File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/markSceme-HL-paper1html
File size: 983.11 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }">
  <mrow>
    <msub>
      <mi>f</mi>
      <mi>n</mi>
    </msub>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>4</mn>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>…<!-- … --></mo>
  <mo stretchy="false">(</mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mi>n</mi>
    </msup>
  </mrow>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>n</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <msup>
      <mrow>
        <mi mathvariant="double-struck">Z</mi>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> </math></span> is an odd or even function, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using mathematical induction, prove that</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>≠</mo> <mfrac> <mrow> <mi>m</mi> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{Z}"> <mi>m</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find an expression for the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x)"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> with respect to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n &gt; 1"> <mi>n</mi> <mo>&gt;</mo> <mn>1</mn> </math></span>, the equation of the tangent to the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_n}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x - 2y - \pi  = 0"> <mn>4</mn> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mi>y</mi> <mo>−</mo> <mi>π</mi> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>even function     <strong><em>A1</em></strong></p>
<p>since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos kx = \cos ( - kx)"> <mi>cos</mi> <mo>⁡</mo> <mi>k</mi> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mi>k</mi> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> <strong>and</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x)"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> is a product of even functions     <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>even function     <strong><em>A1</em></strong></p>
<p>since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\cos 2x)(\cos 4x) \ldots  = \left( {\cos ( - 2x)} \right)\left( {\cos ( - 4x)} \right) \ldots "> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mn>4</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>…</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mo>−</mo> <mn>4</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>…</mo> </math></span>     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Do not award <strong><em>A0R1</em></strong>.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider the case <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 1"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sin 4x}}{{2\sin 2x}} = \frac{{2\sin 2x\cos 2x}}{{2\sin 2x}} = \cos 2x"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡</mo> <mn>4</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </math></span>     <strong><em>M1</em></strong></p>
<p>hence true for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 1"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </math></span>     <strong><em>R1</em></strong></p>
<p>assume true for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </math></span>, <em>ie</em>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\cos 2x)(\cos 4x) \ldots (\cos {2^k}x) = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}"> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mn>4</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo>…</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mi>k</mi> </msup> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mn>2</mn> <mi>k</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </math></span>     <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Do not award <strong><em>M1 </em></strong>for “let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </math></span>” or “assume <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </math></span>” or equivalent.</p>
<p> </p>
<p>consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k + 1"> <mi>n</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </math></span>:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_{k + 1}}(x) = {f_k}(x)(\cos {2^{k + 1}}x)"> <mrow> <msub> <mi>f</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mi>k</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\cos {2^{k + 1}}x"> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mn>2</mn> <mi>k</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{2\sin {2^{k + 1}}x\cos {2^{k + 1}}x}}{{{2^{k + 1}}\sin 2x}}"> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{\sin {2^{k + 2}}x}}{{{2^{k + 1}}\sin 2x}}"> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </math></span>     <strong><em>A1</em></strong></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 1"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </math></span> true and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = k"> <mi>n</mi> <mo>=</mo> <mi>k</mi> </math></span> true <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow n = k + 1"> <mo stretchy="false">⇒</mo> <mi>n</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </math></span> true. Hence true for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }"> <mi>n</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span>     <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     To obtain the final <strong><em>R1</em></strong>, all the previous <strong><em>M </em></strong>marks must have been awarded.</p>
