = 12<br>C/Y = 12    <strong><em>(A1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for C/Y = 12 seen, <em><strong>(M1)</strong></em> for other correct entries.</p>
<p>1103.40 (EUR)    <strong><em>(A1)</em></strong><strong><em>(G3)</em></strong></p>
<p><strong>Note:</strong> Answer must be given to 2 decimal places.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(20 × 3 + 1100) − 1103.40    <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct substitution into cost of bike function, <strong><em>(M1)</em></strong> for subtracting their answer to part (a). This subtraction may be implied by their final answer (follow through from their part (a) for this implied subtraction).</p>
<p>55.60 (EUR)    <strong><em>(A1)</em>(ft)</strong><strong><em>(G3)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (a). The answer must be two decimal places.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="950 \times {\left( {1 + \frac{5}{{12 \times 100}}} \right)^{12x}} = 20x + 1100">
  <mn>950</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mfrac>
            <mn>5</mn>
            <mrow>
              <mn>12</mn>
              <mo>×</mo>
              <mn>100</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mn>12</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>20</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1100</mn>
</math></span>     <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for their correct substitution in the compound interest formula with a variable in the exponent; <em><strong>(M1)</strong></em> for comparing their expressions provided variables are the same (not an expression with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for years and another with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> representing months). Award at most <em><strong>(M0)(M1)(A0)(M1)(A0)</strong></em> for substitution of an integer in both expressions and comparison of the results. Accept inequality.</p>
<p>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> =) 4.52157… (years)    <strong><em>(A1)</em>(ft)</strong></p>
<p>4.52157… × 12 (= 54.2588…)     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying <strong>their</strong> value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> by 12. This may be implied.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> = 55 (months)    <strong><em>(A1)</em>(ft)</strong><strong><em>(G4)</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="950 \times {\left( {1 + \frac{5}{{12 \times 100}}} \right)^m} = 20 \times \frac{m}{{12}} + 1100">
  <mn>950</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>1</mn>
          <mo>+</mo>
          <mfrac>
            <mn>5</mn>
            <mrow>
              <mn>12</mn>
              <mo>×</mo>
              <mn>100</mn>
            </mrow>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mi>m</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>20</mn>
  <mo>×</mo>
  <mfrac>
    <mi>m</mi>
    <mrow>
      <mn>12</mn>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mn>1100</mn>
</math></span>     <strong><em>(M1)</em></strong><strong><em>(M1)</em></strong><strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for their correct substitution in the compound interest formula with a variable in the exponent to solve; <strong>(M1)</strong> for comparing their expressions provided variables are the same; <em><strong>(M1)</strong></em> for converting years to months in these expressions. Award at most <em><strong>(M0)(M1)(A0)(M1)(A0)</strong></em> for substitution of an integer in both expressions and comparison of the results. Accept inequality.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> = 54.2588… (months)    <strong><em>(A1)</em>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> = 55 (months)    <strong><em>(A1)</em>(ft)</strong><strong><em>(G4)</em></strong></p>
<p> </p>
<p><em><strong>METHOD 3</strong></em></p>
<p><em><strong><img src="">     (M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for each graph drawn.</p>
<p>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> =) 4.52157… (years)    <strong><em>(A1)</em>(ft)</strong></p>
<p>4.52157… × 12 (= 54.2588…)     <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for multiplying <strong>their</strong> value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> by 12. This may be implied.</p>
<p>      If the graphs drawn are in terms of months, leading to a value of 54.2588…, award <em><strong>(M1)(M1)(M1)(A1)</strong></em>, consistent with METHOD 2.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> = 55 (months)    <strong><em>(A1)</em>(ft)</strong><strong><em>(G4)</em></strong></p>
<p><strong>Note: </strong>Follow through for a compound interest formula consistent with their part (a). The final <strong><em>(A1)</em>(ft)</strong> can only be awarded for correct answer, or their correct answer following through from previous parts and only if value is rounded up. For example, do not award <strong><em>(M0)(M0)(A0)(M1)(A1)</em>(ft)</strong> for an unsupported “5 years × 12 = 60” or similar.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \geqslant 0">
  <mi>a</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \geqslant 0">
  <mi>b</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 0.3 - a"> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the greatest possible expected value and the least possible expected value.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct approach &nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A1</span></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 0.5 + b + a = 1"> <mn>0.2</mn> <mo>+</mo> <mn>0.5</mn> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.7 + a + b = 1"> <mn>0.7</mn> <mo>+</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 0.3 - a"> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em><em><strong>&nbsp; N0</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 4 \times 0.5 + a \times b + \left( {a + b - 0.5} \right) \times a"> <mn>0.2</mn> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> <mo>+</mo> <mi>a</mi> <mo>×</mo> <mi>b</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−</mo> <mn>0.5</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>a</mi> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 2 + a \times b - 0.2a"> <mn>0.2</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mi>a</mi> <mo>×</mo> <mi>b</mi> <mo>−</mo> <mn>0.2</mn> <mi>a</mi> </math></span></p>
<p>valid attempt to express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span> in one variable&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 4 \times 0.5 + a \times \left( {0.3 - a} \right) + \left( { - 0.2} \right) \times a"> <mn>0.2</mn> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> <mo>+</mo> <mi>a</mi> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>0.2</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>a</mi> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.2 + 0.1a - {a^2}"> <mn>2.2</mn> <mo>+</mo> <mn>0.1</mn> <mi>a</mi> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </math>,</span></p>
<p><em>&nbsp; &nbsp;</em>&nbsp; &nbsp; &nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2 + 4 \times 0.5 + \left( {0.3 - b} \right) \times b + \left( { - 0.2} \right) \times \left( {0.3 - b} \right)"> <mn>0.2</mn> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mn>0.5</mn> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>−</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>b</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>0.2</mn> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mo>−</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </math></span>,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.14 + 0.5b - {b^2}"> <mn>2.14</mn> <mo>+</mo> <mn>0.5</mn> <mi>b</mi> <mo>−</mo> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p>correct value of greatest&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.2025"> <mn>2.2025</mn> </math></span>&nbsp; (exact)</p>
<p>valid attempt to find least value&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp; &nbsp;graph with minimum indicated,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( 0 \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </math></span>&nbsp; <strong>and&nbsp;&nbsp;</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( {0.3} \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><em>&nbsp; &nbsp;</em>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0{\text{, }}2.2} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mrow> <mtext>,&nbsp;</mtext> </mrow> <mn>2.2</mn> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp; <strong>and</strong>&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.3{\text{, }}2.14} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mrow> <mtext>,&nbsp;</mtext> </mrow> <mn>2.14</mn> </mrow> <mo>)</mo> </mrow> </math></span> if&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span>&nbsp;in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span></p>
<p><em>&nbsp; &nbsp;</em>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0{\text{, }}2.14} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mrow> <mtext>,&nbsp;</mtext> </mrow> <mn>2.14</mn> </mrow> <mo>)</mo> </mrow> </math></span>&nbsp;&nbsp;<strong>and</strong>&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0.3{\text{, }}2.2} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0.3</mn> <mrow> <mtext>,&nbsp;</mtext> </mrow> <mn>2.2</mn> </mrow> <mo>)</mo> </mrow> </math></span> if&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span>&nbsp;in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span></p>
<p>correct value of least&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)"> <mrow> <mtext>E</mtext> </mrow> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </math></span>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp; &nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.14"> <mn>2.14</mn> </math></span>&nbsp; (exact)</p>
<p>difference <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="= 0.0625"> <mo>=</mo> <mn>0.0625</mn> </math></span> (exact)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><em><strong>&nbsp; N2</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 6 - \ln ({x^2} + 2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>6</mn>
  <mo>−<!-- − --></mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p,{\text{ }}4)">
  <mo stretchy="false">(</mo>
  <mi>p</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p > 0">
  <mi>p</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<p><img src="images/Schermafbeelding_2018-02-12_om_13.30.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/05.b"></p>
<p>The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - p"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p"> <mi>x</mi> <mo>=</mo> <mi>p</mi> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(p) = 4"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> </math></span>, intersection with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4,{\text{ }} \pm 2.32"> <mi>y</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>±</mo> <mn>2.32</mn> </math></span></p>
<p>2.32143</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \sqrt {{{\text{e}}^2} - 2} "> <mi>p</mi> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> </msqrt> </math></span> (exact), 2.32     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <strong>either their</strong> limits <strong>or</strong> the function into volume formula (must involve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}"> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </math></span>, accept reversed limits and absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}x"> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span>, but do not accept any other errors)     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{ - 2.32}^{2.32} {{f^2},{\text{ }}\pi \int {{{\left( {6 - \ln ({x^2} + 2)} \right)}^2}{\text{d}}x,{\text{ 105.675}}} } "> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>2.32</mn> </mrow> <mrow> <mn>2.32</mn> </mrow> </msubsup> <mrow> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>π</mi> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>,</mo> <mrow> <mtext> 105.675</mtext> </mrow> </mrow> </mrow> </math></span></p>
<p>331.989</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{volume}} = 332"> <mrow> <mtext>volume</mtext> </mrow> <mo>=</mo> <mn>332</mn> </math></span>     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{27}}{{{x^2}}} - 16x,\,\,\,x \ne 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>27</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>−<!-- − --></mo>
  <mn>16</mn>
  <mi>x</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f </em>(<em>x</em>), for −4 ≤ <em>x</em> ≤ 3 and −50 ≤ <em>y</em> ≤ 100.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the tangent to the graph of <em>y</em> = <em>f </em>(<em>x</em>) at the point (–2, 38.75).</p>
<p>Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of the function <em>g </em>(<em>x</em>) = 10<em>x</em> + 40 on the same axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""><em><strong>(A1)(A1)(A1)(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for axis labels and some indication of scale; accept <em>y</em> or <em>f</em>(<em>x</em>).</p>
<p>Use of graph paper is not required. If no scale is given, assume the given window for zero and minimum point.</p>
<p>Award <em><strong>(A1)</strong></em> for smooth curve with correct general shape.</p>
<p>Award <em><strong>(A1)</strong></em> for <em>x</em>-intercept closer to <em>y</em>-axis than to end of sketch.</p>
<p>Award <em><strong>(A1)</strong></em> for correct local minimum with <em>x</em>-coordinate closer to <em>y</em>-axis than end of sketch and <em>y</em>-coordinate less than half way to top of sketch.</p>
<p>Award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em><em><strong>(A1)</strong></em><em><strong>(A1)</strong></em> if the sketch intersects the <em>y</em>-axis or if the sketch curves away from the <em>y</em>-axis as<em> x</em> approaches zero.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em> = −9.25<em>x</em> + 20.3  (<em>y</em> = −9.25<em>x</em> + 20.25)      <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for −9.25<em>x</em>, award <em><strong>(A1)</strong></em> for +20.25, award a maximum of <em><strong>(A0)(A1)</strong></em> if answer is not an equation.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct line, <em>y</em> = 10<em>x</em> + 40, seen on sketch     <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for straight line with positive gradient, award <em><strong>(A1)</strong></em> for <em>x</em>-intercept and <em>y</em>-intercept in approximately the correct positions. Award at most <em><strong>(A0)(A1)</strong></em> if ruler not used. If the straight line is drawn on different axes to part (a), award at most <em><strong>(A0)(A1)</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, such that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5, 8\,{\text{sin}}\left( {\frac{\pi }{6}\left( {x + 1} \right)} \right) + b"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>5</mn><mo>.</mo><mn>8</mn><mspace width="thinmathspace"></mspace><mtext>sin</mtext><mrow><mo>(</mo><mfrac><mi>π</mi><mn>6</mn></mfrac><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>b</mi></math></span>, 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>&nbsp;≤ 10,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{R}"> <mi>b</mi> <mo>∈<!-- &#8712; --></mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
</div>

