File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/markSceme-HL-paper2html
File size: 966.86 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>Find the coordinates where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> crosses the</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The oblique asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>30</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>30</mn></math>, clearly indicating the points of intersection with each axis and any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfrac></math> in partial fractions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>3</mn></munderover><mfrac><mn>1</mn><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfrac><mo>d</mo><mi>x</mi></math>, expressing your answer as a single logarithm.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In part (a), penalise once only, if correct values are given instead of correct coordinates.</p>
<p><br>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>3</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> In part (a), penalise once only, if correct values are given instead of correct coordinates.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mfrac><mn>4</mn><mn>5</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math>.<br> Award <em><strong>A1</strong></em> in part (b), if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math> is seen on their graph in part (d).<br><br></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced><mo>≡</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></math></p>
<p>attempts to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>15</mn><mi>a</mi><mi>x</mi><mo>+</mo><mn>2</mn><mi>b</mi><mi>x</mi><mo>-</mo><mn>15</mn><mi>b</mi><mo>≡</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>equates coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>=</mo><mo>-</mo><mfrac><mn>15</mn><mn>2</mn></mfrac><mo>+</mo><mn>2</mn><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts division on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac><mo>+</mo><mo>…</mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>≡</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mi>b</mi><mo>+</mo><mfrac><mi>c</mi><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn><mo>≡</mo><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced><mi>x</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfenced><mi>b</mi><mo>+</mo><mi>c</mi></math></p>
<p>equates coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> : <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>=</mo><mo>-</mo><mfrac><mn>15</mn><mn>2</mn></mfrac><mo>+</mo><mn>2</mn><mi>b</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p>attempts division on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>x</mi><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>13</mn><mi>x</mi></mrow><mn>2</mn></mfrac></mstyle><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mstyle displaystyle="true"><mfrac><mrow><mn>13</mn><mi>x</mi></mrow><mn>2</mn></mfrac></mstyle><mo>-</mo><mn>12</mn></mrow><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow></mfrac><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac><mo>+</mo><mo>…</mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>y</mi><mo>=</mo><mfrac><mi>x</mi><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>13</mn><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> <img src=""></p>
<p>two branches with approximately correct shape (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>30</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>30</mn></math>) <em><strong>A1</strong></em></p>
<p>their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes <em><strong>A1</strong></em></p>
<p>their axes intercepts in approximately the correct positions <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Points of intersection with the axes and the equations of asymptotes are not required to be labelled.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to split into partial fractions: <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn></mrow><mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mi>B</mi><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>15</mn><mo>≡</mo><mi>A</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mi>B</mi><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>3</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mn>3</mn></munderover><mfenced><mrow><mfrac><mn>3</mn><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p>attempts to integrate and obtains two terms involving ‘ln’ <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msubsup><mfenced open="[" close="]"><mrow><mn>3</mn><mo> </mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></mrow></mfenced><mn>0</mn><mn>3</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>6</mn><mo>-</mo><mi>ln</mi><mo> </mo><mn>1</mn><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>3</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>4</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>4</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><mn>8</mn><mo>+</mo><mi>ln</mi><mo> </mo><mn>4</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>ln</mi><mo> </mo><mn>32</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>5</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The final <em><strong>A1</strong></em> is dependent on the previous two <em><strong>A</strong></em> marks.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove the identity <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> has two real roots, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math>.</p>
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>,</mo><mo> </mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math> and which has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>α</mi><mn>3</mn></msup></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>β</mi><mn>3</mn></msup></mfrac></math>.<br>Without solving <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, determine the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math></p>
<p>attempts to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>+</mo><mn>3</mn><mi>p</mi><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>-</mo><mn>3</mn><mi>p</mi><msup><mi>q</mi><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math> <em><strong>AG</strong></em></p>
<p><br><strong>Note: </strong>Condone the use of equals signs throughout.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math></p>
<p>attempts to factorise <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mfenced><mrow><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>≡</mo><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mi>p</mi><mi>q</mi><mo>+</mo><msup><mi>q</mi><mn>2</mn></msup></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>-</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>+</mo><mi>p</mi><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>q</mi><mo>-</mo><mi>p</mi><msup><mi>q</mi><mn>2</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math> <em><strong>AG</strong></em></p>
<p><em><br></em><strong>Note: </strong>Condone the use of equals signs throughout.</p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup><mo>≡</mo><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced></math></p>
<p>attempts to factorise <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>3</mn></msup><mo>+</mo><msup><mi>q</mi><mn>3</mn></msup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mi>p</mi><mi>q</mi><mo>+</mo><msup><mi>q</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mfenced><mrow><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>p</mi><mi>q</mi><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note: </strong>Condone the use of equals signs throughout.</p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> Award a maximum of <em><strong>A1M0A0A1M0A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mn>95</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>8</mn></math> found by using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>=</mo><mfrac><mrow><mn>5</mn><mo>±</mo><msqrt><mn>17</mn></msqrt></mrow><mn>4</mn></mfrac><mo> </mo><mfenced><mrow><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>219</mn><mo>…</mo><mo>,</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>28</mn><mo>…</mo></mrow></mfenced></math>.<br>Condone, as appropriate, solutions that state but clearly do not use the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math>.<br>Special case: Award a maximum of <em><strong>A1M1A0A1M0A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mn>95</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>8</mn></math> obtained by solving simultaneously for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math> from product of roots and sum of roots equations.</p>
<p><br>product of roots of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>2</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> (seen anywhere) <em><strong>A1</strong></em></p>
<p>considers <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mfrac><mn>1</mn><msup><mi>α</mi><mn>3</mn></msup></mfrac></mfenced><mfenced><mfrac><mn>1</mn><msup><mi>β</mi><mn>3</mn></msup></mfrac></mfenced></math> by stating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mn>3</mn></msup></mfrac><mfenced><mrow><mo>=</mo><mi>n</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempting to substitute their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mn>3</mn></msup></mfrac></math>.<br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mn>3</mn></msup></mfrac><mo>=</mo><mfrac><mn>1</mn><msup><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></mfenced><mn>3</mn></msup></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>8</mn></math> <em><strong>A1</strong></em></p>
<p>sum of roots of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mn>5</mn><mn>2</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></math> (seen anywhere) <em><strong>A1</strong></em></p>
<p>considers <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>α</mi><mn>3</mn></msup></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msup><mi>β</mi><mn>3</mn></msup></mfrac></math> by stating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>α</mi><mi>β</mi><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></mrow><msup><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mn>3</mn></msup></mfrac><mo> </mo><mfenced><mrow><msup><mfenced><mfrac><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow><mrow><mi>α</mi><mi>β</mi></mrow></mfrac></mfenced><mn>3</mn></msup><mo>-</mo><mfrac><mrow><mn>3</mn><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></mrow><msup><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced><mfenced><mrow><mo>=</mo><mo>-</mo><mi>m</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempting to substitute their values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi></math> into their expression. Award <em><strong>M0</strong></em> for use of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>α</mi><mi>β</mi><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></math> only.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><mstyle displaystyle="true"><mfrac><mn>5</mn><mn>2</mn></mfrac></mstyle></mfenced><mn>3</mn></msup><mo>-</mo><mfenced><mstyle displaystyle="true"><mfrac><mn>3</mn><mn>2</mn></mfrac></mstyle></mfenced><mfenced><mstyle displaystyle="true"><mfrac><mn>5</mn><mn>2</mn></mfrac></mstyle></mfenced></mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>8</mn></mfrac></mstyle></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>125</mn><mo>-</mo><mn>30</mn><mo>=</mo><mn>95</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mn>95</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>95</mn><mi>x</mi><mo>+</mo><mn>8</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math></p>
<p><br><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2\,{\text{ln}}\,x + 1}}{{x - 3}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span>, 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> < 3.</p>
</div>
<div class="specification">
<p>Draw a set of axes showing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> values between −3 and 3. On these axes</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the coordinates of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f^{ - 1}}\left( x \right)"> <mi>y</mi> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, showing clearly any axis intercepts and giving the equations of any asymptotes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) > {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>></mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>finding turning point of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> or finding root of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f''\left( x \right)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.899"> <mi>x</mi> <mo>=</mo> <mn>0.899</mn> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {0.899048 \ldots } \right) = - 0.375"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mn>0.899048</mn> <mo>…</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.375</mn> </math></span> <em><strong>(M1)A1</strong></em></p>
<p>(0.899, −0.375)</p>
<p><strong>Note:</strong> Do not accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0.9"> <mi>x</mi> <mo>=</mo> <mn>0.9</mn> </math></span>. Accept <em>y</em>-coordinates rounding to −0.37 or −0.375 but not −0.38.<br> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>smooth curve over the correct domain which does not cross the <em>y</em>-axis</p>
<p>and is concave down for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> > 1 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercept at 0.607 <em><strong>A1</strong></em></p>
<p>equations of asymptotes given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 3 (the latter must be drawn) <em><strong>A1A1</strong></em><br> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>attempt to reflect graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <em><strong>(M1)</strong></em></p>
<p>smooth curve over the correct domain which does not cross the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and is concave down for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> > 1 <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept at 0.607 <em><strong>A1</strong></em></p>
<p>equations of asymptotes given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 0 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 3 (the latter must be drawn) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> For <em><strong>FT</strong></em> from (i) to (ii) award max <em><strong>M1A0A1A0</strong></em>.</p>
<p><br><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {f^{ - 1}}\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = x"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>x</mi> </math></span> to get <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 0.372 <em><strong>(M1)</strong></em><em><strong>A1</strong></em></p>
<p>0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 0.372 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>FT</strong> </em>marks.</p>
<p><br><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<p>The region enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn></math> is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis to form a solid of revolution.</p>
</div>
<div class="specification">
<p>Pedro wants to make a small bowl with a volume of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn><mo> </mo><msup><mtext>cm</mtext><mn>3</mn></msup></math> based on the result from part (a). Pedro’s design is shown in the following diagrams.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The vertical height of the bowl, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BO</mtext></math>, is measured along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The radius of the bowl’s top is <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext></math> and the radius of the bowl’s base is <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext></math>. All lengths are measured in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cm</mtext></math>.</p>
</div>
<div class="specification">
<p>For design purposes, Pedro investigates how the cross-sectional radius of the bowl changes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of the solid formed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>15</mn><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi></mrow><mn>34</mn></mfrac></math> cubic units.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> that satisfies the requirements of Pedro’s design.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By sketching the graph of a suitable derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, find where the cross-sectional radius of the bowl is decreasing most rapidly.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the cross-sectional radius of the bowl at this point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mi>a</mi><mi>b</mi></munderover><msup><mfenced><mrow><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>0</mn><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></munderover><msup><mfenced><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup></mrow><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfrac></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mi>V</mi><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>0</mn><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></munderover><mfrac><msup><mtext>e</mtext><mi>x</mi></msup><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mn>2</mn></msup></mfrac><mo>d</mo><mi>x</mi></mrow></mfenced></math></p>
<p><br><strong>EITHER</strong></p>
<p>applying integration by recognition <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfrac></mrow></mfenced><mn>0</mn><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></msubsup></math> <em><strong>A3</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>⇒</mo><mo>d</mo><mi>u</mi><mo>=</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>attempt to express the integral in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math> <em><strong>(M1)</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>2</mn></math> and when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>17</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>2</mn><mn>17</mn></munderover><mfrac><mn>1</mn><msup><mi>u</mi><mn>2</mn></msup></mfrac><mo>d</mo><mi>u</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mi>u</mi></mfrac></mrow></mfenced><mn>2</mn><mn>17</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>⇒</mo><mo>d</mo><mi>u</mi><mo>=</mo><msup><mtext>e</mtext><mi>x</mi></msup><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>attempt to express the integral in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math> <em><strong>(M1)</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>1</mn></math> and when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>16</mn><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>16</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>1</mn><mn>16</mn></munderover><mfrac><mn>1</mn><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>u</mi></mrow></mfenced><mn>2</mn></msup></mfrac><mo>d</mo><mi>u</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><mi>u</mi></mrow></mfrac></mrow></mfenced><mn>1</mn><mn>16</mn></msubsup></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent working with indefinite integrals and original limits for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mfrac><mn>1</mn><mn>17</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so the volume of the solid formed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>15</mn><msup><mi>k</mi><mn>2</mn></msup><mi mathvariant="normal">π</mi></mrow><mn>34</mn></mfrac></math> cubic units <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)(A0)(M0)(A0)(A0)(A1)</strong></em> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>15</mn><mn>34</mn></mfrac></math> is obtained from GDC</p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a valid algebraic or graphical attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>300</mn><mo>×</mo><mn>34</mn></mrow><mrow><mn>15</mn><mi mathvariant="normal">π</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>14</mn><mo>.</mo><mn>7</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><msqrt><mfrac><mn>680</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Candidates may use their GDC numerical solve feature.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext><mo>=</mo><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mi>k</mi><mn>2</mn></mfrac></math></p>
