File "markSceme-SL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/markSceme-SL-paper1html
File size: 791.21 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {p^x} + q">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x{\text{, }}p{\text{, }}q \in \mathbb{R}{\text{, }}p > 1">
  <mi>x</mi>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>p</mi>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>q</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>p</mi>
  <mo>&gt;</mo>
  <mn>1</mn>
</math></span>. The point&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( {0{\text{, }}a} \right)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0</mn>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mi>a</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {g^{ - 1}}\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.&nbsp;The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and is the reflection of point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> in the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( a \right) = \frac{1}{{{\text{ln}}\,p}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> </math></span>, find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> <strong>in terms of</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> and has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left( {{\text{ln}}\,p} \right)x + q + 1"> <mi>y</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span>.</p>
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 2{\text{, }} - 2} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>The gradient of the normal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>.</p>
<p> </p>
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {a{\text{, }}0} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mrow> <mtext>, </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>  (accept  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {q + 1{\text{, }}0} \right)"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mrow> <mtext>, </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>)           <em><strong>A2</strong></em><em><strong>   N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may work with the equation of the line before finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span></strong></p>
<p>valid attempt to find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( 0 \right) = a{\text{, }}\,{p^0} + q = a"> <mi>g</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mi>p</mi> <mn>0</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mi>a</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = q + 1"> <mi>a</mi> <mo>=</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span>       <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>FINDING THE EQUATION OF</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span></p>
<p style="padding-left:30px;"><strong>EITHER</strong></p>
<p style="padding-left:30px;">attempt to substitute tangent gradient and coordinates into equation of straight line        <em><strong>(M1)</strong></em></p>
<p style="padding-left:30px;"><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = f'\left( a \right)\left( {x - a} \right){\text{, }}\,y = f'\left( a \right)\left( {x - \left( {q + 1} \right)} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="padding-left:30px;">correct equation in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>       <em><strong>(A1)</strong></em></p>
<p style="padding-left:30px;"><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y - 0 = \frac{1}{{{\text{ln}}\left( p \right)}}\left( {x - a} \right)"> <mi>y</mi> <mo>−</mo> <mn>0</mn> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="padding-left:30px;"><strong>OR</strong></p>
<p style="padding-left:30px;">attempt to substitute tangent gradient and coordinates to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span></p>
<p style="padding-left:30px;"><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 = \frac{1}{{{\text{ln}}\left( p \right)}}\left( a \right) + b"> <mn>0</mn> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> </math></span></p>
<p style="padding-left:30px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{ - a}}{{{\text{ln}}\left( p \right)}}"> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mi>a</mi> </mrow> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>       <em><strong>(A1)</strong></em></p>
<p><strong>THEN</strong> (must be in terms of <strong>both</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{{\text{ln}}\,p}}\left( {x - q - 1} \right){\text{, }}\,y = \frac{1}{{{\text{ln}}\,p}}x - \frac{{q + 1}}{{{\text{ln}}\,p}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> <mi>x</mi> <mo>−</mo> <mfrac> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> </math></span>           <em><strong>A1</strong></em><em><strong>   N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for final answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1} = \frac{1}{{{\text{ln}}\,p}}\left( {x - q - 1} \right)"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> before finding a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span></strong></p>
<p>valid approach to find the gradient of the tangent      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{m_1}{m_2} =  - 1{\text{, }}\,\, - \frac{1}{{\frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}}}{\text{, }}\,\, - {\text{ln}}\left( {\frac{1}{3}} \right){\text{, }}\,\, - \frac{1}{{{\text{ln}}\,p}} = \frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}"><msub><mi>m</mi><mn>1</mn></msub><msub><mi>m</mi><mn>2</mn></msub><mo>=</mo><mo>−</mo><mn>1</mn><mtext>, </mtext><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo><mfrac><mn>1</mn><mfrac><mn>1</mn><mrow><mtext>ln</mtext><mrow><mo>(</mo><mstyle displaystyle="true"><mfrac bevelled="true"><mn>1</mn><mn>3</mn></mfrac></mstyle><mo>)</mo></mrow></mrow></mfrac></mfrac><mtext>, </mtext><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo><mtext>ln</mtext><mrow><mo>(</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>)</mo></mrow><mtext>, </mtext><mspace width="thinmathspace"></mspace><mspace width="thinmathspace"></mspace><mo>−</mo><mfrac><mn>1</mn><mrow><mtext>ln</mtext><mspace width="thinmathspace"></mspace><mi>p</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mtext>ln</mtext><mrow><mo>(</mo><mstyle displaystyle="true"><mfrac bevelled="true"><mn>1</mn><mn>3</mn></mfrac></mstyle><mo>)</mo></mrow></mrow></mfrac></math></span></p>
<p>correct application of log rule (seen anywhere)       <em><strong>(A1)</strong></em></p>
<p><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}{\left( {\frac{1}{3}} \right)^{ - 1}}{\text{, }}\,\, - \left( {{\text{ln}}\left( 1 \right) - {\text{ln}}\left( 3 \right)} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct equation (seen anywhere)           <em><strong>A1</strong></em></p>
<p><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,p = {\text{ln}}\,3{\text{, }}\,\,p = 3"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>=</mo> <mn>3</mn> </math></span></p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span></strong></p>
<p>correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 2{\text{, }} - 2} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> equation        <em><strong>(A1)</strong></em></p>
<p><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 = \left( {{\text{ln}}\,p} \right)\left( { - 2} \right) + q + 1"> <mo>−</mo> <mn>2</mn> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 2\,{\text{ln}}\,p - 3{\text{, }}\,\,q = 2\,{\text{ln}}\,3 - 3"> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>−</mo> <mn>3</mn> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>q</mi> <mo>=</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>−</mo> <mn>3</mn> </math></span>  (seen anywhere)           <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>FINDING <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span></strong></p>
<p>correct substitution of <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> into <strong>their</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span>        <em><strong>(A1)</strong></em></p>
<p><em>eg</em>       <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{{\text{ln}}\,3}}\left( {x - \left( {2\,{\text{ln}}\,3 - 3} \right) - 1} \right)"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{{\text{ln}}\,3}}\left( {x - 2\,{\text{ln}}\,3 + 2} \right){\text{, }}\,\,y = \frac{1}{{{\text{ln}}\,3}}x - \frac{{2\,{\text{ln}}\,3 - 2}}{{{\text{ln}}\,3}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mi>x</mi> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> </math></span>           <em><strong>A1</strong></em><em><strong>   N2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for final answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1} = \frac{1}{{{\text{ln}}\,3}}\left( {x - 2\,{\text{ln}}\,3 + 2} \right)"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the binomial expansion <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>7</mn></msup><mo>=</mo><msup><mi>x</mi><mrow><mn>7</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mi>x</mi><mn>6</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>5</mn></msup><mo>+</mo><mn>35</mn><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>&#8230;</mo><mo>+</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8800;</mo><mn>0</mn></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8484;</mi><mo>+</mo></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>21</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The third term in the expansion is the mean of the second term and the fourth term in the expansion.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>recognises the required term (or coefficient) in the expansion           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><msup><mi>x</mi><mn>5</mn></msup><mo>=</mo><mmultiscripts><mi>C</mi><mn>2</mn><mprescripts></mprescripts><mn>7</mn></mmultiscripts><msup><mi>x</mi><mn>5</mn></msup><msup><mn>1</mn><mn>2</mn></msup></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mmultiscripts><mi>C</mi><mn>2</mn><mprescripts></mprescripts><mn>7</mn></mmultiscripts></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>C</mi><mn>5</mn><mprescripts></mprescripts><mn>7</mn></mmultiscripts></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>7</mn><mo>!</mo></mrow><mrow><mn>2</mn><mo>!</mo><mn>5</mn><mo>!</mo></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>7</mn><mo>!</mo></mrow><mrow><mn>2</mn><mo>!</mo><mfenced><mrow><mn>7</mn><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac></mrow></mfenced></math></p>
<p>correct working           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>7</mn><mo>×</mo><mn>6</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>4</mn><mo>×</mo><mn>3</mn><mo>×</mo><mn>2</mn><mo>×</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>×</mo><mn>1</mn><mo>×</mo><mn>5</mn><mo>×</mo><mn>4</mn><mo>×</mo><mn>3</mn><mo>×</mo><mn>2</mn><mo>×</mo><mn>1</mn></mrow></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>7</mn><mo>×</mo><mn>6</mn></mrow><mrow><mn>2</mn><mo>!</mo></mrow></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>42</mn><mn>2</mn></mfrac></math></p>
<p><br><strong>OR</strong></p>
<p>lists terms from row <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> of Pascal’s triangle           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>7</mn><mo>,</mo><mo> </mo><mn>21</mn><mo>,</mo><mo>…</mo></math>           <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>21</mn></math>           <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>7</mn></math>            <em><strong>(A1)</strong></em></p>
<p>correct equation            <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn><msup><mi>x</mi><mn>5</mn></msup><mo>=</mo><mfrac><mrow><mi>a</mi><msup><mi>x</mi><mn>6</mn></msup><mo>+</mo><mn>35</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>2</mn></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>21</mn><msup><mi>x</mi><mn>5</mn></msup><mo>=</mo><mfrac><mrow><mn>7</mn><msup><mi>x</mi><mn>6</mn></msup><mo>+</mo><mn>35</mn><msup><mi>x</mi><mn>4</mn></msup></mrow><mn>2</mn></mfrac></math></p>
<p>correct quadratic equation            <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>42</mn><mi>x</mi><mo>+</mo><mn>35</mn><mo>=</mo><mn>0</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>5</mn><mo>=</mo><mn>0</mn></math>  (or equivalent)</p>
<p>valid attempt to solve <strong>their</strong> quadratic            <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mn>5</mn></mfenced></msqrt></mrow><mrow><mn>2</mn><mfenced><mn>1</mn></mfenced></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>5</mn></math>            <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award final <em><strong>A0</strong> </em>for obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>5</mn></math>.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates answered part (a) correctly, either by using the <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>C</mi><mi>r</mi><none></none><mprescripts></mprescripts><none></none><mi>n</mi></mmultiscripts></math> formula or Pascal's Triangle. In part (b) of the question, most candidates were able to correctly find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>7</mn></math> and set up a correct equation showing the mean of the second and fourth terms. While some struggled to complete the required algebra to solve the equation, the majority of candidates who found a correct quadratic equation were able to solve it correctly. A few candidates included <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> in their final answer, thus not earning the final mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of a quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has its vertex at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mn>4</mn><mo>)</mo></math>, and it passes through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The function can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>h</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>.</p>
</div>

<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
</div>

<div class="specification">
<p>Now consider another function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>. The derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>&#8242;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>-</mo><mi>d</mi></math>,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the axis of symmetry.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>12</mn><mo>)</mo></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is an increasing function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is concave-up.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>            <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Must be an equation in the form “ <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo></math> ”. Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>=</mo><mn>3</mn></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>4</mn></math>   (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn></math>)            <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>             <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>=</mo><mi>a</mi><msup><mfenced><mrow><mn>5</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mo> </mo><mn>4</mn><mi>a</mi><mo>+</mo><mn>4</mn><mo>=</mo><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognize need to find derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>            <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math>  or  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>12</mn></math>             <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mn>5</mn></mfenced><mo>=</mo><mn>8</mn></math>  (may be seen as gradient in their equation)            <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>8</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math>  or  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>28</mn></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>8</mn><mi>x</mi><mo>−</mo><mn>28</mn></math>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>Recognizing that for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> to be increasing, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>-</mo><mi>d</mi><mo>&gt;</mo><mn>0</mn></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>&gt;</mo><mn>0</mn></math>          <strong><em>(M1)</em></strong></p>
<p>The vertex must be above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mi>d</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>d</mi><mo>-</mo><mn>4</mn><mo>&lt;</mo><mn>0</mn></math>          <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&lt;</mo><mn>4</mn></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempting to find discriminant of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo></math>          <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>12</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>2</mn></mfenced><mfenced><mrow><mn>22</mn><mo>-</mo><mi>d</mi></mrow></mfenced></math></p>
<p>recognizing discriminant must be negative          <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>32</mn><mo>+</mo><mn>8</mn><mi>d</mi><mo>&lt;</mo><mn>0</mn></math>   OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>&lt;</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&lt;</mo><mn>4</mn></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing that for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> to be concave up, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mo>&gt;</mo><mn>0</mn></math>          <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mo>&gt;</mo><mn>0</mn></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>&gt;</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>&gt;</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>-</mo><mn>3</mn><mo>&gt;</mo><mn>0</mn></math>          <em><strong>(R1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>3</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In parts (a) and (b) of this question, a majority of candidates recognized the connection between the coordinates of the vertex and the axis of symmetry and the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, and most candidates were able to successfully substitute the coordinates of point Q to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>. In part (c), the candidates who recognized the need to use the derivative to find the gradient of the tangent were generally successful in finding the equation of the line, although many did not give their equation in the proper form in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>, and instead wrote <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>28</mn></math>, thus losing the final mark. Parts (d) and (e) were much more challenging for candidates. Although a good number of candidates recognized that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math> in part (d), and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math> in part (e), very few were able to proceed beyond this point and find the correct inequalities for their final answers.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8800;</mo><mn>4</mn></math>, and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>3</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
<p>The following diagram shows the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> intersect at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>. The coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>In the following diagram, the shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>,&nbsp;the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The area of the shaded region can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>+</mo><mn>8</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mi>x</mi><mo>-</mo><mn>3</mn></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>15</mn><mo>=</mo><mn>0</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>           <strong><em>(A1)</em></strong></p>
<p>valid attempt to solve <strong>their</strong> quadratic           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>8</mn><mo>±</mo><msqrt><msup><mn>8</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mn>15</mn></mfenced></msqrt></mrow><mrow><mn>2</mn><mfenced><mn>1</mn></mfenced></mrow></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mo>±</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>x</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>5</mn></mrow></mfenced></math> (may be seen in answer)          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>2</mn></mrow></mfenced></math>  (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>2</mn></math>)          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizing two correct regions from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> and from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>           <strong><em>(R1)</em></strong></p>