<div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>&nbsp;has a local maximum at the point (2, 21.8) , and a local minimum at (8, 10.2).</p>
</div>

<div class="specification">
<p>A second function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = p\,{\text{sin}}\left( {\frac{{2\pi }}{9}\left( {x - 3.75} \right)} \right) + q">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>p</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>2</mn>
          <mi>π<!-- π --></mi>
        </mrow>
        <mn>9</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>−<!-- − --></mo>
          <mn>3.75</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
</math></span>,&nbsp; 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 10;&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{R}">
  <mi>q</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> passes through the points (3, 2.5) and (6, 15.1).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>(6).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which the functions have the greatest difference.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct approach      <em><strong>A1</strong></em></p>
<p>eg   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{6} = \frac{{2\pi }}{{period}}">
  <mfrac>
    <mi>π</mi>
    <mn>6</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>π</mi>
    </mrow>
    <mrow>
      <mi>p</mi>
      <mi>e</mi>
      <mi>r</mi>
      <mi>i</mi>
      <mi>o</mi>
      <mi>d</mi>
    </mrow>
  </mfrac>
</math></span>  (or equivalent)</p>
<p>period = 12       <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<h1> </h1>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{max}} + {\text{min}}}}{2}\,\,b = {\text{max}} - {\text{amplitude}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>max</mtext>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>min</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>=</mo>
  <mrow>
    <mtext>max</mtext>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mtext>amplitude</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{21.8 + 10.2}}{2}">
  <mfrac>
    <mrow>
      <mn>21.8</mn>
      <mo>+</mo>
      <mn>10.2</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>, or equivalent</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> = 16       <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<h1> </h1>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into <strong>their</strong> function     <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5.8\,{\text{sin}}\left( {\frac{\pi }{6}\left( {6 + 1} \right)} \right) + 16">
  <mn>5.8</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>π</mi>
        <mn>6</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>6</mn>
          <mo>+</mo>
          <mn>1</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>16</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>(6) = 13.1       <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<h1> </h1>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to set up a system of equations    <em><strong>(M1)</strong></em></p>
<p>two correct equations       <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\,{\text{sin}}\left( {\frac{{2\pi }}{9}\left( {3 - 3.75} \right)} \right) + q = 2.5">
  <mi>p</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>2</mn>
          <mi>π</mi>
        </mrow>
        <mn>9</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>3</mn>
          <mo>−</mo>
          <mn>3.75</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
  <mo>=</mo>
  <mn>2.5</mn>
</math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\,{\text{sin}}\left( {\frac{{2\pi }}{9}\left( {6 - 3.75} \right)} \right) + q = 15.1">
  <mi>p</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>2</mn>
          <mi>π</mi>
        </mrow>
        <mn>9</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>6</mn>
          <mo>−</mo>
          <mn>3.75</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
  <mo>=</mo>
  <mn>15.1</mn>
</math></span></p>
<p>valid attempt to solve system   <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> = 8.4; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span> = 6.7       <em><strong> A1A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<h1> </h1>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {f(x) - g(x)} \right|">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>f</mi>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
      <mo>−</mo>
      <mi>g</mi>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span> to find maximum difference  <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> = 1.64       <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<h1> </h1>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>For the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math></p>
</div>

<div class="specification">
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> intersect at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#60;</mo><mi>q</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the equation of the horizontal asymptote.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using an algebraic approach, show that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> is obtained by a reflection of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis followed by a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>4</mn></math></strong><strong>          <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi>a</mi><mi>c</mi></mfrac></math>  OR  table with large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>  OR  sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> showing asymptotic behaviour<strong>          <em>(M1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>4</mn></math></strong><strong>          <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math></p>
<p>attempt to interchange <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (seen anywhere)        <strong><em>M1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>+</mo><mn>4</mn><mi>y</mi><mo>=</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>+</mo><mn>4</mn><mi>x</mi><mo>=</mo><mn>4</mn><mi>y</mi><mo>+</mo><mn>1</mn></math><strong>         <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>-</mo><mn>4</mn><mi>x</mi><mo>=</mo><mn>1</mn><mo>-</mo><mn>4</mn><mi>y</mi></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>-</mo><mn>4</mn><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mn>4</mn><mi>x</mi></math><strong>         <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mi>x</mi></mrow><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math>  (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mi>x</mi></mrow><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math>)<strong>         <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reflection in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced></math><strong>         <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math><strong>         <em>(A1)</em></strong></p>
<p>reflection of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced></math> accept "now <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>"        <strong><em>M1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mfrac><mrow><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math><strong>         <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mi>x</mi></mrow><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></mrow></mfenced></math><strong>         <em>AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> If the candidate attempts to show the result using a particular coordinate on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> rather than a general coordinate on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, where appropriate, award marks as follows:<br><strong><em>M0A0</em> for eg</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>→</mo><mo>(</mo><mo>−</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math><br><strong><em>M0A0</em> for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>→</mo><mo>(</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo>−</mo><mn>3</mn><mo>)</mo></math></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math> using graph or algebraically<strong>         <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>  AND  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>1</mn></math><strong>         <em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)A0</strong> </em>if only one correct value seen.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to set up an integral to find area between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><strong>         <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mn>1</mn></mrow><mn>1</mn></munderover><mfenced><mrow><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mi>x</mi></mrow><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math><strong>         <em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>675231</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>675</mn></math><strong>         <em>A1</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates mostly found the first part of this question accessible, with many knowing how to find the equation of both asymptotes. Common errors included transposing the asymptotes, or finding where an asymptote occurred but not giving it as an equation.</p>
<p>Candidates knew how to start part (b)(i), with most attempting to find the inverse function by firstly interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>. However, many struggled with the algebra required to change the subject, and were not awarded all the marks. A common error in this part was for candidates to attempt to find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>, rather than one for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>. Few candidates were able to answer part (b)(ii). Many appeared not to know that a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></math>, or that a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>. Many of those that did, multiplied both the numerator and denominator by <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> when taking the negative of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></math> , i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfenced><mfrac><mrow><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></mfenced></math> was often simplified as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math>. However, the majority of candidates either did not attempt this question part or attempted to describe a graphical approach often involving a specific point, rather than an algebraic approach.</p>
<p>Those that attempted part (c), and had the correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, were usually able to gain all the marks. However, those that had an incorrect expression, or had found <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>, often proceeded to find an area, even when there was not an area enclosed by their two curves.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a semicircle with centre&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>&nbsp;and radius&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. Points&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P,&#160;Q</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math>&nbsp;lie on the circumference of the circle, such that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PQ</mtext><mo>=</mo><mn>2</mn><mi>r</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>Q</mtext><mo>=</mo><mi>&#952;</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>&#952;</mi><mo>&#60;</mo><mi mathvariant="normal">&#960;</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the areas of the two shaded regions are equal, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the area of either shaded region in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>             <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Do not award <em><strong>M1</strong></em> if they have only copied from the booklet and not applied to the shaded area.</p>
<p><br>Area of segment <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>r</mi><mn>2</mn></msup><mi>θ</mi><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>r</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>                 <em><strong>A1</strong></em></p>
<p>Area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>r</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></math>                 <em><strong>A1</strong></em></p>
<p>correct equation in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> only                 <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mi>sin</mi><mfenced><mrow><mi mathvariant="normal">π</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>-</mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>=</mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>                 <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>                 <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Award a maximum of <strong>M1A1A0A0A0</strong> if a candidate uses degrees (i.e., <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>r</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mfenced><mrow><mn>180</mn><mo>°</mo><mo>-</mo><mi>θ</mi></mrow></mfenced></math>), even if later work is correct.</p>
<p><strong>Note:</strong> If a candidate directly states that the area of the triangle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>r</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>, award a maximum of <em><strong>M1A1A0A1A1</strong></em>.</p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>89549</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>90</mn></math>                 <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A0</strong></em> if there is more than one solution. Award <em><strong>A0</strong></em> for an answer in degrees.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The height of water, in metres, in Dungeness harbour is modelled by the&nbsp;function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>&#8202;</mo><mi>sin</mi><mo>(</mo><mi>b</mi><mo>(</mo><mi>t</mi><mo>-</mo><mi>c</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of hours after midnight,&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>,</mo><mo>&#160;</mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are constants, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#62;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#62;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
<p>The following graph shows the height of the water for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> hours, starting at midnight.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first high tide occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>04</mn><mo>:</mo><mn>30</mn></math> and the next high tide occurs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> hours later. Throughout&nbsp;the day, the height of the water fluctuates between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn><mo>&#8202;</mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>&#8202;</mo><mtext>m</mtext></math>.</p>
<p>All heights are given correct to one decimal place.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the water at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>:</mo><mn>00</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of hours, over a 24-hour period, for which the tide is higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>b</mi></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>12</mn></mfrac></math>                <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>                <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mtext>max</mtext><mo>-</mo><mtext>min</mtext></mrow><mn>2</mn></mfrac></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mtext>max</mtext><mo>+</mo><mtext>min</mtext></mrow><mn>2</mn></mfrac></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>8</mn></math> for example into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>                <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math></p>
<p>attempt to solve their equation                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>using horizontal translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>12</mn><mn>4</mn></mfrac></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi><mo>=</mo><mn>3</mn></math>                <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mfenced><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math>                <em><strong>(A1)</strong></em></p>
<p>attempts to solve their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>'</mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mfenced><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>12</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, graphically or algebraically                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>87365</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>87</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math>                <em><strong>(M1)</strong></em></p>
<p>times are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>91852</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>08147</mn><mo>…</mo><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mi>t</mi><mo>=</mo><mn>13</mn><mo>.</mo><mn>9185</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>t</mi><mo>=</mo><mn>19</mn><mo>.</mo><mn>0814</mn><mo>…</mo></mrow></mfenced></math>                <em><strong>(A1)</strong></em></p>
<p>total time is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mfenced><mrow><mn>7</mn><mo>.</mo><mn>081</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>919</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>3258</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>10</mn><mo>.</mo><mn>3</mn></math> (hours)                <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability of drawing three blue marbles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the probability of drawing three white marbles is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{6}"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bag contains a total of ten marbles of which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> are white. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jill plays the game nine times. Find the probability that she wins exactly two prizes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Grant plays the game until he wins two prizes. Find the probability that he wins his second prize on his eighth attempt.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X)"> <mrow> <mtext>E</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </math></span> formula     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0(p) + 1(0.5) + 2(0.3) + 3(q) = 1.2"> <mn>0</mn> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">(</mo> <mn>0.5</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>0.3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>3</mn> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.2</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = \frac{1}{{30}}"> <mi>q</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>30</mn> </mrow> </mfrac> </math></span>, 0.0333     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of summing probabilities to 1     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + 0.5 + 0.3 + q = 1"> <mi>p</mi> <mo>+</mo> <mn>0.5</mn> <mo>+</mo> <mn>0.3</mn> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{1}{6},{\text{ }}0.167"> <mi>p</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.167</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P (3 blue)}} = \frac{1}{{30}},{\text{ }}0.0333"> <mrow> <mtext>P (3 blue)</mtext> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>30</mn> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.0333</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid reasoning     <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P (3 white)}} = {\text{P(0 blue)}}"> <mrow> <mtext>P (3 white)</mtext> </mrow> <mo>=</mo> <mrow> <mtext>P(0 blue)</mtext> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(3 white)}} = \frac{1}{6}"> <mrow> <mtext>P(3 white)</mtext> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span>     <strong><em>AG</em></strong>     <strong><em>N0</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid method     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P(3 white)}} = \frac{w}{{10}} \times \frac{{w - 1}}{9} \times \frac{{w - 2}}{8},{\text{ }}\frac{{_w{C_3}}}{{_{10}{C_3}}}"> <mrow> <mtext>P(3 white)</mtext> </mrow> <mo>=</mo> <mfrac> <mi>w</mi> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>9</mn> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>2</mn> </mrow> <mn>8</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <msub> <mi></mi> <mi>w</mi> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> <mrow> <msub> <mi></mi> <mrow> <mn>10</mn> </mrow> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct equation     <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{w}{{10}} \times \frac{{w - 1}}{9} \times \frac{{w - 2}}{8} = \frac{1}{6},{\text{ }}\frac{{_w{C_3}}}{{_{10}{C_3}}} = 0.167"> <mfrac> <mi>w</mi> <mrow> <mn>10</mn> </mrow> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>9</mn> </mfrac> <mo>×</mo> <mfrac> <mrow> <mi>w</mi> <mo>−</mo> <mn>2</mn> </mrow> <mn>8</mn> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <msub> <mi></mi> <mi>w</mi> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> <mrow> <msub> <mi></mi> <mrow> <mn>10</mn> </mrow> </msub> <mrow> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0.167</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w = 6"> <mi>w</mi> <mo>=</mo> <mn>6</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(n,{\text{ }}p),{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){p^r}{q^{n - r}},{\text{ }}{(0.167)^2}{(0.833)^7},{\text{ }}\left( {\begin{array}{*{20}{c}} 9 \\ 2 \end{array}} \right)"> <mrow> <mtext>B</mtext> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mi>p</mi> <mi>r</mi> </msup> </mrow> <mrow> <msup> <mi>q</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>r</mi> </mrow> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>0.167</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>0.833</mn> <msup> <mo stretchy="false">)</mo> <mn>7</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>0.279081</p>
<p>0.279     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing one prize in first seven attempts     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right),{\text{ }}{\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6}"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>6</mn> </msup> </mrow> </math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right){\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6},{\text{ }}0.390714"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>6</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.390714</mn> </math></span></p>
<p>correct approach     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ 1 \end{array}} \right){\left( {\frac{1}{6}} \right)^1}{\left( {\frac{5}{6}} \right)^6} \times \frac{1}{6}"> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>1</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>6</mn> </msup> </mrow> <mo>×</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span></p>
<p>0.065119</p>
<p>0.0651     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - {x^4} + a{x^2} + 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>a</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant. Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.47.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/06"></p>
</div>