<p>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>14</mn><mo>.</mo><mn>712</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><msqrt><mfrac><mn>680</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OA</mtext><mo>=</mo><mn>7</mn><mo>.</mo><mn>36</mn><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mi>f</mi><mfenced><mrow><mi>ln</mi><mo> </mo><mn>16</mn></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>4</mn><mi>k</mi></mrow><mn>17</mn></mfrac></math></p>
<p>with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>14</mn><mo>.</mo><mn>712</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><msqrt><mfrac><mn>680</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>3</mn><mo>.</mo><mn>46</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>8</mn><mn>17</mn></mfrac><msqrt><mfrac><mn>170</mn><mi mathvariant="normal">π</mi></mfrac></msqrt><mo>=</mo><mfrac><mrow><mn>8</mn><msqrt><mn>10</mn></msqrt></mrow><msqrt><mn>17</mn><mi mathvariant="normal">π</mi></msqrt></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>recognising to graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <strong>M1</strong> for attempting to use quotient rule or product rule differentiation. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced></mrow><mrow><mn>2</mn><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></math></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""><br>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math> graph decreasing to the local minimum <em><strong>A1</strong></em></p>
<p>before increasing towards the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>recognising to graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo mathvariant="italic">=</mo><mi>f</mi><mo mathvariant="italic">''</mo><mfenced><mi mathvariant="italic">x</mi></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempting to use quotient rule or product rule differentiation. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>x</mi><mn>2</mn></mfrac></mstyle></msup><mfenced><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>x</mi></mrow></msup><mo>-</mo><mn>6</mn><msup><mtext>e</mtext><mi>x</mi></msup><mi>+1</mi></mrow></mfenced></mrow><mrow><mn>4</mn><msup><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mtext>e</mtext><mi>x</mi></msup></mrow></mfenced><mn>3</mn></msup></mrow></mfrac></math></p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="">for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>, graph increasing towards and beyond the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept <em><strong>A1</strong></em></p>
<p>recognising <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> for maximum rate <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>76</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mfenced><mrow><mn>2</mn><msqrt><mn>2</mn></msqrt><mo>+</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note</strong>: Only award <em><strong>A</strong> </em>marks if either graph is seen.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>1</mn><mo>.</mo><mn>76</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p>the cross-sectional radius at this point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>20</mn><mo> </mo><mfenced><msqrt><mfrac><mn>85</mn><mi mathvariant="normal">π</mi></mfrac></msqrt></mfenced><mo> </mo><mfenced><mtext>cm</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has a probability density function given by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable><mtr><mtd><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math></p>
<p>The median of this distribution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mfenced open="|" close="|"><mrow><mi>X</mi><mo>-</mo><mi>m</mi></mrow></mfenced><mo>≤</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>, determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mi>m</mi></munderover><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo> </mo><mtext>arccos</mtext><mo> </mo><mi>m</mi><mo>-</mo><msqrt><mn>1</mn><mo>-</mo><msup><mi>m</mi><mn>2</mn></msup></msqrt><mo>-</mo><mfenced><mrow><mn>0</mn><mo>-</mo><msqrt><mn>1</mn></msqrt></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>360</mn></math> <em><strong>A1</strong></em></p>
<p><br><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to find at least one endpoint (limit) both in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> (or their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi><mo>≤</mo><mi>X</mi><mo>≤</mo><mi>m</mi><mo>+</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>-</mo><mi>a</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mi>x</mi><mo> </mo><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo>-</mo><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></mrow></mfenced><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>-</mo><mi>a</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><mo>+</mo><mi>a</mi></mrow></msubsup></math></p>
<p>attempts to solve their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> The above <em><strong>(M1)</strong></em> is dependent on the first <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>124861</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><menclose notation="left"><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo><menclose notation="left"><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></menclose></menclose></math> <em><strong>(M1)(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only award <em><strong>(M1)</strong></em> if at least one limit has been translated correctly.</p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><menclose notation="left"><mi>x</mi><mo>-</mo><mi>m</mi><menclose notation="left"><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></menclose></menclose></math>.</p>
<p><br>attempts to solve their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>124861</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><strong>EITHER </strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only award <em><strong>(M1)</strong></em> if at least one limit has been translated correctly.</p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mo>-</mo><mi>a</mi></mrow><mi>a</mi></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>+</mo><mi>m</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>2</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo>-</mo><mi>a</mi></mrow><mrow><mn>2</mn><mfenced><mrow><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>360034</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)(A1)</strong></em></p>
<p><strong><br>Note:</strong> Only award <em><strong>(M1)</strong></em> if at least one limit has been translated correctly.</p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mrow><mn>2</mn><mi>m</mi><mo>-</mo><mi>a</mi></mrow><mrow><mn>2</mn><mi>m</mi><mo>+</mo><mi>a</mi></mrow></munderover><mtext>arccos </mtext><mfenced><mrow><mi>x</mi><mo>-</mo><mi>m</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><br><strong>THEN</strong></p>
<p>attempts to solve their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> The above <em><strong>(M1)</strong></em> is dependent on the first <em><strong>(M1)</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>124861</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>125</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>The curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>π</mi></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis to form a solid of revolution that is used to model a water container.</p>
</div>
<div class="specification">
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, the container is empty. Water is then added to the container at a constant rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup><mo> </mo><msup><mtext>s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, clearly indicating the coordinates of the endpoints.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the inverse function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain and range of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup></math>, of water in the container when it is filled to a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi>π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, determine the maximum volume of the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time it takes to fill the container to its maximum volume.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the rate of change of the height of the water when the container is filled to half its maximum volume.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape (concave down) within the given domain <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>,</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced><mfenced><mrow><mo>=</mo><mfenced><mrow><mn>2</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>73</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> The coordinates of endpoints may be seen on the graph or marked on the axes.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (seen anywhere) <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><msqrt><mn>3</mn></msqrt></math> OR domain <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced><mfenced><mrow><mo>=</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>73</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>2</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>≤</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>2</mn></math> OR range <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></math> into the correct volume formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi>π</mi><munderover><mo>∫</mo><mn>0</mn><mi>h</mi></munderover><msup><mfenced><msqrt><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></mfenced><mn>2</mn></msup><mo>d</mo><mi>y</mi><mo> </mo><mfenced><mrow><mo>=</mo><mi>π</mi><munderover><mo>∫</mo><mn>0</mn><mi>h</mi></munderover><mfenced><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>d</mo><mi>y</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>π</mi><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>y</mi><mn>3</mn></msup><mo>+</mo><mi>y</mi></mrow></mfenced><mn>0</mn><mi>h</mi></msubsup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Award marks as appropriate for correct work using a different variable e.g. <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><munderover><mo>∫</mo><mn>0</mn><mi>h</mi></munderover><msup><mfenced><msqrt><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></msqrt></mfenced><mn>2</mn></msup><mo>d</mo><mi>x</mi></math></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><msqrt><mn>3</mn></msqrt><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>732</mn><mo>…</mo></mrow></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>8828</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>10</mn><mo>.</mo><mn>9</mn><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced><mo> </mo><mfenced><msup><mtext>m</mtext><mn>3</mn></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>time <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>10</mn><mo>.</mo><mn>8828</mn><mo>…</mo></mrow><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>2</mn><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>27</mn><mo>.</mo><mn>207</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>27</mn><mo>.</mo><mn>2</mn><mfenced><mrow><mo>=</mo><mn>5</mn><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced><mfenced><mi>s</mi></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the height of the tank when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>4414</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced><mo>=</mo><mn>5</mn><mo>.</mo><mn>4414</mn><mo>…</mo><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>3</mn></msqrt><mi mathvariant="normal">π</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>1818</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>attempt to use the chain rule or differentiate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><msup><mi>h</mi><mn>3</mn></msup><mo>+</mo><mi>h</mi></mrow></mfenced></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>V</mi></mrow></mfrac><mo>×</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi mathvariant="normal">π</mi><mfenced><mrow><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>×</mo><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><msup><mi>h</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p>attempt to substitute <strong>their </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>4</mn></mrow><mrow><mi mathvariant="normal">π</mi><mfenced><mrow><mn>1</mn><mo>.</mo><mn>1818</mn><msup><mo>…</mo><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>053124</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>0531</mn><mo> </mo><mfenced><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part a) was generally well done, with the most common errors being to use an incorrect domain or not to give the coordinates of the endpoints. Some graphs appeared to be straight lines; some candidates drew sketches which were too small which made it more difficult for them to show the curvature.</p>
<p>Most candidates were able to show the steps to find an inverse function in part b), although occasionally a candidate did not explicitly swop the <em>x</em> and <em>y</em> variables before writing down the inverse function, which was given in the question. Many candidates struggled to identify the domain and range of the inverse, despite having a correct graph.</p>
<p>Part c) required a rotation around the <em>y</em>-axis, but a number of candidates attempted to rotate around the <em>x</em>-axis or failed to include limits. In the same vein, many substituted 2 into the formula instead of the square root of 3 when answering the second part. Many subsequently gained follow through marks on part d).</p>
<p>There were a number of good attempts at related rates in part e), with the majority differentiating <em>V</em> with respect to <em>t</em>, using implicit differentiation. However, many did not find the value of <em>h</em> which corresponded to halving the volume, and a number did not differentiate with respect to <em>t</em>, only with respect to <em>h</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in seconds.</p>
</div>
<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>×<!-- × --></mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The average power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
<mi>t</mi>
<mo>=</mo>
<mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>0</mn>
<mi>T</mi>
</msubsup>
<mrow>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
<mi>T</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> ≥ 3.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span>(0.007).</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</math></span> > 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> > 0.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>d</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> > 0, use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>3, −3 <em><strong>A1</strong></em><em><strong>A1</strong></em> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>stretch parallel to the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis (with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis invariant), scale factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{3}">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} { - 0.003} \\ 0 \end{array}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mn>0.003</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> (shift to the left by 0.003) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Can be done in either order.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape over correct domain with correct endpoints <em><strong>A1</strong></em><br>first maximum at (0.0035, 4.76) <em><strong>A1</strong></em><br>first minimum at (0.0085, −1.24) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> ≥ 3 between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.0016762 and 0.0053238 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> = 0.011676 and 0.015324 <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for either interval.</p>
<p>= 0.00730 <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}} = \frac{1}{{0.007}}\int_0^{0.007} {6\,{\text{sin}}\left( {100\pi t} \right)} {\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right){\text{d}}t">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</mfrac>
<msubsup>
<mo>∫</mo>
<mn>0</mn>
<mrow>
<mn>0.007</mn>
</mrow>
</msubsup>
<mrow>
<mn>6</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</math></span> <em><strong>(M1)</strong></em></p>
<p>= 2.87 <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in each cycle the area under the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis is smaller than area above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> axis <em><strong>R1</strong></em></p>
<p>the curve begins with the positive part of the cycle <em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{4.76 - \left( { - 1.24} \right)}}{2}">
<mi>a</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 3.00">
<mi>a</mi>
<mo>=</mo>
<mn>3.00</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = \frac{{4.76 + \left( { - 1.24} \right)}}{2}">
<mi>d</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.76</mn>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>1.24</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = 1.76">
<mi>d</mi>
<mo>=</mo>
<mn>1.76</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{{2\pi }}{{0.01}}">
<mi>b</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
<mrow>
<mn>0.01</mn>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 628\left( { = 200\pi } \right)">
<mi>b</mi>
<mo>=</mo>
<mn>628</mn>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mn>200</mn>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.0035 - \frac{{0.01}}{4}">
<mi>c</mi>
<mo>=</mo>
<mn>0.0035</mn>
<mo>−</mo>
<mfrac>
<mrow>
<mn>0.01</mn>
</mrow>
<mn>4</mn>
</mfrac>
</math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c = 0.00100">
<mi>c</mi>
<mo>=</mo>
<mn>0.00100</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the rectangle OABC such that AB = OC = 10 and BC = OA = 1 , with the points P , Q and R placed on the line OC such that OP = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, OQ = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> and OR = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, such that 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> < 10.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>p</mi>
</msub>
</mrow>
</math></span> be the angle APO, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _q}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>q</mi>
</msub>
</mrow>
</math></span> be the angle AQO and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _r}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>r</mi>
</msub>
</mrow>
</math></span> be the angle ARO.</p>
</div>
<div class="specification">
<p>Consider the case when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\theta _q} + {\theta _r}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>p</mi>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>q</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>r</mi>
</msub>
</mrow>
</math></span> and QR = 1.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p}"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{{q^2} + q - 1}}{{2q + 1}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By sketching the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> as a function of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>, determine the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> for which there are possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><strong>METHOD 1</strong></p>
<p>use of tan <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,{\theta _p} = \frac{1}{p}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\text{arctan}}\left( {\frac{1}{p}} \right)"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>arctan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>AP <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {{p^2} + 1} "> <mo>=</mo> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </math></span> <em><strong>(A1)</strong></em></p>