<p>triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><munderover><mo>∫</mo><mn>5</mn><mi>k</mi></munderover><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>3</mn><mn>5</mn></munderover><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><munderover><mo>∫</mo><mn>5</mn><mi>k</mi></munderover><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>d</mo><mi>x</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>3</mn><mn>5</mn></munderover><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>+</mo><munderover><mo>∫</mo><mn>5</mn><mi>k</mi></munderover><mfenced><mrow><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p>area of triangle is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>·</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><msup><mn>5</mn><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mn>3</mn><mfenced><mn>5</mn></mfenced></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><msup><mn>3</mn><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mn>3</mn><mfenced><mn>3</mn></mfenced></mrow></mfenced></math>           <strong><em>(A1)</em></strong></p>
<p>correct integration           <strong><em>(A1)</em></strong><strong><em>(A1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>x</mi><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>x</mi><mo> </mo><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.<br><strong>Note:</strong> The first three <em><strong>A</strong></em> marks may be awarded independently of the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p>substitution of <strong>their</strong> limits (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>) into <strong>their</strong> integrated function (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>)           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo>-</mo><mfenced><mrow><mi>ln</mi><mo> </mo><mn>1</mn><mo>+</mo><mn>5</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mi>ln</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>x</mi></mrow></mfenced><mn>5</mn><mi>k</mi></msubsup><mo>=</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo>-</mo><mn>5</mn></math>          <em><strong>A1</strong></em></p>
<p>adding <strong>their</strong> two areas (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>) and equating to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>p</mi><mo>+</mo><mn>8</mn></math>           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>+</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo>-</mo><mn>5</mn><mo>=</mo><mi>ln</mi><mo> </mo><mi>p</mi><mo>+</mo><mn>8</mn></math></p>
<p>equating <strong>their</strong> non-log terms to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> (equation must be in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>)           <strong><em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>8</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>11</mn></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn><mo>-</mo><mn>4</mn><mo>=</mo><mi>p</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>7</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Nearly all candidates knew to set up an equation with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> in order to find the intersection of the two graphs, and most were able to solve the resulting quadratic equation. Candidates were not as successful in part (b), however. While some candidates recognized that there were two regions to be added together, very few were able to determine the correct boundaries of these regions, with many candidates integrating one or both functions from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>. While a good number of candidates were able to correctly integrate the function(s), without the correct bounds the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> were unattainable.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, with domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 \leqslant x \leqslant 4">
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>4</mn>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_09.13.25.png" alt="N17/5/MATME/SP1/ENG/TZ0/03"></p>
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4,{\text{ }}7)">
  <mo stretchy="false">(</mo>
  <mn>4</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>7</mn>
  <mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
</div>

<div class="question">
<p>On the grid, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="images/Schermafbeelding_2018-02-11_om_10.32.42.png" alt="N17/5/MATME/SP1/ENG/TZ0/03.c/M">     <strong><em>A1A1A1     N3</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>A1 </em></strong>for both end points within circles,</p>
<p><strong><em>A1 </em></strong>for images of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}3)"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}2)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </math></span> within circles,</p>
<p><strong><em>A1 </em></strong>for approximately correct reflection in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span>, concave up then concave down shape (do not accept line segments).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Olava’s Pizza Company supplies and delivers large cheese pizzas.</p>
<p>The total cost to the customer, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, in Papua New Guinean Kina (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PGK</mtext></math>), is modelled by&nbsp;the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>34</mn><mo>.</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>8</mn><mo>.</mo><mn>50</mn><mo> </mo><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo> </mo><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi><mo>,</mo></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, is the number of large cheese pizzas ordered. This total cost includes a fixed&nbsp;cost for delivery.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in the context of the question, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>34</mn><mo>.</mo><mn>50</mn></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in the context of the question, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>50</mn></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum number of pizzas that can be ordered.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Kaelani has <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn><mo> </mo><mtext>PGK</mtext></math>.</p>
<p>Find the maximum number of large cheese pizzas that Kaelani can order from Olava’s Pizza Company.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the cost of <strong>each</strong> (large cheese) pizza / <strong>a</strong> pizza / <strong>one</strong> pizza / <strong>per</strong> pizza       <em><strong>(A1)   (C1)</strong></em><br><br><strong>Note:</strong> Award <em><strong>(A0)</strong></em> for “the cost of (large cheese) pizzas”. Do not accept “the <strong>minimum</strong> cost of a pizza”.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (fixed) delivery cost      <em><strong>(A1)   (C1)</strong></em><br><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>     <em><strong>(A1)   (C1)</strong></em><br><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn><mo>=</mo><mn>34</mn><mo>.</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>8</mn><mo>.</mo><mn>50</mn></math>        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the cost equation to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn></math> (may be stated as an inequality).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>.</mo><mn>8</mn><mo> </mo><mo> </mo><mfenced><mrow><mn>12</mn><mo>.</mo><mn>7971</mn><mo>…</mo></mrow></mfenced></math>      <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math>      <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>   (C3)</strong></em></p>
<p><strong><br>Note:</strong> The final answer must be an integer.<br>The final <em><strong>(A1)</strong></em><strong>(ft)</strong> is awarded for rounding their answer <strong>down</strong> to a whole number, provided their unrounded answer is seen.<br><em><strong><br><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of the quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = c + bx - {x^2}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>c</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}( - 1,{\text{ }}0)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and has its vertex at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(3,{\text{ }}16)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>16</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.57.03.png" alt="N16/5/MATSD/SP1/ENG/TZ0/09"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the axis of symmetry for this graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
  <mi>x</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span>    <strong><em>(A1)(A1)     (C2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = ">
  <mi>x</mi>
  <mo>=</mo>
</math></span> constant, <strong><em>(A1) </em></strong>for the constant being 3.</p>
<p>The answer must be an equation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - b}}{{2( - 1)}} = 3">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mo stretchy="false">(</mo>
      <mo>−</mo>
      <mn>1</mn>
      <mo stretchy="false">)</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>3</mn>
</math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into axis of symmetry formula.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b - 2x = 0">
  <mi>b</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>    <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correctly differentiating and equating to zero.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c + b( - 1) - {( - 1)^2} = 0">
  <mi>c</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mo>−</mo>
    <mn>1</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span> (or equivalent)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c + b(3) - {(3)^2} = 16">
  <mi>c</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>16</mn>
</math></span> (or equivalent)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 1,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}16)">
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>16</mn>
  <mo stretchy="false">)</mo>
</math></span> in the original quadratic function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(b = ){\text{ }}6">
  <mo stretchy="false">(</mo>
  <mi>b</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>6</mn>
</math></span>    <strong><em>(A1)</em>(ft)     <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - \infty ,{\text{ 16]}}">
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mi mathvariant="normal">∞</mi>
  <mo>,</mo>
  <mrow>
    <mtext> 16]</mtext>
  </mrow>
</math></span><strong> OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="] - \infty ,{\text{ }}16]">
  <mo stretchy="false">]</mo>
  <mo>−</mo>
  <mi mathvariant="normal">∞</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>16</mn>
  <mo stretchy="false">]</mo>
</math></span>     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for two correct interval endpoints, <strong><em>(A1) </em></strong>for left endpoint excluded <strong>and </strong>right endpoint included.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  = \frac{3}{4}"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta  &gt; 0"> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> <mo>&gt;</mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \frac{\pi }{2}"> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>evidence of summing to 1     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {p = 1} "> <mo>∑</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </math></span></p>
<p>correct equation     <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  + 2\cos 2\theta  = 1"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>θ</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> </math></span>     <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  + 2(2{\cos ^2}\theta  - 1) = 1,{\text{ }}4{\cos ^2}\theta  + \cos \theta  - 3 = 0"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>4</mn> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>θ</mi> <mo>+</mo> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>evidence of valid approach to solve quadratic     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>factorizing equation set equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0,{\text{ }}\frac{{ - 1 \pm \sqrt {1 - 4 \times 4 \times ( - 3)} }}{8}"> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>4</mn> <mo>×</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct working, clearly leading to required answer     <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4\cos \theta  - 3)(\cos \theta  + 1),{\text{ }}\frac{{ - 1 \pm 7}}{8}"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> <mo>±</mo> <mn>7</mn> </mrow> <mn>8</mn> </mfrac> </math></span></p>
<p>correct reason for rejecting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  \ne  - 1"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span>     <strong><em>R1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta "> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> </math></span> is a probability (value must lie between 0 and 1), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  &gt; 0"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>&gt;</mo> <mn>0</mn> </math></span></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>R0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  \ne  - 1"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>≠</mo> <mo>−</mo> <mn>1</mn> </math></span> without a reason.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  = \frac{3}{4}"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>    <em><strong>AG  N0</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>sketch of right triangle with sides 3 and 4, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sin ^2}x + {\cos ^2}x = 1"> <mrow> <msup> <mi>sin</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mrow> <msup> <mi>cos</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p>correct working     </p>
<p><strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math>missing side <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt 7 ,{\text{ }}\frac{{\frac{{\sqrt 7 }}{4}}}{{\frac{3}{4}}}"> <mo>=</mo> <msqrt> <mn>7</mn> </msqrt> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> </mrow> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta  = \frac{{\sqrt 7 }}{3}"> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute either limits or the function into formula involving <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^2}"> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> </math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{f^2},{\text{ }}\int {{{\left( {\frac{1}{{\cos x}}} \right)}^2}} } "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mi>f</mi> <mn>2</mn> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mrow> </math></span></p>
<p>correct substitution of both limits and function     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi \int_\theta ^{\frac{\pi }{4}} {{{\left( {\frac{1}{{\cos x}}} \right)}^2}{\text{d}}x} "> <mi>π</mi> <msubsup> <mo>∫</mo> <mi>θ</mi> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p>correct integration     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x"> <mi>tan</mi> <mo>⁡</mo> <mi>x</mi> </math></span></p>
<p>substituting <strong>their </strong>limits into <strong>their </strong>integrated function and subtracting     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} - \tan \theta "> <mi>tan</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> </math></span></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>M0 </em></strong>if they substitute into original or differentiated function.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \frac{\pi }{4} = 1"> <mi>tan</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>=</mo> <mn>1</mn> </math></span>    <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \tan \theta "> <mn>1</mn> <mo>−</mo> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi  - \frac{{\pi \sqrt 7 }}{3}"> <mi>V</mi> <mo>=</mo> <mi>π</mi> <mo>−</mo> <mfrac> <mrow> <mi>π</mi> <msqrt> <mn>7</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </math></span>     <strong><em>A1</em></strong>     <strong><em>N3</em></strong></p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined for all&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>. The line with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to&nbsp;the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>6</mn></math>               <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1</strong></em><em><strong> mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>6</mn><mo>×</mo><mn>4</mn><mo>-</mo><mn>1</mn><mo>=</mo><mn>23</mn></math>               <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1</strong></em><em><strong> mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mn>4</mn></mfenced></mrow></mfenced></math>                 <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><msup><mn>4</mn><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>×</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mi>f</mi><mfenced><mn>4</mn></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mn>4</mn></mfenced><mo>=</mo><mn>23</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use chain rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo></math>                 <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mo>×</mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></mrow></mfenced><mo>'</mo><mo>×</mo><mi>f</mi><mo>'</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>'</mo><mfenced><mn>4</mn></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>×</mo><mn>4</mn><mo>-</mo><mn>3</mn></mrow></mfenced><mi>f</mi><mo>'</mo><mfenced><mrow><msup><mn>4</mn><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>×</mo><mn>4</mn></mrow></mfenced></math>                 <em><strong>A1</strong></em></p>
<p>         <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>30</mn></math> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>23</mn><mo>=</mo><mn>30</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>30</mn><mi>x</mi><mo>-</mo><mn>97</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a vertical asymptote and a horizontal asymptote.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the horizontal asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the set of axes below, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p>rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The equations of the asymptotes are not required on the graph provided there is a clear indication of asymptotic behaviour at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn></math> (or at their FT asymptotes from part (a)).</p>
<p> </p>
<p>axes intercepts clearly shown at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>         <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept correct alternative correct notation, such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo>∞</mo></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>]</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo>,</mo><mo>∞</mo><mo>[</mo></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It is pleasing to note that many candidates were familiar with the shape of the graph of a rational function of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow><mrow><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></mrow></mfrac></math>, and a large number of them were able to sketch an appropriate graph. Part (c) was a struggle for the majority of candidates, with only a few answering correctly. Despite the word "hence" and the single mark available in this part, most candidates who attempted part (c) did so by trying to solve the inequality algebraically, rather than seeing the connection to the values in their graph.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.&nbsp;The following diagram shows part&nbsp;of the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>For the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the coordinates of the vertex.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>h</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>.</p>