<div class="specification">
<p>It is known that at the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is horizontal.</p>
</div>

<div class="specification">
<p>There are two other points on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> at which the tangent is horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinates of these two points;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the intervals where the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of possible solutions to the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>5</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = m">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>m</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}">
  <mi>m</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>, has four solutions. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>5     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept an answer of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f'(x) = } \right) - 4{x^3} + 2ax">
  <mrow>
    <mo>(</mo>
    <mrow>
      <msup>
        <mi>f</mi>
        <mo>′</mo>
      </msup>
      <mo stretchy="false">(</mo>
      <mi>x</mi>
      <mo stretchy="false">)</mo>
      <mo>=</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mi>x</mi>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4{x^3}">
  <mo>−</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> and <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 2ax">
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mi>x</mi>
</math></span>. Award at most <strong><em>(A1)(A0) </em></strong>if extra terms are seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4 \times {2^3} + 2a \times 2 = 0">
  <mo>−</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>a</mi>
  <mo>×</mo>
  <mn>2</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> into their derivative, <strong><em>(M1) </em></strong>for equating their derivative, written in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, to 0 leading to a correct answer (note, the 8 does not need to be seen).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>     <strong><em>(AG)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f(2) = } \right) - {2^4} + 8 \times {2^2} + 5">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>f</mi>
      <mo stretchy="false">(</mo>
      <mn>2</mn>
      <mo stretchy="false">)</mo>
      <mo>=</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> and  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span> into the formula of the function.</p>
<p> </p>
<p>21     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x = ){\text{ }} - 2,{\text{ }}(x = ){\text{ 0}}">
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> 0</mtext>
  </mrow>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for each correct solution. Award at most <strong><em>(A0)(A1)</em>(ft) </strong>if answers are given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2{\text{ }},21)">
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>,</mo>
  <mn>21</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt;  - 2,{\text{ }}0 &lt; x &lt; 2">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt;  - 2">
  <mi>x</mi>
  <mo>&lt;</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span>, follow through from part (d)(i) provided their value is negative.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; 2">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
</math></span>, follow through only from their 0 from part (d)(i); 2 must be the upper limit.</p>
<p>Accept interval notation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \leqslant 21">
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span>     <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for 21 seen in an interval or an inequality, <strong><em>(A1) </em></strong>for “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y \leqslant ">
  <mi>y</mi>
  <mo>⩽</mo>
</math></span>”.</p>
<p>Accept interval notation.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \infty  &lt; y \leqslant 21">
  <mo>−</mo>
  <mi mathvariant="normal">∞</mi>
  <mo>&lt;</mo>
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) \leqslant 21">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span>.</p>
<p>Follow through from their answer to part (c)(ii). Award at most <strong><em>(A1)</em>(ft)<em>(A0) </em></strong>if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is seen instead of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>. Do not award the second <strong><em>(A1) </em></strong>if a (finite) lower limit is seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3 (solutions)     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5 &lt; m &lt; 21">
  <mn>5</mn>
  <mo>&lt;</mo>
  <mi>m</mi>
  <mo>&lt;</mo>
  <mn>21</mn>
</math></span> or equivalent     <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for 5 and 21 seen in an interval or an inequality, <strong><em>(A1) </em></strong>for correct strict inequalities. Follow through from their answers to parts (a) and (c)(ii).</p>
<p>Accept interval notation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>All living plants contain an isotope of carbon called carbon-14. When a plant dies, the isotope&nbsp;decays so that the amount of carbon-14 present in the remains of the plant decreases. The&nbsp;time since the death of a plant can be determined by measuring the amount of carbon-14 still&nbsp;present in the remains.</p>
<p>The amount, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>, of carbon-14 present in a plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> years after its death can be modelled by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msub><mi>A</mi><mn>0</mn></msub><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>0</mn></msub><mo>,</mo><mo>&#160;</mo><mi>k</mi></math> are positive constants.</p>
<p>At the time of death, a plant is defined to have <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> units of carbon-14.</p>
</div>

<div class="specification">
<p>The time taken for half the original amount of carbon-14 to decay is known to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5730</mn></math> years.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>5730</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, correct to the nearest <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years, the time taken after the plant’s death for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math> of&nbsp;the carbon-14 to decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo>=</mo><msub><mi>A</mi><mn>0</mn></msub><msup><mtext>e</mtext><mn>0</mn></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution of values into exponential equation&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>5730</mn><mi>k</mi></mrow></msup></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mn>5730</mn><mi>k</mi></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>5730</mn><mi>k</mi><mo>=</mo><mi>ln</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mo>-</mo><mi>ln</mi><mo> </mo><mn>2</mn></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>ln</mi><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mi>ln</mi><mo> </mo><mn>2</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mn>5730</mn><mi>k</mi></mrow></msup><mo>=</mo><mn>2</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5730</mn><mi>k</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>2</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>5730</mn></mfrac></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p><strong><br>Note:</strong> There are many different ways of showing that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>5730</mn></mfrac></math>&nbsp;which involve&nbsp;showing different steps. Award full marks for at least two correct algebraic&nbsp;steps seen.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math> of the carbon-14 has decayed, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo>%</mo></math> remains ie, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn></math> units remain&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn><mo>=</mo><mn>100</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>5730</mn></mfrac><mi>t</mi></mrow></msup></math></p>
<p><br><strong>EITHER</strong></p>
<p>using an appropriate graph to attempt to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong> (M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>manipulating logs to attempt to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mn>0</mn><mo>.</mo><mn>75</mn><mo>=</mo><mo>-</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>5730</mn></mfrac><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2378</mn><mo>.</mo><mn>164</mn><mo>…</mo></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2380</mn></math>&nbsp;(years) (correct to the nearest 10 years)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mfrac><mn>50</mn><mi>x</mi></mfrac><mo>,</mo><mo>&nbsp;</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn><mo>.</mo></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a local minimum at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>       <em><strong>(M1)</strong></em></p>
<p>eg       <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>,</mo><mo> </mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>+</mo><mfrac><mn>50</mn><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn></math>  (exact)       <em><strong>A1   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>.</mo><mn>04932</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>.</mo><mn>05</mn></math>       <em><strong>A2   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>76649</mn><mo>,</mo><mo> </mo><mn>28</mn><mo>.</mo><mn>4934</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>2</mn><mo>.</mo><mn>77</mn><mo>,</mo><mo> </mo><mn>28</mn><mo>.</mo><mn>5</mn></mrow></mfenced></math>       <em><strong>A1A1   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{48}}{x} + k{x^2} - 58">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>48</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
  <mo>+</mo>
  <mi>k</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>58</mn>
</math></span>, where <em>x</em> &gt; 0 and <em>k</em> is a constant.</p>
<p>The graph of the function passes through the point with coordinates (4 , 2).</p>
</div>