<p>use of sin, cos, sine rule or cosine rule using the correct length of AP <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\text{arcsin}}\left( {\frac{1}{{\sqrt {{p^2} + 1} }}} \right)"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>arcsin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\text{arccos}}\left( {\frac{p}{{\sqrt {{p^2} + 1} }}} \right)"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>p</mi> <mrow> <msqrt> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>QR = 1 ⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = q + 1"> <mi>r</mi> <mo>=</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> This may be seen anywhere.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,{\theta _p} = {\text{tan}}\left( {{\theta _q} + {\theta _r}} \right)"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>θ</mi> <mi>q</mi> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>attempt to use compound angle formula for tan <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,{\theta _p} = \frac{{{\text{tan}}\,{\theta _q} + {\text{tan}}\,{\theta _r}}}{{1 - {\text{tan}}\,{\theta _q}\,{\text{tan}}\,{\theta _r}}}"> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>q</mi> </msub> </mrow> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>q</mi> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> </mrow> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{p} = \frac{{\frac{1}{q} + \frac{1}{r}}}{{1 - \left( {\frac{1}{q}} \right)\left( {\frac{1}{r}} \right)}}"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{p} = \frac{{\frac{1}{q} + \frac{1}{{q + 1}}}}{{1 - \left( {\frac{1}{q}} \right)\left( {\frac{1}{{q + 1}}} \right)}}"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{1 - \left( {\frac{1}{q}} \right)\left( {\frac{1}{{q + 1}}} \right)}}{{\left( {\frac{1}{q}} \right) + \left( {\frac{1}{{q + 1}}} \right)}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{p} = \frac{{q + q + 1}}{{q\left( {q + 1} \right) - 1}}"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>q</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>q</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for multiplying top and bottom by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{q\left( {q + 1} \right)}"> <mrow> <mi>q</mi> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math></span>.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{{q^2} + q - 1}}{{2q + 1}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>increasing function with positive <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>-intercept <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept curves which extend beyond the domain shown above.</p>
<p> </p>
<p>(0.618 <) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span> < 9 <em><strong>(A1)</strong></em></p>
<p>⇒ range is (0 <) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> < 4.68 <strong>(A1)</strong></p>
<p>0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> < 4.68 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \,{\text{cot}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfy the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\,2\theta } \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the results from parts (b) and (c) find the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p>Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + b\sqrt 3 ">
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{Z}">
<mi>b</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>stating the relationship between <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cot ">
<mi>cot</mi>
</math></span></span> and <span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan ">
<mi>tan</mi>
</math></span></span> and stating the identity for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2\theta ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{1}{{{\text{tan}}\,2\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2\theta = \frac{{2\,{\text{tan}}\,\theta }}{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<p>⇒ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p>attempting to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,\theta ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and using the result from (a) <em><strong>M1</strong></em></p>
<p>LHS = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^2}\,\theta + 2\,{\text{tan}}\,\theta \left( {\frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}} \right) - 1">
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>+</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^2}\,\theta + 1 - {\text{ta}}{{\text{n}}^2}\,\theta - 1 = 0">
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>+</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>(= RHS) <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfies the equation <em><strong>AG</strong></em></p>
<p>attempting to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \,{\text{cot}}\,\theta ">
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and using the result from (a) <em><strong>M1</strong></em></p>
<p>LHS = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{co}}{{\text{t}}^2}\,\theta - 2\,{\text{cot}}\,\theta \left( {\frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}} \right) - 1">
<mrow>
<mtext>co</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>t</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{{\text{ta}}{{\text{n}}^2}\,\theta }} - \left( {\frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{\,{\text{ta}}{{\text{n}}^2}\,\theta }}} \right) - 1">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \frac{1}{{{\text{ta}}{{\text{n}}^2}\,\theta }} - \frac{1}{{{\text{ta}}{{\text{n}}^2}\,\theta }} + 1 - 1 = 0">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
<mo>+</mo>
<mn>1</mn>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>(= RHS) <em><strong>A1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \,{\text{cot}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfies the equation <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = {\text{tan}}\,\theta ">
<mi>α</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta = - \,{\text{cot}}\,\theta ">
<mi>β</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span></p>
<p>attempting to find the sum of roots <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha + \beta = {\text{tan}}\,\theta - \frac{1}{{{\text{tan}}\,\theta }}">
<mi>α</mi>
<mo>+</mo>
<mi>β</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{ta}}{{\text{n}}^2}\,\theta - 1}}{{{\text{tan}}\,\theta }}">
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> </span><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>A1</strong></em></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 2\,{\text{cot}}\,2\theta ">
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</math></span> (from part (a)) <em><strong>A1</strong></em></p>
<p>attempting to find the product of roots <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha \beta = {\text{tan}}\,\theta \times \left( { - \,{\text{cot}}\,\theta } \right)">
<mi>α</mi>
<mi>β</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>= −1 <em><strong>A1</strong></em></p>
<p>the coefficient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and the constant term in the quadratic are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2\,{\text{cot}}\,2\theta }">
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
</math></span> and −1 respectively <em><strong>R1</strong></em></p>
<p>hence the two roots are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = {\text{tan}}\,\theta ">
<mi>α</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta = - \,{\text{cot}}\,\theta ">
<mi>β</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\frac{\pi }{{12}}">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - {\text{cot}}\frac{\pi }{{12}}">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> are roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\frac{\pi }{{6}}} \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>6</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>if only <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\frac{\pi }{{12}}">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> is stated as a root of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\frac{\pi }{{6}}} \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>6</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 2\sqrt 3 x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to solve <strong>their</strong> quadratic equation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \sqrt 3 \pm 2">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
<mo>±</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} > 0">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>></mo>
<mn>0</mn>
</math></span> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{cot}}\frac{\pi }{{12}} < 0">
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo><</mo>
<mn>0</mn>
</math></span>) <em><strong>R1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>attempting to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{{12}}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> into the identity for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\,2\theta ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{6} = \frac{{2\,{\text{tan}}\frac{\pi }{{12}}}}{{1 - {\text{ta}}{{\text{n}}^2}\frac{\pi }{{12}}}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mn>6</mn>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
</mfrac>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ta}}{{\text{n}}^2}\frac{\pi }{{12}} + 2\sqrt 3 \,{\text{tan}}\frac{\pi }{{12}} - 1 = 0">
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>+</mo>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to solve <strong>their </strong>quadratic equation <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = - \sqrt 3 \pm 2">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
<mo>±</mo>
<mn>2</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} > 0">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>></mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span> is the sum of the roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\frac{\pi }{{12}}} \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}} = - 2\,{\text{cot}}\frac{\pi }{{12}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{ - 2}}{{2 - \sqrt 3 }}">
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mrow>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p>attempting to rationalise <strong>their</strong> denominator <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - 4 - 2\sqrt 3 ">
<mo>=</mo>
<mo>−</mo>
<mn>4</mn>
<mo>−</mo>
<mn>2</mn>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering limits, show that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a horizontal asymptote and state its equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> and the result <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfenced open="|" close="|"><mi>x</mi></mfenced></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math>.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, justifying your answer.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>a sketch graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> with line symmetry in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis indicated <em><strong>R1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> is an even function. <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>±</mo><mo>∞</mo><mo>,</mo><mo> </mo><mo> </mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>→</mo><mtext>arcsin</mtext><mo> </mo><mn>1</mn><mfenced><mrow><mo>→</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so the horizontal asymptote is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to use the quotient rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>2</mn><mi>x</mi><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempting to use the chain rule to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>d</mtext><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mrow><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arcsin</mtext><mo> </mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>u</mi></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mi>u</mi><mn>2</mn></msup></msqrt></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>1</mn><mo>-</mo><msup><mfenced><mstyle displaystyle="true"><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mn>1</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi></mrow><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac><mo>×</mo><mfrac><mn>1</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><mfenced open="|" close="|"><mi>x</mi></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math></p>
<p><br><strong>EITHER</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn><mo>,</mo><mo> </mo><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>></mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo><</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>x</mi><mo><</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo><</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>R1</strong></em> for stating that in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>, the numerator is negative, and the denominator is positive.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p><strong><br>Note:</strong> Do not accept a graphical solution</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⇒</mo><msup><mi>y</mi><mn>2</mn></msup><mo> </mo><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p>domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math> and so the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>≥</mo><mn>0</mn></math></p>
<p>hence the positive root is taken (or the negative root is rejected) <em><strong>R1</strong></em></p>
<p><br><strong>Note:</strong> The <em><strong>R1</strong></em> is dependent on the above<em><strong> A1</strong></em>.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><msqrt><mfrac><mrow><mn>1</mn><mo>+</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mtext>sin</mtext><mo> </mo><mi>x</mi></mrow></mfrac></msqrt></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The final <em><strong>A1</strong></em> is not dependent on <em><strong>R1</strong></em> mark.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>≤</mo><mi>x</mi><mo><</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept correct alternative notations, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⌊</mo><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>,</mo><mo> </mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>⌊</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⌊</mo><mo>-</mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mstyle><mo>,</mo><mo> </mo><mstyle displaystyle="false"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>)</mo></mstyle></math>.<br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>57</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>.</mo><mn>57</mn><mo>[</mo></math> if correct to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> s.f.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:<em> A1</em></strong> for correct domain and correct range and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn></math><br><em><strong> A1</strong></em> for asymptotic behaviour <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math><br><em><strong> A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math><br> Coordinates are not required. <br> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57</mn></math> or other inexact values.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The height of water, in metres, in Dungeness harbour is modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo> </mo><mi>sin</mi><mo>(</mo><mi>b</mi><mo>(</mo><mi>t</mi><mo>-</mo><mi>c</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of hours after midnight, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are constants, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>></mo><mn>0</mn></math>.</p>
<p>The following graph shows the height of the water for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> hours, starting at midnight.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first high tide occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>04</mn><mo>:</mo><mn>30</mn></math> and the next high tide occurs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> hours later. Throughout the day, the height of the water fluctuates between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p>All heights are given correct to one decimal place.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the water at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>:</mo><mn>00</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of hours, over a 24-hour period, for which the tide is higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A fisherman notes that the water height at nearby Folkestone harbour follows the same sinusoidal pattern as that of Dungeness harbour, with the exception that high tides (and low tides) occur <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> minutes earlier than at Dungeness.</p>
<p>Find a suitable equation that may be used to model the tidal height of water at Folkestone harbour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mi>b</mi></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>12</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>8</mn><mo>-</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mtext>max</mtext><mo>-</mo><mtext>min</mtext></mrow><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>8</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mfrac><mrow><mtext>max</mtext><mo>+</mo><mtext>min</mtext></mrow><mn>2</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>8</mn></math> for example into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math></p>
<p>attempt to solve their equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>using horizontal translation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>12</mn><mn>4</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi><mo>=</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfenced><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mfenced><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>attempts to solve their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>'</mo><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>2</mn><mo>.</mo><mn>3</mn></mrow></mfenced><mfenced><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mfenced><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mn>4</mn><mo>.</mo><mn>5</mn><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>12</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, graphically or algebraically <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>87365</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>87</mn><mo> </mo><mfenced><mtext>m</mtext></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p>times are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>91852</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>7</mn><mo>.</mo><mn>08147</mn><mo>…</mo><mo> </mo><mo>,</mo><mo> </mo><mfenced><mrow><mi>t</mi><mo>=</mo><mn>13</mn><mo>.</mo><mn>9185</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>t</mi><mo>=</mo><mn>19</mn><mo>.</mo><mn>0814</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>total time is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mfenced><mrow><mn>7</mn><mo>.</mo><mn>081</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>919</mn><mo>…</mo></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>3258</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>10</mn><mo>.</mo><mn>3</mn></math> (hours) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mn>11</mn><mn>3</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>8</mn></math> into their equation for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and attempts to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mfrac><mn>11</mn><mn>3</mn></mfrac><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn><mo>⇒</mo><mi>c</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong><br>uses their horizontal translation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>12</mn><mn>4</mn></mfrac><mo>=</mo><mn>3</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>11</mn><mn>3</mn></mfrac><mo>-</mo><mi>c</mi><mo>=</mo><mn>3</mn><mo>⇒</mo><mi>c</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>2</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mi>t</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>4</mn><mo>.</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>It is given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 3{x^4} + a{x^3} + b{x^2} - 7x - 4">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>7</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>4</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> are positive integers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> is a factor of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> into a product of linear factors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your graph state the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = c">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>c</mi>