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>setting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> <strong>               <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mn>3</mn></math> (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></mfenced><mo>,</mo><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math>)                   <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>substituting their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> <strong>               <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>8</mn></math>                  <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mn>8</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to complete the square   <strong><em>(M1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mfenced><mrow><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn></mrow></mfenced></math>              <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>8</mn></math>                  <em><strong>A1A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mn>8</mn></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>                 <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>8</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>a</mi><mi>x</mi></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#62;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>&#62;</mo><mn>1</mn></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> contains the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mo>&#8202;</mo><mn>4</mn></mrow></mfenced></math>.</p>
</div>

<div class="specification">
<p>Consider the arithmetic sequence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mn>27</mn><mo>&#160;</mo><mo>,</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mi>p</mi><mo>&#160;</mo><mo>,</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mi>q</mi><mo>&#160;</mo><mo>,</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mn>125</mn><mo>&#160;</mo><mo>,</mo></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#62;</mo><mn>1</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>&#62;</mo><mn>1</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>8</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><msqrt><mn>32</mn></msqrt></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn></math> are four consecutive terms in a geometric sequence.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mo>=</mo><mn>4</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mfrac><mn>2</mn><mn>3</mn></mfrac></msup><mo>=</mo><mn>4</mn></math>             <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msup><mn>4</mn><mfrac><mn>3</mn><mn>2</mn></mfrac></msup></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msup><mfenced><msup><mn>2</mn><mn>2</mn></msup></mfenced><mfrac><mn>3</mn><mn>2</mn></mfrac></msup></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>64</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mroot><mi>a</mi><mn>3</mn></mroot><mo>=</mo><mn>2</mn></math>                 <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>8</mn></math>                 <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>x</mi></math>                 <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msub><mi>log</mi><mi>a</mi></msub><mo> </mo><mi>x</mi></math>.<br>         Accept any equivalent expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mi>ln</mi><mo> </mo><mn>8</mn></mrow></mfrac></math>.</p>
<p> </p>
<p><em><strong>[1</strong></em><em><strong> mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct substitution                 <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><msqrt><mn>32</mn></msqrt></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>8</mn><mi>x</mi></msup><mo>=</mo><msup><mn>32</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></math></p>
<p>correct working involving log/index law                 <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>32</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>2</mn></mfrac><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>2</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>2</mn><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>2</mn></msub><mo> </mo><msup><mn>2</mn><mfrac><mn>5</mn><mn>2</mn></mfrac></msup></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>2</mn></msub><mo> </mo><mn>8</mn><mo>=</mo><mn>3</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ln</mi><mo> </mo><msup><mn>2</mn><mstyle displaystyle="true"><mfrac><mn>5</mn><mn>2</mn></mfrac></mstyle></msup></mrow><mrow><mi>ln</mi><mo> </mo><msup><mn>2</mn><mn>3</mn></msup></mrow></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mrow><mn>3</mn><mi>x</mi></mrow></msup><mo>=</mo><msup><mn>2</mn><mfrac><mn>5</mn><mn>2</mn></mfrac></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><msqrt><mn>32</mn></msqrt></mfenced><mo>=</mo><mfrac><mn>5</mn><mn>6</mn></mfrac></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>equating a pair of differences<strong>               <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub><mo>-</mo><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><msub><mi>u</mi><mn>4</mn></msub><mo>-</mo><msub><mi>u</mi><mn>3</mn></msub><mfenced><mrow><mo>=</mo><msub><mi>u</mi><mn>3</mn></msub><mo>-</mo><msub><mi>u</mi><mn>2</mn></msub></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>p</mi><mo>-</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>27</mn><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>125</mn><mo>-</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>q</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>125</mn><mo>-</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>q</mi><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>q</mi><mo>-</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>p</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mi>p</mi><mn>27</mn></mfrac></mfenced><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mn>125</mn><mi>q</mi></mfrac></mfenced><mo> </mo><mo>,</mo><mo> </mo><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mn>125</mn><mi>q</mi></mfrac></mfenced><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mi>q</mi><mi>p</mi></mfrac></mfenced></math>           <strong><em>A1</em></strong><strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>p</mi><mn>27</mn></mfrac><mo>=</mo><mfrac><mn>125</mn><mi>q</mi></mfrac></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>125</mn><mi>q</mi></mfrac><mo>=</mo><mfrac><mi>q</mi><mi>p</mi></mfrac></math>           <strong><em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn></math> are in geometric sequence           <strong><em>AG</em></strong></p>
<p><strong><br>Note:</strong> If candidate assumes the sequence is geometric, award no marks for part (i). If <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math> has been found, this will be awarded marks in part (ii).</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>expressing a pair of consecutive terms, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math><strong>               <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><msup><mn>8</mn><mi>d</mi></msup><mo>×</mo><mn>27</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><msup><mn>8</mn><mrow><mn>2</mn><mi>d</mi></mrow></msup><mo>×</mo><mn>27</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><msup><mn>8</mn><mrow><mn>2</mn><mi>d</mi></mrow></msup><mo>×</mo><mn>27</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn><mo>=</mo><msup><mn>8</mn><mrow><mn>3</mn><mi>d</mi></mrow></msup><mo>×</mo><mn>27</mn></math></p>
<p>two correct pairs of consecutive terms, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math><strong>                 <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mn>8</mn><mi>d</mi></msup><mo>×</mo><mn>27</mn></mrow><mn>27</mn></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><msup><mn>8</mn><mrow><mn>2</mn><mi>d</mi></mrow></msup><mo>×</mo><mn>27</mn></mstyle><mrow><msup><mn>8</mn><mi>d</mi></msup><mo>×</mo><mn>27</mn></mrow></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><msup><mn>8</mn><mrow><mn>3</mn><mi>d</mi></mrow></msup><mo>×</mo><mn>27</mn></mstyle><mrow><msup><mn>8</mn><mrow><mn>2</mn><mi>d</mi></mrow></msup><mo>×</mo><mn>27</mn></mrow></mfrac></math>  (must include 3 ratios)<strong>                 <em>A1</em></strong></p>
<p>all simplify to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>8</mn><mi>d</mi></msup></math><strong>                 <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn></math> are in geometric sequence           <strong><em>AG</em></strong></p>
<p> </p>
<p><em><strong>[4</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (geometric, finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi></math>)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>4</mn></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><msup><mi>r</mi><mn>3</mn></msup></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn><mo>=</mo><mn>27</mn><msup><mfenced><mi>r</mi></mfenced><mn>3</mn></msup></math><strong>                 <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math>  (seen anywhere)<strong>                 <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>27</mn><mi>r</mi></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>125</mn><mi>q</mi></mfrac><mo>=</mo><mfrac><mn>5</mn><mn>3</mn></mfrac></math><strong>                 <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>45</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>75</mn></math>       <strong><em>A1</em></strong><strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2 (arithmetic)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>4</mn></msub><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mn>3</mn><mi>d</mi></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>125</mn><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>27</mn><mo>+</mo><mn>3</mn><mi>d</mi></math><strong>                 <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></mfenced></math>  (seen anywhere)<strong>                 <em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>p</mi><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>27</mn><mo>+</mo><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></mfenced></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mi>q</mi><mo>=</mo><msub><mi>log</mi><mn>8</mn></msub><mo> </mo><mn>27</mn><mo>+</mo><mn>2</mn><mo> </mo><msub><mi>log</mi><mn>8</mn></msub><mfenced><mfrac><mn>5</mn><mn>3</mn></mfrac></mfenced></math><strong>                 <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>45</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>75</mn></math>       <strong><em>A1</em></strong><strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 3 (geometric using proportion)</strong></p>
<p>recognizing proportion<strong>                 <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>=</mo><mn>125</mn><mo>×</mo><mn>27</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>q</mi><mn>2</mn></msup><mo>=</mo><mn>125</mn><mi>p</mi></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mn>27</mn><mi>q</mi></math></p>
<p>two correct proportion equations<strong>                 <em>A1</em></strong></p>
<p>attempt to eliminate either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math><strong>                 <em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>q</mi><mn>2</mn></msup><mo>=</mo><mn>125</mn><mo>×</mo><mfrac><mrow><mn>125</mn><mo>×</mo><mn>27</mn></mrow><mi>q</mi></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mn>27</mn><mo>×</mo><mfrac><mrow><mn>125</mn><mo>×</mo><mn>27</mn></mrow><mi>p</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>45</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>75</mn></math>       <strong><em>A1</em></strong><strong><em>A1</em></strong></p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the graph of the quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math> ,&nbsp;with vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>−</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>10</mn></mrow></mfenced></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>k</mi></math> has two solutions. One of these solutions is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the other solution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the table below placing a tick (✔) to show whether the unknown parameters <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> are positive, zero or negative. The row for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> has been completed as an example.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mn>4</mn></math>  <strong>OR</strong>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>2</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math>      <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correct calculation of the left symmetrical point.</p>
<p><em><strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>6</mn></math>      (A1)   (C2)</strong></em></p>
<p><strong><br></strong><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">      <em><strong>(A1)(A1)   (C2)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct row.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mo>-</mo><mn>2</mn></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>2</mn></math>      <em><strong>(A1)(A1)   (C2)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> seen as part of an inequality, <em><strong>(A1)</strong></em> for completely correct notation. Award <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em> for correct equivalent statement in words, for example “decreasing when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is greater than negative <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>”.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a(x - p)(x - 3)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has axis of symmetry <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2.5">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2.5</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }} - 6)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = kx - 5"> <mi>y</mi> <mo>=</mo> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> </math></span> is a tangent to the curve of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>. Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using <em>x</em>-intercept)</strong></p>
<p>determining that 3 is an <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercept     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 3 = 0"> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>=</mo> <mn>0</mn> </math></span>, <img src="images/Schermafbeelding_2017-08-11_om_13.55.43.png" alt="M17/5/MATME/SP1/ENG/TZ1/09.a/M"></p>
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 - 2.5,{\text{ }}\frac{{p + 3}}{2} = 2.5"> <mn>3</mn> <mo>−</mo> <mn>2.5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mi>p</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mn>2.5</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2"> <mi>p</mi> <mo>=</mo> <mn>2</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong>METHOD 2 (expanding <em>f </em>(<em>x</em>)) </strong></p>
<p>correct expansion (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>)     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{x^2} - a(3 + p)x + 3ap,{\text{ }}{x^2} - (3 + p)x + 3p"> <mi>a</mi> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>a</mi> <mi>p</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>p</mi> </math></span></p>
<p>valid approach involving equation of axis of symmetry     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - b}}{{2a}} = 2.5,{\text{ }}\frac{{a(3 + p)}}{{2a}} = \frac{5}{2},{\text{ }}\frac{{3 + p}}{2} = \frac{5}{2}"> <mfrac> <mrow> <mo>−</mo> <mi>b</mi> </mrow> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>3</mn> <mo>+</mo> <mi>p</mi> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2"> <mi>p</mi> <mo>=</mo> <mn>2</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong>METHOD 3 (using derivative)</strong></p>
<p>correct derivative (accept absence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>)     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a(2x - 3 - p),{\text{ }}2x - 3 - p"> <mi>a</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>−</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>−</mo> <mi>p</mi> </math></span></p>
<p>valid approach     <strong>(<em>M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(2.5) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>2.5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 2"> <mi>p</mi> <mo>=</mo> <mn>2</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }} - 6)"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>6</mn> <mo stretchy="false">)</mo> </math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 = a(0 - 2)(0 - 3),{\text{ }}0 = a( - 8)( - 9),{\text{ }}a{(0)^2} - 5a(0) + 6a =  - 6"><mo>−</mo><mn>6</mn><mo>=</mo><mi>a</mi><mo>(</mo><mn>0</mn><mo>−</mo><mn>2</mn><mo>)</mo><mo>(</mo><mn>0</mn><mo>−</mo><mn>3</mn><mo>)</mo><mo>,</mo><mtext> </mtext><mi>a</mi><mrow><mo>(</mo><mn>0</mn><msup><mo>)</mo><mn>2</mn></msup></mrow><mo>−</mo><mn>5</mn><mi>a</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>+</mo><mn>6</mn><mi>a</mi><mo>=</mo><mo>−</mo><mn>6</mn></math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 = 6a"> <mo>−</mo> <mn>6</mn> <mo>=</mo> <mn>6</mn> <mi>a</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - 1"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>     <strong><em>A1</em></strong>     <strong><em>N2</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (using discriminant)</strong></p>
<p>recognizing tangent intersects curve once     <strong><em>(M1)</em></strong></p>
<p>recognizing one solution when discriminant = 0     <strong><em>M1</em></strong></p>
<p>attempt to set up equation     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = f,{\text{ }}kx - 5 =  - {x^2} + 5x - 6"> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> </math></span></p>
<p>rearranging their equation to equal zero     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 5x + kx + 1 = 0"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>5</mn> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct discriminant (if seen explicitly, not just in quadratic formula)     <strong><em>A1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(k - 5)^2} - 4,{\text{ }}25 - 10k + {k^2} - 4"> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>25</mn> <mo>−</mo> <mn>10</mn> <mi>k</mi> <mo>+</mo> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> </math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k - 5 =  \pm 2,{\text{ }}(k - 3)(k - 7) = 0,{\text{ }}\frac{{10 \pm \sqrt {100 - 4 \times 21} }}{2}"> <mi>k</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>±</mo> <mn>2</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>10</mn> <mo>±</mo> <msqrt> <mn>100</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>21</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3,{\text{ }}7"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7</mn> </math></span>     <strong><em>A1A1</em></strong>     <strong><em>N0</em></strong></p>
<p><strong>METHOD 2 (using derivatives)</strong></p>
<p>attempt to set up equation     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g = f,{\text{ }}kx - 5 =  - {x^2} + 5x - 6"> <mi>g</mi> <mo>=</mo> <mi>f</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> </math></span></p>
<p>recognizing derivative/slope are equal     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’ = {m_T},{\text{ }}f' = k"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <msub> <mi>m</mi> <mi>T</mi> </msub> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mi>k</mi> </math></span></p>
<p>correct derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2x + 5"> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>5</mn> </math></span></p>
<p>attempt to set up equation in terms of either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>     <strong><em>M1</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2x + 5)x - 5 =  - {x^2} + 5x - 6,{\text{ }}k\left( {\frac{{5 - k}}{2}} \right) - 5 =  - {\left( {\frac{{5 - k}}{2}} \right)^2} + 5\left( {\frac{{5 - k}}{2}} \right) - 6"> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>5</mn> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>5</mn> <mo>−</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>6</mn> </math></span></p>
<p>rearranging their equation to equal zero     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1 = 0,{\text{ }}{k^2} - 10k + 21 = 0"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>10</mn> <mi>k</mi> <mo>+</mo> <mn>21</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  \pm 1,{\text{ }}(k - 3)(k - 7) = 0,{\text{ }}\frac{{10 \pm \sqrt {100 - 4 \times 21} }}{2}"> <mi>x</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mrow> <mn>10</mn> <mo>±</mo> <msqrt> <mn>100</mn> <mo>−</mo> <mn>4</mn> <mo>×</mo> <mn>21</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3,{\text{ }}7"> <mi>k</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>7</mn> </math></span>     <strong><em>A1A1</em></strong>     <strong><em>N0</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mi>k</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mfrac><mi>k</mi><mi>p</mi></mfrac></mrow></mfenced></math>&nbsp;be any point on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mn>0</mn></mrow></mfenced></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at point B.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math> to give the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.<br>In the following diagram:</p>