<p> </p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’ = \frac{{vu' - uv'}}{{{v^2}}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <mfrac> <mrow> <mi>v</mi> <msup> <mi>u</mi> <mo>′</mo> </msup> <mo>−</mo> <mi>u</mi> <msup> <mi>v</mi> <mo>′</mo> </msup> </mrow> <mrow> <mrow> <msup> <mi>v</mi> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span> (or correct product rule)     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f’_n}(x) = \frac{{({2^n}\sin 2x)({2^{n + 1}}\cos {2^{n + 1}}x) - (\sin {2^{n + 1}}x)({2^{n + 1}}\cos 2x)}}{{{{({2^n}\sin 2x)}^2}}}"> <mrow> <msubsup> <mi>f</mi> <mi>n</mi> <mo>′</mo> </msubsup> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>     <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>A1 </em></strong>for correct numerator and <strong><em>A1 </em></strong>for correct denominator.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f’_n}\left( {\frac{\pi }{4}} \right) = \frac{{\left( {{2^n}\sin \frac{\pi }{2}} \right)\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right) - \left( {\sin {2^{n + 1}}\frac{\pi }{4}} \right)\left( {{2^{n + 1}}\cos \frac{\pi }{2}} \right)}}{{{{\left( {{2^n}\sin \frac{\pi }{2}} \right)}^2}}}"> <mrow> <msubsup> <mi>f</mi> <mi>n</mi> <mo>′</mo> </msubsup> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>     <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f’_n}\left( {\frac{\pi }{4}} \right) = \frac{{({2^n})\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right)}}{{{{({2^n})}^2}}}"> <mrow> <msubsup> <mi>f</mi> <mi>n</mi> <mo>′</mo> </msubsup> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\cos {2^{n + 1}}\frac{\pi }{4}{\text{ }}( = 2\cos {2^{n - 1}}\pi )"> <mo>=</mo> <mn>2</mn> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mrow> <mtext> </mtext> </mrow> <mo stretchy="false">(</mo> <mo>=</mo> <mn>2</mn> <mi>cos</mi> <mo>⁡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>π</mi> <mo stretchy="false">)</mo> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f’_n}\left( {\frac{\pi }{4}} \right) = 2"> <mrow> <msubsup> <mi>f</mi> <mi>n</mi> <mo>′</mo> </msubsup> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}\left( {\frac{\pi }{4}} \right) = 0"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     This <strong><em>A </em></strong>mark is independent from the previous marks.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2\left( {x - \frac{\pi }{4}} \right)"> <mi>y</mi> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x - 2y - \pi  = 0"> <mn>4</mn> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mi>y</mi> <mo>−</mo> <mi>π</mi> <mo>=</mo> <mn>0</mn> </math></span>     <strong><em>AG</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^4} + a{z^3} + b{z^2} + cz + d = 0"> <mrow> <msup> <mi>z</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mi>a</mi> <mrow> <msup> <mi>z</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>b</mi> <mrow> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>c</mi> <mi>z</mi> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mn>0</mn> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{R}"> <mi>d</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z \in \mathbb{C}"> <mi>z</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">C</mi> </mrow> </math></span>.</p>
<p>Two of the roots of the equation are log<sub>2</sub>6 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\sqrt 3 "> <mi>i</mi> <msqrt> <mn>3</mn> </msqrt> </math></span> and the sum of all the roots is 3 + log<sub>2</sub>3.</p>
<p>Show that 6<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> + 12 = 0.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - i\sqrt 3 "> <mo>−</mo> <mi>i</mi> <msqrt> <mn>3</mn> </msqrt> </math></span> is a root      <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3 + {\text{lo}}{{\text{g}}_2}3 - {\text{lo}}{{\text{g}}_2}6\left( { = 3 + {\text{lo}}{{\text{g}}_2}\frac{1}{2} = 3 - 1 = 2} \right)"> <mn>3</mn> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>3</mn> <mo>−</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>=</mo> <mn>3</mn> <mo>−</mo> <mn>1</mn> <mo>=</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span> is a root       <em><strong>(A1)</strong></em></p>
<p>sum of roots: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - a = 3 + {\text{lo}}{{\text{g}}_2}3 \Rightarrow a =  - 3 - {\text{lo}}{{\text{g}}_2}3"> <mo>−</mo> <mi>a</mi> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>3</mn> <mo stretchy="false">⇒</mo> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>3</mn> <mo>−</mo> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>3</mn> </math></span>     <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award M1 for use of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - a"> <mo>−</mo> <mi>a</mi> </math></span> is equal to the sum of the roots, do not award if minus is missing.</p>
<p><strong>Note:</strong> If expanding the factored form of the equation, award <em><strong>M1</strong> </em>for equating <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> to the coefficient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^3}"> <mrow> <msup> <mi>z</mi> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<p> </p>
<p>product of roots: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( { - 1} \right)^4}d"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mn>4</mn> </msup> </mrow> <mi>d</mi> </math></span>          <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\left( {{\text{lo}}{{\text{g}}_2}6} \right)\left( {i\sqrt 3 } \right)\left( { - i\sqrt 3 } \right)"> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi>i</mi> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>M1</strong></em></p>
<p>                                                   <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 6\,{\text{lo}}{{\text{g}}_2}6"> <mo>=</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>6</mn> </math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d =  - 6\,{\text{lo}}{{\text{g}}_2}6"> <mi>d</mi> <mo>=</mo> <mo>−</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>6</mn> </math></span></p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6a + d + 12 =  - 18 - 6\,{\text{lo}}{{\text{g}}_2}3 + 6\,{\text{lo}}{{\text{g}}_2}6 + 12"> <mn>6</mn> <mi>a</mi> <mo>+</mo> <mi>d</mi> <mo>+</mo> <mn>12</mn> <mo>=</mo> <mo>−</mo> <mn>18</mn> <mo>−</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>6</mn> <mo>+</mo> <mn>12</mn> </math></span></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - 6 + 6\,{\text{lo}}{{\text{g}}_2}2 = 0"> <mo>=</mo> <mo>−</mo> <mn>6</mn> <mo>+</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>2</mn> <mo>=</mo> <mn>0</mn> </math></span>      <em><strong>M1A1AG</strong></em></p>
