File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/markSceme-HL-paper3html
File size: 613.35 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><strong>In this question you will be exploring the strategies required to solve a system of linear differential equations.</strong></p>
<p>&nbsp;</p>
<p>Consider the system of linear differential equations of the form:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mi>y</mi></math>&nbsp; and&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>y</mi></math>,</p>
<p>where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>,</mo><mo>&#160;</mo><mi>t</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8477;</mi><mo>+</mo></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;is a parameter.</p>
<p>First consider the case where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>From previous cases, we might conjecture that a solution to this differential equation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><mi>&#955;</mi><mi>t</mi></mrow></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#955;</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> is a constant.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation in part (a)(ii) to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>2</mn><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> that satisfy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let the two values found in part (c)(ii) be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math>.</p>
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math> is a solution to the differential equation in (c)(i),where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is a constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>=</mo><mi>y</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mi>y</mi></mfrac><mo>=</mo><mo>∫</mo><mo>d</mo><mtext>t</mtext></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>y</mi><mo>=</mo><mi>t</mi><mo>+</mo><mi>c</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mfenced open="|" close="|"><mi>y</mi></mfenced><mo>=</mo><mi>t</mi><mo>+</mo><mi>c</mi></math>             <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>y</mi></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>             <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>rearranging to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>-</mo><mi>y</mi><mo>=</mo><mn>0</mn></math> AND multiplying by integrating factor <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>               <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mi>A</mi></math>             <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>             <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> into differential equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>               <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>             <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>integrating factor (IF) is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>∫</mo><mo>-</mo><mn>1</mn><mo>d</mo><mi>t</mi></mrow></msup></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>               <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>-</mo><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mi>A</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>D</mi></math>               <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfenced><mrow><mo>-</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>D</mi></mrow></mfenced><msup><mtext>e</mtext><mi>t</mi></msup></math>               <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The first constant must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>, and the second can be any constant for the final <em><strong>A1</strong></em> to be awarded. Accept a change of constant applied at the end.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac><mo>+</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math>               <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>               <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></math>               <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math>               <em><strong>AG</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>Y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>Y</mi></math>               <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>Y</mi></mrow><mi>Y</mi></mfrac><mo>=</mo><mo>∫</mo><mn>2</mn><mo>d</mo><mi>t</mi></math>               <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced open="|" close="|"><mi>Y</mi></mfenced><mo>=</mo><mn>2</mn><mi>t</mi><mo>+</mo><mi>c</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>Y</mi><mo>=</mo><mn>2</mn><mi>t</mi><mo>+</mo><mi>c</mi></math>               <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math>               <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>∫</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mtext> </mtext><mo>d</mo><mi>t</mi></math>              <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>              <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> The first constant must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, and the second can be any constant for the final <em><strong>A1</strong></em> to be awarded. Accept a change of constant applied at the end.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> and their (iii) into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></math>              <em><strong>M1(M1)</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>              A1</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>              AG</strong></em></p>
<p><strong>Note:</strong> Follow through from incorrect part (iii) cannot be awarded if it does not lead to the <em><strong>AG</strong></em>.</p>
<p><br><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>C</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>C</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mfenced><mrow><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>              <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>∫</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mtext> </mtext><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>+</mo><mi>D</mi></math>              <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi><mo>+</mo><mi>D</mi><msup><mtext>e</mtext><mi>t</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>⇒</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>=</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>C</mi><mo>-</mo><mi>D</mi><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi><mo>⇒</mo><mi>D</mi><mo>=</mo><mn>0</mn></math>              <em><strong>M1</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>              AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mi>y</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> seen anywhere              <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>attempt to eliminate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>              <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>4</mn><mfenced><mrow><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced><mrow><mi>y</mi><mo>-</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mrow></mfenced><mo>-</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>3</mn><mi>y</mi></math><em><strong>              A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math><em><strong>              AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>rewriting LHS in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>              <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mfenced><mrow><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>5</mn><mi>y</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced><mo>-</mo><mn>3</mn><mi>y</mi></math><em><strong>              A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math><em><strong>              AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>F</mi><mi>λ</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>F</mi><msup><mi>λ</mi><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math><em><strong>               (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><msup><mi>λ</mi><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mi>F</mi><mi>λ</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>-</mo><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>=</mo><mn>0</mn></math><em><strong>               (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></math>  (since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>≠</mo><mn>0</mn></math>)<em><strong>              A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> (either order)<em><strong>              A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>9</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math>                      <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>9</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced></math><em><strong>              M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>6</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mn>3</mn><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math><em><strong>              A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math><em><strong>              AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>F</mi><msub><mi>λ</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msub><mi>λ</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mfrac><mstyle displaystyle="true"><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mstyle></mfrac><mo>=</mo><mi>F</mi><msup><msub><mi>λ</mi><mn>1</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><msub><mi>λ</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math>                      <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mi>F</mi><msup><msub><mi>λ</mi><mn>1</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><msub><mi>λ</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>F</mi><msub><mi>λ</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msub><mi>λ</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></mrow></mfenced></math><em><strong>              M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mfenced><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup><mfenced><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math><em><strong>              A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math><em><strong>              AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question you will explore some of the properties of special functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">g</mi></math> and their relationship with the trigonometric functions, sine and cosine.</strong></p>
<p><br>Functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8450;</mi></math>.</p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>,</mo><mo>&#160;</mo><mi>u</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="specification">
<p>Using <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo>&#8202;</mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo>&#8202;</mo><mi>sin</mi><mo>&#8202;</mo><mi>u</mi></math>, find expressions, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>&#8202;</mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#8202;</mo><mi>u</mi></math>, for</p>
</div>

<div class="specification">
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#8202;</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo>&#8202;</mo><mi>x</mi></math> are known as circular functions as the general point (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo>&#8202;</mo><mi>&#952;</mi><mo>,</mo><mo>&#160;</mo><mi>sin</mi><mo>&#8202;</mo><mi>&#952;</mi></math>) defines points on the unit circle with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>.</p>
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> are known as hyperbolic functions, as the general point (&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>&#952;</mi><mo>)</mo><mo>,</mo><mo>&#160;</mo><mi>g</mi><mo>(</mo><mi>&#952;</mi><mo>)</mo></math>&nbsp;) defines points on a curve known as a hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>. This hyperbola has two asymptotes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math> satisfies the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>u</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find, and simplify, an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>, stating the coordinates of any axis intercepts and the equation of each asymptote.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> can be rotated to coincide with the curve defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>=</mo><mi>k</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>                       <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>                       <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math>                       <em><strong>AG</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup></math></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>                      <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math>                      <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup></mrow><mn>2</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></mrow></mfenced></math>                      <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced></math>                      <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup></mrow><mn>2</mn></mfrac><mo> </mo></math>                     <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math>                     <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup></math>                      <em><strong>AG</strong></em></p>
<p><em><strong><br></strong></em><strong>Note: </strong>Accept combinations of METHODS 1 &amp; 2 that meet at equivalent expressions.</p>
<p><em><strong><br></strong></em><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math> into the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>                      <em><strong>(M1)</strong></em></p>
<p>obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>-i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>-</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math>                      <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi><mo>+</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>-</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong></em> can be awarded for the use of sine and cosine being odd and even respectively.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi></math>                      <em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi><mo>-</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p>substituting and attempt to simplify                      <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math>                      <em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math></p>
<p>substituting expressions found in part (c)                     <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi></mrow></mfenced></math>                      <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>2</mn><mtext>i</mtext><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mtext>i</mtext><mi>u</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mtext>i</mtext><mi>u</mi></mrow></msup></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>u</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi><mo>-</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>u</mi></mrow><mn>2</mn></mfrac></math>                     <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi></math>                      <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent final answers that have been simplified removing all imaginary parts eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo>−</mo><mn>1</mn></math>etc</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math>                      <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mn>4</mn></mfrac></math>                      <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>4</mn><mn>4</mn></mfrac><mo>=</mo><mn>1</mn></math>                      <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for a value of 1 obtained from either LHS or RHS of given expression.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>u</mi></math>                      <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn></math>  (hence <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>)                      <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Award full marks for showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>z</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>z</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>∀</mo><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.<br><br><em><strong><br></strong></em><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">        <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct curves in the upper quadrants, <em><strong>A1</strong></em> for correct curves in the lower quadrants, <em><strong>A1</strong></em> for correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> (condone <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>), <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>−</mo><mi>x</mi></math>.</p>