<ul>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> lie on the vertical asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> lie on the horizontal asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FG</mtext></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DC</mtext></math>.</li>
</ul>
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>, and passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<p><img src=""></p>
<p>Given that triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EDF</mtext></math> and rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext></math> have equal areas, find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>x</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>       <em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac></mrow></mfenced></math>    <em><strong> A1     N2</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use point and gradient to find equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>        <em><strong>M1</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mi>k</mi><msup><mi>p</mi><mrow><mo>-</mo><mn>2</mn></mrow></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>p</mi></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mfenced><mi>p</mi></mfenced><mo>+</mo><mi>b</mi></math></p>
<p>correct working leading to answer       <em><strong> A1</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mi>k</mi><mi>p</mi><mo>=</mo><mo>-</mo><mi>k</mi><mi>x</mi><mo>+</mo><mi>k</mi><mi>p</mi><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>-</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math>    <em><strong> AG     N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 – area of a triangle</strong></p>
<p>recognizing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>       <em><strong>(M1)</strong></em></p>
<p>correct working to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null<em><strong>       (A1)</strong></em></p>
<p><em>eg</em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of null at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math> (may be seen in area formula)       <em><strong> A1</strong></em></p>
<p>correct substitution to find area of triangle<em><strong>       (A1)</strong></em></p>
<p><em>eg</em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced><mo>,</mo><mo> </mo><mo> </mo><mi>p</mi><mo>×</mo><mfenced><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mfenced></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math>    <em><strong> A1     N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – integration</strong></p>
<p>recognizing to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi></math>       <em><strong>(M1)</strong></em></p>
<p><em>eg </em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><msub><mi>L</mi><mrow><mn>1</mn><mo> </mo></mrow></msub><mo>d</mo><mi>x</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mi>x</mi><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct integration of <strong>both</strong> terms       <em><strong> A1</strong></em></p>
<p><em>eg </em>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mi>x</mi></mrow><mi>p</mi></mfrac><mo> </mo><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi><mo>+</mo><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mi>k</mi><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mi>x</mi></mrow></mfenced><mn>0</mn><mrow><mn>2</mn><mi>p</mi></mrow></msubsup></math></p>
<p>substituting limits into <strong>their</strong> integrated function and subtracting (in either order)       <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac><mo>-</mo><mfenced><mn>0</mn></mfenced><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>4</mn><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>4</mn><mi>k</mi><mi>p</mi></mrow><mi>p</mi></mfrac></math></p>
<p>correct working<em><strong>       (A1)</strong></em></p>
<p><em>eg </em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>4</mn><mi>k</mi></math></p>
<p>area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math>    <em><strong> A1     N3</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In this question, the second <em><strong>M</strong></em> mark may be awarded independently of the other marks, so it is possible to award <em><strong>(M0)(A0)M1(A0)(A0)A0</strong></em>.</p>
<p> </p>
<p>recognizing use of transformation      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>   area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> = area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mo>,</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo></math> gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mtext>, 2p+4, </mtext></math> one correct shift</p>
<p>correct working<em><strong>       (A1)</strong></em></p>
<p><em>eg</em>   area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DEF</mtext><mo>=</mo><mn>2</mn><mi>k</mi><mo>,</mo><mo> </mo><mtext>CD</mtext><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mtext>DF</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>CG</mtext><mo>=</mo><mn>2</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>F</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>Q</mtext><mfenced><mrow><mi>p</mi><mo>+</mo><mn>4</mn><mo>,</mo><mo> </mo><mfrac><mi>k</mi><mi>p</mi></mfrac><mo>+</mo><mn>3</mn></mrow></mfenced><mo>,</mo></math> </p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mi>k</mi><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo>,</mo></math> area of rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext><mo>=</mo><mn>2</mn><mi>k</mi></math></p>
<p>valid approach      <em><strong>(M1)</strong></em></p>
<p><em>eg   </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mtext>ED</mtext><mo>×</mo><mtext>DF</mtext></mrow><mn>2</mn></mfrac><mo>=</mo><mtext>CD</mtext><mo>×</mo><mtext>DF</mtext><mo>,</mo><mo> </mo><mn>2</mn><mi>p</mi><mo>·</mo><mn>3</mn><mo>=</mo><mn>2</mn><mi>k</mi><mo> </mo><mo>,</mo><mo> </mo><mtext>ED</mtext><mo>=</mo><mn>2</mn><mtext>CD</mtext><mo> </mo><mo>,</mo><mo> </mo><msubsup><mo>∫</mo><mn>4</mn><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></msubsup><msub><mi>L</mi><mn>2</mn></msub><mo> </mo><mtext>d</mtext><mi>x</mi><mo>=</mo><mn>4</mn><mi>k</mi></math></p>
<p>correct working<em>      <strong>(A1)</strong></em></p>
<p><em>eg</em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ED</mtext><mo>=</mo><mn>6</mn><mo>,</mo><mo> </mo><mtext>E</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>9</mn></mrow></mfenced><mo>,</mo><mo> </mo><mi>k</mi><mo>=</mo><mn>3</mn><mi>p</mi><mo>,</mo><mo> </mo><mtext>gradient</mtext><mo>=</mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>-</mo><mn>4</mn></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mfenced><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>k</mi></mrow><mn>3</mn></mfrac></mstyle></mfenced></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mi>k</mi></mfrac></math></p>
<p>correct expression for gradient (in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>)<em><strong>       (A1)</strong></em></p>
<p><em>eg</em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>6</mn></mrow><mrow><mn>2</mn><mi>p</mi></mrow></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>9</mn><mo>-</mo><mn>3</mn></mrow><mrow><mn>4</mn><mo>-</mo><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mrow><mn>3</mn><mi>p</mi></mrow><msup><mi>p</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mo>-</mo><mfenced><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mfenced><mrow><mn>3</mn><mi>p</mi></mrow></mfenced></mrow><mi>p</mi></mfrac></mstyle><mo>+</mo><mn>3</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mstyle displaystyle="true"><mo>-</mo></mstyle><mstyle displaystyle="true"><mn>4</mn></mstyle></mrow></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>9</mn><mrow><mn>3</mn><mi>p</mi></mrow></mfrac></math></p>
<p>gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>3</mn><mi>p</mi></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>3</mn><msup><mi>p</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math>    <em><strong> A1     N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> moves along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>&#8202;</mo><mi mathvariant="normal">m</mi><mo>&#8202;</mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>3</mn></math>. When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>P</mi></math> is at the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> reaches its maximum velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math> at this time is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>88</mn><mn>27</mn></mfrac></math> metres.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, clearly showing any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid approach to find turning point (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>'</mo><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>, average of roots)                 <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>0</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>4</mn><mrow><mn>2</mn><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>2</mn><mn>3</mn></mfrac></mstyle><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> (s)                 <em><strong>A1</strong></em></p>
<p>  </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>                 <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi><mo>=</mo><mo>∫</mo><mfenced><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi><mo>=</mo><mn>4</mn><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup><mo>-</mo><msup><mi>t</mi><mn>3</mn></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math>                 <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup></math>, <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mi>t</mi><mn>3</mn></msup></math>.</p>
<p><br>attempt to substitute their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> into their solution for the integral                 <em><strong>(M1)</strong></em></p>
<p>distance<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mn>4</mn><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mo>+</mo><mn>2</mn><msup><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mfrac><mn>2</mn><mn>3</mn></mfrac></mfenced><mn>3</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>8</mn><mn>3</mn></mfrac><mo>+</mo><mfrac><mn>8</mn><mn>9</mn></mfrac><mo>-</mo><mfrac><mn>8</mn><mn>27</mn></mfrac></math> (or equivalent)                           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>88</mn><mn>27</mn></mfrac></math> (m)                   <em><strong>AG</strong></em></p>
<p>  </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>valid approach to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>   (may be seen in part (a))                 <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>-</mo><mi>t</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mi>t</mi></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>4</mn><mo>±</mo><msqrt><mn>16</mn><mo>+</mo><mn>48</mn></msqrt></mrow><mrow><mo>-</mo><mn>6</mn></mrow></mfrac></math></p>
<p>correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>- intercept on the graph at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>                 <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The following two <em><strong>A</strong></em> marks may only be awarded if the shape is a concave down parabola. These two marks are independent of each other and the <em><strong>(M1)</strong></em>.</p>
<p><br>correct domain from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></math>                 <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> must be clearly indicated.</p>
<p><br>vertex in approximately correct place for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>&gt;</mo><mn>4</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognising to integrate between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math>, or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>3</mn></munderover><mfenced open="|" close="|"><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>2</mn></munderover><mfenced><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn></math>                 <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>2</mn><mn>3</mn></munderover><mfenced><mrow><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></mfenced><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>5</mn></math>                 <em><strong>A1</strong></em></p>
<p>valid approach to sum the two areas (seen anywhere)                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>2</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi><mo>-</mo><munderover><mo>∫</mo><mn>2</mn><mn>3</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi></math>   OR   <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>2</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi><mo>+</mo><mfenced open="|" close="|"><mrow><munderover><mo>∫</mo><mn>2</mn><mn>3</mn></munderover><mi>v</mi><mo> </mo><mo>d</mo><mi>t</mi></mrow></mfenced></math></p>
<p>total distance travelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>13</mn></math> (m)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>The following table shows the probability distribution of a discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, justifying your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>uses&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>=</mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><mn>7</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mi>k</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>k</mi><mo>+</mo><mn>1</mn><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p>attempts to factorize their quadratic&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>attempts use of the quadratic formula on their equation&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>5</mn><mo>±</mo><msqrt><msup><mn>5</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>4</mn></mfenced><mfenced><mn>1</mn></mfenced></msqrt></mrow><mn>8</mn></mfrac><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>5</mn><mo>±</mo><mn>3</mn></mrow><mn>8</mn></mfrac></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>rejects&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>&nbsp;as this value leads to invalid probabilities, for example,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">P</mi><mfenced><mrow><mi>X</mi><mo>=</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>5</mn><mo>&lt;</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>R1</strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>R0A1</strong> if&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>&nbsp;is stated without a valid reason given for rejecting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
<p>&nbsp;</p>
<p><strong>[6 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mi>x</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. The line&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>-</mo><mn>9</mn></math>&nbsp;meets the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;at exactly one point.</p>
</div>

<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> can be expressed in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>p</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>q</mi></mrow></mfenced></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;can also be expressed in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>h</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is both negative and increasing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1 (discriminant)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mi>x</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>-</mo><mn>9</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>m</mi><mi>x</mi><mo>+</mo><mn>9</mn><mo>=</mo><mn>0</mn></math></p>
<p>recognizing&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>=</mo><mn>0</mn></math>&nbsp;(seen anywhere)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn><mi>m</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mi>m</mi></mfenced><mfenced><mn>9</mn></mfenced></math>&nbsp;&nbsp;(do not accept only in quadratic formula for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>valid approach to solve quadratic for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mi>m</mi><mfenced><mrow><mi>m</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>36</mn><mo>±</mo><msqrt><msup><mn>36</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>9</mn><mo>×</mo><mn>0</mn></msqrt></mrow><mrow><mn>2</mn><mo>×</mo><mn>9</mn></mrow></mfrac></math></p>
<p>both solutions&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>4</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>≠</mo><mn>0</mn></math>&nbsp;with a valid reason&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;R1</strong></em></p>
<p>the two graphs would not intersect OR&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≠</mo><mo>-</mo><mn>9</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>4</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2 (equating slopes)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mi>x</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>-</mo><mn>9</mn></math>&nbsp; (seen anywhere)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mi>m</mi><mi>x</mi><mo>-</mo><mn>2</mn><mi>m</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>equating slopes,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>m</mi></math>&nbsp;&nbsp;(seen anywhere)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>m</mi><mi>x</mi><mo>-</mo><mn>2</mn><mi>m</mi><mo>=</mo><mi>m</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>substituting their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> value&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>3</mn><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mi>m</mi><mo>-</mo><mn>2</mn><mi>m</mi><mo>×</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>=</mo><mi>m</mi><mo>×</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>-</mo><mn>9</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>4</mn></mfrac><mi>m</mi><mo>-</mo><mfrac><mn>12</mn><mn>4</mn></mfrac><mi>m</mi><mo>=</mo><mfrac><mn>6</mn><mn>4</mn></mfrac><mi>m</mi><mo>-</mo><mn>9</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>9</mn><mi>m</mi></mrow><mn>4</mn></mfrac><mo>=</mo><mo>-</mo><mn>9</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>4</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 3 (using&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mi>x</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>-</mo><mn>9</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>m</mi><mi>x</mi><mo>+</mo><mn>9</mn><mo>=</mo><mn>0</mn></math></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coord of vertex using&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mi>b</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>(M1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>3</mn><mi>m</mi></mrow></mfenced></mrow><mrow><mn>2</mn><mi>m</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>&nbsp;A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>substituting their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp;value&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mn>3</mn><mn>2</mn></mfrac></mfenced><mn>2</mn></msup><mi>m</mi><mo>-</mo><mn>3</mn><mi>m</mi><mo>×</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo><mn>9</mn><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>9</mn><mn>4</mn></mfrac><mi>m</mi><mo>-</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mi>m</mi><mo>+</mo><mn>9</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mi>m</mi><mo>=</mo><mo>-</mo><mn>36</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>4</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>x</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>2</mn></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>2</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>0</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use valid approach&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>8</mn></mrow></mfenced></mrow><mrow><mn>2</mn><mo>×</mo><mn>4</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mi>f</mi><mfenced><mn>1</mn></mfenced><mo>,</mo><mo>&nbsp;</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>8</mn><mo>=</mo><mn>0</mn></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mi>k</mi><mo>=</mo><mo>-</mo><mn>4</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp;A1A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>recognition <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>h</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> (may be seen on sketch)<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>recognition that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>&lt;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>&gt;</mo><mn>0</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>&nbsp;A1A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for two correct values, <em><strong>A1</strong></em> for correct inequality signs.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, has its derivative given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mi>p</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>. The following&nbsp;diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo></math> has an axis of symmetry <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi></math>.</p>