<div class="specification">
<p>P is the minimum point of the graph of <em>f </em>(<em>x</em>).</p>
</div>

<div class="question">
<p>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for 0 &lt; <em>x</em> ≤ 6 and −30 ≤ <em>y</em> ≤ 60.<br>Clearly indicate the minimum point P and the <em>x</em>-intercepts on your graph.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src=""><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct window. Axes must be labelled.<br><em><strong>(A1)</strong></em><strong>(ft)</strong> for a smooth curve with correct shape and zeros in approximately correct positions relative to each other.<br><em><strong>(A1)</strong></em><strong>(ft)</strong> for point P indicated in approximately the correct position. Follow through from their <em>x</em>-coordinate in part (c). <em><strong>(A1)</strong></em><strong>(ft)</strong> for two <em>x</em>-intercepts identified on the graph and curve reflecting asymptotic properties.</p>
<p><em><strong>[4 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(A = ){\text{ }}\pi {r^2} + 2\pi rh"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span>    <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi rh"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </math></span>    <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Units <strong>not </strong>required.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500\,000 = \pi {r^2}h"> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {r^2}h"> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> equating to their part (b).</p>
<p>Do not accept unless <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi {r^2}h"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>h</mi> </math></span> is explicitly defined as their part (b).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>    <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{500\,000}}{{\pi {r^2}}}}"> <mrow> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </mrow> </math></span> into a <strong>correct </strong>part (a).</p>
<p>Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh = \frac{{500\,000}}{r}"> <mi>π</mi> <mi>r</mi> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <mn>500</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span> and substituting for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi rh"> <mi>π</mi> <mi>r</mi> <mi>h</mi> </math></span> in expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>    <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>The conclusion, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>, must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{10^6}"> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </math></span> as equivalent to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1\,000\,000}"> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>    <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r"> <mn>2</mn> <mi>π</mi> <mi>r</mi> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{r^2}}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^{ - 2}}"> <mrow> <msup> <mi>r</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </math></span>, <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{1}}\,{\text{000}}\,{\text{000}}"> <mo>−</mo> <mrow> <mtext>1</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>000</mtext> </mrow> </math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0"> <mn>2</mn> <mi>π</mi> <mi>r</mi> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^3} = \frac{{1\,000\,000}}{{2\pi }}"> <mrow> <msup> <mi>r</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}"> <mi>r</mi> <mo>=</mo> <mroot> <mrow> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> </mrow> <mn>3</mn> </mroot> </math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for isolating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>sketch of derivative function     <strong><em>(M1)</em></strong></p>
<p>with its zero indicated     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>=</mo> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mn>54.2</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>cm</mtext> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}"> <mi>π</mi> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>54.1926</mn> <mo>…</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )"> <mo>=</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>700</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span>    <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{27\,679.0 \ldots }}{{2000}}"> <mfrac> <mrow> <mn>27</mn> <mspace width="thinmathspace"></mspace> <mn>679.0</mn> <mo>…</mo> </mrow> <mrow> <mn>2000</mn> </mrow> </mfrac> </math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by 2000.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 13.8395 \ldots "> <mo>=</mo> <mn>13.8395</mn> <mo>…</mo> </math></span>    <strong><em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (g).</p>
<p> </p>
<p>14 (cans)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13.8395 \ldots "> <mn>13.8395</mn> <mo>…</mo> </math></span> to the next integer.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> with respective equations</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}\,{\text{:}}\,y =&nbsp; - \frac{2}{3}x + 9">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mn>9</mn>
</math></span>&nbsp; and&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}{\text{:}}\,y = \frac{2}{5}x - \frac{{19}}{5}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>5</mn>
  </mfrac>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mn>19</mn>
    </mrow>
    <mn>5</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>A third line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>, has gradient&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{4}">
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the point of intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a direction vector for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span> passes through the intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<p>Write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach           <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1} = {L_2}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 12"> <mi>x</mi> <mo>=</mo> <mn>12</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1"> <mi>y</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {12{\text{, }}1} \right)"> <mrow> <mo>(</mo> <mrow> <mn>12</mn> <mrow> <mtext>, </mtext> </mrow> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span>  (exact)         <em><strong>A1  N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 4} \\   3  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>  (or any multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 4} \\  3  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>)       <em><strong>A1  N1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any correct equation in the form <em><strong>r</strong></em> = <em><strong>a</strong></em> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span><em><strong>b</strong></em> (accept any parameter for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span>) where <br><em><strong>a</strong></em> is a position vector for a point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span>, and <em><strong>b</strong></em> is a scalar multiple of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 4} \\  3  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>       <em><strong>A2  N2</strong></em></p>
<p><em>eg</em>       <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  {12} \\   1  \end{array}} \right) + t\left( {\begin{array}{*{20}{c}}  { - 4} \\   3  \end{array}} \right)"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>12</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for the form <em><strong>a</strong></em> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span><em><strong>b</strong></em>, <em><strong>A1</strong></em> for the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span> = <em><strong>a</strong></em> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span><em><strong>b</strong></em>, <em><strong>A0</strong></em> for the form <em><strong>r</strong></em> = <em><strong>b</strong></em> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t"> <mi>t</mi> </math></span><em><strong>a</strong></em>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mi>x</mi><mo>-</mo><msup><mn>4</mn><mrow><mn>0</mn><mo>.</mo><mn>15</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the grid below.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for a smooth concave down curve with generally correct&nbsp;shape. If first mark is awarded, award <em><strong>A1</strong></em> for local maximum and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept&nbsp;in approximately correct position, award <em><strong>A1</strong></em> for endpoints at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> with approximately correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinates.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>&nbsp;at local maximum&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>33084</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>33</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The quadratic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, has real distinct roots.</p>
<p>Find the range of possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p style="color:#999;font-size:90%;font-style:italic;">&nbsp;</p>
<p>attempts to find an expression for the discriminant,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi></math>, in terms of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi><mo>=</mo><mn>4</mn><mo>-</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>8</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>20</mn><mi>k</mi><mo>-</mo><mn>8</mn></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>M1A1</strong> for finding&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mo>±</mo><msqrt><mn>4</mn><mo>-</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced></msqrt></mrow><mrow><mn>2</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math>.</p>
<p>&nbsp;</p>
<p>attempts to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>M1</strong> for attempting to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&lt;</mo><mi>k</mi><mo>&lt;</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong><strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>A1</strong> for obtaining critical values&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mn>2</mn></math>&nbsp;and <strong>A1</strong> for correct inequality signs.</p>
<p>&nbsp;</p>
<p><strong>[5</strong><strong> marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species.&nbsp;He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer&nbsp;regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo>&#160;</mo><msub><mi>h</mi><mi>A</mi></msub><mo>&#160;</mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the&nbsp;function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo>&#160;</mo><msub><mi>h</mi><mi>B</mi></msub><mo>&#160;</mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>9</mn></math>.</p>
</div>

<div class="specification">
<p>Use the scientist&rsquo;s models to find the initial height of</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math> (cm)          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>sin</mi><mfenced><mn>6</mn></mfenced><mo>+</mo><mn>27</mn></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7205</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7</mn></math> (cm)          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>00746</mn><mo>…</mo><mo>,</mo><mn>4</mn><mo>.</mo><mn>70343</mn><mo>…</mo><mo>,</mo><mn>5</mn><mo>.</mo><mn>88332</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>01</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>70</mn><mo>,</mo><mn>5</mn><mo>.</mo><mn>88</mn></math> (weeks)          <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> are required          <em><strong>(M1)</strong></em></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math>   OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math>          <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award full marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfenced><mrow><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo> </mo><mfrac><mrow><mn>10</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>11</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><em>Award</em> subsequent marks for correct use of these exact values.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo><mo>&lt;</mo><mi>t</mi><mo>&lt;</mo><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo><mo>&lt;</mo><mi>t</mi><mo>&lt;</mo><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math>  OR</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo><mo>&lt;</mo><mi>t</mi><mo>&lt;</mo><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math>          <em><strong>(A1)</strong></em></p>
<p>attempts to calculate the total amount of time          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mrow><mn>2</mn><mo>.</mo><mn>2359</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>1887</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>14</mn><mo> </mo><mfenced><mrow><mo>=</mo><mi mathvariant="normal">π</mi></mrow></mfenced></math> (weeks)          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students did not change their calculators back to radian mode. This meant they had no chance of correctly answering parts (c) and (d), since even if follow through was given, there were not enough intersections on the graphs.</p>
<p>Most managed part (a) and some attempted to equate the functions in part b) but few recognised that 'rate of growth' was the derivatives of the given functions, and of those who did, most were unable to find them.</p>
<p>Almost all the candidates who did solve part (c) gave the answer <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>05</mn><mo>=</mo><mn>3</mn><mo>.</mo><mn>15</mn></math>, when working with more significant figures would have given them 3.14. They lost the last mark.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>1</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>c</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>0</mn></math>&nbsp;for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, determine the set of possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempting to find the vertex&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>&nbsp;</strong>OR<strong>&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>5</mn></math>&nbsp; </strong>OR&nbsp;&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>5</mn></math></strong></p>
<p>range is<strong>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>≥</mo><mo>-</mo><mn>5</mn></math></strong> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<strong> &nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfenced><mrow><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mi>c</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfenced><mrow><mn>6</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mi>c</mi></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p>relating to the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> OR attempting to find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mo>-</mo><mn>5</mn></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>+</mo><mi>c</mi><mo>≤</mo><mn>0</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempting to find the discriminant of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>144</mn><mo>+</mo><mn>24</mn><mfenced><mrow><mi>c</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>≤</mo><mn>0</mn><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mn>120</mn><mo>+</mo><mn>24</mn><mi>c</mi><mo>≤</mo><mn>0</mn></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><strong><br>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>≤</mo><mo>-</mo><mn>5</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong> A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>vertical reflection followed by vertical shift&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>new vertex is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>+</mo><mi>c</mi></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>+</mo><mi>c</mi><mo>≤</mo><mn>0</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>≤</mo><mo>-</mo><mn>5</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>2</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the following grid.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>832554</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>832554</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>833</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>833</mn></math>                       <em><strong>A1A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">                       <em><strong>A1A1A1</strong></em></p>
<p><em><strong><br></strong></em><strong>Note: </strong>Award <em><strong>A1</strong></em> for approximately correct shape. Only if this mark is awarded, award <em><strong>A1</strong></em> for approximately correct roots and maximum point and <em><strong>A1</strong></em> for approximately correct endpoints. <br>Allow <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>&lt;</mo><mi>x</mi><mo>≤</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>,</mo><mo> </mo><mo> </mo><mn>0</mn><mo>.</mo><mn>8</mn><mo>≤</mo><mi>x</mi><mo>&lt;</mo><mn>1</mn></math> for roots, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>4</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>6</mn></math> for maximum and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>±</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>6</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> for endpoints.</p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>SpeedWay airline flies from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>. The flight time is normally distributed with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="260">
  <mn>260</mn>
</math></span> minutes and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15">
  <mn>15</mn>
</math></span> minutes.</p>
<p>A flight is considered late if it takes longer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
  <mn>275</mn>
</math></span> minutes.</p>
</div>