<p><br><em><strong><br></strong></em><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to rotate by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math> in either direction               <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Evidence of an attempt to relate to a sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>=</mo><mi>k</mi></math> would be sufficient for this <em><strong>(M1)</strong></em>.</p>
<p><br>attempting to rotate a particular point, eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>               <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> rotates to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mo>,</mo><mo> </mo><mo>±</mo><mfrac><mstyle displaystyle="true"><mn>1</mn></mstyle><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></mfrac></mrow></mfenced></math> (or similar)               <em><strong>(A1)</strong></em></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>             <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> :&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}">
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>×<!-- × --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>×<!-- × --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>&nbsp;defined by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = \left( {x + y,\,\,x - y} \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mi>y</mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = \left( {xy,\,\,x + y} \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mi>y</mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>+</mo>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ g} \right)\left( {\left( {x{\text{,}}\,\,y} \right)} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>f</mi>
      <mo>∘</mo>
      <mi>g</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g \circ f} \right)\left( {\left( {x{\text{,}}\,\,y} \right)} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mo>∘</mo>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State with a reason whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> commute.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ g} \right)\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = f\left( {g\left( {\left( {x{\text{,}}\,\,y} \right)} \right)} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>f</mi>
      <mo>∘</mo>
      <mi>g</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>x</mi>
              <mrow>
                <mtext>,</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mspace width="thinmathspace"></mspace>
              <mi>y</mi>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>  (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = f\left( {\left( {xy,\,\,x + y} \right)} \right)">
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mi>y</mi>
          <mo>,</mo>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
          <mo>+</mo>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>)       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {xy + x + y,\,\,xy - x - y} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mi>y</mi>
      <mo>+</mo>
      <mi>x</mi>
      <mo>+</mo>
      <mi>y</mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mi>y</mi>
      <mo>−</mo>
      <mi>x</mi>
      <mo>−</mo>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g \circ f} \right)\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = g\left( {f\left( {\left( {x{\text{,}}\,\,y} \right)} \right)} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mo>∘</mo>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>f</mi>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>x</mi>
              <mrow>
                <mtext>,</mtext>
              </mrow>
              <mspace width="thinmathspace"></mspace>
              <mspace width="thinmathspace"></mspace>
              <mi>y</mi>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = g\left( {\left( {x + y,\,\,x - y} \right)} \right)">
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mi>y</mi>
          <mo>,</mo>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
          <mo>−</mo>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\left( {x + y} \right)\left( {x - y} \right),\,\,x + y + x - y} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>−</mo>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>+</mo>
      <mi>y</mi>
      <mo>+</mo>
      <mi>x</mi>
      <mo>−</mo>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {{x^2} - {y^2}{\text{,}}\,\,2x} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mrow>
        <msup>
          <mi>y</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no because&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f \circ g \ne g \circ f">
  <mi>f</mi>
  <mo>∘</mo>
  <mi>g</mi>
  <mo>≠</mo>
  <mi>g</mi>
  <mo>∘</mo>
  <mi>f</mi>
</math></span>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<strong><em>R1</em></strong></p>
<p><strong>Note:</strong> Accept counter example.</p>
<p>&nbsp;</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&nbsp;</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = \left( {a{\text{,}}\,\,b} \right) \Rightarrow \left( {x + y,\,\,x - y} \right) = \left( {a{\text{,}}\,\,b} \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>a</mi>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mi>y</mi>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>−</mo>
      <mi>y</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>a</mi>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mi>b</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ {\begin{array}{*{20}{c}}  {x = \frac{{a + b}}{2}} \\   {y = \frac{{a - b}}{2}}  \end{array}} \right.">
  <mrow>
    <mo>{</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>y</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>−</mo>
                  <mi>b</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo fence="true" stretchy="true" symmetric="true"></mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = \left( {\frac{{x + y}}{2},\,\,\frac{{x - y}}{2}} \right)">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mrow>
            <mtext>,</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mspace width="thinmathspace"></mspace>
          <mi>y</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mi>y</mi>
        </mrow>
        <mn>2</mn>
      </mfrac>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mfrac>
        <mrow>
          <mi>x</mi>
          <mo>−</mo>
          <mi>y</mi>
        </mrow>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp; &nbsp; &nbsp; &nbsp; <em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore cubic polynomials of the form</strong>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math>&nbsp;<strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math> <strong>and corresponding cubic equations with one real root and two complex roots of the form&nbsp;</strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>z</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo><mn>0</mn></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8450;</mi></math>.</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>In parts (a), (b) and (c), let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>=</mo><mn>4</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>1</mn></math>.</p>
<p>Consider the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>z</mi><mo>+</mo><mn>17</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8450;</mi></math>.</p>
</div>

<div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn></mrow></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>The equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8450;</mi></math>&nbsp;has roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#177;</mo><mi>b</mi><mtext>i</mtext></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>On the Cartesian plane, the points&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo>&#160;</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo>&#160;</mo><mo>-</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math>&nbsp;represent the real&nbsp;and imaginary parts of the complex roots of the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<p><br>The following diagram shows a particular curve of the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced></math>&nbsp;and the tangent to the curve at the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo>&#160;</mo><mn>80</mn></mrow></mfenced></math>. The curve and the tangent both intersect&nbsp;the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>0</mn></mrow></mfenced></math>. The points&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math>&nbsp;are also shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#8800;</mo><mi>r</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#62;</mo><mn>0</mn></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>g</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>)</mo></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mo>(</mo><mi>r</mi><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>)</mo></math> are as defined in part (d)(ii). The curve has a point of inflexion at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>

<div class="specification">
<p>Consider the special case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mtext>i</mtext></math> are roots of the equation, write down the third root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the mean of the two complex roots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the tangent to the curve at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, clearly showing where the tangent crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, prove that the tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow></mfenced></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce from part (d)(i) that the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this diagram to determine the roots of the corresponding equation of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced></math>.</p>
<p>You are <strong>not</strong> required to demonstrate a change in concavity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe numerically the horizontal position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> relative to the horizontal positions of the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn></math>, state in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, the coordinates of points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mtext>i</mtext></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mean<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>4</mn><mo>+</mo><mtext>i</mtext><mo>+</mo><mn>4</mn><mo>-</mo><mtext>i</mtext></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn></math>          <em><strong>AG</strong></em></p>
<p>  </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts product rule differentiation        <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for attempting to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>25</mn><mi>x</mi><mo>-</mo><mn>17</mn></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>8</mn></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>18</mn><mi>x</mi><mo>+</mo><mn>25</mn></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mn>4</mn></mfenced><mo>=</mo><mn>1</mn></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> is correct, award <em><strong>A1</strong></em> for solving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn></math> and obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>1</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>=</mo><mn>4</mn><mo>+</mo><mi>c</mi><mo>⇒</mo><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>        <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>states the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is also <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and verifies that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math> lies on the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math>        <em><strong>A1</strong></em></p>
<p><strong><br>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to the curve at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math>        <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award a maximum of <em><strong>(M0)A0A1A1</strong></em> to a candidate who does not attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> to form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn></mrow></mfenced></math>        <em><strong>(M1)</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>24</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p>attempts to solve a correct cubic equation        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>4</mn></math></p>
<p><strong><br>OR</strong></p>
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mn>1</mn></math> and forms <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn><mo>=</mo><mn>1</mn><mo> </mo><mo> </mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>16</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p>attempts to solve a correct quadratic equation        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mn>4</mn></math></p>
<p><strong><br>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> is a double root        <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to the curve at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math>        <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Candidates using this method are not required to verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>3</mn></math>.</p>
<p>  </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""></p>
<p>a positive cubic with an  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math>, and a local maximum and local minimum in the first quadrant both positioned to the left of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> As the local minimum and point A are very close to each other, condone graphs that seem to show these points coinciding.<br>For the point of tangency, accept labels such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>,</mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math> or the point labelled from both axes. Coordinates are not required.</p>
<p> </p>
<p>a correct sketch of the tangent passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and crossing the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the same point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math> as the curve        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> if both graphs cross the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at distinctly different points.</p>
<p>  </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>         <em><strong>(M1)A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>r</mi></mrow></mfenced><mi>x</mi><mo>-</mo><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mi>r</mi></math></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>r</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced><mi>x</mi><mo>+</mo><mn>2</mn><mi>a</mi><mi>r</mi><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>a</mi><mi>x</mi><mo>-</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>a</mi><mi>r</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>        <em><strong>AG</strong></em></p>
<p>  </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math>         <em><strong>(A1)</strong></em></p>
<p>attempts to substitute their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mi>x</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mi>r</mi></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math>        <em><strong>R1</strong></em></p>
<p><br><strong>OR </strong></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mo>-</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mi>a</mi></math>        <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math>        <em><strong>A1</strong></em><br><strong><br>THEN</strong></p>
<p>so the tangent intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>        <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math>         <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math>         <em><strong>(A1)</strong></em></p>