</div>

<div class="specification">
<p>The vertex of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>a</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the discriminant of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the gradient of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>″</mo></math>, the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Indicate clearly the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is concave-down. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mo>×</mo><mn>3</mn></mrow></mfrac></math></p>
<p><br><strong>OR</strong></p>
<p>attempt to complete the square          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>12</mn><mo>+</mo><mi>p</mi></math></p>
<p><br><strong>OR</strong></p>
<p>attempt to differentiate and equate to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>2</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>discriminant <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to substitute into <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>12</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>3</mn><mo>×</mo><mi>p</mi><mo>=</mo><mn>0</mn></math>        <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>0</mn></math>       <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>12</mn><mo>+</mo><mi>p</mi><mo>=</mo><mn>0</mn></math>        <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>12</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>12</mn></math>        <em><strong>A1</strong></em></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>'</mo><mfenced><mn>0</mn></mfenced></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>6</mn><mo>×</mo><mn>0</mn><mo>-</mo><mn>12</mn></math></p>
<p>gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>12</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;padding-left:120px;"><img src="">        <em><strong>A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for line with positive gradient, <em><strong>A1</strong> </em>for correct intercepts.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&lt;</mo><mn>2</mn></math>        <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>&lt;</mo><mn>0</mn></math> (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&lt;</mo><mn>2</mn></math>)  OR  the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math> is below the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&lt;</mo><mn>2</mn></math>)</p>
<p style="text-align:left;">OR   <img src=""> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math>  (sign diagram must be labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo></math>)        <em><strong>R1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates did score well on this question. As always, candidates are encouraged to read the questions carefully for key words such as 'value' as opposed to 'expression'. So, if asked for the value of the discriminant, their answer should be a number and not an expression found from <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi></math>. As such the value of the discriminant in (b)(i) was often seen in (b)(ii). Please ask students to use a straight edge when sketching a straight line! Overall, the reasoning mark for determining where the graph of <em>f</em> is concave-down, was an improvement on previous years. Sign diagrams were typically well labelled, and the description contained clarity regarding which function was being referred to.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Jean-Pierre jumps out of an airplane that is flying at constant altitude. Before opening his&nbsp;parachute, he goes through a period of freefall.</p>
<p>Jean-Pierre’s vertical speed during the time of freefall, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, is modelled by the following function.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>K</mi><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is the number of seconds after he jumps out of the airplane, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math> is a constant.&nbsp;A sketch of Jean-Pierre’s vertical speed against time is shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jean-Pierre’s initial vertical speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the model, state what the horizontal asymptote represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Jean-Pierre’s vertical speed after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> seconds. Give your answer in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>km</mtext><mo> </mo><msup><mtext>h</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. It appeared in a paper that permitted the use of a calculator, and so might not be suitable for all forms of practice.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>K</mi><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mn>0</mn></msup></mrow></mfenced></math>      <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted function equated to zero.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>K</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>60</mn></math>      <em><strong>(A1)    (C2)</strong></em></p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (vertical) speed that Jean-Pierre is approaching (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> increases)     <em><strong>(A1)    (C1)<br></strong></em><strong>OR<br></strong>the limit of the (vertical) speed of Jean-Pierre     <em><strong>(A1)    (C1)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note: </strong>Accept “maximum speed” or “terminal speed”.</p>
<p><em><strong><br></strong></em><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>60</mn><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mrow></mfenced></math>     <em><strong>(M1)<br></strong></em></p>
<p><strong><br></strong><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted function.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>S</mi><mo>=</mo></mrow></mfenced><mo> </mo><mn>50</mn><mo>.</mo><mn>3096</mn><mo>…</mo><mo> </mo><mfenced><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math>     <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong><br>Note: </strong>Follow through from part (a).</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>181</mn><mo> </mo><mfenced><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mn>181</mn><mo>.</mo><mn>114</mn><mo>…</mo><mo> </mo><mfenced><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></mrow></mfenced></math>     <em><strong>(A1)</strong></em><strong>(ft)   <em>    (C3)</em></strong></p>
<p><br><strong>Note:</strong> Award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct conversion of their speed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>km</mtext><mo> </mo><msup><mtext>h</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>.</p>
<p><em><strong><br></strong></em><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 1 + {{\text{e}}^{ - x}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1</mn>
  <mo>+</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 2x + b">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> is a constant.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x)"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to  + \infty } (g \circ f)(x) =  - 3"> <munder> <mrow> <mo form="prefix">lim</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">→</mo> <mo>+</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−</mo> <mn>3</mn> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to form composite     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(1 + {{\text{e}}^{ - x}})"> <mi>g</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </math></span></p>
<p>correct function     <strong><em>A1     N2</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x) = 2 + b + 2{{\text{e}}^{ - x}},{\text{ }}2(1 + {{\text{e}}^{ - x}}) + b"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> </math></span></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to \infty } (2 + b + 2{{\text{e}}^{ - x}}) = 2 + b + \mathop {\lim }\limits_{x \to \infty } (2{{\text{e}}^{ - x}})"> <munder> <mrow> <mo form="prefix">lim</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mi>b</mi> <mo>+</mo> <munder> <mrow> <mo form="prefix">lim</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + b + 2{{\text{e}}^{ - \infty }}"> <mn>2</mn> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi mathvariant="normal">∞</mi> </mrow> </msup> </mrow> </math></span>, graph with horizontal asymptote when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \infty "> <mi>x</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>M0 </em></strong>if candidate clearly has incorrect limit, such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to 0,{\text{ }}{{\text{e}}^\infty },{\text{ }}2{{\text{e}}^0}"> <mi>x</mi> <mo stretchy="false">→</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi mathvariant="normal">∞</mi> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>0</mn> </msup> </mrow> </math></span>.</p>
<p> </p>
<p>evidence that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{ - x}} \to 0"> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">→</mo> <mn>0</mn> </math></span> (seen anywhere)     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to \infty } ({{\text{e}}^{ - x}}) = 0,{\text{ }}1 + {{\text{e}}^{ - x}} \to 1,{\text{ }}2(1) + b =  - 3,{\text{ }}{{\text{e}}^{{\text{large negative number}}}} \to 0"> <munder> <mrow> <mo form="prefix">lim</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo>⁡</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> <mo stretchy="false">→</mo> <mn>1</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mrow> <mtext>large negative number</mtext> </mrow> </mrow> </msup> </mrow> <mo stretchy="false">→</mo> <mn>0</mn> </math></span>, graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {{\text{e}}^{ - x}}"> <mi>y</mi> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </math></span> or</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2{{\text{e}}^{ - x}}"> <mi>y</mi> <mo>=</mo> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mi>x</mi> </mrow> </msup> </mrow> </math></span> with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span>, graph of composite function with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 3"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + b =  - 3"> <mn>2</mn> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b =  - 5"> <mi>b</mi> <mo>=</mo> <mo>−</mo> <mn>5</mn> </math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>3</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a sequence of transformations that transforms the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mn>0</mn></math>&nbsp;to&nbsp;the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>3</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>, stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point(s) where the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math> intersect.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p>for example,</p>
<p>a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis (in the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>a horizontal translation (shift) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> units to the left&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>a vertical translation (shift) down by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>A1</strong> for each correct transformation applied in a correct position in the sequence. Do not accept use of the “move” for a translation.</p>
<p><strong>Note:</strong> Award <strong>A1A1A1</strong> for a correct alternative sequence of transformations. For example,</p>
<p>a vertical translation (shift) down by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit, followed by a horizontal translation (shift) <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> units to the left and then a reflection in the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
<p>&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>range is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>≤</mo><mo>-</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Correct alternative notations include&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>]</mo><mo>-</mo><mo>∞</mo><mo>,</mo><mo>-</mo><mn>1</mn><mo>]</mo></math>,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mo>∞</mo><mo>,</mo><mo>-</mo><mn>1</mn><mo>]</mo></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>≤</mo><mo>-</mo><mn>1</mn></math>.</p>
<p>&nbsp;</p>
<p><strong>[1 mark]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>y</mi><mo>+</mo><mn>3</mn></msqrt><mo>=</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>M1</strong> for interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (can be done at a later stage).</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>y</mi><mo>+</mo><mn>3</mn></msqrt><mo>=</mo><mo>-</mo><mi>x</mi><mo>-</mo><mn>1</mn><mfenced><mrow><mo>=</mo><mo>-</mo><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>+</mo><mn>3</mn><mo>=</mo><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>&nbsp;</mo><mfenced><mrow><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>domain is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≤</mo><mo>-</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Correct alternative notations include&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>]</mo><mo>-</mo><mo>∞</mo><mo>,</mo><mo>-</mo><mn>1</mn><mo>]</mo></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mo>∞</mo><mo>,</mo><mo>-</mo><mn>1</mn><mo>]</mo></math>.</p>
<p>&nbsp;</p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the point of intersection lies on the line&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>=</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong>&nbsp; &nbsp;</p>
<p>attempts to solve their quadratic equation&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p>for example,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><mn>3</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt><mo>=</mo><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>⇒</mo><mn>2</mn><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt><mo>+</mo><mi>x</mi><mo>+</mo><mn>4</mn><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup></math></p>
<p>substitutes&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp;to obtain&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mi>x</mi><mo>+</mo><mn>4</mn><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup></math></p>
<p>attempts to solve their quadratic equation&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p>for example,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><mn>3</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>A1</strong></p>
<p>as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≤</mo><mo>-</mo><mn>1</mn></math>, the only solution is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>R1</strong></p>
<p>so the coordinates of the point of intersection are&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <strong>R0A1</strong> if&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn></mrow></mfenced></math>&nbsp;is stated without a valid reason given for rejecting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn></mrow></mfenced></math>.</p>
<p>&nbsp;</p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at point A and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis at point B, as shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.18.01.png" alt="M17/5/MATSD/SP1/ENG/TZ2/04"></p>
<p>The length of line segment OB is three times the length of line segment OA, where O is the origin.</p>
</div>

<div class="specification">
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{(2, 6)}}">
  <mrow>
    <mtext>(2, 6)</mtext>
  </mrow>
</math></span> lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate of point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 =  - 3(2) + c">
  <mn>6</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mi>c</mi>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><strong>OR</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(y - 6) =  - 3(x - 2)">
  <mo stretchy="false">(</mo>
  <mi>y</mi>
  <mo>−</mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substitution of their gradient from part (a) into a correct equation with the coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> correctly substituted.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 3x + 12">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>12</mn>
</math></span>     <strong><em>(A1)(</em>ft)</strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1)(</em>ft) </strong>for their correct equation. Follow through from part (a).</p>
<p>If no method seen, award <strong><em>(A1)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 3x">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mi>x</mi>
</math></span>.</p>
<p>Award <strong><em>(A1)(A0) </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3x + 12">
  <mo>−</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>12</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 =  - 3x + 12">
  <mn>0</mn>
  <mo>=</mo>
  <mo>−</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>12</mn>
</math></span>     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substitution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> in their equation from part (b).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x = ){\text{ }}4">
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>4</mn>
</math></span>     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Follow through from their equation from part (b). Do not follow through if no method seen. Do not award the final <strong><em>(A1) </em></strong>if the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is negative or zero.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^4} - 2">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^3} - 4{x^2} + 2x + 6">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>6</mn>
</math></span></p>
<p>The functions intersect at points P and Q. Part of the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;and part of the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;are shown on the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <em>f</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>x</em>-coordinate of P and the <em>x</em>-coordinate of Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <em>x</em> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) &gt; g\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ { - 2,\,\,\infty } \right[{\text{ or }}\left[ { - 2,\,\,\infty } \right)"> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∞</mi> </mrow> <mo>[</mo> </mrow> <mrow> <mtext> or </mtext> </mrow> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∞</mi> </mrow> <mo>)</mo> </mrow> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) \geqslant  - 2{\text{ or }}y \geqslant  - 2"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>⩾</mo> <mo>−</mo> <mn>2</mn> <mrow> <mtext> or </mtext> </mrow> <mi>y</mi> <mo>⩾</mo> <mo>−</mo> <mn>2</mn> </math></span> <strong>OR</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 \leqslant f\left( x \right) &lt; \infty "> <mo>−</mo> <mn>2</mn> <mo>⩽</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mi mathvariant="normal">∞</mi> </math></span>     <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for −2 and <em><strong>(A1)</strong></em> for completely correct mathematical notation, including weak inequalities. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f \geqslant  - 2"> <mi>f</mi> <mo>⩾</mo> <mo>−</mo> <mn>2</mn> </math></span>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–1 and 1.52 (1.51839…)     <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for −1 and <em><strong>(A1)</strong></em> for 1.52 (1.51839).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt;  - 1,\,\,\,x &gt; 1.52"> <mi>x</mi> <mo>&lt;</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>&gt;</mo> <mn>1.52</mn> </math></span>  <strong>OR</strong>  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \infty ,\,\, - 1} \right) \cup \left( {1.52,\,\,\infty } \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi mathvariant="normal">∞</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>∪</mo> <mrow> <mo>(</mo> <mrow> <mn>1.52</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∞</mi> </mrow> <mo>)</mo> </mrow> </math></span>.    <strong><em>(A1)</em>(ft)</strong><strong><em>(A1)</em>(ft)</strong> <em><strong>(C2)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for <strong>both</strong> critical values in inequality or range statements such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x &lt;  - 1,\,\,\left( { - \infty ,\,\, - 1} \right),\,\,x &gt; 1.52\,{\text{ or }}\left( {1.52,\,\,\infty } \right)"> <mi>x</mi> <mo>&lt;</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi mathvariant="normal">∞</mi> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>&gt;</mo> <mn>1.52</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext> or </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1.52</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∞</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>Award the second <strong><em>(A1)</em>(ft)</strong> for correct strict inequality statements used with their critical values. If an incorrect use of strict and weak inequalities has already been penalized in (a), condone weak inequalities for this second mark and award <strong><em>(A1)</em>(ft)</strong>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^2} + bx + 11">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mn>11</mn>