<p><strong>Note:</strong> <em><strong>M1</strong> </em>is for a correct use of one of the log laws.</p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - 6 - 6\,{\text{lo}}{{\text{g}}_2}3 + 6\,{\text{lo}}{{\text{g}}_2}3 + 6\,{\text{lo}}{{\text{g}}_2}2 = 0"> <mo>=</mo> <mo>−</mo> <mn>6</mn> <mo>−</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>3</mn> <mo>+</mo> <mn>6</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>lo</mtext> </mrow> <mrow> <msub> <mrow> <mtext>g</mtext> </mrow> <mn>2</mn> </msub> </mrow> <mn>2</mn> <mo>=</mo> <mn>0</mn> </math></span>       <em><strong>M1A1AG</strong></em></p>
<p><strong>Note:</strong> <em><strong>M1</strong> </em>is for a correct use of one of the log laws.</p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a vertical asymptote and a horizontal asymptote.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the horizontal asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the set of axes below, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mfrac><mrow><mn>2</mn><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>-</mo><mn>1</mn></mrow><mrow><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn></math>          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown         <em><strong>A1</strong></em></p>
<p>axes intercepts clearly shown at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>         <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept correct alternative correct notation, such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo>∞</mo></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>]</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo>,</mo><mo>∞</mo><mo>[</mo></math>.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempts to sketch <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>-</mo><mn>1</mn></mrow><mrow><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>+</mo><mn>1</mn></mrow></mfrac></math>        <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>        <em><strong>(M1)</strong></em></p>
<p> </p>
<p style="text-align:left;"><strong>Note:</strong> Award the <em><strong>(M1)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> are identified.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&lt;</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept the use of a comma. Condone the use of ‘and’. Accept correct alternative notation.</p>
<p>  </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In the following Argand diagram, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mtext>2</mtext></msub></math> are the vertices of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mtext>1</mtext></msub><msub><mtext>OZ</mtext><mtext>2</mtext></msub></math>&nbsp;described anticlockwise.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub></math> represents the complex number&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>&#945;</mi></mrow></msup></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub><mo>&#62;</mo><mn>0</mn></math>. The point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>2</mn></msub></math>&nbsp;represents the complex number&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>&#952;</mi></mrow></msup></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub><mo>&#62;</mo><mn>0</mn></math>.</p>
<p>Angles <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#945;</mi><mo>,</mo><mo>&#160;</mo><mi>&#952;</mi></math> are measured anticlockwise from the positive direction of the real axis such&nbsp;that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>&#945;</mi><mo>,</mo><mo>&#160;</mo><mi>&#952;</mi><mo>&#60;</mo><mn>2</mn><mi>&#960;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>&#945;</mi><mo>-</mo><mi>&#952;</mi><mo>&#60;</mo><mi>&#960;</mi></math>.</p>
</div>

<div class="specification">
<p>In parts (c), (d) and (e), consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mtext>1</mtext></msub><msub><mtext>OZ</mtext><mtext>2</mtext></msub></math> is an equilateral triangle.</p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math> be the distinct roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8450;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfenced><mrow><mi>α</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup></math> is the complex conjugate of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Re</mtext><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub><msub><mtext>OZ</mtext><mn>2</mn></msub></math> is a right-angled triangle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>=</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the result from part (c)(ii) to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>b</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>-</mo><mi>θ</mi><mo>&lt;</mo><mi>π</mi></math>, deduce that only one equilateral triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub><msub><mtext>OZ</mtext><mn>2</mn></msub></math> can be formed from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the roots of this equation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>-i</mtext><mi>θ</mi></mrow></msup></math>          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>α</mi></mrow></msup><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>-i</mtext><mi>θ</mi></mrow></msup></math>           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfenced><mrow><mi>α</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></mrow></msup></math>           <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Accept working in modulus-argument form</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Re</mtext><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup></mrow></mfenced><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub><mo> </mo><mi>cos</mi><mfenced><mrow><mi>α</mi><mo>-</mo><mi>θ</mi></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math>           <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>-</mo><mi>θ</mi><mo>=</mo><mtext>arcos</mtext><mo> </mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><msub><mi>r</mi><mn>1</mn></msub><mo>,</mo><msub><mi>r</mi><mn>2</mn></msub><mo>&gt;</mo><mn>0</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>-</mo><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>  (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>-</mo><mi>θ</mi><mo>&lt;</mo><mi mathvariant="normal">π</mi></math>)           <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub><msub><mtext>OZ</mtext><mn>2</mn></msub></math> is a right-angled triangle           <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mfrac><mfenced><mrow><mo>=</mo><mfrac><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub></mfrac><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfenced><mrow><mi>α</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></mrow></msup></mrow></mfenced><mo>=</mo><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math>  (since <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub></math>)            <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub><msup><mi>e</mi><mrow><mi>i</mi><mfenced><mrow><mi>θ</mi><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></mfenced></mrow></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>θ</mi></mrow></msup><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></mrow></mfenced></math>            <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>z</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math>           <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept working in either modulus-argument form to obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>z</mi><mn>2</mn></msub><mfenced><mrow><mi>cos</mi><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></mfenced></math> or in Cartesian form to obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>z</mi><mn>2</mn></msub><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mtext>i</mtext></mrow></mfenced></math>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>z</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup></math>             <em><strong>M</strong><strong>1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mfenced><mrow><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><mn>1</mn><mo>=</mo><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math>             <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mfenced><mrow><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mtext>i</mtext><mo>+</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mtext>i</mtext></mrow></mfenced></math>             <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msub><mi>z</mi><mn>2</mn></msub><mfenced><mrow><msub><mi>z</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></mrow></mfenced></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup><mo>=</mo><msub><mi>z</mi><mn>1</mn></msub></math>             <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>=</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math>             <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> For candidates who work on the LHS and RHS separately to show equality, award <em><strong>M1A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mfenced><mrow><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math>, <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup><mo>+</mo><mn>1</mn><mo>=</mo><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></mrow></msup></math>. Accept working in either modulus-argument form or in Cartesian form.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mi>a</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mi>b</mi></math>              <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>+</mo><mn>2</mn><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math>             <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>+</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mfenced><mrow><mo>=</mo><mn>3</mn><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced></math>             <em><strong>A1</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math> into their expression             <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn><mi>b</mi><mo>+</mo><mi>b</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn><mi>b</mi></math>             <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> If <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mi>a</mi></math> is not clearly recognized, award maximum <em><strong>(A0)A1A1M1A0</strong></em>.</p>
<p> </p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>b</mi><mo>=</mo><mn>0</mn></math>              <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mi>a</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mi>b</mi></math>              <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>+</mo><mn>2</mn><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math>             <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>2</mn><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>+</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mfenced><mrow><mo>=</mo><mn>3</mn><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced></math>             <em><strong>A1</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mi>a</mi></math> into their expression              <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>2</mn><mi>b</mi><mo>+</mo><mi>b</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mn>3</mn><mi>b</mi></math>             <em><strong>A1</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> If <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mi>a</mi></math> is not clearly recognized, award maximum <em><strong>(A0)A1A1M1A0</strong></em>.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>b</mi><mo>=</mo><mn>0</mn></math>              <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>×</mo><mn>12</mn><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>±</mo><mn>6</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><msup><mi>z</mi><mn>2</mn></msup><mo>±</mo><mn>6</mn><mi>z</mi><mo>+</mo><mn>12</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math>             <em><strong>A1</strong></em></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>6</mn><mo>:</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mtext>i</mtext><mo>,</mo><mo> </mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mtext>i</mtext></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>-</mo><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>5</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></math>  which does not satisfy <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>-</mo><mi>θ</mi><mo>&lt;</mo><mi>π</mi></math>             <em><strong>R1</strong></em></p>