<p>attempts to substitute their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mi>x</mi><mo>+</mo><mi>c</mi></math> and attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mi>r</mi></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mi>x</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mi>r</mi></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math>        <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>-</mo><mi>r</mi><mo>=</mo><mn>0</mn></math>        <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math>         <em><strong>(A1)</strong></em></p>
<p>the line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> parallel to the tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has equation<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math> to form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mfenced><mrow><mi>x</mi><mo>≠</mo><mi>r</mi></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>        <em><strong>A1</strong></em></p>
<p>since there is a double root <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow></mfenced></math>, this parallel line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> is the required tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>        <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mo>⇒</mo><mi>b</mi><mo>=</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn></math>)        <em><strong>R1</strong></em><br><br><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>±</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i=</mtext></mrow></mfenced><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><msup><mi>b</mi><mn>2</mn></msup></msqrt></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math>        <em><strong>R1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>hence the complex roots can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>        <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>4</mn></math> (seen anywhere)        <em><strong>A1</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p>attempts to find the gradient of the tangent in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and equates to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math>       <em><strong>(M1)</strong></em><br><br><br><strong>OR</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mi>a</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>80</mn></math> to form <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn><mo>=</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced></math>       <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mi>a</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>80</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>16</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math>       <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>80</mn><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>16</mn><mo>⇒</mo><mi>a</mi><mo>=</mo><mn>3</mn></math></p>
<p>roots are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> (seen anywhere) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>±</mo><mn>4</mn><mtext>i</mtext></math>        <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>±</mo><mn>4</mn><mtext>i</mtext></math>. Do not accept coordinates.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>4</mn></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>−</mo><mn>4</mn></math>”.<br>Do not award <em><strong>A1FT</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mo>−</mo><mn>4</mn><mo>)</mo></math>. </p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>a</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>r</mi><mo>-</mo><mn>4</mn><mi>a</mi></mrow></mfenced></math></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> and correctly solves for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>        <em><strong>A1</strong></em></p>
<p>for example, obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mi>r</mi><mo>+</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>=</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced></math>        <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Do not award <em><strong>A1</strong></em> if the answer does not lead to the <em><strong>A</strong><strong>G</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac></math> of the horizontal distance (way) from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>       <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent numerical statements or a clearly labelled diagram displaying the numerical relationship.<br>Award <em><strong>A0</strong></em> for non-numerical statements such as “<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, closer to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>”.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></math>       <em><strong>(A1)</strong></em></p>
<p><img src=""></p>
<p>a positive cubic with no stationary points and a non-stationary point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>       <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Graphs may appear approximately linear. Award this <em><strong>A1</strong> </em>if a change of concavity either side of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> is apparent.<br>Coordinates are not required and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept need not be indicated.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) (i) was generally well done with a significant majority of candidates using the conjugate root theorem to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mtext>i</mtext></math> as the third root. A number of candidates, however, wasted considerable time attempting an algebraic method to determine the third root. Part (a) (ii) was reasonably well done. A few candidates however attempted to calculate the product of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mtext>i</mtext></math>.</p>
<p>Part (b) was reasonably well done by a significant number of candidates. Most were able to find a correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> and a good number of those candidates were able to determine that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>1</mn></math>. Candidates that did not determine the equation of the tangent had to state that the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is also 1 and verify that the point (4,3) lies on the line. A few candidates only met one of those requirements. Weaker candidates tended to only verify that the point (4,3) lies on the curve and the tangent line without attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>Part (c) was not answered as well as anticipated. A number of sketches were inaccurate and carelessly drawn with many showing both graphs crossing the <em>x-</em>axis at distinctly different points.</p>
<p>Part (d) (i) was reasonably well done by a good number of candidates. Most successful responses involved use of the product rule. A few candidates obtained full marks by firstly expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, then differentiating to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>and finally simplifying to obtain the desired result. A number of candidates made elementary mistakes when differentiating. In general, the better candidates offered reasonable attempts at showing the general result in part (d) (ii). A good number gained partial credit by determining that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mo>(</mo><mi>a</mi><mo>-</mo><mi>r</mi><mo>)</mo></math>. Only the very best candidates obtained full marks by concluding that as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&gt;</mo><mn>0</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<p>In general, only the best candidates were able to use the result <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> to deduce that the complex roots of the equation can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mo>(</mo><mi>a</mi><mo>)</mo></msqrt></math>. Although given the complex roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i</mtext></math>, a significant number of candidates attempted, with mixed success, to use the quadratic formula to solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>.</p>
<p>In part (f) (i), only a small number of candidates were able to determine all the roots of the equation. Disappointingly, a large number did not state <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> as a root. Some candidates determined that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>4</mn></math> but were unable to use the diagram to determine that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>3</mn></math>. Of the candidates who determined all the roots in part (f) (i), very few gave the correct coordinates for C<sub>2</sub> . The most frequent error was to give the <em>y-</em>coordinate as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>-</mo><mn>4</mn><mtext>i</mtext></math>.</p>
<p>Of the candidates who attempted part (g) (i), most were able to find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> and a reasonable number of these were then able to convincingly show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>(</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi><mo>)</mo></math>. It was very rare to see a correct response to part (g) (ii). A few candidates stated that P is between R and A with some stating that P was closer to A. A small number restated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>(</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi><mo>)</mo></math> in words.</p>
<p>Of the candidates who attempted part (h) (i), most were able to determine that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></math>. However, most graphs were poorly drawn with many showing a change in concavity at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> rather than at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>. In part (h) (ii), only a very small number of candidates determined that A and P coincide at (<em>r</em>,0).</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore the behaviour and some key features of the&nbsp;function</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><mo>(</mo><mi>a</mi><mo>-</mo><mi>x</mi><msup><mo>)</mo><mi>n</mi></msup><mo>&nbsp;</mo></math><strong>, where</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math><strong>.</strong></p>
<p>In parts (a) and (b), <strong>only</strong> consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math>.</p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mn>1</mn></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>(</mo><mn>2</mn><mo>-</mo><mi>x</mi><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>Consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mn>2</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>&gt;</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>Now consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>&gt;</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>By using the result from part (f) and considering the sign of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></math>,&nbsp;show that the&nbsp;point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>&nbsp;on the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></math>&nbsp;is</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mn>1</mn></msub><mo>(</mo><mi>x</mi><mo>)</mo></math>, stating the values of any axes intercepts and the&nbsp;coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to explore the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo></math> for</p>
<p>•&nbsp; &nbsp;the odd values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>5</mn></math>;</p>
<p>•&nbsp; &nbsp;the even values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>.</p>
<p>Hence, copy and complete the following table.</p>
<p><img src=""></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the three solutions to the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced></mrow></mfenced></math>&nbsp;on the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></math>&nbsp;is always above the&nbsp;horizontal axis.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a local minimum point for even values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&gt;</mo><mn>1</mn></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a point of inflexion with zero gradient for odd values of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&gt;</mo><mn>1</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mo>-</mo><mi>k</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>State the conditions on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> such that the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mo>=</mo><mi>k</mi></math>&nbsp;has four solutions&nbsp;for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>inverted parabola extended below the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept values&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <em><strong>A1</strong></em><br><br><br><strong>Note:</strong> Accept a graph passing through the origin as an indication of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>.<br><br></p>
<p>local maximum at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>&nbsp; A1</strong></em></p>
<p><br><strong>Note:</strong> Coordinates must be stated to gain the final <em><strong>A1</strong></em>.<br>&nbsp; &nbsp; &nbsp; &nbsp; Do not accept decimal approximations.</p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em><em><strong>A1A1A1A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for each correct value.</p>
<p style="padding-left:30px;">For a table not sufficiently or clearly labelled, assume that their values are&nbsp;in the same order as the table in the question paper and award marks&nbsp;accordingly.</p>
<p><br><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to use the product rule&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M</strong></em><em><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>n</mi><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for a correct&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mfrac><mrow><mo>d</mo><mi>v</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>&nbsp;and <em><strong>A1</strong></em> for a correct&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math>.</p>
<p><br><strong>EITHER</strong></p>
<p>attempts to factorise&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced></math>&nbsp;(involving at least one of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>)&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M</strong></em><em><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>x</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced></math> as the difference of two products with each product&nbsp;containing at least one of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;or&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M</strong></em><em><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mfenced><mrow><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Award the final <em><strong>(M1)A1</strong></em> for obtaining any of the following forms:&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mfenced><mfrac><mrow><mi>a</mi><mo>-</mo><mi>x</mi><mo>-</mo><mi>x</mi></mrow><mrow><mi>x</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac></mfenced><mo>;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><mo>&nbsp;</mo><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup></mrow><mrow><mi>x</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>;</mo></math></p>
<p>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mo>-</mo><mi>x</mi><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>;</mo></math></p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mo>-</mo><mi>n</mi><msup><mi>x</mi><mi>n</mi></msup></mrow></mfenced></math></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mi>x</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mi>n</mi></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M</strong></em><em><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mi>a</mi><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mi>n</mi></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>attempts to use the chain rule&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M</strong></em><em><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>a</mi><mi>x</mi><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mi>a</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A2</em></strong></p>