</math></span>. The point&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 1{\text{, }}8} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−<!-- − --></mo>
      <mn>1</mn>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mn>8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span> is transformed to obtain the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<p>Describe this transformation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to substitute coordinates      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( { - 1} \right) = 8"> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>8</mn> </math></span></p>
<p>correct substitution      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - 1} \right)^2} + b\left( { - 1} \right) + 11 = 8"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>b</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>11</mn> <mo>=</mo> <mn>8</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - b + 11 = 8"> <mn>1</mn> <mo>−</mo> <mi>b</mi> <mo>+</mo> <mn>11</mn> <mo>=</mo> <mn>8</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 4"> <mi>b</mi> <mo>=</mo> <mn>4</mn> </math></span>        <em><strong>A1  N2</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to solve     <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{x^2} + 4x + 4} \right) + 7"> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>4</mn> <mi>x</mi> <mo>+</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>7</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = \frac{{ - 4}}{2}"> <mi>h</mi> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mn>2</mn> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = g\left( { - 2} \right)"> <mi>k</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct working        <em><strong>A1</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x + 2} \right)^2} + 7"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>7</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h =  - 2"> <mi>h</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span></p>
<p>translation or shift (do not accept move) of vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 2} \\   7  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> (accept left by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2"> <mn>2</mn> </math></span> and up by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span>)        <em><strong>A1A1  N2</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>4</mn></msup></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>Consider the function defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>4</mn></msup></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and its graph&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a horizontal tangent at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>. Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>20</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>9</mn></mrow><msup><mi>x</mi><mn>6</mn></msup></mfrac></math>,&nbsp;show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is a local maximum point.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, showing clearly the value of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept and the&nbsp;approximate position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient or product rule<em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>4</mn></msup><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mi>x</mi></mfrac></mstyle></mfenced><mo>-</mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></mrow><msup><mfenced><msup><mi>x</mi><mn>4</mn></msup></mfenced><mn>2</mn></msup></mfrac></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>4</mn><msup><mi>x</mi><mrow><mo>-</mo><mn>5</mn></mrow></msup></mrow></mfenced><mo>+</mo><mfenced><msup><mi>x</mi><mrow><mo>-</mo><mn>4</mn></mrow></msup></mfenced><mfenced><mfrac><mn>1</mn><mi>x</mi></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>correct working&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>3</mn></msup><mfenced><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow><msup><mi>x</mi><mn>8</mn></msup></mfrac></math>&nbsp; OR&nbsp;&nbsp;cancelling&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac><mo>+</mo><mfrac><mn>1</mn><msup><mi>x</mi><mn>5</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>substitution of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>4</mn></mfrac></mstyle></msup></mrow><msup><mfenced><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></mfenced><mn>4</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mtext>e</mtext></mrow></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mtext>e</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup><mo>,</mo><mo> </mo><mfrac><mn>1</mn><mrow><mn>4</mn><mtext>e</mtext></mrow></mfrac></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></mfenced><mo>=</mo><mfrac><mrow><mn>20</mn><mo> </mo><mi>ln</mi><mo> </mo><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>4</mn></mfrac></mstyle></msup><mo>-</mo><mn>9</mn></mrow><msup><mfenced><msup><mtext>e</mtext><mfrac><mn>1</mn><mn>4</mn></mfrac></msup></mfenced><mn>6</mn></msup></mfrac></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>5</mn><mo>-</mo><mn>9</mn></mrow><msup><mtext>e</mtext><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup></mfrac><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>4</mn><msup><mtext>e</mtext><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>which is negative&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;R1</strong></em></p>
<p>hence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>&nbsp;is a local maximum&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> The <em><strong>R1</strong></em> is dependent on the previous <em><strong>A1</strong></em> being awarded.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>&gt;</mo><mn>0</mn></math><em><strong>&nbsp; &nbsp; &nbsp; &nbsp; (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>1</mn></math>&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:90px;"><img src="">&nbsp;&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><strong>Note:&nbsp;</strong>Award <em><strong>A1</strong></em> for one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept only, located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math></p>
<p><em><strong>&nbsp; &nbsp; &nbsp;A1</strong></em> for local maximum, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, in approximately correct position<br><em><strong>&nbsp; &nbsp; &nbsp;A1</strong></em> for curve approaching <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>∞</mo></math> (including change in concavity).</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for different values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p>Both&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are one-to-one functions.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>-</mo><mn>2</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>evidence of using composite function         <em><strong>(M1)</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mn>0</mn></mfenced></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>8</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>          <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was completed successfully by most of the candidates. In part (b) of the question, a few candidates did not recognize the notation for a composite function and instead incorrectly thought they were supposed to multiply values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>Write down the equation of</p>
</div>

<div class="specification">
<p>Find the coordinates where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> crosses</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the vertical asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the horizontal asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the axes below.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>   (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></math>   (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></math>)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">                <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for completely correct shape: two branches in correct quadrants with asymptotic behaviour.</p>
<p> </p>
<p><em><strong>[</strong></em><em><strong>1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mi>p</mi><mo>&#8202;</mo><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mo>&#8230;</mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#62;</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>p</mi><mo>&#8800;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>Consider the case where the series is geometric.</p>
</div>

<div class="specification">
<p>Now consider the case where the series is arithmetic with common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&gt;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the series is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;">attempt to use a ratio from consecutive terms        <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><msup><mi>r</mi><mn>2</mn></msup></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mfenced><mfrac><mn>1</mn><mrow><mn>3</mn><mi>p</mi></mrow></mfrac></mfenced></math></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Candidates may use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><msup><mi>x</mi><mn>1</mn></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mi>p</mi></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup><mo>…</mo></math> and consider the powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in geometric sequence</p>
<p style="text-align:left;">Award <em><strong>M1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>p</mi><mn>1</mn></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mi>p</mi></mfrac></math>.</p>
<p style="text-align:left;"><strong><br>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mi>p</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>        <em><strong>M1</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Award <em><strong>M0A0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> with no other working seen.</p>
<p style="text-align:left;"> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></mstyle></mrow></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mo>-</mo><mfrac><mn>3</mn><msqrt><mn>3</mn></msqrt></mfrac><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><msqrt><mn>3</mn></msqrt></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>2</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mn>2</mn></msup></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;">attempt to find a difference from consecutive terms or from <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;">correct equation          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mfenced><mrow><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math></p>
<p style="text-align:left;"><strong><br>Note:</strong> Candidates may use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><msup><mi>x</mi><mn>1</mn></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mi>p</mi></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup><mo>+</mo><mo>…</mo></math> and consider the powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in arithmetic sequence.</p>
<p style="text-align:left;">Award <em><strong>M1A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>-</mo><mn>1</mn><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>-</mo><mi>p</mi></math></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>p</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;">attempt to use arithmetic mean <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub><mo>=</mo><mfrac><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>3</mn></msub></mrow><mn>2</mn></mfrac></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mn>2</mn></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>p</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 3</strong></p>
<p style="text-align:left;">attempt to find difference using <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>3</mn></msub></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mi>d</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mi>d</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>       <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow></mfenced></math></p>
<p style="text-align:left;">attempt to substitute into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> and equate to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math></p>
<p style="text-align:left;">correct working with <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> (seen anywhere)           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced open="[" close="]"><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mi>n</mi><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>6</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfenced><mfrac><mrow><mn>4</mn><mo>-</mo><mi>n</mi></mrow><mn>3</mn></mfrac></mfenced><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math></p>
<p style="text-align:left;">correct equation without <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mi>n</mi><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>-</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>6</mn></mfrac><mo>=</mo><mo>-</mo><mn>3</mn></math> or equivalent</p>
<p style="text-align:left;"><strong><br>Note:</strong> Award as above if the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mi>p</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mo>…</mo></math> is considered leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mi>n</mi><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn></math>.</p>
<p style="text-align:left;"><br>attempt to form a quadratic <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>7</mn><mi>n</mi><mo>-</mo><mn>18</mn><mo>=</mo><mn>0</mn></math></p>
<p style="text-align:left;">attempt to solve their quadratic           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>-</mo><mn>9</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>9</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;">listing the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> terms of the sequence           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>0</mn><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mo>…</mo></math></p>
<p style="text-align:left;">recognizing first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> terms sum to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>           <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math><sup>th</sup> term is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math><sup>th</sup> term is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;">sum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math><sup>th</sup> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math><sup>th</sup> term <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>9</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates were able to identify the key relationship between consecutive terms for both geometric and arithmetic sequences. Substitution into the infinity sum formula was good with solving involving the natural logarithm done quite well. The complexity of the equation formed using 𝑆𝑛 was a stumbling block for some candidates. Those who factored out and cancelled the ln𝑥 expression were typically successful in solving the resulting quadratic.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="question">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>+</mo><mi>k</mi></math>.</p>
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> has no real roots.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1 – (discriminant)</strong></p>
<p>correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfenced><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mo>+</mo><mi>k</mi><mo> </mo><mo>,</mo><mo> </mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>5</mn><mo>+</mo><mi>k</mi><mo>=</mo><mn>0</mn></math></p>
<p>evidence of discriminant      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi><mo>,</mo><mo> </mo><mtext>Δ</mtext></math></p>
<p>correct substitution into discriminant of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mrow><mo>-</mo><mn>5</mn><mo>+</mo><mi>k</mi></mrow></mfenced><mo> </mo><mo>,</mo><mo> </mo><mn>16</mn><mo>-</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mn>5</mn></mrow></mfenced></math></p>
<p>recognizing discriminant is negative      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>&lt;</mo><mn>0</mn><mo> </mo><mo>,</mo><mo> </mo><msup><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mrow><mo>-</mo><mn>5</mn><mo>+</mo><mi>k</mi></mrow></mfenced><mo>&lt;</mo><mn>0</mn><mo> </mo><mo>,</mo><mo> </mo><mn>16</mn><mo>&lt;</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mo> </mo><mo>,</mo><mo> </mo><mn>16</mn><mo>-</mo><mn>4</mn><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mn>5</mn></mfenced><mo>&lt;</mo><mn>0</mn></math></p>
<p>correct working (must be correct inequality)      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mi>k</mi><mo>&lt;</mo><mo>-</mo><mn>36</mn><mo> </mo><mo>,</mo><mo> </mo><mi>k</mi><mo>-</mo><mn>5</mn><mo>&gt;</mo><mn>4</mn><mo> </mo><mo>,</mo><mo> </mo><mn>16</mn><mo>+</mo><mn>20</mn><mo>-</mo><mn>4</mn><mi>k</mi><mo>&lt;</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&gt;</mo><mn>9</mn></math>        <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 2 – (transformation of vertex of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">f</mi></math>)</strong></p>
<p>valid approach for finding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> vertex      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mo> </mo><mo>,</mo><mo> </mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math></p>
<p>correct vertex of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mn>9</mn></mrow></mfenced></math></p>
<p>correct vertex of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>9</mn></mrow></mfenced></math></p>
<p>correct vertex of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>9</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable></mfenced><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>9</mn><mo>+</mo><mi>k</mi></mrow></mfenced></math></p>
<p>recognizing when vertex is above <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mo>+</mo><mi>k</mi><mo>&gt;</mo><mn>0</mn></math>, sketch</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&gt;</mo><mn>9</mn></math>        <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><strong>METHOD 3 – (transformation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">f</mi></math>)</strong></p>
<p>recognizing vertical reflection of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo> </mo><mo>,</mo><mo> </mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>5</mn></math> , sketch</p>
<p>correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>5</mn><mo>+</mo><mi>k</mi></math></p>
<p>valid approach for finding vertex of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi>b</mi><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mo> </mo><mo>,</mo><mo> </mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math></p>
<p>correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> coordinate of vertex of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced></math>      <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>9</mn><mo>+</mo><mi>k</mi><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>9</mn><mo>+</mo><mi>k</mi></mrow></mfenced></math></p>
<p>recognizing when vertex is above <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis      <em><strong>(M1)</strong></em></p>