</math></span> has exactly two distinct real roots.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 3{x^4} + a{x^3} + b{x^2} - 7x - 4">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>7</mn>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(1) = 0 \Rightarrow a + b = 8">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mn>8</mn>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g( - 1) = 0 \Rightarrow - a + b = - 6">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mo>−</mo>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mo>−</mo>
<mn>6</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow a = 7,{\text{ }}b = 1">
<mo stretchy="false">⇒</mo>
<mi>a</mi>
<mo>=</mo>
<mn>7</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^4} + 7{x^3} + {x^2} - 7x - 4 = ({x^2} - 1)(p{x^2} + qx + r)">
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>7</mn>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>q</mi>
<mi>x</mi>
<mo>+</mo>
<mi>r</mi>
<mo stretchy="false">)</mo>
</math></span></p>
<p>attempt to equate coefficients <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 3,{\text{ }}q = 7,{\text{ }}r = 4">
<mi>p</mi>
<mo>=</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>q</mi>
<mo>=</mo>
<mn>7</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>r</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^4} + 7{x^3} + {x^2} - 7x - 4 = ({x^2} - 1)(3{x^2} + 7x + 4)">
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>7</mn>
<mi>x</mi>
<mo>−</mo>
<mn>4</mn>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>7</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = (x - 1){(x + 1)^2}(3x + 4)">
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept any equivalent valid method.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c > 0">
<mi>c</mi>
<mo>></mo>
<mn>0</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6.20 < c < - 0.0366">
<mo>−</mo>
<mn>6.20</mn>
<mo><</mo>
<mi>c</mi>
<mo><</mo>
<mo>−</mo>
<mn>0.0366</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for correct end points and <strong><em>A1 </em></strong>for correct inequalities.</p>
<p> </p>
<p><strong>Note:</strong> If the candidate has misdrawn the graph and omitted the first minimum point, the maximum mark that may be awarded is <strong><em>A1FTA0A0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c > - 6.20">
<mi>c</mi>
<mo>></mo>
<mo>−</mo>
<mn>6.20</mn>
</math></span> seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{si}}{{\text{n}}^3}\,x + {\text{ln}}\,x"> <mi>y</mi> <mo>=</mo> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 1 + {\text{cos}}\,x"> <mi>y</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </math></span> on the following axes for 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 9.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{si}}{{\text{n}}^3}\,x + {\text{ln}}\,x - {\text{cos}}\,x - 1 < 0"> <mrow> <mtext>si</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>3</mn> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mn>1</mn> <mo><</mo> <mn>0</mn> </math></span> in the range 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 9.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct curve, showing all local max & mins.</p>
<p><strong>Note:</strong> Award<em><strong> A0A0</strong></em> for the curves drawn in degrees.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> = 1.35, 4.35, 6.64 <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt to find points of intersections between two curves.</p>
<p>0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 1.35 <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 1.35.</p>
<p>4.35 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 6.64 <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct endpoints, <em><strong>A1</strong></em> for correct inequalities.</p>
<p><strong>Note:</strong> Award <em><strong>M1FTA1FTA0FTA0FT</strong></em> for 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 7.31.</p>
<p><strong>Note:</strong> Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> < 7.31.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mi>D</mi>
</math></span></p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mo>]</mo>
<mrow>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi mathvariant="normal">∞<!-- ∞ --></mi>
</mrow>
<mo>[</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 1 > 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>></mo>
<mn>0</mn>
</math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < - 1">
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 1">
<mi>x</mi>
<mo>></mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_15.40.09.png" alt="M17/5/MATHL/HP2/ENG/TZ1/12.b/M"></p>
<p>shape <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-intercepts <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is symmetrical about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f( - x) = f(x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mo>−</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> <strong><em>R1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is not one-to-one function <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>horizontal line cuts twice <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept any equivalent correct statement.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1 + \ln \left( {\sqrt {{y^2} - 1} } \right)">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = {y^2} - 1">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>y</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}(x) = \sqrt {{{\text{e}}^{2x + 2}} + 1} ,{\text{ }}x \in \mathbb{R}">
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> <strong><em>A1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{1}{{\sqrt {{x^2} - 1} }} \times \frac{{2x}}{{2\sqrt {{x^2} - 1} }}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
<mrow>
<mn>2</mn>
<msqrt>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}}">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = \frac{x}{{{x^2} - 1}} = 0 \Rightarrow x = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mi>x</mi>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>M1</em></strong></p>
<p>which is not in the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> (hence no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = 0">
<msup>
<mi>g</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span>) <strong><em>R1</em></strong></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = \frac{{{{\text{e}}^{2x + 2}}}}{{\sqrt {{{\text{e}}^{2x + 2}} + 1} }}">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<msqrt>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mfrac>
</math></span> <strong><em>M1</em></strong></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} > 0 \Rightarrow ({g^{ - 1}})'(x) > 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>></mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>></mo>
<mn>0</mn>
</math></span> so no solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="({g^{ - 1}})'(x) = 0">
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mo>′</mo>
</msup>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span> <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept: equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^{2x + 2}} = 0">
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> has no solutions.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mi>p</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mi>q</mi></math>.</p>
</div>
<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has exactly one point of inflexion.</p>
</div>
<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the point of inflexion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>3</mn></math>, showing the values of any axes intercepts, the coordinates of any local maxima and local minima, and giving the equations of any asymptotes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equations of all the asymptotes on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>-</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, or otherwise, solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo><</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> e.g. by factorising <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> or vice versa <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>3</mn><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>8</mn><mi>x</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each term in the numerator with correct signs, provided correct denominator is seen.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>8</mn><mi>x</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><msup><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each term.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the local min point on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> OR solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>60</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1A1A1A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for both vertical asymptotes with their equations, award <em><strong>A1</strong></em> for horizontal asymptote with equation, award <em><strong>A1</strong></em> for each correct branch including asymptotic behaviour, coordinates of minimum and maximum points (may be seen next to the graph) and values of axes intercepts.<br>If vertical asymptotes are absent (or not vertical) and the branches overlap as a consequence, award maximum <em><strong>A0A1A0A1A1</strong></em>.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>667</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p>(oblique asymptote has) gradient <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>4</mn><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>33</mn></mrow></mfenced></math> <em><strong> (A1)</strong></em></p>
<p>appropriate method to find complete equation of oblique asymptote <em><strong> M1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn><mover><menclose><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>0</mn><mi>x</mi><mo>-</mo><mn>1</mn></menclose><mrow><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>8</mn><mn>9</mn></mfrac></mrow></mover></math></p>
<p style="padding-left:60px;"> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mstyle displaystyle="true"><mfrac><mn>8</mn><mn>3</mn></mfrac></mstyle><mi>x</mi></mrow><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>8</mn><mn>3</mn></mfrac></mstyle><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math></p>
<p style="padding-left:60px;"> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>8</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>16</mn><mstyle displaystyle="true"><mfrac><mn>9</mn><mstyle displaystyle="true"><mfrac><mn>7</mn><mn>9</mn></mfrac></mstyle></mfrac></mstyle></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>x</mi><mo>-</mo><mfrac><mn>8</mn><mn>9</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1</mn><mo>.</mo><mn>33</mn><mi>x</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>889</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><strong>Note:</strong> Do not award the final<em><strong> A1</strong></em> if the answer is not given as an equation.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find at least one critical value <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>568729</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>31872</mn><mo>…</mo></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mo><</mo><mi>x</mi><mo><</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>569</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo><</mo><mi>x</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>5</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>1</mn><mo>.</mo><mn>32</mn></math> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Only penalize once for use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≤</mo></math> rather than <math xmlns="http://www.w3.org/1998/Math/MathML"><mo><</mo></math>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 3x\arccos (x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x \leqslant 1">
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>></mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><img src="images/Schermafbeelding_2017-03-01_om_06.12.12.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.a/M"></p>
<p>correct shape passing through the origin and correct domain <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Endpoint coordinates are not required. The domain can be indicated by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1">
<mo>−</mo>
<mn>1</mn>
</math></span> and 1 marked on the axis.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0.652,{\text{ }}1.68)">
<mo stretchy="false">(</mo>
<mn>0.652</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.68</mn>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1</em></strong></p>
<p>two correct intercepts (coordinates not required) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>A graph passing through the origin is sufficient for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }}0)">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[-9.42,{\text{ }}1.68]{\text{ }}({\text{or }} - 3\pi ,{\text{ }}1.68])">
<mo stretchy="false">[</mo>
<mo>−</mo>
<mn>9.42</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.68</mn>
<mo stretchy="false">]</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<mtext>or </mtext>
</mrow>
<mo>−</mo>
<mn>3</mn>
<mi>π</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1.68</mn>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1A0 </em></strong>for open or semi-open intervals with correct endpoints. Award <strong><em>A1A0 </em></strong>for closed intervals with one correct endpoint.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to solve either <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>></mo>
<mn>1</mn>
</math></span> (or equivalent) or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| = 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> (or equivalent) (<em>eg</em>. graphically) <strong><em>(M1)</em></strong></p>
<p><img src="images/Schermafbeelding_2017-03-01_om_06.22.47.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.c/M"></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 0.189,{\text{ }}0.254,{\text{ }}0.937">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>0.189</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.254</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.937</mn>
</math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x < - 0.189{\text{ or }}0.254 < x < 0.937">
<mo>−</mo>
<mn>1</mn>
<mo>⩽</mo>
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>0.189</mn>
<mrow>
<mtext> or </mtext>
</mrow>
<mn>0.254</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>0.937</mn>
</math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A0 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < - 0.189">
<mi>x</mi>
<mo><</mo>
<mo>−</mo>
<mn>0.189</mn>
</math></span>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The population, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, of a particular species of marsupial on a small remote island can be modelled by the logistic differential equation</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time measured in years and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>,</mo><mo> </mo><mi>N</mi></math> are positive constants.</p>
<p>The constant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> represents the maximum population of this species of marsupial that the island can sustain indefinitely.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> be the initial population of marsupials.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the population model, interpret the meaning of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the population of marsupials will increase at its maximum rate when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math>. Justify your answer.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the logistic differential equation, show that its solution can be expressed in the form</p>
<p style="padding-left:150px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years, the population of marsupials is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msub><mi>P</mi><mn>0</mn></msub></math>. It is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> for this population model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>rate of growth (change) of the (marsupial) population (with respect to time) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark] </strong></em></p>
<p><strong><br>Note:</strong> Do not accept growth (change) in the (marsupials) population per year.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts implicit differentiation on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mo>-</mo><mfrac><mrow><mi>k</mi><msup><mi>P</mi><mn>2</mn></msup></mrow><mi>N</mi></mfrac></math> be expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>k</mi><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mi>k</mi><mi>P</mi></mrow><mi>N</mi></mfrac><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>k</mi><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts implicit differentiation (product rule) on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>k</mi><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>+</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mo>-</mo><mfenced><mfrac><mn>1</mn><mi>N</mi></mfrac></mfenced><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> into their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mrow><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>+</mo><mi>k</mi><mi>P</mi><mfenced><mrow><mo>-</mo><mfenced><mfrac><mn>1</mn><mi>N</mi></mfrac></mfenced><mi>k</mi><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mfrac><mi>P</mi><mi>N</mi></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks] </strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mo>⇒</mo><msup><mi>k</mi><mn>2</mn></msup><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mn>2</mn><mi>P</mi></mrow><mi>N</mi></mfrac></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfrac><mi>N</mi><mn>2</mn></mfrac><mo>,</mo><mi>N</mi></math> <em><strong>A2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> only.</p>
<p>uses the second derivative to show that concavity changes at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> or the first derivative to show a local maximum at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> <em><strong>M1</strong></em><br><br><strong>EITHER</strong></p>
<p>a clearly labelled correct sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></math> versus <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> showing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> corresponding to a local maximum point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>R1</strong></em></p>
<p><img src=""></p>
<p><br><strong>OR</strong></p>
<p>a correct and clearly labelled sign diagram (table) showing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> corresponding to a local maximum point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mi>N</mi></mrow><mn>32</mn></mfrac><mfenced><mrow><mo>></mo><mn>0</mn></mrow></mfenced></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>4</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>P</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mi>N</mi></mrow><mn>32</mn></mfrac><mfenced><mrow><mo><</mo><mn>0</mn></mrow></mfenced></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi>N</mi></mrow><mn>4</mn></mfrac></math> showing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> corresponds to a local maximum point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>R1</strong></em></p>