<p><strong>Note: </strong>Award <em><strong>A1</strong></em> for either two correct solutions or for obtaining&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>a</mi><mn>2</mn></mfrac></math><br>&nbsp; &nbsp; &nbsp; &nbsp; </strong>&nbsp;&nbsp;Award<em><strong> A0 </strong></em>otherwise.</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find an expression for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>(M1)</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mo>=</mo><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mfrac><mi>a</mi><mn>2</mn></mfrac></mrow></mfenced><mi>n</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mi>n</mi></msup><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mi>n</mi></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mrow><mn>2</mn><mi>n</mi></mrow></msup></mrow></mfenced><mo>,</mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><mfenced><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mi>n</mi></msup></mfenced><mn>2</mn></msup></mrow></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><br><strong>EITHER</strong></p>
<p>since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup><mo>,</mo><mo>&nbsp;</mo><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>&gt;</mo><mn>0</mn></math>&nbsp; (for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>&gt;</mo><mn>1</mn></math>&nbsp;and so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> Accept any logically equivalent conditions/statements on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.<br>&nbsp; &nbsp; &nbsp; &nbsp; Award <em><strong>R0</strong></em> if any conditions/statements specified involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> or both&nbsp;are incorrect.</p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>(since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>),&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mn>2</mn></mfrac></math>&nbsp;raised to an even power (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi></math>) (or equivalent reasoning) is always&nbsp;positive (and so&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>)&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The condition <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> is given in the question. Hence some candidates&nbsp;will assume <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> and not state it. In these instances, award <em><strong>R1</strong></em> for a&nbsp;convincing argument.<br>&nbsp; &nbsp; &nbsp; &nbsp; Accept any logically equivalent conditions/statements on on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.<br>&nbsp; &nbsp; &nbsp; &nbsp; Award <em><strong>R0</strong></em> if any conditions/statements specified involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>&nbsp;or both&nbsp;are incorrect.</p>
<p><br><strong>THEN</strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced></mrow></mfenced></math>&nbsp;is&nbsp;always above the horizontal axis<strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>AG</em></strong></p>
<p><br><strong>Note:</strong> Do not award <em><strong>(M1)A0R1</strong></em>.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>=</mo><mi>n</mi><msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mfrac><mi>a</mi><mn>2</mn></mfrac></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mfrac><mi>a</mi><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mi>n</mi><msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><msup><mfenced><mfrac><mrow><mn>3</mn><mi>a</mi></mrow><mn>4</mn></mfrac></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><msup><mfenced><mfrac><mrow><mn>3</mn><mi>a</mi></mrow><mn>4</mn></mfrac></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>&gt;</mo><mn>0</mn></math>&nbsp;as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>,</mo><mo> </mo><mfenced><mrow><mi>a</mi><mo>-</mo><mfrac><mi>a</mi><mn>2</mn></mfrac></mrow></mfenced></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mfrac><mi>a</mi><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;are all&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Do not award <em><strong>A0R1</strong></em>.<br>&nbsp; &nbsp; &nbsp; &nbsp; Accept equivalent reasoning on correct alternative expressions for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced></math>&nbsp;and accept any logically equivalent conditions/statements on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; Exceptions to the above are condone&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&gt;</mo><mn>1</mn></math>&nbsp;and condone&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;An alternative form for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mi>n</mi></mrow></mfenced><msup><mfenced><mn>3</mn></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mrow><mn>2</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p><br><strong>THEN</strong></p>
<p>hence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>(since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub></math> is continuous and there are no stationary points between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi>a</mi><mn>2</mn></mfrac></math>)</p>
<p>the gradient (of the curve) must be positive between&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi>a</mi><mn>2</mn></mfrac></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong>&nbsp;Do not award&nbsp;<em><strong>A0R1</strong></em>.</p>
<p><br>hence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mi>n</mi><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> even:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mo>=</mo><mo>-</mo><mi>n</mi></mrow></mfenced><mo>&lt;</mo><mn>0</mn></math>&nbsp; (and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mo> </mo><msup><mfenced><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;are both&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>0</mn></math>)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>&lt;</mo><mn>0</mn></math><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp;&nbsp;(seen anywhere)<strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Candidates can give arguments based on the sign of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;to obtain the&nbsp;<em><strong>R</strong></em> mark.<br>&nbsp; &nbsp; &nbsp; &nbsp; For example, award<em><strong> R1</strong></em> for the following:<br>&nbsp; &nbsp; &nbsp; &nbsp; If <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is even, then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>-</mo><mn>1</mn></math> is odd and hence <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>&lt;</mo><mn>0</mn><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>.<br>&nbsp; &nbsp; &nbsp; &nbsp; Do not award <em><strong>R0A1</strong></em>.<br>&nbsp; &nbsp; &nbsp; &nbsp; The second <strong><em>A1</em></strong> is independent of the other two marks.<br>&nbsp; &nbsp; &nbsp; &nbsp; The<em><strong> A</strong></em> marks can be awarded for correct descriptions expressed in words.<br>&nbsp; &nbsp; &nbsp; &nbsp; Candidates can state <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> as a point of zero gradient from part (d) or&nbsp;show, state or explain (words or diagram) that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn></math>. The last <em><strong>A&nbsp;</strong></em>mark can be awarded for a clearly labelled diagram showing changes in&nbsp;the sign of the gradient.<br>&nbsp; &nbsp; &nbsp; &nbsp; The last <em><strong>A1</strong></em> can be awarded for use of a specific case (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math>).</p>
<p><br>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>&nbsp;is a local minimum point<strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>AG</em></strong></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>&nbsp;odd:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mo>=</mo><mi>n</mi></mrow></mfenced><mo>&lt;</mo><mn>0</mn></math>, (and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mo> </mo><msup><mfenced><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;are both&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>0</mn></math>)&nbsp; so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong>&nbsp;Candidates can give arguments based on the sign of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>&nbsp;to obtain the&nbsp;<em><strong>R</strong></em>&nbsp;mark.<br>&nbsp; &nbsp; &nbsp; &nbsp; For example, award<em><strong>&nbsp;R1</strong></em>&nbsp;for the following:<br>&nbsp; &nbsp; &nbsp; &nbsp; If&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>&nbsp;is odd, then&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>-</mo><mn>1</mn></math>&nbsp;is&nbsp;even and hence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>&gt;</mo><mn>0</mn><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp;&nbsp;(seen anywhere)<strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><br><strong>Note:</strong> The <em><strong>A1</strong></em> is independent of the <em><strong>R1</strong></em>.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Candidates can state <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> as a point of zero gradient from part (d) or&nbsp;show, state or explain (words or diagram) that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mn>0</mn></mfenced><mo>=</mo><mn>0</mn></math>. The last <em><strong>A</strong></em> mark&nbsp;can be awarded for a clearly labelled diagram showing changes in the&nbsp;sign of the gradient.<br>&nbsp; &nbsp; &nbsp; &nbsp; The last <em><strong>A1</strong></em> can be awarded for use of a specific case (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math>).</p>
<p>&nbsp;</p>
<p>hence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>&nbsp;is a&nbsp;point of inflexion with zero gradient<strong>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>AG</em></strong></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>considers the parity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong> (M1)</strong></em></p>
<p><br><strong>Note:</strong> Award<em><strong> M1</strong> </em>for stating at least one specific even value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> must be even (for four solutions)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The above 2 marks are independent of the 3 marks below.</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>k</mi><mo>&lt;</mo><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mrow><mn>2</mn><mi>n</mi></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1A1A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for the correct lower endpoint, <em><strong>A1</strong></em> for the correct upper endpoint&nbsp;and <em><strong>A1</strong></em> for strict inequality signs.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;The third <em><strong>A1</strong></em> (strict inequality signs) can only be awarded if <em><strong>A1</strong></em><em><strong>A1</strong></em> has&nbsp;been awarded.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;For example, award <em><strong>A1A1A0</strong></em> for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><msup><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced><mrow><mn>2</mn><mi>n</mi></mrow></msup></math>. Award&nbsp;<em><strong>A1A0A0</strong></em>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Award&nbsp;<em><strong>A1A0A0</strong></em>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>k</mi><mo>&lt;</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced></math>.</p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore the behaviour and key features of cubic&nbsp;polynomials of the form</strong>&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></math>.</p>
<p>&nbsp;</p>
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mi>x</mi><mo>+</mo><mn>2</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;and where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> is a parameter, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn></math> are shown in the following diagrams.</p>
<p style="text-align: left;"><br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn></math></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>On separate axes, sketch the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>&nbsp;showing the value of the&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept&nbsp;and the coordinates of any points with zero gradient, for</p>
</div>

<div class="specification">
<p>Hence, or otherwise, find the set of values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> such that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has</p>
</div>

<div class="specification">
<p>Given that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has one local maximum point and one local minimum&nbsp;point, show that</p>
</div>

<div class="specification">
<p>Hence, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&gt;</mo><mn>0</mn></math>, find the set of values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> such that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a point of inflexion with zero gradient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>one local maximum point and one local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>no points where the gradient is equal to zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of the local maximum point is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of the local minimum point is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>exactly one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>exactly two&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>exactly three&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find all conditions on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> such that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has exactly one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis&nbsp;intercept, explaining your reasoning.</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn></math>: positive cubic with correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept labelled&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>local maximum point correctly labelled&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>local minimum point correctly labelled&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>2</mn></math>: positive cubic with correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept labelled&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>local maximum point correctly labelled&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>local minimum point correctly labelled&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Accept the following exact answers:<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Local maximum point coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><msqrt><mn>2</mn></msqrt><mo>,</mo><mo> </mo><mn>2</mn><mo>+</mo><mn>4</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math>.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Local minimum point coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msqrt><mn>2</mn></msqrt><mo>,</mo><mo> </mo><mn>2</mn><mo>-</mo><mn>4</mn><msqrt><mn>2</mn></msqrt></mrow></mfenced></math>.</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>&nbsp;</mo><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi></math> &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi></math>&nbsp;(an expression).</p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn></math> &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>considers the number of solutions to their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&lt;</mo><mn>0</mn></math>&nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> The <em><strong>(M1)</strong></em> in part (c)(ii) can be awarded for work shown in either (ii) or (iii).&nbsp;</p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to solve their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>±</mo><msqrt><mi>c</mi></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> if either <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><msqrt><mi>c</mi></msqrt></math>&nbsp;or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mi>c</mi></msqrt></math>&nbsp;is subsequently considered.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Award the above <em><strong>(M1)(A1)</strong></em> if this work is seen in part (c).</p>
<p>&nbsp;</p>
<p>correctly evaluates&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><msqrt><mi>c</mi></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;&nbsp;</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><msqrt><mi>c</mi></msqrt></mrow></mfenced><mo>=</mo><mo>-</mo><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>3</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mo>-</mo><mi>c</mi><msqrt><mi>c</mi></msqrt><mo>+</mo><mn>3</mn><mi>c</mi><msqrt><mi>c</mi></msqrt><mo>+</mo><mn>2</mn></mrow></mfenced></math></p>
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of the local maximum point is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&nbsp;</p>
<p>correctly evaluates <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><msqrt><mi>c</mi></msqrt></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;&nbsp;</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><msqrt><mi>c</mi></msqrt></mfenced><mo>=</mo><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>-</mo><mn>3</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><mi>c</mi><msqrt><mi>c</mi></msqrt><mo>-</mo><mn>3</mn><mi>c</mi><msqrt><mi>c</mi></msqrt><mo>+</mo><mn>2</mn></mrow></mfenced></math></p>