<p><em>eg</em>    <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>9</mn><mo>+</mo><mi>k</mi><mo>&gt;</mo><mn>0</mn></math> , sketch</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&gt;</mo><mn>9</mn></math>        <em><strong>A1 N3</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> are defined such that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{x + 3}}{4}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>3</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 8x + 5">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>8</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>5</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g \circ f} \right)\left( x \right) = 2x + 11">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mo>∘</mo>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>11</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {g \circ f} \right)^{ - 1}}\left( a \right) = 4">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>g</mi>
          <mo>∘</mo>
          <mi>f</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>a</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to form composition       <em><strong>M1</strong></em></p>
<p>correct substitution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( {\frac{{x + 3}}{4}} \right) = 8\left( {\frac{{x + 3}}{4}} \right) + 5">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mrow>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>8</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mrow>
        <mn>4</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span>    <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g \circ f} \right)\left( x \right) = 2x + 11">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mo>∘</mo>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>11</mn>
</math></span>     <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute 4 (seen anywhere) <em><strong>    (M1)</strong></em></p>
<p>correct equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 2 \times 4 + 11">
  <mi>a</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>4</mn>
  <mo>+</mo>
  <mn>11</mn>
</math></span>    <em><strong>  (A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> = 19     <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mo>&nbsp;</mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>4</mn></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>Point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>13</mn><mo>,</mo><mo>&nbsp;</mo><mn>7</mn></mrow></mfenced></math>&nbsp;lies on the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
<p>On the following grid, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>attempt to substitute coordinates (in any order) into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>      <em><strong>(M1)</strong></em></p>
<p><em>eg </em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo> </mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mn>13</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mn>7</mn><mo> </mo><mo>,</mo><mo> </mo><mi>a</mi><mo> </mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mn>7</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mo>=</mo><mn>13</mn><mo> </mo><mo>,</mo><mo> </mo><mi>a</mi><mo> </mo><mi>log</mi><mo> </mo><mn>9</mn><mo>=</mo><mn>7</mn></math></p>
<p>finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mn>9</mn><mo>=</mo><mn>2</mn></math> (seen anywhere)      <em><strong>(A1)</strong></em></p>
<p><em>eg </em>   <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mn>9</mn><mo>=</mo><mn>2</mn><mo> </mo><mo>,</mo><mo> </mo><mn>2</mn><mi>a</mi><mo>=</mo><mn>7</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>7</mn><mn>2</mn></mfrac></math>     <em><strong>A1  N2</strong></em>      </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">    <em><strong>A1A1A1  N3</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct shape of logarithmic function (must be increasing and concave down).<br><strong>Only</strong> if the shape is correct, award the following:<br><em><strong>A1</strong> </em>for being asymptotic to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math><br><em><strong>A1</strong> </em>for curve including both points in circles.  </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the zero of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mo>-</mo><mi>x</mi></math>.</p>
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>        <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the function to zero.</p>
<p><em><strong><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>2</mn><mo>.</mo><mn>29</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>2</mn><mo>.</mo><mn>28942</mn><mo>…</mo></mrow></mfenced></math>       (A1)   (C2)</strong></em></p>
<p><em><strong><br></strong></em><strong>Note:</strong> Award <em><strong>(C1)</strong></em> for a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-value given as part of a coordinate pair or alongside an explicitly stated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-value.</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>88</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>33</mn></mrow></mfenced></math>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mfenced><mrow><mn>2</mn><mo>.</mo><mn>88449</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>4</mn><mo>.</mo><mn>32674</mn><mo>…</mo></mrow></mfenced></mfenced></math>        <em><strong>(A1)(A1)   (C2)</strong></em></p>
<p><strong><br>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>88</mn><mo>,</mo><mo> </mo><mi>y</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>33</mn></math>.</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>-</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac></math> (or equivalent)        <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the functions or for a sketch of the two functions.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo></mrow></mfenced><mo> </mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>43</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>-</mo><mn>1</mn><mo>.</mo><mn>43080</mn><mo>…</mo></mrow></mfenced></math>        <em><strong>(A1)   (C2)</strong></em></p>
<p><strong><br>Note: </strong>Do not award the final <em><strong>(</strong><strong>A1)</strong></em> if the answer is seen as part of a coordinate pair or a <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-value is explicitly stated, unless already penalized in part (a).</p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> have position vectors&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 2} \\   4 \\   { - 4}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  6 \\   8 \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;respectively.</p>
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> has position vector&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 1} \\   k \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.&nbsp;Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}">
  <mrow>
    <mtext>O</mtext>
  </mrow>
</math></span> be the origin.</p>
</div>

<div class="specification">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\widehat {\text{O}}{\text{C}} = {\text{B}}\widehat {\text{O}}{\text{C}}"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AOC}}"> <mrow> <mtext>AOC</mtext> </mrow> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span> or into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span> (in (ii))          <em><strong>(A1)</strong></em>     </p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 \times \left( { - 1} \right) + 4 \times k"> <mo>−</mo> <mn>2</mn> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mo>×</mo> <mi>k</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6 \times \left( { - 1} \right) + 8 \times k"> <mn>6</mn> <mo>×</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> <mo>×</mo> <mi>k</mi> </math></span></p>
<p>correct expression           <em><strong>A1</strong></em><em><strong>   N1</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + 4k"> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4k + 2"> <mn>4</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </math></span></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct expression           <em><strong>A1</strong></em><em><strong>   N1</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8k - 6"> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 + 8k"> <mo>−</mo> <mn>6</mn> <mo>+</mo> <mn>8</mn> <mi>k</mi> </math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding magnitudes (seen anywhere)           <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 4} \right)}^2}} \,\,\left( { = 6} \right)"> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {0^2}} \,\,\left( { = 10} \right)"> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>10</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct substitution of their values into formula for angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AOC}}"> <mrow> <mtext>AOC</mtext> </mrow> </math></span>           <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{2 + 4k}}{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 4} \right)}^2}} \left| {\overrightarrow {{\text{OC}}} } \right|}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>correct substitution of their values into formula for angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BOC}}"> <mrow> <mtext>BOC</mtext> </mrow> </math></span>           <em><strong>(A1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{8k - 6}}{{\sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {0^2}} \left| {\overrightarrow {{\text{OC}}} } \right|}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </mrow> </mfrac> </math></span></p>
<p>recognizing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,{\text{A}}\widehat {\text{O}}{\text{C}} = {\text{cos}}\,{\text{B}}\widehat {\text{O}}{\text{C}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span>  (seen anywhere)           <em><strong>(M1)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 + 4k}}{{\left| {\overrightarrow {{\text{OC}}} } \right|\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{8k - 6}}{{\left| {\overrightarrow {{\text{OC}}} } \right|\sqrt {{6^2} + {{\left( 8 \right)}^2} + {0^2}} }}"> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> <msqrt> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2 + 4k}}{{6\sqrt {1 + {k^2}} }} = \frac{{8k - 6}}{{10\sqrt {1 + {k^2}} }}"> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mrow> <mn>6</mn> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mn>10</mn> <msqrt> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span></p>
<p>correct working (without radicals)           <em><strong>(A2)</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10\left( {2 + 4k} \right) = 6\left( {8k - 6} \right)"> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mn>8</mn> <mi>k</mi> <mo>−</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11{k^2} - 79k + 14 = 0"> <mn>11</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>79</mn> <mi>k</mi> <mo>+</mo> <mn>14</mn> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>correct working clearly leading to the required answer           <em><strong>A1</strong></em></p>
<p><em>eg</em>      <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20 + 36 = 48k"><mn>20</mn><mo>+</mo><mn>36</mn><mo>=</mo><mn>48</mn><mi>k</mi><mo>-</mo><mn>40</mn><mi>k</mi></math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="56 = 8k"> <mn>56</mn> <mo>=</mo> <mn>8</mn> <mi>k</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span>  and  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{2}{{11}}"> <mi>k</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <mn>11</mn> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k - 7} \right)\left( {11k - 2} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>7</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>11</mn> <mi>k</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span>           <em><strong>AG</strong></em><em><strong>   N0</strong></em></p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>finding magnitude of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span> (seen anywhere)           <em><strong>A1</strong></em></p>
<p><em>eg      </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {{{\left( { - 1} \right)}^2} + {7^2} + {0^2}} "> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>7</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {50} "> <msqrt> <mn>50</mn> </msqrt> </math></span></p>
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>           <em><strong>(M1)</strong></em></p>
<p><em>eg      </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{2 + 28}}{{6\sqrt {{{\left( { - 1} \right)}^2} + {7^2} + {0^2}} }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>+</mo> <mn>28</mn> </mrow> <mrow> <mn>6</mn> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>7</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{56 - 6}}{{10\sqrt {{{\left( { - 1} \right)}^2} + {7^2} + {0^2}} }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>56</mn> <mo>−</mo> <mn>6</mn> </mrow> <mrow> <mn>10</mn> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>7</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>0</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\sqrt {26} } \right)^2} = {6^2} + {\left( {\sqrt {50} } \right)^2} - 2\left( 6 \right)\sqrt {50} \,{\text{cos}}\,\theta "> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>26</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mn>6</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>50</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> <msqrt> <mn>50</mn> </msqrt> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span></p>
<p>finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta "> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>           <em><strong>A1</strong></em></p>
<p><em>eg      </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{5}{{\sqrt {50} }}\,\,\,\left( { = \frac{1}{{\sqrt 2 }}} \right)"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>5</mn> <mrow> <msqrt> <mn>50</mn> </msqrt> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>valid approach to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span> (seen anywhere)           <em><strong>(M1)</strong></em></p>
<p><em>eg      </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta  = \frac{\pi }{4}"> <mi>θ</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = {\text{cos}}\,\theta "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \sqrt {1 - \frac{{25}}{{50}}} "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mfrac> <mrow> <mn>25</mn> </mrow> <mrow> <mn>50</mn> </mrow> </mfrac> </msqrt> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \sqrt {1 - {\text{co}}{{\text{s}}^2}\,\theta } "> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <msqrt> <mn>1</mn> <mo>−</mo> <mrow> <mtext>co</mtext> </mrow> <mrow> <msup> <mrow> <mtext>s</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </msqrt> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \frac{{\sqrt 2 }}{2}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span></p>
<p>correct substitution of <strong>their</strong> values into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}ab\,{\text{sin}}\,{\text{C}}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>C</mtext> </mrow> </math></span>           <em><strong>(A1)</strong></em></p>
<p><em>eg      </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {50} "><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn><mo>×</mo><msqrt><mn>50</mn></msqrt><mo>×</mo><msqrt><mn>1</mn><mo>-</mo><mfrac><mn>25</mn><mn>50</mn></mfrac></msqrt></math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 6 \times \sqrt {50}  \times \frac{5}{{\sqrt {50} }}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>×</mo> <mn>6</mn> <mo>×</mo> <msqrt> <mn>50</mn> </msqrt> <mo>×</mo> <mfrac> <mn>5</mn> <mrow> <msqrt> <mn>50</mn> </msqrt> </mrow> </mfrac> </math></span></p>
<p>area is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15"> <mn>15</mn> </math></span>           <em><strong>A1</strong></em><em><strong>   N3</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>6</mn></math>&nbsp;is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>2</mn></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>+</mo><mn>1</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>6</mn></math>.&nbsp;On the axes above, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>2</mn></mfenced><mo>=</mo><mn>6</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong> A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced><mo>=</mo><mo>-</mo><mn>2</mn></math> &nbsp; &nbsp; &nbsp;<em><strong> A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:150px;"><img src=""> &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;M1A1A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for an attempt to apply any vertical stretch or vertical translation,&nbsp;<em><strong>A1</strong></em> for a correct horizontal line segment between <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>&nbsp;(located roughly at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>3</mn></math>),<br><em><strong>A1</strong></em> for a correct concave down parabola including max point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></math> and for&nbsp;correct end points at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>6</mn><mo>,</mo><mn>0</mn><mo>)</mo></math> (within circles). Points do not need to be&nbsp;labelled.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>20</mn><mo>)</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>4</mn><mo>,</mo><mo>&#160;</mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mo>(</mo><mo>-</mo><mn>14</mn><mo>,</mo><mo>&#160;</mo><mn>12</mn><mo>)</mo></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> passes through the&nbsp;point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>k</mi><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mtext>BC</mtext></msub><mo>=</mo><mfrac><mrow><mn>12</mn><mo>-</mo><mn>6</mn></mrow><mrow><mo>-</mo><mn>14</mn><mo>-</mo><mn>4</mn></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow></mfenced></math>        <em><strong>(A1)</strong></em></p>
<p>finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>L</mi></msub><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><msub><mi>m</mi><mtext>BC</mtext></msub></mfrac></math> using their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mtext>BC</mtext></msub></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>L</mi></msub><mo>=</mo><mn>3</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>20</mn><mo>=</mo><mn>3</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mi>y</mi><mo>=</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>26</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><mn>3</mn><mi>x</mi><mo>+</mo><mn>26</mn></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>k</mi><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math> into their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>-</mo><mn>20</mn><mo>=</mo><mn>3</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>=</mo><mn>3</mn><mi>k</mi><mo>+</mo><mn>26</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>-</mo><mn>8</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Finding the gradient of a line was well understood and many candidates also correctly found the perpendicular slope. Even with an error in their part (a), follow through marks in part (b) allowed many candidates to earn full marks for finding k despite their incorrect equation resulting in arithmetic of greater complexity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The functions&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>2</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Given that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced><mo>=</mo><mo>-</mo><mn>3</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>5</mn></math>, find&nbsp;the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mo>-</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mo>⇒</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>-</mo><mn>2</mn><mo>=</mo><mo>-</mo><mn>3</mn><mo>&nbsp;</mo><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mi>b</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>(M1)</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>5</mn><mo>⇒</mo><mo>-</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>5</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>a valid attempt to solve their two linear equations for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>3</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[6 marks]</strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mi>cos</mi><mo>&#8202;</mo><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mi>&#960;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mo>=</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math>            <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math></p>