<p>so the population is increasing at its maximum rate when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks] </strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mfrac><mi>N</mi><mn>2</mn></mfrac></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mstyle displaystyle="true"><mfrac><mi>N</mi><mn>2</mn></mfrac></mstyle><mi>N</mi></mfrac></mrow></mfenced></math></p>
<p>the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>k</mi><mi>N</mi></mrow><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to separate variables <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p>attempts to write <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac></math> in partial fractions form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mi>P</mi></mfrac><mo>+</mo><mfrac><mi>B</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mfrac><mo>⇒</mo><mi>N</mi><mo>≡</mo><mi>A</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced><mo>+</mo><mi>B</mi><mi>P</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>N</mi><mrow><mi>P</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mfrac></mrow></mfenced><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfenced></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>P</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math>. Absolute value signs are not required.</p>
<p> </p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>ln</mi><mo> </mo><msub><mi>P</mi><mn>0</mn></msub><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>-</mo><mi>ln</mi><mfenced><mfrac><msub><mi>P</mi><mn>0</mn></msub><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mi>o</mi></msub></mrow></mfrac></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mfenced><mfrac><mstyle displaystyle="true"><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><msub><mi>P</mi><mn>0</mn></msub><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mstyle></mfrac></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to separate variables <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></p>
<p>attempts to write <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac></math> in partial fractions form <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>A</mi><mi>P</mi></mfrac><mo>+</mo><mfrac><mi>B</mi><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfrac><mo>⇒</mo><mn>1</mn><mo>≡</mo><mi>A</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>+</mo><mi>B</mi><mi>P</mi></math> </p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>B</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac></math></strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>1</mn><mi>P</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>N</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></math></strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math> A1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>for <em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>ln</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mi>P</mi><mi>N</mi></mfrac></mrow></mfenced></math></strong></em> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>P</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></math>. Absolute value signs are not required.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mi>P</mi><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>P</mi><mi>N</mi></mfrac></mstyle></mrow></mfrac></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mo>+</mo><mi>C</mi><mo>⇒</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><mi>P</mi></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>=</mo><mi>k</mi><mi>t</mi><mo>+</mo><mi>C</mi></math></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><mi>P</mi></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>-</mo><mi>ln</mi><mfenced><mfrac><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mfrac><mstyle displaystyle="true"><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><msub><mi>P</mi><mn>0</mn></msub><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mstyle></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>lets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mfrac><mn>1</mn><mi>P</mi></mfrac></math> and forms <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>M1</strong></em></p>
<p>multiplies both sides of the differential equation by <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac></math> and makes the above substitutions <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><msup><mi>P</mi><mn>2</mn></msup></mfrac><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mrow><mfrac><mn>1</mn><mi>N</mi></mfrac><mo>-</mo><mfrac><mn>1</mn><mi>P</mi></mfrac></mrow></mfenced><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mfenced><mrow><mfrac><mn>1</mn><mi>N</mi></mfrac><mo>-</mo><mi>u</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>k</mi><mi>u</mi><mo>=</mo><mfrac><mi>k</mi><mi>N</mi></mfrac></math> (linear first-order DE)<em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>IF</mtext><mo>=</mo><msup><mtext>e</mtext><mrow><mo>∫</mo><mi>k</mi><mo> </mo><mo>d</mo><mi>t</mi></mrow></msup><mo>=</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mo>⇒</mo><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mi>k</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mi>u</mi><mo>=</mo><mfrac><mi>k</mi><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mo>d</mo><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mfenced><mrow><mi>u</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></mrow></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mi>P</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfenced><mrow><mo>+</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></math><em><strong> A1</strong></em></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p>when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><msub><mi>P</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mfrac><mn>1</mn><msub><mi>P</mi><mn>0</mn></msub></mfrac></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mfrac><mn>1</mn><msub><mi>P</mi><mn>0</mn></msub></mfrac><mo>-</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow><mrow><mi>N</mi><mi>P</mi></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>k</mi><mi>t</mi></mrow></msup><mtext>=</mtext><mfenced><mfrac><mi>P</mi><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><msub><mi>P</mi><mn>0</mn></msub></mfrac></mfenced></math><em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>3</mn><msub><mi>P</mi><mn>0</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>t</mi><mo>=</mo><mi>ln</mi><mfrac><mi>P</mi><msub><mi>P</mi><mn>0</mn></msub></mfrac><mfenced><mfrac><mrow><mi>N</mi><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mi>N</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mi>k</mi><mo>=</mo><mi>ln</mi><mo> </mo><mn>3</mn><mfenced><mfrac><mrow><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub><mo>-</mo><msub><mi>P</mi><mn>0</mn></msub></mrow><mrow><mn>4</mn><msub><mi>P</mi><mn>0</mn></msub><mo>-</mo><mn>3</mn><msub><mi>P</mi><mn>0</mn></msub></mrow></mfrac></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><mn>9</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>220</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mo> </mo><mn>9</mn><mo>,</mo><mo>=</mo><mfrac><mn>1</mn><mn>5</mn></mfrac><mi>ln</mi><mo> </mo><mn>3</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>An extremely tricky question even for the strong candidates. Many struggled to understand what was expected in parts (b) and (c). As the question was set all with pronumerals instead of numbers many candidates found it challenging, thrown at deep water for parts (b), (c) and (e). It definitely was the question to show their skills for the Level 7 candidates provided that they did not run out of time.</p>
<p>Part (a) Very well answered, mostly correctly referring to the rate of change. Some candidates did not gain this mark because their sentence did not include the reference to the rate of change. Worded explanations continue being problematic to many candidates.</p>
<p>Part (b) Many candidates were confused how to approach this question and did not realise that they<br>needed to differentiate implicitly. Some tried but with errors, some did not fully show what was required.</p>
<p>Part (c) Most candidates started with equating the second derivative to zero. Most gave the answer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>N</mi><mn>2</mn></mfrac></math>omitting the other two possibilities. Most stopped here. Only a small number of candidates provided the correct mathematical argument to show it is a local maximum.</p>
<p>Part (d) Well done by those candidates who got that far. Most got the correct answer, sometimes not fully simplified.</p>
<p>Part (e) Most candidates separated the variables, but some were not able to do much more. Some candidates knew to resolve into partial fractions and attempted to do so, mainly successfully. Then they integrated, again, mainly successfully and continued to substitute the initial condition and manipulate the equation accordingly.</p>
<p>Part (f) Algebraic manipulation of the logarithmic expression was too much for some candidates with a common error of 0.33 given as the answer. The strong candidates provided the correct exact or rounded value.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mn>2</mn><mi>x</mi></msup><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mi>x</mi></msup></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>≥</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to replace <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>x</mi></mrow></msup><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mrow><mo>-</mo><mi>x</mi></mrow></msup></mfrac></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><msup><mn>2</mn><mi>x</mi></msup></mfrac><mo>-</mo><msup><mn>2</mn><mi>x</mi></msup><mo>=</mo><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mfenced><mrow><msup><mn>2</mn><mi>x</mi></msup><mo>-</mo><mfrac><mn>1</mn><msup><mn>2</mn><mi>x</mi></msup></mfrac></mrow></mfenced><mfenced><mrow><mo>=</mo><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>M1A0</strong></em> for a graphical approach including evidence that <strong>either</strong> the graph is invariant after rotation by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo></math> about the origin <strong>or</strong> the graph is invariant after a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis and then in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis (or vice versa).</p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an odd function <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find at least one intersection point <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>26686</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>177935</mn><mo>…</mo><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>06167</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>27</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>178</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>06</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>.</mo><mn>27</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mo>-</mo><mn>1</mn><mo>,</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>178</mn><mo>≤</mo><mi>x</mi><mo><</mo><mn>3</mn><mo>,</mo></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mn>3</mn><mo>.</mo><mn>06</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species. He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>B</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
</div>
<div class="specification">
<p>Use the scientist’s models to find the initial height of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, prove that Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math> (cm) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced><mo>=</mo><mi>sin</mi><mfenced><mn>6</mn></mfenced><mo>+</mo><mn>27</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7205</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>26</mn><mo>.</mo><mn>7</mn></math> (cm) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>0074</mn><mo>…</mo><mo>,</mo><mn>4</mn><mo>.</mo><mn>7034</mn><mo>…</mo><mo>,</mo><mn>5</mn><mo>.</mo><mn>88332</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>01</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>70</mn><mo>,</mo><mn>5</mn><mo>.</mo><mn>88</mn></math> (weeks) <em><strong>A2</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>+</mo><mi>t</mi><mo>-</mo><mn>5</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn><mo>,</mo><mo> </mo><mi>t</mi><mo>-</mo><mn>5</mn><mo>></mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>and as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>≥</mo><mo>-</mo><mn>1</mn><mo>⇒</mo><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>></mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn></mrow></mfenced><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p>so for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>-</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>t</mi><mo>-</mo><mn>6</mn><mo>></mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>hence for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> are required <em><strong>(M1)</strong></em></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mo>'</mo><mfenced><mi>t</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award full marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfenced><mrow><mfrac><mrow><mn>7</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>8</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo> </mo><mfrac><mrow><mn>10</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn><mo>,</mo><mo> </mo><mfrac><mrow><mn>11</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></math>.</p>
<p><em>Award</em> subsequent marks for correct use of these exact values.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>18879</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>2</mn><mo>.</mo><mn>23598</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>33038</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>5</mn><mo>.</mo><mn>37758</mn><mo>…</mo></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>47197</mn><mo>…</mo><mo><</mo><mi>t</mi><mo><</mo><mn>8</mn><mo>.</mo><mn>51917</mn><mo>…</mo></math> <em><strong>(A1)</strong></em></p>
<p>attempts to calculate the total amount of time <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mfenced><mrow><mn>2</mn><mo>.</mo><mn>2359</mn><mo>…</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>1887</mn><mo>…</mo></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mfrac><mrow><mn>4</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>14</mn><mo> </mo><mfenced><mrow><mo>=</mo><mi mathvariant="normal">π</mi></mrow></mfenced></math> (weeks) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) In general, very well done, most students scored full marks. Some though had an incorrect answer for part(a)(ii) because they had their GDC in degrees.</p>
<p>Part (b) Well attempted. Some accuracy errors and not all candidates listed all three values.</p>
<p>Part (c) Most students tried a graphical approach (but this would only get them one out of three marks) and only some provided a convincing algebraic justification. Many candidates tried to explain in words without a convincing mathematical justification or used numerical calculations with specific time values. Some arrived at the correct simplified equation for the difference in heights but could not do much with it. Then only a few provided a correct mathematical proof.</p>
<p>Part (d) In general, well attempted by many candidates. The common error was giving the answer as 3.15 due to the pre-mature rounding. Some candidates only provided the values of time when the rates are equal, some intervals rather than the total time.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{cot}}\left( {\frac{\pi }{4} - x} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>cot</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mi>π<!-- π --></mi>
<mn>4</mn>
</mfrac>
<mo>−<!-- − --></mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The expression <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {\text{tan}}\,x">
<mi>t</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α<!-- α --></mi>
</math></span>, <em>β</em> be the roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = k">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>k</mi>
</math></span>, where 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> < 1.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{5\pi }}{8} \leqslant x \leqslant \frac{\pi }{8}"> <mo>−</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>8</mn> </mfrac> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mfrac> <mi>π</mi> <mn>8</mn> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph, explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> is a function on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has no inverse on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> is not a function for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{3\pi }}{4} \leqslant x \leqslant \frac{\pi }{4}"> <mo>−</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}"> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( t \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math></span> for <em>t</em> ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span> and <em>β</em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span> + <em>β</em> < −2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1A1</strong></em></p>
<p><em><strong>A1</strong> </em>for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.</p>
<p><strong>Note:</strong> Axes intercepts and scales not required.</p>
<p><strong>A1</strong> for correct domain</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for each value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> there is a unique value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept “passes the vertical line test” or equivalent.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no inverse because the function fails the horizontal line test or equivalent <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> No <strong>FT</strong> if the graph is in degrees (one-to-one).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the expression is not valid at either of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}\,\,\left( {{\text{or}} - \frac{{3\pi }}{4}} \right)"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>or</mtext> </mrow> <mo>−</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{\text{tan}}\left( {x + \frac{\pi }{4}} \right)}}{{{\text{tan}}\left( {\frac{\pi }{4} - x} \right)}}"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}}}{{\frac{{{\text{tan}}\,\frac{\pi }{4} - {\text{tan}}\,x}}{{1 + {\text{tan}}\,\frac{\pi }{4}{\text{tan}}\,x}}}}"> <mo>=</mo> <mfrac> <mrow> <mfrac> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </mfrac> </mrow> <mrow> <mfrac> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> </mrow> </mfrac> </math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}"> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{tan}}\left( {\frac{\pi }{2} - \frac{\pi }{4} + x} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>tan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>tan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> <mo>−</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ta}}{{\text{n}}^2}\left( {x + \frac{\pi }{4}} \right)"> <mo>=</mo> <mrow> <mtext>ta</mtext> </mrow> <mrow> <msup> <mrow> <mtext>n</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right) = {\left( {\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}} \right)^2}"> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}"> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><img src=""></p>
<p>for <em>t</em> ≤ 0, correct concavity with two axes intercepts and with asymptote <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> = 1 <em><strong>A1</strong></em></p>