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of the local minimum point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;will have one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept if</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn><mo>&gt;</mo><mn>0</mn></math>&nbsp;(or equivalent reasoning)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>the minimum point is above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>R1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award<em><strong> R1</strong></em> for a rigorous approach that does not (only) refer to sketched graphs.</p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>c</mi><mo>&lt;</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;&nbsp;</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Condone <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&lt;</mo><mn>1</mn></math>. The <em><strong>A1</strong></em> is independent of the <em><strong>R1</strong></em>.</p>
<p>&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;will have two&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts if</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></math>&nbsp;(or equivalent reasoning)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>evidence from the graph in part(a)(i)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;&nbsp;</strong></em></p>
<p>&nbsp;&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;will have three&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts if</p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn><mo>&lt;</mo><mn>0</mn></math>&nbsp;(or equivalent reasoning)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>OR</strong></p>
<p>reasoning from the results in both parts (e)(i) and (e)(ii) &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&gt;</mo><mn>1</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;&nbsp;</strong></em></p>
<p>&nbsp;&nbsp;</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>case 1:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>≤</mo><mn>0</mn></math>&nbsp;(independent of the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;</strong></em></p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>&nbsp;does not have two solutions (has no solutions or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> solution)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;R1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>≥</mo><mn>0</mn></math>&nbsp; for&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mo>∈</mo><mo>~</mo></msup></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>&nbsp;R1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;has no local maximum or local minimum points,&nbsp;hence any vertical translation of this graph (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>) will also have&nbsp;no local maximum or local minimum points&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <em><strong>&nbsp;R1</strong></em></p>
<p><strong><br>THEN</strong></p>
<p>therefore there is only one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award at most <em><strong>A0R1</strong></em> if only <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&lt;</mo><mn>0</mn></math>&nbsp;is considered.</p>
<p>&nbsp;</p>
<p><br>case 2</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><msqrt><mi>c</mi></msqrt><mo>,</mo><mo> </mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mi>d</mi></mrow></mfenced></math>&nbsp;is a local maximum point and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msqrt><mi>c</mi></msqrt><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mi>d</mi></mrow></mfenced></math>&nbsp;is a&nbsp;local minimum point&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for a correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate seen for either the maximum or the&nbsp;minimum.</p>
<p>&nbsp;</p>
<p>considers the positions of the local maximum point and/or the local minimum point&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p>&nbsp;</p>
<p><strong>EITHER</strong><br>considers both points above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis or both points below the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis<br><br><br><strong>OR</strong></p>
<p>considers either the local minimum point only above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis OR&nbsp;the local maximum point only below the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis<br><br><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&gt;</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup></math>&nbsp;(both points above the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&lt;</mo><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup></math>&nbsp;(both points above the&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1&nbsp;</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award at most <em><strong>(A1)(M1)A0A0</strong></em> for case 2 if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;is not clearly stated.</p>
<p>&nbsp;</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore properties of a family of curves of the type</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math> <strong>for various values of</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, <strong>where</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8469;</mi></math>.</p>
</div>

<div class="specification">
<p>On the same set of axes, sketch the following curves for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>2</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>&#8804;</mo><mi>y</mi><mo>&#8804;</mo><mn>2</mn></math>,&nbsp;clearly indicating any points of intersection with the coordinate axes.</p>
</div>

<div class="specification">
<p>Now, consider curves of the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8805;</mo><mo>-</mo><mroot><mi>b</mi><mn>3</mn></mroot></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8484;</mi><mo>+</mo></msup></math>.</p>
</div>

<div class="specification">
<p>Next, consider the curve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8805;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>The curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></math> has two points of inflexion. Due to the symmetry of the curve these points have the same <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate.</p>
</div>

<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>y</mi><mo>)</mo></math> is defined to be a rational point on a curve if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> are rational numbers.</p>
<p>The tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math> at a rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> intersects the curve at another&nbsp;rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> be the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8805;</mo><mo>-</mo><mroot><mn>2</mn><mn>3</mn></mroot></math>. The rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mo>-</mo><mn>1</mn><mo>)</mo></math> lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mo>-</mo><mn>1</mn></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the two points of inflexion on the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering each curve from part (a), identify two key features that would distinguish one curve from the other.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By varying the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, suggest two key features common to these curves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>±</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt></mrow></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence deduce that the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo> </mo></math>has no local minimum or maximum points.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mfrac><mrow><mi>p</mi><msqrt><mn>3</mn></msqrt><mo>+</mo><mi>q</mi></mrow><mi>r</mi></mfrac></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the coordinates of the rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> where this tangent intersects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, expressing each coordinate as a fraction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>S</mtext><mo>(</mo><mo>-</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> also lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[QS]</mtext></math> intersects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> at a further point. Determine the coordinates of this point.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>approximately symmetric about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup></math>         <em><strong>A1</strong></em></p>
<p>including cusp/sharp point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Final <em><strong>A1</strong> </em>can be awarded if intersections are in approximate correct place with respect to the axes shown. Award <em><strong>A1A1A1A0</strong></em> if graphs ‘merge’ or ‘cross’ or are discontinuous at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis but are otherwise correct. Award <em><strong>A1A0A0A0</strong></em> if only one correct branch of both curves are seen.</p>
<p><strong>Note:</strong> If they sketch graphs on separate axes, award a maximum of 2 marks for the ‘best’ response seen. This is likely to be <em><strong>A1A1A0A0</strong></em>.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>approximately symmetric about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1</mn></math> with approximately correct gradient at axes intercepts        <em><strong>A1</strong></em><br>some indication of position of intersections at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>±</mo><mn>1</mn></math>         <em><strong>A1</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Final <em><strong>A1</strong> </em>can be awarded if intersections are in approximate correct place with respect to the axes shown. Award <em><strong>A1A1A1A0</strong> </em>if graphs ‘merge’ or ‘cross’ or are discontinuous at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis but are otherwise correct. Award <em><strong>A1A0A0A0</strong></em> if only one correct branch of both curves are seen.</p>
<p><strong>Note:</strong> If they sketch graphs on separate axes, award a maximum of 2 marks for the ‘best’ response seen. This is likely to be <em><strong>A1A1A0A0</strong></em>.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>       <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Any <strong>two</strong> from:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup></math> has a cusp/sharp point, (the other does not)</p>
<p>graphs have different domains</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1</mn></math> has points of inflexion, (the other does not)</p>
<p>graphs have different <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts (one goes through the origin, and the other does not)</p>
<p>graphs have different <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis intercepts      <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Follow through from their sketch in part (a)(i). In accordance with marking rules, mark their first two responses and ignore any subsequent.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Any <strong>two</strong> from:</p>
<p>as , <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>∞</mo><mo>,</mo><mo> </mo><mi>y</mi><mo>→</mo><mo>±</mo><mo>∞</mo></math></p>
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>∞</mo><mo>,</mo><mo> </mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi></math> is approximated by <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup></math> (or similar)</p>
<p>they have <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> intercepts at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mroot><mi>b</mi><mn>3</mn></mroot></math></p>
<p>they have <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> intercepts at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mo>±</mo></mfenced><msqrt><mi>b</mi></msqrt></math></p>
<p>they all have the same range</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> (or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis) is a line of symmetry</p>
<p>they all have the same line of symmetry <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math></p>
<p>they have one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept</p>
<p>they have two <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis intercepts</p>
<p>they have two points of inflexion</p>
<p>at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts, curve is vertical/infinite gradient</p>
<p>there is no cusp/sharp point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts     <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The last example is the only valid answer for things “not” present. Do not credit an answer of “they are all symmetrical” without some reference to the line of symmetry.</p>
<p><strong>Note:</strong> Do not allow same/ similar shape or equivalent.</p>
<p><strong>Note:</strong> In accordance with marking rules, mark their first two responses and ignore any subsequent.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempt to differentiate implicitly         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><mi>y</mi></mrow></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mo>±</mo></mfenced><mn>2</mn><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>±</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt></mrow></mfrac></math>         <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to use chain rule <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mo>±</mo></mfenced><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfenced><mo>±</mo></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></math>         <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mo>±</mo></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math>, <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>±</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt></mrow></mfrac></math>         <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>local minima/maxima occur when<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math><br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math> has no (real) solutions (or equivalent)         <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>≥</mo><mn>0</mn><mo>⇒</mo></mrow></mfenced><mo> </mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>&gt;</mo><mn>0</mn></math>, so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>≠</mo><mn>0</mn></math>          <em><strong>R1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>so, no local minima/maxima exist          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to use quotient rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfenced><mo>±</mo></mfenced><mfrac><mrow><mn>12</mn><mi>x</mi><msqrt><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></msqrt><mo>-</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><msup><mfenced><mrow><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mrow></msup><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></mrow><mrow><mn>4</mn><mfenced><mrow><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></mrow></mfrac></math>          <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>x</mi><msqrt><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></msqrt></math> and correct denominator, <em><strong>A1</strong> </em>for correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><msup><mfenced><mrow><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></math>.</p>
<p><strong>Note:</strong> Future <em><strong>A</strong></em> marks may be awarded if the denominator is missing or incorrect.</p>
<p><br>stating or using <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math> (may be seen anywhere)           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>x</mi><msqrt><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></msqrt><mo>=</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><msup><mfenced><mrow><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><br><strong>OR</strong></p>
<p>attempt to use product rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></mfenced><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><msup><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></msup><mo>+</mo><mn>3</mn><mi>x</mi><msup><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></math>          <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for correct first term, <em><strong>A1 </strong></em>for correct second term.</p>