<p>recognising to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext></math>            <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mn>2</mn><mi>x</mi><mo>=</mo><msqrt><mn>3</mn></msqrt></math> (values may be seen in right triangle)           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></mfenced><mo>=</mo></mrow></mfenced><mo> </mo><mfrac><mi>π</mi><mn>6</mn></mfrac></math>  (seen anywhere) (accept degrees)           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>=</mo><mfrac><mi>π</mi><mn>6</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mn>6</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi>π</mi><mn>12</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mn>12</mn></mfrac></math>            <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not award the final <em><strong>A1</strong></em> if any additional solutions are seen.<br>Award <em><strong>A1A0</strong> </em>for correct answers in degrees.<br>Award <em><strong>A0A0</strong> </em>for correct answers in degrees with additional values.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Determining the composite function was very well done. In part (b) very few candidates showed any recognition that tan (or cot) were required to solve this trigonometric equation. Many saw the 2<em>x</em> and simply employed one of the double angle rules but could not then progress to an answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mi>x</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.25.10.png" alt="N17/5/MATME/SP1/ENG/TZ0/08"></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at the origin and at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(1,{\text{ }}0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at another point Q, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.27.48.png" alt="N17/5/MATME/SP1/ENG/TZ0/08.c.d"></p>
</div>

<div class="question">
<p>Find the area of the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>valid approach     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {L - f,{\text{ }}\int_{ - 1}^1 {(1 - {x^2}){\text{d}}x} } "> <mo>∫</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>f</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <msubsup> <mo>∫</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </math></span>, splitting area into triangles and integrals</p>
<p>correct integration     <strong><em>(A1)(A1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {x - \frac{{{x^3}}}{3}} \right]_{ - 1}^1,{\text{ }} - \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} + \frac{{{x^2}}}{2} + x"> <msubsup> <mrow> <mo>[</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mn>1</mn> </msubsup> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>x</mi> </math></span></p>
<p>substituting <strong>their</strong> limits into <strong>their</strong> integrated function and subtracting (in any order)     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,"> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - \frac{1}{3} - \left( { - 1 - \frac{{ - 1}}{3}} \right)"> <mn>1</mn> <mo>−</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> <mo>−</mo> <mfrac> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>M0 </em></strong>for substituting into original or differentiated function.</p>
<p> </p>
<p>area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{4}{3}"> <mo>=</mo> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span>     <strong><em>A2     N3</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = ax + b + \frac{c}{x}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo>+</mo>
  <mfrac>
    <mi>c</mi>
    <mi>x</mi>
  </mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span> are positive integers.</p>
<p>Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is shown on the axes below. The graph of the function has its local maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }} - 2)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span> and its local minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.28.21.png" alt="M17/5/MATSD/SP1/ENG/TZ1/12"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 6"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>6</mn> </math></span> on the axes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =  - 6"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−</mo> <mn>6</mn> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = k"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </math></span> has no solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-15_om_15.32.51.png" alt="M17/5/MATSD/SP1/ENG/TZ1/21.b.i/M">     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     The command term “Draw” states: “A ruler (straight edge) should be used for straight lines”; do not accept a freehand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 6"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>6</mn> </math></span> line.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 &lt; k &lt; 6"> <mo>−</mo> <mn>2</mn> <mo>&lt;</mo> <mi>k</mi> <mo>&lt;</mo> <mn>6</mn> </math></span>     <strong><em>(A1)(A1)</em></strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for both end points correct and <strong><em>(A1) </em></strong>for correct <strong>strict </strong>inequalities.</p>
<p>Award at most <strong><em>(A1)(A0) </em></strong>if the stated variable is different from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> for example <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 &lt; x &lt; 6"> <mo>−</mo> <mn>2</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mn>6</mn> </math></span> is <strong><em>(A1)(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the vectors <em><strong>a</strong></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3 \\   {2p}  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {p + 1} \\   8  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>Find the possible values of <em>p</em> for which <strong><em>a</em></strong> and <strong><em>b</em></strong> are parallel.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1 </strong>(eliminating <em>k</em>)</p>
<p>recognizing parallel vectors are multiples of each other&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<em><strong>a</strong></em>&nbsp;=&nbsp;<em>k<strong>b</strong></em>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\&nbsp; {2p}&nbsp; \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> =&nbsp;<em>k</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {p + 1} \\&nbsp; 8&nbsp; \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{p + 1}}{3} = \frac{8}{{2p}}"> <mfrac> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> <mo>=</mo> <mfrac> <mn>8</mn> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mfrac> </math></span>,&nbsp; 3<em>k</em>&nbsp;=&nbsp;<em>p</em>&nbsp;+ 1 and 2<em>kp</em>&nbsp;= 8</p>
<p>correct working (must be quadratic)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;2<em>p</em><sup>2</sup> + 2<em>p</em> = 24,&nbsp;&nbsp;<em>p</em><sup>2</sup>&nbsp;+ <em>p</em>&nbsp;– 12,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 = \frac{{{p^2} + p}}{4}"> <mn>3</mn> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>p</mi> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p>valid attempt to solve <strong>their</strong> quadratic equation&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><em>eg&nbsp; &nbsp;</em>factorizing, formula, completing the square</p>
<p>evidence of correct working&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;(<em>p</em> + 4)(<em>p</em>&nbsp;– 3),&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{{ - 2 \pm \sqrt {4 - 4\left( 2 \right)\left( { - 24} \right)} }}{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>2</mn> <mo>±</mo> <msqrt> <mn>4</mn> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>24</mn> </mrow> <mo>)</mo> </mrow> </msqrt> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p><em>p</em>&nbsp;=&nbsp;–4,&nbsp;&nbsp;<em>p</em>&nbsp;= 3&nbsp;<strong> &nbsp; &nbsp;<em>A1A1 N4</em></strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong>&nbsp;(solving for&nbsp;<em>k</em>)</p>
<p>recognizing parallel vectors are multiples of each other&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<em><strong>a</strong></em> = <em>k<strong>b</strong></em>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 3 \\&nbsp; {2p}&nbsp; \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> = <em>k</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} {p + 1} \\&nbsp; 8&nbsp; \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>,&nbsp; 3<em>k</em> = <em>p</em> + 1 and 2<em>kp</em> = 8</p>
<p>correct working (must be quadratic)&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;3<em>k</em><sup>2</sup>&nbsp;– <em>k</em> = 4,&nbsp;&nbsp;3<em>k</em><sup>2</sup>&nbsp;–&nbsp;<em>k</em> – 4,&nbsp;&nbsp;4<em>k</em><sup>2</sup>&nbsp;= 3&nbsp;–&nbsp;<em>k</em></p>
<p>one correct value for <em>k</em>&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<em>k</em>&nbsp;=&nbsp;–1,&nbsp;<em>k</em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{3}"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span>,&nbsp;&nbsp;<em>k</em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span></p>
<p>substituting <strong>their</strong> value(s) of <em>k</em>&nbsp; &nbsp; &nbsp; <em><strong>(M1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3 \\   {2p}  \end{array}} \right) = \frac{3}{4}\left( {\begin{array}{*{20}{c}}  {p + 1} \\   8  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {\frac{4}{3}} \right) = p + 1"> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\left( {\frac{4}{3}} \right)p = 8"> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>p</mi> <mo>=</mo> <mn>8</mn> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 1} \right)\left( {\begin{array}{*{20}{c}}  3 \\   {2p}  \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  {p + 1} \\   8  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><em>p</em> =&nbsp;–4,&nbsp; <em>p</em> = 3&nbsp; &nbsp; &nbsp;<em><strong>A1A1 N4</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong> (working with angles and cosine formula)</p>
<p>recognizing angle between parallel vectors is 0 and/or 180°&nbsp; &nbsp; &nbsp; <em><strong>M1</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;cos <em>θ</em> =&nbsp;±1,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \bullet b = \left| a \right|\left| b \right|"> <mi>a</mi> <mo>∙</mo> <mi>b</mi> <mo>=</mo> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mi>b</mi> <mo>|</mo> </mrow> </math></span></p>
<p>correct substitution of scalar product and magnitudes into equation&nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\left( {p + 1} \right) + 2p\left( 8 \right)}}{{\sqrt {{3^2} + {{\left( {2p} \right)}^2}} \sqrt {{{\left( {p + 1} \right)}^2} + {8^2}} }} =&nbsp; \pm 1"> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>=</mo> <mo>±</mo> <mn>1</mn> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19p + 3 = \sqrt {4{p^2} + 9} \sqrt {{p^2} + 2p + 65} "> <mn>19</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo>=</mo> <msqrt> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>9</mn> </msqrt> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>65</mn> </msqrt> </math></span></p>
<p>correct working (must include both ± )&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\left( {p + 1} \right) + 2p\left( 8 \right) =&nbsp; \pm \sqrt {{3^2} + {{\left( {2p} \right)}^2}} \sqrt {{{\left( {p + 1} \right)}^2} + {8^2}} "> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>±</mo> <msqrt> <mrow> <msup> <mn>3</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mn>8</mn> <mn>2</mn> </msup> </mrow> </msqrt> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19p + 3 =&nbsp; \pm \sqrt {4{p^2} + 9} \sqrt {{p^2} + 2p + 65} "> <mn>19</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo>=</mo> <mo>±</mo> <msqrt> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>9</mn> </msqrt> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>65</mn> </msqrt> </math></span></p>
<p>correct quartic equation&nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><em>eg</em>&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="361\,{p^2} + 114p + 9 = 4{p^4} + 8{p^3} + 269{p^2} + 18p + 585"> <mn>361</mn> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>114</mn> <mi>p</mi> <mo>+</mo> <mn>9</mn> <mo>=</mo> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mrow> <msup> <mi>p</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mn>269</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>18</mn> <mi>p</mi> <mo>+</mo> <mn>585</mn> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4{p^4} + 8{p^3} - 92{p^2} - 96p + 576 = 0"> <mn>4</mn> <mrow> <msup> <mi>p</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mrow> <msup> <mi>p</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>92</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>96</mn> <mi>p</mi> <mo>+</mo> <mn>576</mn> <mo>=</mo> <mn>0</mn> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p^4} + 2{p^3} - 23{p^2} - 24p + 144 = 0"> <mrow> <msup> <mi>p</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>p</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>23</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>24</mn> <mi>p</mi> <mo>+</mo> <mn>144</mn> <mo>=</mo> <mn>0</mn> </math></span>,&nbsp; &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {p + 4} \right)^2}{\left( {p - 3} \right)^2} = 0"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>+</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>−</mo> <mn>3</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><em>p</em>&nbsp;=&nbsp;–4,&nbsp;&nbsp;<em>p</em>&nbsp;= 3&nbsp; &nbsp; &nbsp;<em><strong>A2 N4</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - 4x + 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>4</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>5</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The function can also be expressed in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {(x - h)^2} + k">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo>−<!-- − --></mo>
    <mi>h</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
</math></span>.</p>
</div>

<div class="question">
<p>(i)     Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
<p>(ii)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 2">
  <mi>h</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>     <strong><em>A1     N1</em></strong></p>
<p>(ii)     <strong>METHOD 1</strong></p>
<p>valid attempt to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>correct substitution into <strong>their </strong>function     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(2)^2} - 4(2) + 5">
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>5</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1">
  <mi>k</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>valid attempt to complete the square     <strong><em>(M1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 4x + 4">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>4</mn>
</math></span></p>
<p>correct working     <strong><em>(A1)</em></strong></p>
<p><em>eg</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,\,\,\,\,">
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
</math></span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({x^2} - 4x + 4) - 4 + 5,{\text{ }}{(x - 2)^2} + 1">
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
  <mo>−</mo>
  <mn>4</mn>
  <mo>+</mo>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo>−</mo>
    <mn>2</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1">
  <mi>k</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>     <strong><em>A1     N2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, with derivative&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 2{x^2} + 5kx + 3{k^2} + 2">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
  <mi>k</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x{\text{, }}k \in \mathbb{R}">
  <mi>x</mi>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the discriminant of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - 16"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>16</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> is an increasing function, find all possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct substitution into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{b^2} - 4ac"> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </math></span>          <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {5k} \right)^2} - 4\left( 2 \right)\left( {3{k^2} + 2} \right)"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {5k} \right)^2} - 8\left( {3{k^2} + 2} \right)"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>8</mn> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>correct expansion of each term         <em><strong>A1</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="25{k^2} - 24{k^2} - 16"> <mn>25</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>24</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>16</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="25{k^2} - \left( {24{k^2} + 16} \right)"> <mn>25</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>24</mn> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>16</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - 16"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>16</mn> </math></span>        <em><strong>AG</strong></em><em><strong>  N0</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid approach          <em><strong>M1</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) &gt; 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mn>0</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) \geqslant 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>⩾</mo> <mn>0</mn> </math></span></p>
<p>recognizing discriminant <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" &lt; 0"> <mo>&lt;</mo> <mn>0</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \leqslant 0"> <mo>⩽</mo> <mn>0</mn> </math></span>          <em><strong>M1</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D &lt; 0"> <mi>D</mi> <mo>&lt;</mo> <mn>0</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - 16 \leqslant 0"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>16</mn> <mo>⩽</mo> <mn>0</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} &lt; 16"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>&lt;</mo> <mn>16</mn> </math></span></p>
<p>two correct values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>/endpoints (even if inequalities are incorrect)          <em><strong>(A1)</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k =  \pm 4"> <mi>k</mi> <mo>=</mo> <mo>±</mo> <mn>4</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k &lt;  - 4"> <mi>k</mi> <mo>&lt;</mo> <mo>−</mo> <mn>4</mn> </math></span>  and  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k &gt; 4"> <mi>k</mi> <mo>&gt;</mo> <mn>4</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| k \right| &lt; 4"> <mrow> <mo>|</mo> <mi>k</mi> <mo>|</mo> </mrow> <mo>&lt;</mo> <mn>4</mn> </math></span></p>
<p>correct interval        <em><strong>A1</strong></em><em><strong>  N2</strong></em></p>
<p><em>eg</em>    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4 &lt; k &lt; 4"> <mo>−</mo> <mn>4</mn> <mo>&lt;</mo> <mi>k</mi> <mo>&lt;</mo> <mn>4</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4 \leqslant k \leqslant 4"> <mo>−</mo> <mn>4</mn> <mo>⩽</mo> <mi>k</mi> <mo>⩽</mo> <mn>4</mn> </math></span></p>
<p><strong>Note:</strong> Candidates may work with an equation, then write the intervals with inequalities at the end. If inequalities are not seen until the candidate’s final correct answer, <em><strong>M0M0A1A1</strong></em> may be awarded.<br>If candidate is working with incorrect inequalitie(s) at the beginning, then gets the correct final answer, award <em><strong>M0M0A1A0</strong></em> or <em><strong>M1M0A1A0</strong></em> or<em><strong> M0M1A1A0</strong></em> in line with the markscheme.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ln</mi><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>4</mn></math>.</p>
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> which crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, with&nbsp;coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac></math>,&nbsp;find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mn>0</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>17</mn></math>&nbsp; OR&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>±</mo><msqrt><mn>17</mn></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><msqrt><mn>17</mn></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate&nbsp;(must include <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi></math> and/or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfrac></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>setting their derivative&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mo>=</mo><mn>6</mn><mi>x</mi></math>&nbsp; OR&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>=</mo><mn>0</mn></math>&nbsp;(or equivalent)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>valid attempt to solve their quadratic&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>8</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> if the candidate’s final answer includes additional solutions&nbsp;(such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>8</mn></math>).</p>
<p>&nbsp;</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>