<div class="specification">
<p>The flight is considered to be <strong>on time</strong> if it takes between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
  <mn>275</mn>
</math></span> minutes. The probability that a flight is on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.830">
  <mn>0.830</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>During a week, SpeedWay has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12">
  <mn>12</mn>
</math></span> flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>. The time taken for any flight is independent of the time taken by any other flight.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability a flight is <strong>not</strong> late.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are <strong>on time</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are on time, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10"> <mn>10</mn> </math></span> flights are on time.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>SpeedWay increases the number of flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20"> <mn>20</mn> </math></span> flights each week, and improves their efficiency so that more flights are on time. The probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19"> <mn>19</mn> </math></span> flights are on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.788"> <mn>0.788</mn> </math></span>.</p>
<p>A flight is chosen at random. Calculate the probability that it is on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach       <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &lt; 275} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>&lt;</mo> <mn>275</mn> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - 0.158655"> <mn>1</mn> <mo>−</mo> <mn>0.158655</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.841344"> <mn>0.841344</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.841"> <mn>0.841</mn> </math></span>       <em><strong>A1   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach       <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &lt; 275} \right) - {\text{P}}\left( {X &lt; m} \right) = 0.830"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>&lt;</mo> <mn>275</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>&lt;</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.830</mn> </math></span></p>
<p>correct working       <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &lt; m} \right) = 0.0113447"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>&lt;</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.0113447</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="225.820"> <mn>225.820</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="226"> <mn>226</mn> </math></span> (minutes)      <em><strong>A1   N3</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of recognizing binomial distribution (seen anywhere)      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_n{C_a} \times {p^a} \times {q^{n - a}}"> <msub> <mrow> </mrow> <mi>n</mi> </msub> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> <mo>×</mo> <mrow> <msup> <mi>p</mi> <mi>a</mi> </msup> </mrow> <mo>×</mo> <mrow> <msup> <mi>q</mi> <mrow> <mi>n</mi> <mo>−</mo> <mi>a</mi> </mrow> </msup> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {n{\text{, }}p} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mrow> <mtext>, </mtext> </mrow> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>evidence of summing probabilities from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12"> <mn>12</mn> </math></span>       <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 7} \right) + {\text{P}}\left( {X = 8} \right) +  \ldots  + {\text{P}}\left( {X = 12} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>8</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>12</mn> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - {\text{P}}\left( {X \leqslant 6} \right)"> <mn>1</mn> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>⩽</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.991248"> <mn>0.991248</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.991"> <mn>0.991</mn> </math></span>      <em><strong>A1   N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 10} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>10</mn> </mrow> <mo>)</mo> </mrow> </math></span> (seen anywhere)       <em><strong>A1</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {12} \\   {10}  \end{array}} \right) \times {0.83^{10}} \times {0.17^2}\,\,\left( { = 0.295952} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>12</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>10</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mrow> <msup> <mn>0.83</mn> <mrow> <mn>10</mn> </mrow> </msup> </mrow> <mo>×</mo> <mrow> <msup> <mn>0.17</mn> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>0.295952</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>recognizing conditional probability      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A\left| B \right.} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mrow> <mo>|</mo> <mi>B</mi> <mo stretchy="true" symmetric="true" fence="true"></mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X = 10\left| {X \geqslant 7} \right.} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>10</mn> <mrow> <mo>|</mo> <mrow> <mi>X</mi> <mo>⩾</mo> <mn>7</mn> </mrow> <mo stretchy="true" symmetric="true" fence="true"></mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{P}}\left( {X = 10 \cap X \geqslant 7} \right)}}{{{\text{P}}\left( {X \geqslant 7} \right)}}"> <mfrac> <mrow> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>=</mo> <mn>10</mn> <mo>∩</mo> <mi>X</mi> <mo>⩾</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>⩾</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct working      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.295952}}{{0.991248}}"> <mfrac> <mrow> <mn>0.295952</mn> </mrow> <mrow> <mn>0.991248</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.298565"> <mn>0.298565</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.299"> <mn>0.299</mn> </math></span>      <em><strong>A1   N1</strong></em></p>
<p><strong>Note: Exception to the <em>FT</em> rule:</strong> if the candidate uses an incorrect value for the probability that a flight is on time in (i) and working shown, award full <em><strong>FT</strong></em> in (ii) as appropriate.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct equation        <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {20} \\   {19}  \end{array}} \right){p^{19}}\left( {1 - p} \right) + {p^{20}} = 0.788"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>20</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>19</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mi>p</mi> <mrow> <mn>19</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <msup> <mi>p</mi> <mrow> <mn>20</mn> </mrow> </msup> </mrow> <mo>=</mo> <mn>0.788</mn> </math></span></p>
<p>valid attempt to solve     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      graph</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.956961"> <mn>0.956961</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.957"> <mn>0.957</mn> </math></span>      <em><strong>A1   N1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves in a straight line such that its velocity, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>&#8202;</mo><mtext>m&#8202;s</mtext><msup><mrow></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds is given by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mi>cos</mi><mo>&#8202;</mo><mi>t</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine when the particle changes its direction of motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when the particle’s acceleration is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the particle’s acceleration when its speed is at its greatest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognises the need to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>0</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57079</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></mfenced></math> (s)             <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>v</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></math>             <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>26277</mn><mo>…</mo><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>95736</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>26</mn><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>96</mn></math> (s)             <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1A1A0</strong></em> if the two correct answers are given with additional values outside <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>3</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed is greatest at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>3</mn></math>              <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>83778</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>84</mn><mo> </mo><mfenced><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></mfenced></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In part (a) many did not realize the change of motion occurred when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mn>0</mn></math>. A common error was finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>(</mo><mn>0</mn><mo>)</mo></math> or thinking that it was at the maximum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>. </p>
<p>In part (b), most candidates knew to differentiate but some tried to substitute in <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>.</mo><mn>9</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, while others struggled to differentiate the function by hand rather than using the GDC. Many candidates tried to solve the equation analytically and did not use their technology. Of those who did, many had their calculators in degree mode.</p>
<p>Almost all candidates who attempted part (c) thought the greatest speed was the same as the maximum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 5{x^2} + 6x - 3 + \frac{1}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span></p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 5{x^2} + 6x - 3 + \frac{1}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>, models the path of a river, as shown on the&nbsp;following map, where both axes represent distance and are measured in kilometres. On the&nbsp;same map, the location of a highway is defined by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 0.5{\left( 3 \right)^{ - x}} + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mn>3</mn>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The origin, O(0, 0) , is the location of the centre of a town called Orangeton.</p>
<p>A straight footpath, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span>, is built to connect the centre of Orangeton to the river at the point&nbsp;where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>Bridges are located where the highway crosses the river.</p>
</div>