<p><br>setting <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math>           <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts implicit differentiation on <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mfenced><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>y</mi><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>6</mn><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p>recognizes that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>±</mo><msqrt><mn>3</mn><mi>x</mi></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mo>±</mo></mfenced><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt></mrow></mfrac><mo>=</mo><mfenced><mo>±</mo></mfenced><msqrt><mn>3</mn><mi>x</mi></msqrt></math>           <em><strong>(A1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mi>x</mi><mfenced><mrow><mi>x</mi><mo>+</mo><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced><mo>=</mo><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mn>2</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><msup><mi>x</mi><mn>4</mn></msup><mo>=</mo><mn>9</mn><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>          <em><strong>A1</strong></em></p>
<p>attempt to use quadratic formula or equivalent           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mo>-</mo><mn>6</mn><mo>±</mo><msqrt><mn>48</mn></msqrt></mrow><mn>6</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>&gt;</mo><mn>0</mn><mo>⇒</mo></mrow></mfenced><mi>x</mi><mo>=</mo><msqrt><mfrac><mrow><mn>2</mn><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>3</mn></mrow><mn>3</mn></mfrac></msqrt><mo> </mo><mfenced><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>=</mo><mn>3</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept any integer multiple of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>6</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>).</p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find tangent line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>+</mo><mn>1</mn><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve simultaneously with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn></math>           <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong></em> mark can be awarded for an unsupported correct answer in an incorrect format (e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>4</mn><mo>.</mo><mn>25</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>8</mn><mo>.</mo><mn>875</mn><mo>)</mo></math>).</p>
<p><br>obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>17</mn><mn>4</mn></mfrac><mo>,</mo><mo> </mo><mo>-</mo><mfrac><mn>71</mn><mn>8</mn></mfrac></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[QS]</mtext></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>79</mn><mn>42</mn></mfrac><mfenced><mrow><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>88095</mn><mo>…</mo></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p>solve simultaneously with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>28798</mn><mo>…</mo><mfenced><mrow><mo>=</mo><mfrac><mn>127</mn><mn>441</mn></mfrac></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>4226</mn><mo>…</mo><mfenced><mrow><mo>=</mo><mfrac><mn>13175</mn><mn>9261</mn></mfrac></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>228</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>42</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempt to find vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[QS]</mtext></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mfrac><mn>21</mn><mn>4</mn></mfrac></mtd></mtr><mtr><mtd><mo>-</mo><mfrac><mn>79</mn><mn>8</mn></mfrac></mtd></mtr></mtable></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>+</mo><mfrac><mn>21</mn><mn>4</mn></mfrac><mi>λ</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><mn>79</mn><mn>8</mn></mfrac><mi>λ</mi></math></p>
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mn>79</mn><mn>8</mn></mfrac><mi>λ</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn><mo>+</mo><mfrac><mn>21</mn><mn>4</mn></mfrac><mi>λ</mi></mrow></mfenced><mn>3</mn></msup><mo>+</mo><mn>2</mn></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2453</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>28798</mn><mo>…</mo><mfenced><mrow><mo>=</mo><mfrac><mn>127</mn><mn>441</mn></mfrac></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>4226</mn><mo>…</mo><mfenced><mrow><mo>=</mo><mfrac><mn>13175</mn><mn>9261</mn></mfrac></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>.</mo><mn>228</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>42</mn></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was a relatively straightforward start, though it was disappointing to see so many candidates sketch their graphs on two separate axes, despite the question stating they should be sketched on the same axes.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Of those candidates producing clear sketches, the vast majority were able to recognise the points of inflexion and write down their coordinates. A small number embarked on a mostly fruitless algebraic approach rather than use their graphs as intended. The distinguishing features between curves tended to focus on points of intersection with the axes, which was accepted. Only a small number offered ideas such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>→</mo><mo>∞</mo></math> on both curves. A number of (incorrect) suggestions were seen, stating that both curves tended towards a linear asymptote.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A majority of candidates' suggestions related to the number of intersection points with the coordinate axes, while the idea of the <em>x</em>-axis acting as a line of symmetry was also often seen.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The required differentiation was straightforward for the majority of candidates.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority employed the quotient rule here, often doing so successfully to find a correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>y</mi></mrow><mrow><mtext>d</mtext><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac></math>. Despite realising that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mtext>d</mtext><mn>2</mn></msup><mi>y</mi></mrow><mrow><mtext>d</mtext><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn></math>, the resulting algebra to find the required solution proved a step too far for most. A number of slips were seen in candidates' working, though better candidates were able to answer the question confidently.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mistakes proved to be increasingly common by this stage of the paper. Various equations of lines were suggested, with the incorrect <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>2</mn><mo>.</mo><mn>5</mn></math> appearing more than once. Only the better candidates were able to tackle the final part of the question with any success; it was pleasing to see a number of clear algebraic (only) approaches, though this was not necessary to obtain full marks.</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Significant work on this question part was rarely seen, and it may have been the case that many candidates chose to spend their remaining time on the second question, especially if they felt they were making little progress with part f. Having said that, correct final answers were seen from better candidates, though these were few and far between.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.</strong></p>
<p><br>A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.</p>
<p>For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mn>6</mn><mo>,</mo><mo>&#160;</mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math>.</p>
<p>The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>For an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>-sided regular polygon, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8484;</mi><mo>+</mo></msup><mo>,</mo><mo>&#160;</mo><mi>r</mi><mo>&#8805;</mo><mn>3</mn></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th polygonal number <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8484;</mi><mo>+</mo></msup></math>.</p>
<p style="text-align: left;">Hence, for square numbers,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>4</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>4</mn><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mn>4</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup></math>.</p>
</div>

<div class="specification">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th pentagonal number can be represented by the arithmetic series</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>+</mo><mo>&#8230;</mo><mo>+</mo><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For triangular numbers, verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The number <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>351</mn></math> is a triangular number. Determine which one it is.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>, sketch a diagram clearly showing your answer to part (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> is the square of an odd number for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable table of values or otherwise, determine the smallest positive integer, greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, that is both a triangular number and a pentagonal number.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A polygonal number, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math>, can be represented by the series</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>.</p>
<p>Use mathematical induction to prove that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>3</mn><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mn>3</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mo>-</mo><mi>n</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow><mn>2</mn></mfrac></math>        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0A1</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow><mn>2</mn></mfrac></math> only is seen.</p>
<p>Do not award any marks for numerical verification.</p>
<p> </p>
<p>so for triangular numbers, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>        <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>uses a table of values to find a positive integer that satisfies <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>351</mn></math>        <em><strong>(M1)</strong></em></p>
<p>for example, a list showing at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> consecutive terms <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>…</mo><mn>325</mn><mo>,</mo><mo> </mo><mn>351</mn><mo>,</mo><mo> </mo><mn>378</mn><mo>…</mo></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for use of a GDC’s numerical solve or graph feature.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math>  (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>26</mn></math>th triangular number)        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mo>−</mo><mn>27</mn><mo>,</mo><mn>26</mn></math>. Award <em><strong>A0</strong></em> if additional solutions besides <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math> are given.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>351</mn><mo> </mo><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi><mo>-</mo><mn>702</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>        <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mrow><mo>-</mo><mn>702</mn></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>-</mo><mn>26</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>27</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math>  (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>26</mn></math>th triangular number)        <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mo>−</mo><mn>27</mn><mo>,</mo><mn>26</mn></math>. Award <em><strong>A0</strong></em> if additional solutions besides <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math> are given.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to form an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>        <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfrac><mrow><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo> </mo><mfenced><mrow><mo>≡</mo><mfrac><mrow><mn>2</mn><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><mfenced><mrow><mfrac><msup><mi>n</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>n</mi><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mfenced><mrow><mfrac><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfenced><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mfenced><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>≡</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>         <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the sum of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>th triangular numbers</p>
<p>is the <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>th square number         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">       <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent single diagrams, such as the one above, where the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>th and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>th triangular numbers and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>th square number are clearly shown.<br>Award <em><strong>A1</strong> </em>for a diagram that show <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mn>4</mn></mfenced></math> (a triangle with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> dots) and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mn>5</mn></mfenced></math> (a triangle with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> dots) and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>4</mn></msub><mfenced><mn>5</mn></mfenced></math> (a square with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo> </mo></math>dots).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>8</mn><mfenced><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p>attempts to expand their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>          <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is odd          <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>8</mn><mfenced><mrow><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mrow><mo>=</mo><mn>8</mn><mfenced><mrow><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfrac><mrow><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced><mspace linebreak="newline"></mspace></math>  <em><strong>A1</strong></em></p>
<p>attempts to expand their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>4</mn><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>          <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is odd          <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Method 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>8</mn><mfenced><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><msup><mfenced><mrow><mi>A</mi><mi>n</mi><mo>+</mo><mi>B</mi></mrow></mfenced><mn>2</mn></msup></mrow></mfenced></math> (where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>)          <em><strong>A1</strong></em></p>
<p>attempts to expand their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math>          <em><strong>(M1)</strong></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><msup><mi>A</mi><mn>2</mn></msup><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>A</mi><mi>B</mi><mi>n</mi><mo>+</mo><msup><mi>B</mi><mn>2</mn></msup></mrow></mfenced></math></em></p>
<p>now equates coefficients and obtains <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>          <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is odd          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>3</mn></math>          <em><strong>(A1)</strong></em></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></mrow></mfenced></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></math>          <em><strong>(A1)</strong></em></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mi>n</mi></msub></mrow></mfenced></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfenced><mrow><mn>3</mn><mfenced><mn>1</mn></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>3</mn><mfenced><mn>2</mn></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>3</mn><mfenced><mn>3</mn></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mo>…</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfenced><mrow><mn>3</mn><mfenced><mn>1</mn></mfenced><mo>+</mo><mn>3</mn><mfenced><mn>2</mn></mfenced><mo>+</mo><mn>3</mn><mfenced><mn>3</mn></mfenced><mo>+</mo><mo>…</mo><mo>+</mo><mn>3</mn><mi>n</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>n</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>+</mo><mo>…</mo><mo>+</mo><mi>n</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>n</mi></mrow></mfenced></math>        <em><strong>(A1)</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> into their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced></math>          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>3</mn><mfenced><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo>-</mo><mn>2</mn><mi>n</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>3</mn><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>4</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to find the arithmetic mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>          <em><strong>A1</strong></em></p>