<p><em>t</em> intercept at (−1, 0) <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercept at (0, 1) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span>, <em>β</em> satisfy <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {1 + t} \right)}^2}}}{{{{\left( {1 - t} \right)}^2}}} = k"> <mfrac> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mi>k</mi> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + {t^2} + 2t = k\left( {1 + {t^2} - 2t} \right)"> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mi>t</mi> <mo>=</mo> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {k - 1} \right){t^2} - 2\left( {k + 1} \right)t + \left( {k - 1} \right) = 0"> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>A1</strong></em></p>
<p>attempt at using quadratic formula <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span>, <em>β </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{k + 1 \pm 2\sqrt k }}{{k - 1}}"> <mo>=</mo> <mfrac> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>±</mo> <mn>2</mn> <msqrt> <mi>k</mi> </msqrt> </mrow> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span> or equivalent <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span>, <em>β</em> satisfy <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 + t}}{{1 - t}} = \left( \pm \right)\sqrt k "> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>t</mi> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mo>)</mo> </mrow> <msqrt> <mi>k</mi> </msqrt> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t + \sqrt k t = \sqrt k - 1"> <mi>t</mi> <mo>+</mo> <msqrt> <mi>k</mi> </msqrt> <mi>t</mi> <mo>=</mo> <msqrt> <mi>k</mi> </msqrt> <mo>−</mo> <mn>1</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{\sqrt k - 1}}{{\sqrt k + 1}}"> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span> (or equivalent) <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t - \sqrt k t = - \left( {\sqrt k + 1} \right)"> <mi>t</mi> <mo>−</mo> <msqrt> <mi>k</mi> </msqrt> <mi>t</mi> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{\sqrt k + 1}}{{\sqrt k - 1}}"> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span> (or equivalent) <em><strong>A1</strong></em></p>
<p>so for <em>eg</em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = \frac{{\sqrt k - 1}}{{\sqrt k + 1}}"> <mi>α</mi> <mo>=</mo> <mfrac> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span>, <em>β</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sqrt k + 1}}{{\sqrt k - 1}}"> <mo>=</mo> <mfrac> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msqrt> <mi>k</mi> </msqrt> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span> + <em>β </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\frac{{\left( {k + 1} \right)}}{{\left( {k - 1} \right)}}\,\left( { = - 2\frac{{\left( {1 + k} \right)}}{{\left( {1 - k} \right)}}} \right)"> <mo>=</mo> <mn>2</mn> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mspace width="thinmathspace"></mspace> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + k > 1 - k"> <mn>1</mn> <mo>+</mo> <mi>k</mi> <mo>></mo> <mn>1</mn> <mo>−</mo> <mi>k</mi> </math></span> <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span> + <em>β</em> < −2 <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Accept a valid graphical reasoning.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right) = 2{x^4} - 15{x^3} + a{x^2} + bx + c">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>15</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c \in \mathbb{R}">
<mi>c</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 5} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> is a factor of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, find a relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - 5} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> is a factor of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P'\left( 5 \right)">
<msup>
<mi>P</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - 5} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span> is a factor of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
<mi>P</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, and that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 2">
<mi>a</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>, find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to substitute <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 5">
<mi>x</mi>
<mo>=</mo>
<mn>5</mn>
</math></span> and set equal to zero, or use of long / synthetic division <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times {5^4} - 15 \times {5^3} + a \times {5^2} + 5b + c = 0">
<mn>2</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>15</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>a</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { \Rightarrow 25a + 5b + c = 625} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mo stretchy="false">⇒</mo>
<mn>25</mn>
<mi>a</mi>
<mo>+</mo>
<mn>5</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mn>625</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P'\left( 5 \right) = 0">
<msup>
<mi>P</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 8 \times {5^3} - 45 \times {5^2} + 4 \times 5 + b = 0">
<mo stretchy="false">⇒</mo>
<mn>8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>45</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>5</mn>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mo>×</mo>
<mn>5</mn>
<mo>+</mo>
<mi>b</mi>
<mo>=</mo>
<mn>0</mn>
</math></span></p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{x^2} - 10x + 25} \right)\left( {2{x^2} + \alpha x + \beta } \right) = 2{x^4} - 15{x^3} + 2{x^2} + bx + c">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>10</mn>
<mi>x</mi>
<mo>+</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>α</mi>
<mi>x</mi>
<mo>+</mo>
<mi>β</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>15</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</math></span> <em><strong> (M1)</strong></em></p>
<p>comparing coefficients gives <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> = 5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta ">
<mi>β</mi>
</math></span> = 2</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> = 105 <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore c = 625 - 25 \times 2 - 525">
<mo>∴</mo>
<mi>c</mi>
<mo>=</mo>
<mn>625</mn>
<mo>−</mo>
<mn>25</mn>
<mo>×</mo>
<mn>2</mn>
<mo>−</mo>
<mn>525</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> = 50 <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^5} - 3{x^4} + m{x^3} + n{x^2} + px + q = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>m</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>n</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>p</mi>
<mi>x</mi>
<mo>+</mo>
<mi>q</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{R}">
<mi>q</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>The equation has three distinct real roots which can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,a">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,b">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,c">
<mrow>
<mtext>lo</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>g</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>c</mi>
</math></span>.</p>
<p>The equation also has two imaginary roots, one of which is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d{\text{i}}">
<mi>d</mi>
<mrow>
<mtext>i</mtext>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{R}">
<mi>d</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The values <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> are consecutive terms in a geometric sequence.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="abc = 8"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>=</mo> <mn>8</mn> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that one of the real roots is equal to 1.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 8{d^2}"> <mi>q</mi> <mo>=</mo> <mn>8</mn> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mrow> </math></span>, find the other two real roots.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>recognition of the other root <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = - d{\text{i}}"> <mo>=</mo> <mo>−</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,a + {\text{lo}}{{\text{g}}_2}\,b + {\text{lo}}{{\text{g}}_2}\,c + d{\text{i}} - d{\text{i}} = 3"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>a</mi> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>b</mi> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>−</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>=</mo> <mn>3</mn> </math></span> <em><strong>M1A</strong></em><em><strong>1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for sum of the roots, <em><strong>A1</strong> </em>for 3. Award <em><strong>A0M1A0</strong></em> for just <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,a + {\text{lo}}{{\text{g}}_2}\,b + {\text{lo}}{{\text{g}}_2}\,c = 3"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>a</mi> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>b</mi> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mo>=</mo> <mn>3</mn> </math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,abc = 3"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>=</mo> <mn>3</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow abc = {2^3}"> <mo stretchy="false">⇒</mo> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mn>3</mn> </msup> </mrow> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="abc = 8"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>=</mo> <mn>8</mn> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let the geometric series be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}"> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}r"> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mi>r</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}{r^2}"> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{u_1}r} \right)^3} = 8"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mn>8</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1}r = 2"> <mrow> <msub> <mi>u</mi> <mn>1</mn> </msub> </mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p>hence one of the roots is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}2 = 1"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>2</mn> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{b}{a} = \frac{c}{b}"> <mfrac> <mi>b</mi> <mi>a</mi> </mfrac> <mo>=</mo> <mfrac> <mi>c</mi> <mi>b</mi> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{b^2} = ac \Rightarrow {b^3} = abc = 8"> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mi>a</mi> <mi>c</mi> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>b</mi> <mn>3</mn> </msup> </mrow> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>=</mo> <mn>8</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 2"> <mi>b</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p>hence one of the roots is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}2 = 1"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>2</mn> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>product of the roots is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_1} \times {r_2} \times 1 \times d{\text{i}} \times - d{\text{i}} = - 8{d^2}"> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> <mo>×</mo> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> <mo>×</mo> <mn>1</mn> <mo>×</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>×</mo> <mo>−</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_1} \times {r_2} = - 8"> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> <mo>×</mo> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> <mo>=</mo> <mo>−</mo> <mn>8</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p>sum of the roots is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_1} + {r_2} + 1 + d{\text{i}} + - d{\text{i}} = 3"> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>+</mo> <mo>−</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>=</mo> <mn>3</mn> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_1} + {r_2} = 2"> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p>solving simultaneously <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_1} = - 2"> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_2} = 4"> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> </mrow> <mo>=</mo> <mn>4</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em><em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>product of the roots <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,a \times {\text{lo}}{{\text{g}}_2}\,b \times {\text{lo}}{{\text{g}}_2}\,c \times d{\text{i}} \times - d{\text{i}} = - 8{d^2}"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>a</mi> <mo>×</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>b</mi> <mo>×</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mo>×</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>×</mo> <mo>−</mo> <mi>d</mi> <mrow> <mtext>i</mtext> </mrow> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>M</strong></em><em><strong>1</strong></em><em><strong>A</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,a \times {\text{lo}}{{\text{g}}_2}\,b \times {\text{lo}}{{\text{g}}_2}\,c = - 8"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>a</mi> <mo>×</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>b</mi> <mo>×</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>8</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{2}{r}"> <mfrac> <mn>2</mn> <mi>r</mi> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2"> <mn>2</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2r"> <mn>2</mn> <mi>r</mi> </math></span> <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{lo}}{{\text{g}}_2}\frac{2}{r}} \right)\left( {{\text{lo}}{{\text{g}}_2}\,2} \right)\left( {{\text{lo}}{{\text{g}}_2}\,2r} \right) = - 8"> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mfrac> <mn>2</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>8</mn> </math></span></p>
<p>attempt to solve <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - {\text{lo}}{{\text{g}}_2}\,r} \right)\left( {1 + {\text{lo}}{{\text{g}}_2}\,r} \right) = - 8"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>r</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>8</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{lo}}{{\text{g}}_2}\,r = \pm 3"> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mo>=</mo> <mo>±</mo> <mn>3</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \frac{1}{8}{\text{,}}\,\,8"> <mi>r</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>8</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em><em><strong>A</strong></em><em><strong>1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2"> <mn>2</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{a}"> <mfrac> <mn>4</mn> <mi>a</mi> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{lo}}{{\text{g}}_2}\,a} \right)\left( {{\text{lo}}{{\text{g}}_2}\,2} \right)\left( {{\text{lo}}{{\text{g}}_2}\,\frac{4}{a}} \right) = - 8"> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mi>a</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> <mfrac> <mn>4</mn> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>8</mn> </math></span></p>
<p>attempt to solve <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{1}{4}{\text{,}}\,\,16"> <mi>a</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>16</mn> </math></span> <em><strong>A</strong></em><em><strong>1</strong></em><em><strong>A</strong></em><em><strong>1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}{\text{,}}\,\,16"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>16</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p>roots are −2, 4 <em><strong>A</strong></em><em><strong>1</strong></em></p>
<p> </p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 \leqslant x \leqslant 5">
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>5</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( 1 \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( a \right) = 3"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>3</mn> </math></span>, determine the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 2f\left( {x - 1} \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </math></span>, find the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right) = 0"> <mi>f</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = - 1"> <mi>f</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = f\left( 3 \right)"> <mi>a</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow a = 4"> <mo stretchy="false">⇒</mo> <mi>a</mi> <mo>=</mo> <mn>4</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 \leqslant x \leqslant 6"> <mo>−</mo> <mn>2</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>6</mn> </math></span> <em><strong>A1</strong></em></p>
<p>range is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 \leqslant y \leqslant 10"> <mo>−</mo> <mn>6</mn> <mo>⩽</mo> <mi>y</mi> <mo>⩽</mo> <mn>10</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the set of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> that satisfy the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The triangle ABC is shown in the following diagram. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B < \frac{1}{4}"> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo><</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>, find the range of possible values for AB.</p>
<p><img src="images/Schermafbeelding_2017-08-09_om_18.13.24.png" alt="M17/5/MATHL/HP2/ENG/TZ2/04.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(k - 4)(k + 3) < 0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo><</mo> <mn>0</mn> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < k < 4"> <mo>−</mo> <mn>3</mn> <mo><</mo> <mi>k</mi> <mo><</mo> <mn>4</mn> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B = \frac{{{2^2} + {c^2} - {4^2}}}{{4c}}{\text{ }}({\text{or }}16 = {2^2} + {c^2} - 4c\cos B)"> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mn>4</mn> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mrow> <mtext>or </mtext> </mrow> <mn>16</mn> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>c</mi> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \frac{{{c^2} - 12}}{{4c}} < \frac{1}{4}"> <mo stretchy="false">⇒</mo> <mfrac> <mrow> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>12</mn> </mrow> <mrow> <mn>4</mn> <mi>c</mi> </mrow> </mfrac> <mo><</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {c^2} - c - 12 < 0"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>c</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span></p>
<p>from result in (a)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < {\text{AB}} < 4"> <mn>0</mn> <mo><</mo> <mrow> <mtext>AB</mtext> </mrow> <mo><</mo> <mn>4</mn> </math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 < {\text{AB}} < 4"> <mo>−</mo> <mn>3</mn> <mo><</mo> <mrow> <mtext>AB</mtext> </mrow> <mo><</mo> <mn>4</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>but AB must be at least 2</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 2 < {\text{AB}} < 4"> <mo stretchy="false">⇒</mo> <mn>2</mn> <mo><</mo> <mrow> <mtext>AB</mtext> </mrow> <mo><</mo> <mn>4</mn> </math></span> <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Allow <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \leqslant {\text{AB}}"> <mo>⩽</mo> <mrow> <mtext>AB</mtext> </mrow> </math></span> for either of the final two <strong><em>A </em></strong>marks.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{ax + 1}}{{bx + c}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>b</mi>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
</mrow>
</mfrac>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne - \frac{c}{b}">
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>c</mi>
<mi>b</mi>
</mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c \in \mathbb{Z}">
<mi>c</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<p>The following graph shows the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left( {f\left( x \right)} \right)^2}">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>. It has asymptotes at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = q">
<mi>y</mi>
<mo>=</mo>
<mi>q</mi>