<div class="specification">
<p>A straight road is built from the centre of Orangeton, due north, to connect the town to&nbsp;the highway.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> , that would define this footpath on the map.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the bridges relative to the centre of Orangeton.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from the centre of Orangeton to the point at which the road meets the highway.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This straight road crosses the highway and then carries on due north.</p>
<p>State whether the straight road will ever cross the river. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\frac{1}{2}} \right) = {\left( {\frac{1}{2}} \right)^3} - 5{\left( {\frac{1}{2}} \right)^2} + 6\left( {\frac{1}{2}} \right) - 3\frac{1}{{\left( {\frac{1}{2}} \right)}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>5</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>3</mn>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mfrac>
            <mn>1</mn>
            <mn>2</mn>
          </mfrac>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into given function.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{8}\,\,\left( {0.875} \right)">
  <mfrac>
    <mn>7</mn>
    <mn>8</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.875</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0 - \frac{7}{8}}}{{0 - \frac{1}{2}}}">
  <mfrac>
    <mrow>
      <mn>0</mn>
      <mo>−</mo>
      <mfrac>
        <mn>7</mn>
        <mn>8</mn>
      </mfrac>
    </mrow>
    <mrow>
      <mn>0</mn>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mn>2</mn>
      </mfrac>
    </mrow>
  </mfrac>
</math></span>    <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into gradient formula. Accept equivalent forms such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{8} = \frac{1}{2}m">
  <mfrac>
    <mn>7</mn>
    <mn>8</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>m</mi>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{4}">
  <mfrac>
    <mn>7</mn>
    <mn>4</mn>
  </mfrac>
</math></span>  (1.75)      <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right) = \frac{7}{4}x\,\,\left( {1.75x} \right)">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>7</mn>
    <mn>4</mn>
  </mfrac>
  <mi>x</mi>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>1.75</mn>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>(A1)</strong></em><strong>(ft)<em>(G3)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0 &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>   <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for both endpoints correct, <em><strong>(A1)</strong></em> for correct mathematical notation indicating an interval with two endpoints. Accept weak inequalities. Award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em> for incorrect notation such as 0 − 0.5 or a written description of the domain with correct endpoints. Award at most <em><strong>(A1)</strong></em><em><strong>(A0)</strong></em> for 0 &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(0.360, 1.34)   ((0.359947…, 1.33669))   <em><strong>(A1)(A1)</strong></em></p>
<p>(3.63, 1.01)   ((3.63066…, 1.00926…))   <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)(A1)</strong></em> for each correct coordinate pair. Accept correct answers in the form of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.360"> <mi>x</mi> <mo>=</mo> <mn>0.360</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1.34"> <mi>y</mi> <mo>=</mo> <mn>1.34</mn> </math></span> <em>etc</em>. Award at most <strong><em>(A0)(A1)(A1)(A1)</em>ft</strong> if one or both parentheses are omitted.</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( 0 \right) = 0.5{\left( 3 \right)^0} + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mn>0</mn>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mn>3</mn>
        <mo>)</mo>
      </mrow>
      <mn>0</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span>    <em><strong>(M1)</strong></em></p>
<p>1.5 (km)   <em><strong>(A1)(G2)</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &gt; 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span> (but equation of road is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>)     <em><strong> (R1)</strong></em></p>
<p><strong>OR</strong></p>
<p>(equation of road is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>) the function of the river is asymptotic to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>      <em><strong> (R1)</strong></em></p>
<p>so it does not meet the river      <em><strong> (A1)</strong></em></p>
<p><strong>Note:</strong> Award the <em><strong>(R1)</strong></em> for a correct mathematical statement about the equation of the river (and the equation of the road). Justification must be based on <strong>mathematical reasoning</strong>. Do not award <em><strong>(R0)</strong></em><em><strong>(A1)</strong></em>.</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^{2\,{\text{sin}}\left( {\frac{{\pi x}}{2}} \right)}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>sin</mtext>
        </mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mfrac>
              <mrow>
                <mi>π<!-- π --></mi>
                <mi>x</mi>
              </mrow>
              <mn>2</mn>
            </mfrac>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
    </msup>
  </mrow>
</math></span>, for <em>x</em>&nbsp;&gt; 0.</p>
<p>The <em>k </em>th&nbsp;maximum point on the graph of <em>f</em> has <em>x</em>-coordinate <em>x<sub>k</sub></em> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }">
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <msup>
      <mrow>
        <mi mathvariant="double-struck">Z</mi>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>x<sub>k</sub></em><sub> + 1</sub> = <em>x<sub>k</sub></em> + <em>a</em>, find <em>a</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <em>n</em> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{k = 1}^n {{x_k} = 861} "> <munderover> <mo movablelimits="false">∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> </mrow> <mo>=</mo> <mn>861</mn> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>valid approach to find maxima     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>  one correct value of <em>x<sub>k</sub></em>, sketch of <em>f</em></p>
<p>any two correct consecutive values of <em>x<sub>k</sub></em>      <em><strong>(A1)(A1)</strong></em></p>
<p><em>eg  x</em><sub>1</sub> = 1, <em>x</em><sub>2</sub> = 5</p>
<p><em>a</em> = 4      <em><strong>A1 N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing the sequence <em>x</em><sub>1,<sup> </sup></sub> <em>x</em><sub>2</sub><sub>,<sup> </sup></sub> <em>x</em><sub>3, …,</sub> <em>x</em><sub>n</sub> is arithmetic  <em><strong>(M1)</strong></em></p>
<p><em>eg</em>  <em>d</em> = 4</p>
<p>correct expression for sum<em>       <strong>(A1)</strong><br></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{n}{2}\left( {2\left( 1 \right) + 4\left( {n - 1} \right)} \right)"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>valid attempt to solve for <em>n</em>      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>  graph, 2<em>n</em><sup>2</sup> − <em>n</em> − 861 = 0</p>
<p><em>n</em> = 21       <em><strong>A1 N2</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>OAB is a sector of the circle with centre O and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The angle AOB is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> radians, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < \theta&nbsp; < \frac{\pi }{2}">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>θ<!-- θ --></mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<p>The point C lies on OA and OA is perpendicular to BC.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OC}} = r\,{\text{cos}}\,\theta "> <mrow> <mtext>OC</mtext> </mrow> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle OBC in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <em>θ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the area of triangle OBC is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}"> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </math></span> of the area of sector OAB, find <em>θ</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{{\text{OC}}}}{r}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>OC</mtext> </mrow> </mrow> <mi>r</mi> </mfrac> </math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OC}} = r\,{\text{cos}}\,\theta "> <mrow> <mtext>OC</mtext> </mrow> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>   <em><strong>AG N0</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach    <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{OC}} \times {\text{OB}}\,{\text{sin}}\,\theta "> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>OC</mtext> </mrow> <mo>×</mo> <mrow> <mtext>OB</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = r\,{\text{sin}}\,\theta "> <mrow> <mtext>BC</mtext> </mrow> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}r\,{\text{cos}}\,\theta  \times {\text{BC}}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>×</mo> <mrow> <mtext>BC</mtext> </mrow> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}r\,{\text{sin}}\,\theta  \times {\text{OC}}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>×</mo> <mrow> <mtext>OC</mtext> </mrow> </math></span></p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}{r^2}\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta "> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { = \frac{1}{4}{r^2}\,{\text{sin}}\left( {2\theta } \right)} \right)"> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>θ</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>  (must be in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <em>θ)   </em>   <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to express the relationship between the areas (seen anywhere)        <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   OCB = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}"> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </math></span>OBA ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{r^2}\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta  = \frac{3}{5} \times \frac{1}{2}{r^2}\theta "> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mo>×</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}{r^2}\,{\text{sin}}\,2\theta  = \frac{3}{{10}}{r^2}\theta "> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mrow> <mn>10</mn> </mrow> </mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> </math></span></p>
<p>correct equation in terms of <em>θ</em> only<em>   </em>   <em><strong>A1</strong></em></p>
<p><em>eg</em>   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta \,{\text{cos}}\,\theta  = \frac{3}{5}\theta "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> <mi>θ</mi> </math></span> ,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}{\text{sin}}\,2\theta  = \frac{3}{{10}}\theta "> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mrow> <mn>10</mn> </mrow> </mfrac> <mi>θ</mi> </math></span></p>
<p>valid attempt to solve <strong>their</strong> equation        <em><strong>(M1)</strong></em></p>
<p><em>eg    </em>sketch,  −0.830017,  0</p>
<p>0.830017</p>
<p><em>θ </em>= 0.830<em>   </em>   <em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong> Do not award final <em><strong>A1</strong></em> if additional answers given.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = x{{\text{e}}^{ - x}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>x</mi>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = &nbsp;- 3f(x) + 1">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>1</mn>
</math></span>.</p>
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> intersect at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = q">
  <mi>x</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p < q">
  <mi>p</mi>
  <mo>&lt;</mo>
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of the region enclosed by the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>valid attempt to find the intersection     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f = g">
  <mi>f</mi>
  <mo>=</mo>
  <mi>g</mi>
</math></span>, sketch, one correct answer</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.357402,{\text{ }}q = 2.15329">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0.357402</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>q</mi>
  <mo>=</mo>
  <mn>2.15329</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.357,{\text{ }}q = 2.15">
  <mi>p</mi>
  <mo>=</mo>
  <mn>0.357</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>q</mi>
  <mo>=</mo>
  <mn>2.15</mn>
</math></span>     <strong><em>A1A1     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to set up an integral involving subtraction (in any order)     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_p^q {\left[ {f(x) - g(x)} \right]{\text{d}}x,{\text{ }}} \int_p^q {f(x){\text{d}}x - } \int_p^q {g(x){\text{d}}x} ">
  <msubsup>
    <mo>∫</mo>
    <mi>p</mi>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mi>f</mi>
        <mo stretchy="false">(</mo>
        <mi>x</mi>
        <mo stretchy="false">)</mo>
        <mo>−</mo>
        <mi>g</mi>
        <mo stretchy="false">(</mo>
        <mi>x</mi>
        <mo stretchy="false">)</mo>
      </mrow>
      <mo>]</mo>
    </mrow>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>,</mo>
    <mrow>
      <mtext> </mtext>
    </mrow>
  </mrow>
  <msubsup>
    <mo>∫</mo>
    <mi>p</mi>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <mi>f</mi>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo stretchy="false">)</mo>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
    <mo>−</mo>
  </mrow>
  <msubsup>
    <mo>∫</mo>
    <mi>p</mi>
    <mi>q</mi>
  </msubsup>
  <mrow>
    <mi>g</mi>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo stretchy="false">)</mo>
    <mrow>
      <mtext>d</mtext>
    </mrow>
    <mi>x</mi>
  </mrow>
</math></span></p>
<p>0.537667</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = 0.538">
  <mrow>
    <mtext>area</mtext>
  </mrow>
  <mo>=</mo>
  <mn>0.538</mn>
</math></span>     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = x - 8">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>8</mn>
</math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^4} - 3">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
</math></span>&nbsp; and&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right) = f\left( {g\left( x \right)} \right)">
  <mi>h</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mrow>
        <mo>(</mo>
        <mi>x</mi>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right)"> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}"> <mrow> <mtext>C</mtext> </mrow> </math></span> be a point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>. The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}"> <mrow> <mtext>C</mtext> </mrow> </math></span> is parallel to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}"> <mrow> <mtext>C</mtext> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to form composite (in any order)        <em><strong>(M1)</strong></em></p>
<p><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {{x^4} - 3} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - 8} \right)^4} - 3"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>8</mn> </mrow> <mo>)</mo> </mrow> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>3</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right) = {x^4} - 11"> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>11</mn> </math></span>       <em><strong>A1  N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that the gradient of the tangent is the derivative        <em><strong>(M1)</strong></em></p>
<p><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h'}"> <mrow> <msup> <mi>h</mi> <mo>′</mo> </msup> </mrow> </math></span></p>
<p>correct derivative (seen anywhere)        <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h'\left( x \right) = 4{x^3}"> <msup> <mi>h</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </math></span></p>
<p>correct value for gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> (seen anywhere)        <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 1"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 1"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>setting <strong>their</strong> derivative equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1"> <mn>1</mn> </math></span>        <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4{x^3} = 1"> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.629960"> <mn>0.629960</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[3]{{\frac{1}{4}}}"> <mi>x</mi> <mo>=</mo> <mroot> <mrow> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mn>3</mn> </mroot> </math></span> (exact),  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.630"> <mn>0.630</mn> </math></span>       <em><strong>A1  N3</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>90</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> intersect at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>

<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> has a gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> and is a tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
</div>