<p>multiplies the above expression by the number of terms <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>forms a table of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced></math> values that includes some values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>&gt;</mo><mn>5</mn></math>         <em><strong>(M1)</strong></em></p>
<p>forms a table of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> values that includes some values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>&gt;</mo><mn>5</mn></math>         <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> if at least one <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced></math> value is correct. Award <strong><em>(M1)</em></strong> if at least one <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> value is correct. Accept as above for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow></mfenced></math> values and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mi>m</mi></mrow></mfenced></math> values.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> for triangular numbers          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> for pentagonal numbers          <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> is seen in or out of a table. Award <em><strong>(A1)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> is seen in or out of a table. Condone the use of the same parameter for triangular numbers and pentagonal numbers, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> for triangular numbers and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>12</mn></math> for pentagonal numbers.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number)          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award all five marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> seen anywhere with or without working shown.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> as a quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math> (or equivalent)</p>
<p>attempts to solve their quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><mn>12</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>m</mi><mo>+</mo><mn>1</mn></msqrt></mrow><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mrow><mi>m</mi><mo>-</mo><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p style="text-align:left;"><strong>OR</strong></p>
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> as a quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mi>m</mi><mo>-</mo><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math> (or equivalent)</p>
<p>attempts to solve their quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>±</mo><msqrt><mn>12</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>n</mi><mo>+</mo><mn>1</mn></msqrt></mrow><mn>6</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>1</mn><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>12</mn><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow></mfenced></msqrt></mrow><mn>6</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> for triangular numbers          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> for pentagonal numbers          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number)          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><mfenced><mrow><mn>3</mn><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>m</mi><mo>+</mo><mi>k</mi><mo> </mo><mfenced><mrow><mi>n</mi><mo>&gt;</mo><mi>m</mi></mrow></mfenced></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mi>m</mi><mo>=</mo><mfenced><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></mfenced><mfenced><mrow><mi>m</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mi>m</mi><mo>-</mo><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>          <em><strong>A1</strong></em></p>
<p>attempts to find the discriminant of their quadratic</p>
<p>and recognises that this must be a perfect square        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>8</mn><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>N</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>8</mn><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math></p>
<p>determines that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>8</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>18</mn><mi>m</mi><mo>-</mo><mn>72</mn><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>m</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>,</mo><mn>12</mn></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number)          <em><strong>A1</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><mfenced><mrow><mn>3</mn><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>n</mi><mo>-</mo><mi>k</mi><mo> </mo><mfenced><mrow><mi>m</mi><mo>&lt;</mo><mi>n</mi></mrow></mfenced></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi><mo>=</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></mfenced><mfenced><mrow><mn>3</mn><mfenced><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></mfenced></math>       <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mi>n</mi><mo>+</mo><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math>          <em><strong>A1</strong></em></p>
<p>attempts to find the discriminant of their quadratic</p>
<p>and recognises that this must be a perfect square        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>8</mn><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>N</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>8</mn><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math></p>
<p>determines that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>8</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>200</mn><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>n</mi><mo>=</mo><mn>5</mn><mo>,</mo><mn>20</mn></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number)          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> Award a maximum of <em><strong>R1M0M0A1M1A1A1R0</strong></em> for a ‘correct’ proof using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>+</mo><mn>1</mn></math>.</p>
<p> </p>
<p>consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn><mo>:</mo><mo> </mo><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><msup><mn>1</mn><mn>2</mn></msup></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mfenced><mn>1</mn></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>1</mn></math></p>
<p>so true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math>              <em><strong>R1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><msup><mn>1</mn><mn>2</mn></msup></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mfenced><mn>1</mn></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>1</mn></math>.<br>Do not accept one-sided considerations such as '<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>1</mn></math> and so true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math>'.<br>Subsequent marks after this <em><strong>R1</strong> </em>are independent of this mark can be awarded.</p>
<p> </p>
<p>Assume true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>, <em>ie.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>k</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi></mrow><mn>2</mn></mfrac></math>          <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>for statements such as “let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math> ”. The assumption of truth must be clear.<br>Subsequent marks after this <em><strong>M1</strong> </em>are independent of this mark and can be awarded.</p>
<p> </p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>:</mo></math></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> can be represented by the sum</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> and so</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><msub><mi>P</mi><mi>r</mi></msub><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>k</mi></mfenced><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></mrow></mfenced></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>+</mo><mn>2</mn><mo>+</mo><mn>2</mn><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>          <em><strong>(A1)</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p>hence true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math> true <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></math> true         <em><strong>R1</strong></em></p>
<p>therefore true for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math></p>
<p> </p>
<p><strong>Note:</strong> Only award the final <em><strong>R1</strong> </em>if the first five marks have been awarded. Award marks as appropriate for solutions that expand both the LHS and (given) RHS of the equation.</p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) (i) was generally well done. Unfortunately, some candidates adopted numerical verification. Part (a) (ii) was generally well done with the majority of successful candidates using their GDC judiciously and disregarding <em>n </em>= −27 as a possible solution. A few candidates interpreted the question as needing to deal with P<sub>3</sub>(351).</p>
<p>Although part (b) (i) was generally well done, a significant number of candidates laboured unnecessarily to show the required result. Many candidates set their LHS to equal the RHS throughout the solution. Part (b) (ii) was generally not well done with many candidates unable to articulate clearly in words and symbols what the given identity shows for the sum of two consecutive triangular numbers. In part (b) (iii), most candidates were unable to produce a clear diagram illustrating the identity stated in part (b) (i). </p>
<p>Part (c) was reasonably well done. Most candidates were able to show algebraically that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math>. A good number of candidates were then able to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup></math> and conclude that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math> is odd. Rather than making the connection that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is a perfect square, many candidates attempted instead to analyse the parity of either <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>n</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math>. As with part (b) (i), many candidates set their LHS to equal the RHS throughout the solution. A number of candidates unfortunately adopted numerical verification.</p>
<p>Part (d) was not answered as well as anticipated with many candidates not understanding what was<br>required. Instead of using the given arithmetic series to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>(</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></mfrac></math>, a large number of<br>candidates used <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mo>(</mo><mn>5</mn><mo>-</mo><mn>2</mn><mo>)</mo><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mo>(</mo><mn>5</mn><mo>-</mo><mn>4</mn><mo>)</mo><mi>n</mi></mrow><mn>2</mn></mfrac></math> . Unfortunately, a number of candidates adopted numerical verification.</p>
<p>In part (e), the overwhelming majority of candidates who successfully determined that 210 is the smallest positive integer greater than 1 that is both triangular and pentagonal used a table of values. Unfortunately, a large proportion of these candidates seemingly spent quite a few minutes listing the first 20 triangular numbers and the first 12 pentagonal numbers. And it can be surmised that a number of these candidates constructed their table of values either without the use of a GDC or with the arithmetic functionality of a GDC rather than with a GDC's table of values facility. Candidates should be aware that a relevant excerpt from a table of values is sufficient evidence of correct working. A number of candidates started constructing a table of values but stopped before identifying 210. Disappointingly, a significant number of candidates attempted to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msub><mi>P</mi><mn>5</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<p>Part (f) proved beyond the reach of most with only a small number of candidates successfully proving the given result. A significant number of candidates were unable to show that the result is true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math>. A number of candidates established the validity of the base case for the RHS only while a number of other candidates attempted to prove the base case for <em>r</em> = 3. A large number of candidates did not state the inductive step correctly with the assumption of truth not clear. A number of candidates then either attempted to work backwards from the given result or misinterpreted the question and attempted to prove the result stated in the question stem rather than the result stated in the question. Some candidates who were awarded the first answer mark when considering the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></math> case were unable to complete the square or equivalent simplification correctly. Disappointingly, a significant number listed the steps involved in an induction proof without engaging in the actual proof.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> be the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ x|x \in \mathbb{R},{\text{ }}x \ne 0\} ">
  <mo fence="false" stretchy="false">{</mo>
  <mi>x</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
  <mo fence="false" stretchy="false">}</mo>
</math></span>. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> be the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ x|x \in ] - 1,{\text{ }} + 1[,{\text{ }}x \ne 0\} ">
  <mo fence="false" stretchy="false">{</mo>
  <mi>x</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mo stretchy="false">]</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">[</mo>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
  <mo fence="false" stretchy="false">}</mo>
</math></span>.</p>
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f:A \to B">
  <mi>f</mi>
  <mo>:</mo>
  <mi>A</mi>
  <mo stretchy="false">→<!-- → --></mo>
  <mi>B</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{2}{\pi }\arctan (x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mi>π<!-- π --></mi>
  </mfrac>
  <mi>arctan</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span> be the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ x|x \in \mathbb{R},{\text{ }}x > 0\} ">
  <mo fence="false" stretchy="false">{</mo>
  <mi>x</mi>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo fence="false" stretchy="false">}</mo>
</math></span>.</p>
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g:\mathbb{R} \to D">
  <mi>g</mi>
  <mo>:</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mi>D</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {{\text{e}}^x}">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> and hence justify whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is a bijection.</p>
<p>(ii)     Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> is a group under the binary operation of multiplication.</p>
<p>(iii)     Give a reason why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> is not a group under the binary operation of multiplication.</p>
<p>(iv)     Find an example to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(a \times b) = f(a) \times f(b)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo>×</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
</math></span> is not satisfied for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a,{\text{ }}b \in A">
  <mi>a</mi>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mi>b</mi>
  <mo>∈</mo>
  <mi>A</mi>
</math></span>.</p>
<div class="marks">[13]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> and hence justify whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is a bijection.</p>
<p>(ii) &nbsp; &nbsp; Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(a + b) = g(a) \times g(b)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
</math></span> for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a,{\text{ }}b \in \mathbb{R}">