</math></span> and meets the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at A.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the following axes, sketch the two possible graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> giving the equations of any asymptotes in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{4}{3}"> <mi>p</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = \frac{4}{9}"> <mi>q</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>9</mn> </mfrac> </math></span> and A has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{1}{2},\,\,0} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>, determine the possible sets of values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""></p>
<p>either graph passing through (or touching) A <em><strong>A1</strong></em></p>
<p>correct shape and vertical asymptote with correct equation for either graph <em><strong>A1</strong></em></p>
<p>correct horizontal asymptote with correct equation for either graph <em><strong>A1</strong></em></p>
<p>two completely correct sketches <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( { - \frac{1}{2}} \right) + 1 = 0 \Rightarrow a = 2"> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mi>a</mi> <mo>=</mo> <mn>2</mn> </math></span> <em><strong>A1</strong></em></p>
<p>from horizontal asymptote, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{a}{b}} \right)^2} = \frac{4}{9}"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mfrac> <mn>4</mn> <mn>9</mn> </mfrac> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{a}{b} = \pm \frac{2}{3} \Rightarrow b = \pm 3"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> <mo>=</mo> <mo>±</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mo stretchy="false">⇒</mo> <mi>b</mi> <mo>=</mo> <mo>±</mo> <mn>3</mn> </math></span> <em><strong>A1</strong></em></p>
<p>from vertical asymptote, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b\left( {\frac{4}{3}} \right) + c = 0"> <mi>b</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> = 3, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> = −4 or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> = −3, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> = 4 <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a derivative given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mi>o</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mi>k</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is a positive constant.</p>
</div>
<div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, the population of a colony of ants, which has an initial value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn></math>.</p>
<p>The rate of change of the population can be modelled by the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>P</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow><mrow><mn>5</mn><mi>k</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the time measured in days, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> is the upper bound for the population.</p>
</div>
<div class="specification">
<p>At <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math> the population of the colony has doubled in size from its initial value.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mi>x</mi></mfrac><mo>+</mo><mfrac><mi>b</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mn>1200</mn><mi>k</mi></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfrac></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, giving your answer correct to four significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when the rate of change of the population is at its maximum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mrow><mi>x</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac><mo>≡</mo><mfrac><mi>a</mi><mi>x</mi></mfrac><mo>+</mo><mfrac><mi>b</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>+</mo><mi>b</mi><mi>x</mi><mo>=</mo><mn>1</mn></math> <em><strong> (A1)</strong></em></p>
<p>attempt to compare coefficients OR substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> and solve <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mi>k</mi><mi>x</mi></mrow></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>k</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfrac></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to integrate their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>a</mi><mi>x</mi></mfrac><mo>+</mo><mfrac><mi>b</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mfrac><mn>1</mn><mi>k</mi></mfrac><mo>∫</mo><mfenced><mrow><mfrac><mn>1</mn><mi>x</mi></mfrac><mo>+</mo><mfrac><mn>1</mn><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></mrow></mfenced><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac><mfenced><mrow><mi>ln</mi><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>-</mo><mi>ln</mi><mfenced open="|" close="|"><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><mi>k</mi></mfrac><mi>ln</mi><mfenced open="|" close="|"><mfrac><mi>x</mi><mrow><mi>k</mi><mo>-</mo><mi>x</mi></mrow></mfrac></mfenced><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct term. Award <em><strong>A1A0</strong></em> for a correct answer without modulus signs. Condone the absence of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mi>c</mi></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to separate variables and integrate both sides <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mi>k</mi><mo>∫</mo><mfrac><mn>1</mn><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>d</mo><mi>P</mi><mo>=</mo><mo>∫</mo><mn>1</mn><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>t</mi><mo>+</mo><mi>c</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> There are variations on this which should be accepted, such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mi>k</mi></mfrac><mfenced><mrow><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mn>5</mn><mi>k</mi></mrow></mfrac><mi>t</mi><mo>+</mo><mi>c</mi></math>. Subsequent marks for these variations should be awarded as appropriate.</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>1200</mn></math> into an equation involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mn>1200</mn><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>5</mn><mo> </mo><mi>ln</mi><mfenced><mfrac><mn>1200</mn><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfrac></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mi>P</mi><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>t</mi><mo>+</mo><mn>5</mn><mfenced><mrow><mi>ln</mi><mo> </mo><mn>1200</mn><mo>-</mo><mi>ln</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow><mrow><mn>1200</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac></mfenced><mo>=</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced></mrow><mrow><mn>1200</mn><mfenced><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfenced></mrow></mfrac><mo>=</mo><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mi>P</mi><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfrac></mfenced><mo>=</mo><mfrac><mrow><mi>t</mi><mo>+</mo><mi>c</mi></mrow><mn>5</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfrac><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> <em><strong>A1</strong></em></p>
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>1200</mn></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1200</mn><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfrac><mo>=</mo><mi>A</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mrow><mi>k</mi><mo>-</mo><mi>P</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1200</mn><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></msup></mrow><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>attempt to rearrange and isolate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mi>k</mi><mo>-</mo><mn>1200</mn><mi>P</mi><mo>=</mo><mn>1200</mn><mi>k</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup><mo>-</mo><mn>1200</mn><mi>P</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mi>k</mi><msup><mtext>e</mtext><mrow><mi>-</mi><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo>-</mo><mn>1200</mn><mi>P</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo> </mo><mi mathvariant="normal">=</mi><mn>1200</mn><mi>k</mi><mo>-</mo><mn>1200</mn><mi>P</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>k</mi><mi>P</mi></mfrac><mo>-</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow><mrow><mn>1200</mn><msup><mtext>e</mtext><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></msup></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn><mo>+</mo><mn>1200</mn><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></mrow></mfenced><mo>=</mo><mn>1200</mn><mi>k</mi><msup><mtext>e</mtext><mfrac><mi>t</mi><mn>5</mn></mfrac></msup></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mi>k</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo>-</mo><mn>1200</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi>t</mi><mn>5</mn></mfrac></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfenced><mo>=</mo><mn>1200</mn><mi>k</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mn>1200</mn><mi>k</mi></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>t</mi><mn>5</mn></mfrac></mstyle></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn><mo>,</mo><mo> </mo><mi>P</mi><mo>=</mo><mn>2400</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2400</mn><mo>=</mo><mfrac><mrow><mn>1200</mn><mi>k</mi></mrow><mrow><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1200</mn></mrow></mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mn>1200</mn></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2845</mn><mo>.</mo><mn>34</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2845</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A1)A0</strong></em> for any other value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> which rounds to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2850</mn></math></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the maximum of the first derivative graph OR zero of the second derivative graph OR that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mi>k</mi><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mn>1422</mn><mo>.</mo><mn>67</mn><mo>…</mo></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>57814</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>.</mo><mn>58</mn></math> (days) <em><strong>A2</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept any value which rounds to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>6</mn></math>.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Two airplanes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, have position vectors with respect to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> given respectively by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mtext mathvariant="bold-italic">A</mtext></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>19</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> represents the time in minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Entries in each column vector give the displacement east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, the displacement north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the distance above sea level, all measured in kilometres.</p>
</div>
<div class="specification">
<p>The two airplanes’ lines of flight cross at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the three-figure bearing on which airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is travelling.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between the two airplanes’ lines of flight. Give your answer in degrees.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the length of time between the first airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and the second airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> represent the distance between airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Find the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi></math> be the required angle (bearing)</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mn>90</mn><mo>°</mo><mo>-</mo><mtext>arctan</mtext><mfrac><mn>1</mn><mn>2</mn></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>2</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for a labelled sketch.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>ϕ</mi><mo>=</mo><mfrac><mrow><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>·</mo><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></mrow><mrow><msqrt><mn>1</mn></msqrt><mo>×</mo><msqrt><mn>20</mn></msqrt></mrow></mfrac><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>4472</mn><mo>…</mo><mo>,</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>5</mn></msqrt></mfrac></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi><mo>=</mo><mtext>arccos</mtext><mfenced><mrow><mn>0</mn><mo>.</mo><mn>4472</mn><mo>…</mo></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Do not accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>.</mo><mn>6</mn><mo>°</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>63</mn><mo>.</mo><mn>4</mn><mo>°</mo></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><msup><mn>10</mn><mi>c</mi></msup></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced></math> be the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced></math> be the speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math></p>
<p>attempts to find the speed of one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>19</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup></msqrt></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>0</mn><mn>2</mn></msup><mo>+</mo><msup><mn>12</mn><mn>2</mn></msup></msqrt></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>=</mo><mn>7</mn><mo>.</mo><mn>48</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>56</mn></msqrt></mrow></mfenced></math> (km min<sup>-1</sup>) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced><mo>=</mo><mn>4</mn><mo>.</mo><mn>89</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>24</mn></msqrt></mrow></mfenced></math> (km min<sup>-1</sup>) <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>A</mi></msub></mfenced><mo>></mo><mfenced open="|" close="|"><msub><mi mathvariant="bold-italic">b</mi><mi>B</mi></msub></mfenced></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>speed</mtext><mo>=</mo><mfrac><mtext>distance</mtext><mtext>time</mtext></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>A</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced><mo>-</mo><msub><mi>r</mi><mi>A</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced></mrow></mfenced><mrow><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>B</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced><mo>-</mo><msub><mi>r</mi><mi>B</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced></mrow></mfenced><mrow><msub><mi>t</mi><mn>2</mn></msub><mo>-</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p>for example:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>A</mi></msub><mfenced><mn>1</mn></mfenced><mo>-</mo><msub><mi>r</mi><mi>A</mi></msub><mfenced><mn>0</mn></mfenced></mrow></mfenced><mn>1</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><mfenced open="|" close="|"><mrow><msub><mi>r</mi><mi>B</mi></msub><mfenced><mn>1</mn></mfenced><mo>-</mo><msub><mi>r</mi><mi>B</mi></msub><mfenced><mn>0</mn></mfenced></mrow></mfenced><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mfrac><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><mn>1</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mfrac><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup></msqrt><mn>1</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>=</mo><mn>7</mn><mo>.</mo><mn>48</mn><mo>…</mo><mfenced><mrow><mn>2</mn><msqrt><mn>14</mn></msqrt></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>B</mi></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>89</mn><mo>…</mo><mfenced><msqrt><mn>24</mn></msqrt></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>speed</mtext><mi>A</mi></msub><mo>></mo><msub><mtext>speed</mtext><mi>B</mi></msub></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to use the angle between two direction vectors formula <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mfenced><mn>4</mn></mfenced><mo>+</mo><mfenced><mn>2</mn></mfenced><mfenced><mn>2</mn></mfenced><mo>+</mo><mfenced><mn>4</mn></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mrow><msqrt><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>4</mn><mn>2</mn></msup></msqrt><msqrt><msup><mn>4</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></mrow></mfrac></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>=</mo><mo>-</mo><mn>0</mn><mo>.</mo><mn>7637</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>7</mn><msqrt><mn>84</mn></msqrt></mfrac></mrow></mfenced></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mtext>arccos</mtext><mfenced><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>7637</mn><mo>…</mo></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>4399</mn><mo>…</mo></mrow></mfenced></math></p>
<p>attempts to find the acute angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo><mo>-</mo><mi>θ</mi></math> using their value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>40</mn><mo>.</mo><mn>2</mn><mo>°</mo></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example, sets <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mfenced><msub><mi>t</mi><mn>1</mn></msub></mfenced><mo>=</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mfenced><msub><mi>t</mi><mn>2</mn></msub></mfenced></math> and forms at least two equations <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn><mo>-</mo><mn>6</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>+</mo><mn>2</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>12</mn><mo>-</mo><mn>2</mn><msub><mi>t</mi><mn>2</mn></msub></math></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for equations involving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> only.</p>
<p><br><strong>EITHER</strong></p>
<p>attempts to solve the system of equations for one of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts to solve the system of equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><mn>2</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>2</mn></msub></math> value into the corresponding <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mn>7</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>9</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>OP</mtext><mo>→</mo></mover><mo>=</mo><mfenced><mtable><mtr><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>9</mn></mtd></mtr></mtable></mfenced></math>. Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> km east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> km north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> km above sea level.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>-</mo><msub><mi>t</mi><mn>2</mn></msub><mo>=</mo><mn>2</mn><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> minutes (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> seconds) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>18</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>11</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><msup><mfenced><mrow><mn>10</mn><mi>t</mi><mo>-</mo><mn>18</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>1</mn><mo>+</mo><msup><mfenced><mrow><mn>11</mn><mo>-</mo><mn>6</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">A</mi></msub><mo>-</mo><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>18</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>11</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>10</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>6</mn></mtd></mtr></mtable></mfenced></math></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msqrt><msup><mfenced><mrow><mn>18</mn><mo>-</mo><mn>10</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mo>-</mo><mn>11</mn><mo>+</mo><mn>6</mn><mi>t</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0M0A0</strong></em> for expressions using two different time parameters.</p>
<p><br><strong>THEN</strong></p>
<p>either attempts to find the local minimum point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> or attempts to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>'</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> (or equivalent) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>8088</mn><mo>…</mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mn>123</mn><mn>68</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>.</mo><mn>01459</mn><mo>…</mo></math></p>