<div class="specification">
<p>The shaded region <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> intersects the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is tangent to the graphs of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the inverse function <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p>Find the shaded area enclosed by the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Attempt to find the point of intersection of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;and the line&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>56619</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>5</mn><mo>.</mo><mn>57</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>45</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>attempt to set the gradient of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;equal to&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>45</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup><mo>=</mo><mo>-1</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>&nbsp;has coordinates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>,</mo><mo>&nbsp;</mo><mn>2</mn></mrow></mfenced></math>&nbsp;(accept (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mfrac><mn>1</mn><mn>45</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><mn>2</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each value, even if the answer is not given as a coordinate&nbsp;pair.</p>
<p style="padding-left:30px;">&nbsp; &nbsp;Do not accept&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ln</mi><mo> </mo><mfrac><mn>1</mn><mn>45</mn></mfrac></mrow><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ln</mi><mo> </mo><mn>45</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></mfrac></math>&nbsp;as a final value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>0</mn></math> or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn></math> as a final value for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> (in any order)&nbsp;into an appropriate equation&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>2</mn><mo>=</mo><mo>-</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn></mrow></mfenced></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>=</mo><mo>-</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mi>c</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>equation of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mn>2</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mn>1</mn><mfenced><mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>81</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>appropriate method to find the sum of two areas using integrals of the difference of two&nbsp;functions&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Allow absence of incorrect limits.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mrow><mn>4</mn><mo>.</mo><mn>806</mn><mo>…</mo></mrow><mrow><mn>5</mn><mo>.</mo><mn>566</mn><mo>…</mo></mrow></msubsup><mfenced><mrow><mi>x</mi><mo>-</mo><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><msubsup><mo>∫</mo><mrow><mn>5</mn><mo>.</mo><mn>566</mn><mo>…</mo></mrow><mrow><mn>7</mn><mo>.</mo><mn>613</mn><mo>…</mo></mrow></msubsup><mfenced><mrow><mn>90</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup><mo>-</mo><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>d</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)(A1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for one correct integral expression including correct limits&nbsp;and integrand.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Award <em><strong>A1</strong></em> for a second correct integral expression including correct limits&nbsp;and integrand.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>52196</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>52</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>by symmetry&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>1</mn><mo>.</mo><mn>52</mn><mo>…</mo></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>04</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Accept any answer that rounds to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>0</mn></math> (but do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>).</p>
<p>&nbsp;&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \ln x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 3 + \ln \left( {\frac{x}{2}} \right)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>3</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>x</mi>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> can be obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> by two transformations:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{a horizontal stretch of scale factor }}q{\text{ followed by}}} \\ {{\text{a translation of }}\left( {\begin{array}{*{20}{c}} h \\ k \end{array}} \right).} \end{array}">
  <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>a horizontal stretch of scale factor&nbsp;</mtext>
          </mrow>
          <mi>q</mi>
          <mrow>
            <mtext>&nbsp;followed by</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>a translation of&nbsp;</mtext>
          </mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mtable rowspacing="4pt" columnspacing="1em">
                <mtr>
                  <mtd>
                    <mi>h</mi>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>k</mi>
                  </mtd>
                </mtr>
              </mtable>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>.</mo>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
</div>

<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(x) = g(x) \times \cos (0.1x)">
  <mi>h</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>×<!-- × --></mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mn>0.1</mn>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < 4">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>4</mn>
</math></span>. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.34.27.png" alt="M17/5/MATME/SP2/ENG/TZ1/10.b.c"></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h^{ - 1}}">
  <mrow>
    <msup>
      <mi>h</mi>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> at two points. These points have <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> coordinates 0.111 and 3.31 correct to three significant figures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{0.111}^{3.31} {\left( {h(x) - x} \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mrow> <mn>0.111</mn> </mrow> <mrow> <mn>3.31</mn> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of the region enclosed by the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h^{ - 1}}"> <mrow> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> be the vertical distance from a point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span>. There is a point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(a,{\text{ }}b)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>b</mi> <mo stretchy="false">)</mo> </math></span> on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> is a maximum.</p>
<p>Find the coordinates of P, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.111 < a < 3.31"> <mn>0.111</mn> <mo>&lt;</mo> <mi>a</mi> <mo>&lt;</mo> <mn>3.31</mn> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 2"> <mi>q</mi> <mo>=</mo> <mn>2</mn> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 1"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 0"> <mi>h</mi> <mo>=</mo> <mn>0</mn> </math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3 - \ln (2)"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span>, 2.31 as candidate may have rewritten <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> as equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + \ln (x) - \ln (2)"> <mn>3</mn> <mo>+</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 0"> <mi>h</mi> <mo>=</mo> <mn>0</mn> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 1"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 0"> <mi>h</mi> <mo>=</mo> <mn>0</mn> </math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3 - \ln (2)"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span>, 2.31 as candidate may have rewritten <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> as equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + \ln (x) - \ln (2)"> <mn>3</mn> <mo>+</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3"> <mi>k</mi> <mo>=</mo> <mn>3</mn> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 1"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 0"> <mi>h</mi> <mo>=</mo> <mn>0</mn> </math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3 - \ln (2)"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span>, 2.31 as candidate may have rewritten <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> as equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + \ln (x) - \ln (2)"> <mn>3</mn> <mo>+</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </math></span>.</p>
<p>&nbsp;</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2.72409</p>
<p>2.72 &nbsp; &nbsp; <strong><em>A2</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing area between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> equals 2.72 &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><img src="images/Schermafbeelding_2017-08-14_om_17.00.04.png" alt="M17/5/MATME/SP2/ENG/TZ1/10.b.ii/M"></p>
<p>recognizing graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h^{ - 1}}"> <mrow> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span> are reflections of each other in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>area between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> equals between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h^{ - 1}}"> <mrow> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 2.72\int_{0.111}^{3.31} {\left( {x - {h^{ - 1}}(x)} \right){\text{d}}x = 2.72} "> <mn>2</mn> <mo>×</mo> <mn>2.72</mn> <msubsup> <mo>∫</mo> <mrow> <mn>0.111</mn> </mrow> <mrow> <mn>3.31</mn> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mrow> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mn>2.72</mn> </mrow> </math></span></p>
<p>5.44819</p>
<p>5.45 &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N3</em></strong></p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>difference in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-coordinates, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = h(x) - x"> <mi>d</mi> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>x</mi> </math></span></p>
<p>correct expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\ln \frac{1}{2}x + 3} \right)(\cos 0.1x) - x"> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>⁡</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>x</mi> <mo>+</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mn>0.1</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>x</mi> </math></span></p>
<p>valid approach to find when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> is a maximum &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>max on sketch of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span>, attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d’ = 0"> <msup> <mi>d</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>0.973679</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.974"> <mi>x</mi> <mo>=</mo> <mn>0.974</mn> </math></span> &nbsp; &nbsp; <strong><em>A2 &nbsp; &nbsp; N4&nbsp;</em></strong></p>
<p>substituting <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> value into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(x)"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>2.26938</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2.27"> <mi>y</mi> <mo>=</mo> <mn>2.27</mn> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Gemma and Kaia started working for different companies on January 1st 2011.</p>
<p>Gemma&rsquo;s starting annual salary was <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>45</mn><mo>&#8202;</mo><mn>000</mn></math>, and her annual salary increases <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> on&nbsp;January 1st each year after 2011.</p>
</div>