  <mi>a</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>b</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>(iii) &nbsp; &nbsp; Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ \mathbb{R},{\text{ }} + \} ">
  <mo fence="false" stretchy="false">{</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>+</mo>
  <mo fence="false" stretchy="false">}</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ D,{\text{ }} \times \} ">
  <mo fence="false" stretchy="false">{</mo>
  <mi>D</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>×</mo>
  <mo fence="false" stretchy="false">}</mo>
</math></span> are both groups, explain whether or not they are isomorphic.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>(i)     <img src="images/Schermafbeelding_2017-03-02_om_12.36.51.png" alt="N16/5/MATHL/HP3/ENG/TZ0/SG/M/02.a.i">     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>A1 </em></strong>for general shape, labelled asymptotes, and showing that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne 0">
  <mi>x</mi>
  <mo>≠</mo>
  <mn>0</mn>
</math></span>.</p>
<p> </p>
<p>graph shows that it is injective since it is increasing or by the horizontal line test     <strong><em>R1</em></strong></p>
<p>graph shows that it is surjective by the horizontal line test     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Allow any convincing reasoning.</p>
<p> </p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is a bijection     <strong><em>A1</em></strong></p>
<p>(ii)     closed since non-zero real times non-zero real equals non-zero real     <strong><em>A1R1</em></strong></p>
<p>we know multiplication is associative     <strong><em>R1</em></strong></p>
<p>identity is 1     <strong><em>A1</em></strong></p>
<p>inverse of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{x}(x \ne 0)">
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>≠</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p>hence it is a group     <strong><em>AG</em></strong></p>
<p>(iii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> does not have an identity     <strong><em>A2</em></strong></p>
<p>hence it is not a group     <strong><em>AG</em></strong></p>
<p>(iv)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1 \times 1) = f(1) = \frac{1}{2}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>×</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> whereas <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(1) \times f(1) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span> is one counterexample     <strong><em>A2</em></strong></p>
<p>hence statement is not satisfied     <strong><em>AG</em></strong></p>
<p><strong><em>[13 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-03-02_om_12.52.46.png" alt="N16/5/MATHL/HP3/ENG/TZ0/SG/M/02.b"></p>
<p>award <strong><em>A1 </em></strong>for general shape going through (0, 1) and with domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R}">
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>graph shows that it is injective since it is increasing or by the horizontal line test and graph shows that it is surjective by the horizontal line test &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Allow any convincing reasoning.</p>
<p>&nbsp;</p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>&nbsp; is a bijection &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(ii) &nbsp; &nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(a + b) = {{\text{e}}^{a + b}}">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mi>a</mi>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(a) \times g(b) = {{\text{e}}^a} \times {{\text{e}}^b} = {{\text{e}}^{a + b}}">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>a</mi>
    </msup>
  </mrow>
  <mo>×</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>b</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mi>a</mi>
        <mo>+</mo>
        <mi>b</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(a + b) = g(a) \times g(b)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>a</mi>
  <mo stretchy="false">)</mo>
  <mo>×</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>b</mi>
  <mo stretchy="false">)</mo>
</math></span>&nbsp;&nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(iii) &nbsp; &nbsp; since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is a bijection and the homomorphism rule is obeyed &nbsp; &nbsp; <strong><em>R1R1</em></strong></p>
<p>the two groups are isomorphic &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">3</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">4</mtext></math>.</strong></p>
<p>&nbsp;<br>The cubic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&#160;</mo><mi>q</mi><mo>,</mo><mo>&#160;</mo><mi>r</mi><mo>&#160;</mo><mo>&#8712;</mo><mo>&#160;</mo><mi mathvariant="normal">&#8477;</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mo>,</mo><mo>&#160;</mo><mi>&#946;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#947;</mi></math>.</p>
</div>

<div class="specification">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="specification">
<p>Noah believes that if <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&#8805;</mo><mn>3</mn><mi>q</mi></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mo>,</mo><mo>&#160;</mo><mi>&#946;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#947;</mi></math> are all real.</p>
</div>

<div class="specification">
<p>Now consider polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&#160;</mo><mi>q</mi><mo>,</mo><mo>&#160;</mo><mi>r</mi><mo>,</mo><mo>&#160;</mo><mi>s</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mo>,</mo><mo>&#160;</mo><mi>&#946;</mi><mo>,</mo><mo>&#160;</mo><mi>&#947;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#948;</mi></math>.</p>
<p>In a similar way to the cubic equation, it can be shown that:</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>&#945;</mi><mo>+</mo><mi>&#946;</mi><mo>+</mo><mi>&#947;</mi><mo>+</mo><mi>&#948;</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>&#945;</mi><mi>&#946;</mi><mo>+</mo><mi>&#945;</mi><mi>&#947;</mi><mo>+</mo><mi>&#945;</mi><mi>&#948;</mi><mo>+</mo><mi>&#946;</mi><mi>&#947;</mi><mo>+</mo><mi>&#946;</mi><mi>&#948;</mi><mo>+</mo><mi>&#947;</mi><mi>&#948;</mi></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>&#945;</mi><mi>&#946;</mi><mi>&#947;</mi><mo>+</mo><mi>&#945;</mi><mi>&#946;</mi><mi>&#948;</mi><mo>+</mo><mi>&#945;</mi><mi>&#947;</mi><mi>&#948;</mi><mo>+</mo><mi>&#946;</mi><mi>&#947;</mi><mi>&#948;</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mi>&#945;</mi><mi>&#946;</mi><mi>&#947;</mi><mi>&#948;</mi></math>.</p>
</div>

<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>, has one integer root.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math> show that:</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>3</mn><mi>q</mi></math>, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> cannot all be real.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the result from part (c), show that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>17</mn></math>, this equation has at least one complex root.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By varying the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, determine the smallest positive integer value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> required to show that Noah is incorrect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the equation will have at least one real root for all values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state a condition in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> that would imply <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your result from part (f)(ii) to show that the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what the result in part (f)(ii) tells us when considering this equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integer root of this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn></math> as a product of one linear and one cubic factor, prove that the equation has at least one complex root.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math>         <strong>  </strong><em> <strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mi>x</mi><mo>+</mo><mi>α</mi><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><mi>x</mi><mo>+</mo><mi>β</mi><mi>γ</mi></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi></mrow></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced><mi>x</mi><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math>         <em><strong>A1</strong></em></p>
<p>comparing coefficients:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced></math>         <em><strong>AG</strong> </em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math>         <em><strong>AG</strong> </em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math>         <em><strong>AG</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> For candidates who do not include the <em><strong>AG</strong> </em>lines award full marks.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>=</mo><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math>         <strong>  </strong><em> <strong>(A1)</strong></em></p>
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup></math>         <strong>  </strong><em> <strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math> or equivalent         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></math>         <em><strong>AG</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent working from RHS to LHS.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup></math>         <strong>  </strong><em> <strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>α</mi><mi>β</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>β</mi><mi>γ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>α</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>γ</mi><mi>α</mi></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>q</mi></math> or equivalent         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math>         <em><strong>AG</strong> </em></p>
<p><br><strong>OR</strong></p>
<p>attempt to write <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>,</mo><mo> </mo><mi>γ</mi></math>         <strong>  </strong><em> <strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>q</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>α</mi><mi>β</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>β</mi><mi>γ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>α</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>γ</mi><mi>α</mi></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup></math>         <em><strong>AG</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent working where LHS and RHS are expanded to identical expressions.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>3</mn><mi>q</mi><mo>⇒</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi><mo>&lt;</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>&lt;</mo><mn>0</mn></math>         <em><strong>A1</strong></em></p>
<p>if all roots were real <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>≥</mo><mn>0</mn></math>         <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Condone strict inequality in the <em><strong>R1</strong> </em>line.<br><strong>Note:</strong> Do not award <em><strong>A0R1</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo></math>roots cannot all be real         <em><strong>AG</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>49</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>q</mi><mo>=</mo><mn>51</mn></math>         <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>3</mn><mi>q</mi><mo>⇒</mo></math> the equation has at least one complex root         <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Allow equivalent comparisons; e.g. checking <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>6</mn><mi>q</mi></math></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of GDC (<em>eg</em> graphs or tables)         <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>12</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>complex roots appear in conjugate pairs (so if complex roots occur the other root will be real OR all 3 roots will be real).</p>
<p>OR</p>
<p>a cubic curve always crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at at least one point.       <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mn>2</mn></msup></math>           <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>⇒</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>=</mo></mrow></mfenced><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>2</mn><mi>q</mi></math>  <strong>OR  </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>&lt;</mo><mn>0</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Allow <em><strong>FT</strong> </em>on their result from part (f)(i).</p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>&lt;</mo><mn>6</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>×</mo><mn>3</mn><mo>&lt;</mo><mn>0</mn></math>          <em><strong>R1</strong></em></p>
<p>hence there is at least one complex root.         <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Allow <em><strong>FT</strong> </em>from part (f)(ii) for the <em><strong>R</strong></em> mark provided numerical reasoning is seen.</p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>&gt;</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mn>81</mn><mo>&gt;</mo><mn>2</mn><mo>×</mo><mn>24</mn></mrow></mfenced></math>  (so) nothing can be deduced         <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not allow <em><strong>FT</strong> </em>for the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to express as a product of a linear and cubic factor           <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>10</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>34</mn><mi>x</mi><mo>-</mo><mn>12</mn></mrow></mfenced></math>          <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each factor. Award at most <em><strong>A1A0</strong></em> if not written as a product.</p>
<p> </p>
<p>since for the cubic, <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>3</mn><mi>q</mi><mo> </mo><mfenced><mrow><mn>100</mn><mo>&lt;</mo><mn>102</mn></mrow></mfenced></math>          <em><strong>R1</strong></em></p>
<p>there is at least one complex root          <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">h.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The first part of this question proved to be very accessible, with the majority of candidates expanding their brackets as required, to find the coefficients <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The first part of this question was usually answered well, though presentation in the second part sometimes left a lot to be desired. The expression <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>q</mi></math> was expected to be seen more often, as a 'pivot' to reaching the required result. Algebra was often lengthy, but untidily so, sometimes leaving examiners to do some mental tidying up on behalf of the candidate.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A good number of candidates recognised the reasoning required in this part of the question and were able to score both marks.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates found applying this specific case to be very straightforward.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates offered incorrect answers in the first part; despite their working suggested utilisation of the GDC, it was clear that many did not appreciate what the question was asking. The second part was usually answered well, with the idea of complex roots occurring in conjugate pairs being put to good use.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some very dubious algebra was seen here, and often no algebra at all. Despite this, a good number of candidates seemed to make the 'leap' to the correct expression <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></math>, perhaps fortuitously so in a number of cases.</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Of those finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></math> in part f, a surprising number of answers seen employed the test of checking whether <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>3</mn><mi>q</mi></math>.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part i was usually not answered successfully, which may have been due to shortage of time. However, it was pleasing to see a number of candidates reach the end of the paper and successfully factorise the given quartic using a variety of methods. The final part required the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>&lt;</mo><mn>3</mn><mi>q</mi></math> test. Though correct reasoning was sometimes seen, it was rare for this final mark to be gained.</p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.iii.</div>
</div>
<br><hr><br>