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>01</mn><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><msqrt><mn>1190</mn></msqrt><mn>34</mn></mfrac></mrow></mfenced></math> (km) <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M0</strong> </em>for attempts at the shortest distance between two lines.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>General comment about this question: many candidates were not exposed to this setting of vectors question and were rather lost.</p>
<p>Part (a) Probably the least answered question on the whole paper. Many candidates left it blank, others tried using 3D vectors. Out of those who calculated the angle correctly, only a small percentage were able to provide the correct true bearing as a 3-digit figure.</p>
<p>Part (b) Well done by many candidates who used the direction vectors to calculate and compare the speeds. A number of candidates tried to use the average rate of change but mostly unsuccessfully.</p>
<p>Part (c) Most candidates used the correct vectors and the formula to obtain the obtuse angle. Then only some read the question properly to give the acute angle in degrees, as requested.</p>
<p>Part (d) Well done by many candidates who used two different parameters. They were able to solve and obtain two values for time, the difference in minutes and the correct point of intersection. A number of candidates only had one parameter, thus scoring no marks in part (d) (i). The frequent error in part (d)(ii) was providing incorrect units.</p>
<p>Part (e) Many correct answers were seen with an efficient way of setting the question and using their GDC to obtain the answer, graphically or numerically. Some gave time only instead of actually giving the minimal distance. A number of candidates tried to find the distance between two skew lines ignoring the fact that the lines intersect.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of bananas that Lucca eats during any particular day follows a Poisson distribution with mean 0.2.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Lucca eats at least one banana in a particular day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of weeks in the year in which Lucca eats no bananas.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span> be the number of bananas eaten in one day</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{Po}}(0.2)"> <mi>X</mi> <mo>∼</mo> <mrow> <mtext>Po</mtext> </mrow> <mo stretchy="false">(</mo> <mn>0.2</mn> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X \geqslant 1) = 1 - {\text{P}}(X = 0)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>⩾</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 0.181{\text{ }}( = 1 - {{\text{e}}^{ - 0.2}})"> <mo>=</mo> <mn>0.181</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>0.2</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y"> <mi>Y</mi> </math></span> be the number of bananas eaten in one week</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Y}} \sim {\text{Po}}(1.4)"> <mrow> <mtext>Y</mtext> </mrow> <mo>∼</mo> <mrow> <mtext>Po</mtext> </mrow> <mo stretchy="false">(</mo> <mn>1.4</mn> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y = 0) = 0.246596 \ldots {\text{ }}( = {{\text{e}}^{ - 1.4}})"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.246596</mn> <mo>…</mo> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>1.4</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Z"> <mi>Z</mi> </math></span> be the number of days in one week at least one banana is eaten</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Z \sim {\text{B}}(7,{\text{ }}0.181 \ldots )"> <mi>Z</mi> <mo>∼</mo> <mrow> <mtext>B</mtext> </mrow> <mo stretchy="false">(</mo> <mn>7</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0.181</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Z = 0) = 0.246596 \ldots "> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>Z</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.246596</mn> <mo>…</mo> </math></span> <strong><em>(A1)</em></strong></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="52 \times 0.246596 \ldots "> <mn>52</mn> <mo>×</mo> <mn>0.246596</mn> <mo>…</mo> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 12.8{\text{ }}( = 52{{\text{e}}^{ - 1.4}})"> <mo>=</mo> <mn>12.8</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>52</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>1.4</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the probability density function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> given by</p>
<p style="padding-left: 210px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable columnalign="left"><mtr><mtd><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mn>0</mn><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mo> </mo><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt><mo>-</mo><msqrt><mi>k</mi></msqrt><mo>=</mo><msqrt><mi>k</mi></msqrt><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recognition of the need to integrate <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi><mfenced><mrow><mo>=</mo><mn>1</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi><mo>⇒</mo><mfrac><mrow><mo>d</mo><mi>u</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>x</mi></math> (or equivalent) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∫</mo><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></msup><mo>d</mo><mi>u</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mi>x</mi><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>∫</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><msqrt><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mfrac><mo>d</mo><mi>x</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mfenced><mrow><mo>+</mo><mi>c</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>attempt to use correct limits for their integrand and set equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><msup><mi>u</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced><mi>k</mi><mrow><mn>16</mn><mo>+</mo><mi>k</mi></mrow></msubsup><mo>=</mo><mn>1</mn></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mfenced open="[" close="]"><mrow><mo>-</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfenced><mn>0</mn><mn>4</mn></msubsup><mo>=</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mfenced><mrow><mn>16</mn><mo>+</mo><mi>k</mi></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>+</mo><msup><mi>k</mi><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>=</mo><mn>1</mn><mfenced><mrow><mo>⇒</mo><mfrac><mn>1</mn><msqrt><mi>k</mi></msqrt></mfrac><mo>-</mo><mfrac><mn>1</mn><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></mfrac><mo>=</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt><mo>-</mo><msqrt><mi>k</mi></msqrt><mo>=</mo><msqrt><mi>k</mi></msqrt><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt><mo>-</mo><msqrt><mi>k</mi></msqrt><mo>=</mo><msqrt><mi>k</mi></msqrt><msqrt><mn>16</mn><mo>+</mo><mi>k</mi></msqrt></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>645038</mn><mo>…</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>645</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The polynomial <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^4} + p{x^3} + q{x^2} + rx + 6">
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>p</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>q</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>r</mi>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span> is exactly divisible by each of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 1} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 2} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 3} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><strong>METHOD 1</strong></p>
<p>substitute each of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> = 1,2 and 3 into the quartic and equate to zero <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p + q + r = - 7">
<mi>p</mi>
<mo>+</mo>
<mi>q</mi>
<mo>+</mo>
<mi>r</mi>
<mo>=</mo>
<mo>−</mo>
<mn>7</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4p + 2q + r = - 11">
<mn>4</mn>
<mi>p</mi>
<mo>+</mo>
<mn>2</mn>
<mi>q</mi>
<mo>+</mo>
<mi>r</mi>
<mo>=</mo>
<mo>−</mo>
<mn>11</mn>
</math></span> or equivalent <em><strong> (A2)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="9p + 3q + r = - 29">
<mn>9</mn>
<mi>p</mi>
<mo>+</mo>
<mn>3</mn>
<mi>q</mi>
<mo>+</mo>
<mi>r</mi>
<mo>=</mo>
<mo>−</mo>
<mn>29</mn>
</math></span></p>
<p><strong>Note:</strong> Award <em><strong>A2</strong> </em>for all three equations correct, <em><strong>A1</strong> </em>for two correct.</p>
<p>attempting to solve the system of equations <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = −7, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> = 17, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> = −17 <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Only award <em><strong>M1</strong></em> when some numerical values are found when solving algebraically or using GDC.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to find fourth factor <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 1} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>A1</strong></em></p>
<p>attempt to expand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - 1} \right)^2}\left( {x - 2} \right)\left( {x - 3} \right)">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^4} - 7{x^3} + 17{x^2} - 17x + 6">
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>7</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>17</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>17</mn>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</math></span> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> = −7, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> = 17, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> = −17) <em><strong>A2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A2</strong> </em>for all three values correct, <em><strong>A1</strong> </em>for two correct.</p>
<p><strong>Note:</strong> Accept long / synthetic division.</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{sec}}\,x + 2">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>sec</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span>, stating its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> ≥ 3 <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{sec}}\,y + 2"> <mi>x</mi> <mo>=</mo> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>+</mo> <mn>2</mn> </math></span> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Exchange of variables can take place at any point.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,y = \frac{1}{{x - 2}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span> <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = {\text{arccos}}\left( {\frac{1}{{x - 2}}} \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≥ 3 <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Allow follow through from (a) for last <em><strong>A1</strong></em> mark which is independent of earlier marks in (b).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{{x^2}}}{{x - 3}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = m\left( {x + 3} \right)">
<mi>y</mi>
<mo>=</mo>
<mi>m</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}">
<mi>m</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>Find the set of values for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> such that the two graphs have no intersection points.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em><strong>METHOD 1</strong></em></p>
<p>sketching the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{{x^2}}}{{x - 3}}">
<mi>y</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span> (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x + 3 + \frac{9}{{x - 3}}">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mo>+</mo>
<mfrac>
<mn>9</mn>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</mfrac>
</math></span>) <em><strong>M1</strong></em></p>
<p>the (oblique) asymptote has a gradient equal to 1 </p>
<p>and so the maximum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> is 1 <em><strong>R1</strong></em></p>
<p>consideration of a straight line steeper than the horizontal line joining (−3, 0) and (0, 0) <em><strong>M1</strong></em></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> > 0 <em><strong>R1</strong></em></p>
<p>hence 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> ≤ 1 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>attempting to eliminate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> to form a quadratic equation in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> <em><strong>M1</strong></em> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} = m\left( {{x^2} - 9} \right)">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mi>m</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>9</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow \left( {m - 1} \right){x^2} - 9m = 0">
<mo stretchy="false">⇒</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>m</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>9</mn>
<mi>m</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>EITHER</strong></em></p>
<p>attempting to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4\left( {m - 1} \right)\left( { - 9m} \right) < 0">
<mo>−</mo>
<mn>4</mn>
<mrow>
<mo>(</mo>
<mrow>
<mi>m</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>9</mn>
<mi>m</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo><</mo>
<mn>0</mn>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> <em><strong>M1</strong></em> </p>
<p> </p>
<p><em><strong>OR</strong></em></p>
<p>attempting to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> < 0 <em>ie</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{9m}}{{m - 1}} < 0\,\left( {m \ne 1} \right)">
<mfrac>
<mrow>
<mn>9</mn>
<mi>m</mi>
</mrow>
<mrow>
<mi>m</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mo><</mo>
<mn>0</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>(</mo>
<mrow>
<mi>m</mi>
<mo>≠</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> <em><strong>M1</strong></em></p>
<p> </p>
<p><em><strong>THEN</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow 0 < m < 1">
<mo stretchy="false">⇒</mo>
<mn>0</mn>
<mo><</mo>
<mi>m</mi>
<mo><</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p>a valid reason to explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 1">
<mi>m</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> gives no solutions <em>eg</em> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 1">
<mi>m</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>,</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {m - 1} \right){x^2} - 9m = 0 \Rightarrow - 9 = 0">
<mrow>
<mo>(</mo>
<mrow>
<mi>m</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>9</mn>
<mi>m</mi>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mo>−</mo>
<mn>9</mn>
<mo>=</mo>
<mn>0</mn>
</math></span> and so 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> ≤ 1 <em><strong>R1</strong></em></p>
<p> </p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>k</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mi>x</mi><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>9</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the product of the roots, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, determine the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> such that the equation has one positive and one negative real root.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>product of roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>9</mn></mrow><mi>k</mi></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition that the product of the roots will be negative <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>9</mn></mrow><mi>k</mi></mfrac><mo><</mo><mn>0</mn></math></p>
<p>critical values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>-</mo><mfrac><mn>9</mn><mn>2</mn></mfrac></math> seen <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>9</mn><mn>2</mn></mfrac><mo><</mo><mi>k</mi><mo><</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 < x < \pi ">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mrow>
<msqrt>
<mi>x</mi>
</msqrt>
</mrow>
<mrow>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mi>π<!-- π --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the region bounded by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}">
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>6</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of the minimum point on the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> satisfies the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x"> <mi>tan</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> where the normal to the graph is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - x"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mi>x</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi "> <mn>2</mn> <mi>π</mi> </math></span> radians about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{2\sqrt x \sin x}}"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> </mfrac> </math></span> or equivalent and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}"> <mo>−</mo> <mfrac> <mrow> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </math></span> or equivalent.</p>
<p> </p>
<p>setting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} - \sqrt x \cos x = 0"> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> </mrow> </mfrac> <mo>−</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x"> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <msqrt> <mi>x</mi> </msqrt> </mrow> </mfrac> <mo>=</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </math></span> or equivalent <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan x = 2x"> <mi>tan</mi> <mo></mo> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> </math></span> <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.17"> <mi>x</mi> <mo>=</mo> <mn>1.17</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x \leqslant 1.17"> <mn>0</mn> <mo><</mo> <mi>x</mi> <mo>⩽</mo> <mn>1.17</mn> </math></span> <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x"> <mn>0</mn> <mo><</mo> <mi>x</mi> </math></span> and <strong><em>A1 </em></strong>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \leqslant 1.17"> <mi>x</mi> <mo>⩽</mo> <mn>1.17</mn> </math></span>. Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x < 1.17"> <mi>x</mi> <mo><</mo> <mn>1.17</mn> </math></span>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.19.25.png" alt="N17/5/MATHL/HP2/ENG/TZ0/10.b/M"></p>
<p>concave up curve over correct domain with one minimum point above the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> asymptotically <strong><em>A1</em></strong></p>
<p>approaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \pi "> <mi>x</mi> <mo>=</mo> <mi>π</mi> </math></span> asymptotically <strong><em>A1</em></strong></p>
<p> </p>
<p>Note: For the final <strong><em>A1 </em></strong>an asymptote must be seen, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span> must be seen on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis or in an equation.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <msqrt> <mi>x</mi> </msqrt> <mi>cos</mi> <mo></mo> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </math></span> <strong><em>(A1)</em></strong></p>
<p>attempt to solve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1.96"> <mi>x</mi> <mo>=</mo> <mn>1.96</mn> </math></span> <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(1.96 \ldots )"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1.96</mn> <mo>…</mo> <mo stretchy="false">)</mo> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1.51"> <mo>=</mo> <mn>1.51</mn> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} "> <mi>V</mi> <mo>=</mo> <mi>π</mi> <msubsup> <mo>∫</mo> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </math></span> <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>M1 </em></strong>is for an integral of the correct squared function (with or without limits and/or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi "> <mi>π</mi> </math></span>).</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2.68{\text{ }}( = 0.852\pi )"> <mo>=</mo> <mn>2.68</mn> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>0.852</mn> <mi>π</mi> <mo stretchy="false">)</mo> </math></span> <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br>