<div class="specification">
<p>Kaia&rsquo;s annual salary is based on a yearly performance review. Her salary for the years 2011,&nbsp;2013, 2014, 2018, and 2022 is shown in the following table.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Gemma’s annual salary for the year 2021, to the nearest dollar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming Kaia’s annual salary can be approximately modelled by the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, show that Kaia had a higher salary than Gemma in the year 2021, according to the model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>using geometric sequence with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>02</mn></math>           <em><strong>(M1)</strong></em></p>
<p>correct expression or listing terms correctly           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45000</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>02</mn><mn>10</mn></msup></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45000</mn><mo>×</mo><mn>1</mn><mo>.</mo><msup><mn>02</mn><mrow><mn>11</mn><mo>-</mo><mn>1</mn></mrow></msup></math>  OR  listing terms</p>
<p>Gemma’s salary is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>54855</mn></math> (must be to the nearest dollar)           <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>10</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PV</mtext><mo>=</mo><mo>∓</mo><mn>45000</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext><mo>%</mo><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P/Y</mtext><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C/Y</mtext><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mi>V</mi><mo>=</mo><mo>±</mo><mn>54854</mn><mo>.</mo><mn>7489</mn><mo>…</mo></math>           <em><strong>(M1)(A1)</strong></em></p>
<p>Gemma’s salary is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>54855</mn></math> (must be to the nearest dollar)           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1096</mn><mo>.</mo><mn>89</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>2160753</mn><mo>.</mo><mn>8</mn><mo>…</mo></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>16</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math>)         <em><strong>(A1)(A1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mn>1096</mn><mo>.</mo><mn>89</mn><mo>…</mo><mi>x</mi><mo>+</mo><mn>33028</mn><mo>.</mo><mn>49</mn><mo>…</mo></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mn>1096</mn><mo>.</mo><mn>89</mn><mo>…</mo><mi>x</mi><mo>+</mo><mn>43997</mn><mo>.</mo><mn>4</mn><mo>…</mo></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mn>1096</mn><mo>.</mo><mn>89</mn><mo>…</mo><mi>x</mi><mo>+</mo><mn>45094</mn><mo>.</mo><mn>3</mn><mo>…</mo></math></p>
<p><br>Kaia’s salary in 2021 is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>56063</mn><mo>.</mo><mn>21</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>56817</mn><mo>.</mo><mn>09</mn></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>16</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></math>)           <em><strong>A1</strong></em></p>
<p>Kaia had a higher salary than Gemma in 2021           <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many errors were seen in part (a). Some candidates used the incorrect formula <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>02</mn></mrow><mn>100</mn></mfrac></mrow></mfenced><mn>10</mn></msup></math> or used an incorrect value for the exponent e.g. 9 was often seen. Others lost the final mark for not answering to the nearest dollar.<br>Very few tried to make a table of values.</p>
<p>In part (b) students often let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> represent the number of years since a given year, rather than the year itself. Despite this, most were able to find the correct amount with their equation and were awarded marks as appropriate. Some students did not realise regression on GDC was expected and tried to work with a few given data points, others had difficulty dealing with the constant in the regression equation if it was reported using scientific notation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket is travelling in a straight line, with an initial velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="140">
  <mn>140</mn>
</math></span> m s<sup>−1</sup>. It accelerates to a new velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500">
  <mn>500</mn>
</math></span> m s<sup>−1</sup> in two stages.</p>
<p>During the first stage its acceleration, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> m s<sup>−2</sup>, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( t \right) = 240\,{\text{sin}}\left( {2t} \right)">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>240</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant k">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>k</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>The first stage continues for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> seconds until the velocity of the rocket reaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="375">
  <mn>375</mn>
</math></span> m s<sup>−1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> m s<sup>−1</sup>, of the rocket during the first stage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance that the rocket travels during the first stage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During the second stage, the rocket accelerates at a constant rate. The distance which the rocket travels during the second stage is the same as the distance it travels during the first stage.</p>
<p>Find the total time taken for the two stages.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = \int a "> <mi>v</mi> <mo>=</mo> <mo>∫</mo> <mi>a</mi> </math></span>        <em><strong>(M1)</strong></em></p>
<p>correct integration         <em><strong>A1</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 120\,{\text{cos}}\left( {2t} \right) + c"> <mo>−</mo> <mn>120</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> </math></span></p>
<p>attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> using their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right)"> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math></span>        <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 120\,{\text{cos}}\left( 0 \right) + c = 140"> <mo>−</mo> <mn>120</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>140</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) =  - 120\,{\text{cos}}\left( {2t} \right) + 260"> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>120</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>260</mn> </math></span>         <em><strong>A1   N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of valid approach to find time taken in first stage           <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      graph,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 120\,{\text{cos}}\left( {2t} \right) + 260 = 375"> <mo>−</mo> <mn>120</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>260</mn> <mo>=</mo> <mn>375</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1.42595"> <mi>k</mi> <mo>=</mo> <mn>1.42595</mn> </math></span>         <em><strong>A1</strong></em></p>
<p>attempt to substitute <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and/or <strong>their</strong> limits into distance formula           <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{1.42595} {\left| v \right|} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mn>1.42595</mn> </mrow> </msubsup> <mrow> <mrow> <mo>|</mo> <mi>v</mi> <mo>|</mo> </mrow> </mrow> </math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {260 - 120} \,{\text{cos}}\left( {2t} \right)"> <mo>∫</mo> <mrow> <mn>260</mn> <mo>−</mo> <mn>120</mn> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^k {\left( {260 - 120\,{\text{cos}}\left( {2t} \right)} \right)} \,{\text{d}}t"> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>k</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>260</mn> <mo>−</mo> <mn>120</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="353.608"> <mn>353.608</mn> </math></span></p>
<p>distance is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="354"> <mn>354</mn> </math></span> (m)         <em><strong>A1   N3</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing velocity of second stage is linear (seen anywhere)          <em><strong>R1</strong></em></p>
<p><em>eg</em>      graph,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s = \frac{1}{2}h\left( {a + b} \right)"> <mi>s</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>h</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </math></span>,   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = mt + c"> <mi>v</mi> <mo>=</mo> <mi>m</mi> <mi>t</mi> <mo>+</mo> <mi>c</mi> </math></span></p>
<p>valid approach           <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {v = 353.608} "> <mo>∫</mo> <mrow> <mi>v</mi> <mo>=</mo> <mn>353.608</mn> </mrow> </math></span></p>
<p>correct equation           <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}h\left( {375 + 500} \right) = 353.608"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>h</mi> <mrow> <mo>(</mo> <mrow> <mn>375</mn> <mo>+</mo> <mn>500</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>353.608</mn> </math></span></p>
<p>time for stage two <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="=0.808248"> <mo>=</mo> <mn>0.808248</mn> </math></span>  (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.809142"> <mn>0.809142</mn> </math></span> from 3 sf)         <em><strong>A2</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.23420"> <mn>2.23420</mn> </math></span>  (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.23914"> <mn>2.23914</mn> </math></span> from 3 sf)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.23"> <mn>2.23</mn> </math></span> seconds  (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2.24"> <mn>2.24</mn> </math></span> from 3 sf)         <em><strong>A1   N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - 1">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^2} - 2">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = {x^4} - 4{x^2} + 3"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the following grid, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x)"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 2.25"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>2.25</mn> </math></span>.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_08.00.33.png" alt="M17/5/MATME/SP2/ENG/TZ2/06.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = k"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </math></span> has exactly two solutions, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 2.25"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>2.25</mn> </math></span>. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to form composite in either order     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f({x^2} - 2),{\text{ }}{({x^2} - 1)^2} - 2"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({x^4} - 4{x^2} + 4) - 1"> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>−</mo> <mn>1</mn> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = {x^4} - 4{x^2} + 3"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> </math></span>     <strong><em>AG</em></strong>     <strong><em>N0</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-15_om_08.05.50.png" alt="M17/5/MATME/SP2/ENG/TZ2/06.b/M">    <strong><em>A1</em></strong></p>
<p><strong><em>A1A1</em></strong>     <strong><em>N3</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>A1 </em></strong>for approximately correct shape which changes from concave down to concave up. Only if this <strong><em>A1 </em></strong>is awarded, award the following:</p>
<p><strong><em>A1 </em></strong>for left hand endpoint in circle <strong>and </strong>right hand endpoint in oval,</p>
<p><strong><em>A1 </em></strong>for minimum in oval.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of identifying max/min as relevant points     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0,{\text{ }}1.41421,{\text{ }}y =  - 1,{\text{ }}3"> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1.41421</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> </math></span></p>
<p>correct interval (inclusion/exclusion of endpoints must be correct)     <strong><em>A2</em></strong>     <strong><em>N3</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 &lt; k \leqslant 3,{\text{ }}\left] { - 1,{\text{ 3}}} \right],{\text{ }}( - 1,{\text{ }}3]"> <mo>−</mo> <mn>1</mn> <mo>&lt;</mo> <mi>k</mi> <mo>⩽</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>]</mo> <mrow> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> 3</mtext> </mrow> </mrow> <mo>]</mo> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">]</mo> </math></span></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{6x - 1}}{{2x + 3}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne&nbsp; - \frac{3}{2}">
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{x \to \infty } \left( {\frac{{6x - 1}}{{2x + 3}}} \right)">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>6</mn>
          <mi>x</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid method      <em><strong>(M1)</strong></em></p>
<p><em>eg </em>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>(0),  sketch of graph</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{1}{3}">
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
</math></span>  (exact),  −0.333, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,\, - \frac{1}{3}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0</mn>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mfrac>
        <mn>1</mn>
        <mn>3</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach      <strong><em>(M1)</em></strong></p>
<p><em>eg</em>   recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{x \to \infty } f\left( x \right)">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> is related to the horizontal asymptote, </p>
<p>table with large values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> value from (a)(iii), L’Hopital’s rule <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{x \to \infty } f\left( x \right) = 3">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{x \to \infty } \left( {\frac{{6x - 1}}{{2x + 3}}} \right) = 3">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>6</mn>
          <mi>x</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
</math></span>      <em><strong>A1 N2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 \leqslant x \leqslant&nbsp; - 2">
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span>.</p>
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 6,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>. There is a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 4,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>4</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p style="text-align: left;">Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = f(x - 5)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>correct interval     <strong><em>A2</em></strong>     <strong><em>N2</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant y \leqslant 6,{\text{ }}[0,{\text{ }}6]"> <mn>0</mn> <mo>⩽</mo> <mi>y</mi> <mo>⩽</mo> <mn>6</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>6</mn> <mo stretchy="false">]</mo> </math></span>, from 0 to 6</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct interval     <strong><em>A2</em></strong>     <strong><em>N2</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x \leqslant 3,{\text{ }}[ - 1,{\text{ }}3]"> <mo>−</mo> <mn>1</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">[</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">]</mo> </math></span>, from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1"> <mo>−</mo> <mn>1</mn> </math></span> to 3</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, has the following probability distribution:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mi>k</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, giving a reason for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>41</mn><mo>+</mo><mi>k</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>28</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>46</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>29</mn><mo>-</mo><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>-</mo><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>01</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>13</mn></math> (or equivalent)          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mi>k</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>3</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>           <em><strong>A1</strong></em></p>
<p>reasoning to reject <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>  eg  <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced><mo>=</mo><mi>k</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>28</mn><mo>≥</mo><mn>0</mn></math> therefore <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>≠</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>          <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to use the expected value formula          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>41</mn><mo>+</mo><mn>1</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>28</mn></mrow></mfenced><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>46</mn><mo>+</mo><mn>3</mn><mo>×</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>29</mn><mo>-</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>27</mn></math>           <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1A0</strong></em> if additional values are given.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was well done in this question, with most candidates recognising that the probabilities needed to sum to 1. Many candidates also approached part (b) appropriately. While many did so by graphing the quadratic on the GDC and identifying the zeros, most solved the equation analytically. Those that used the GDC, often assumed there was only one <em>x</em>-intercept and did not investigate the relevant area of the graph in more detail. While some who found the two required values of <em>k</em> recognised that <em>k</em> = 0.2 should be rejected by referring to the original probabilities, most had lost sight of the context of the question, and were unable to give a valid reason using P(<em>X</em> = 1) to reject this solution. Those that obtained one solution in part (b), were generally able to find the expected value successfully in part (c).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{8x - 5}}{{cx + 6}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>8</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>5</mn>
    </mrow>
    <mrow>
      <mi>c</mi>
      <mi>x</mi>
      <mo>+</mo>
      <mn>6</mn>
    </mrow>
  </mfrac>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne&nbsp; - \frac{6}{c},\,\,c \ne 0">
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>6</mn>
    <mi>c</mi>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>c</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question">
<p>Write down the equation of the horizontal asymptote to the graph of <em>f</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>valid approach <em><strong>(M1)</strong></em><br><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}\,f}\limits_{x \to \infty } \left( x \right),\,\,y = \frac{8}{c}">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>f</mi>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mn>8</mn>
    <mi>c</mi>
  </mfrac>
</math></span></p>
<p><em>y</em> = −4 (must be an equation)      <em><strong>A1 N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <em>f</em>(<em>x</em>) = ln <em>x</em> − 5<em>x</em> , for <em>x</em> &gt; 0 .</p>
</div>

<div class="question">
<p>Solve<em> f '</em>(<em>x</em>)<em> = f "</em>(<em>x</em>).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1 (using GDC)</strong></p>
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg </em><img src=""></p>
<p>0.558257</p>
<p><em>x</em> = 0.558       <em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>A1</strong></em> if additional answers given.</p>
<p> </p>
<p><strong>METHOD 2 (analytical)</strong></p>
<p>attempt to solve their equation <em>f '(x) = f "</em>(<em>x</em>)  (do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{x} - 5 =  - \frac{1}{{{x^2}}}">
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
  <mo>−</mo>
  <mn>5</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>)      <em><strong>(M1)</strong></em></p>
<p><em>eg  </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5{x^2} - x - 1 = 0,\,\,\frac{{1 \pm \sqrt {21} }}{{10}},\,\,\frac{1}{x} = \frac{{ - 1 \pm \sqrt {21} }}{2},\,\, - 0.358">
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo>±</mo>
      <msqrt>
        <mn>21</mn>
      </msqrt>
    </mrow>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>1</mn>
      <mo>±</mo>
      <msqrt>
        <mn>21</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo>−</mo>
  <mn>0.358</mn>
</math></span></p>
<p>0.558257</p>
<p><em>x</em> = 0.558       <em><strong>A1 N2</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>A1</strong></em> if additional answers given.</p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>