<p>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>6</mn><mo>:</mo></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><mo>-</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mtext>i</mtext><mo>,</mo><mo> </mo><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mtext>i</mtext></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>-</mo><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac></math>             <em><strong>A1</strong></em></p>
<p>so (for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>-</mo><mi>θ</mi><mo>&lt;</mo><mi>π</mi></math>), only one equilateral triangle can be formed from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the two roots of this equation             <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The vast majority of candidates scored full marks in parts (a) and (b). If they did not, it was normally due to the lack of rigour in setting out of the answer to a "show that" question. Part (c) was, though, more often than not poorly done. Many candidates could not use the given condition (equilateral triangle) to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math>. Part (d) was well answered by a rather high number of candidates.</p>
<p>Only a handful of students made good progress in (e), not even finding the possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let the roots of the equation&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^3} =&nbsp; - 3 + \sqrt 3 {\text{i}}">
  <mrow>
    <msup>
      <mi>z</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo>+</mo>
  <msqrt>
    <mn>3</mn>
  </msqrt>
  <mrow>
    <mtext>i</mtext>
  </mrow>
</math></span> be&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
  <mi>u</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>On an Argand diagram, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
  <mi>u</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
  <mi>v</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>&nbsp;are represented by the points U, V and W respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + \sqrt 3 {\text{i}}"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mtext>i</mtext> </mrow> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r{{\text{e}}^{{\text{i}}\theta }}"> <mi>r</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mrow> <mtext>i</mtext> </mrow> <mi>θ</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r &gt; 0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi  &lt; \theta  \leqslant \pi "> <mo>−</mo> <mi>π</mi> <mo>&lt;</mo> <mi>θ</mi> <mo>⩽</mo> <mi>π</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> expressing your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r{{\text{e}}^{{\text{i}}\theta }}"> <mi>r</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mrow> <mtext>i</mtext> </mrow> <mi>θ</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r &gt; 0"> <mi>r</mi> <mo>&gt;</mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi  &lt; \theta  \leqslant \pi "> <mo>−</mo> <mi>π</mi> <mo>&lt;</mo> <mi>θ</mi> <mo>⩽</mo> <mi>π</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle UVW.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the sum of the roots <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>, show that</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{{5\pi }}{{18}} + {\text{cos}}\frac{{7\pi }}{{18}} + {\text{cos}}\frac{{17\pi }}{{18}} = 0"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to find modulus      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = 2\sqrt 3 \left( { = \sqrt {12} } \right)"> <mi>r</mi> <mo>=</mo> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <msqrt> <mn>12</mn> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p>attempt to find argument in the correct quadrant      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta  = \pi  + {\text{arctan}}\left( { - \frac{{\sqrt 3 }}{3}} \right)"> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>+</mo> <mrow> <mtext>arctan</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{5\pi }}{6}"> <mo>=</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>6</mn> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + \sqrt 3 {\text{i}} = \sqrt {12} {{\text{e}}^{\frac{{5\pi {\text{i}}}}{6}}}\left( { = 2\sqrt 3 {{\text{e}}^{\frac{{5\pi {\text{i}}}}{6}}}} \right)"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mtext>i</mtext> </mrow> <mo>=</mo> <msqrt> <mn>12</mn> </msqrt> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span></span></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to find a root using de Moivre’s theorem      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{12^{\frac{1}{6}}}{{\text{e}}^{\frac{{5\pi {\text{i}}}}{{18}}}}"> <mrow> <msup> <mn>12</mn> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> </msup> </mrow> </math></span>       <em><strong>A1</strong></em></p>
<p>attempt to find further two roots by adding and subtracting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2\pi }}{3}"> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span> to the argument <em><strong>   M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{12^{\frac{1}{6}}}{{\text{e}}^{ - \frac{{7\pi {\text{i}}}}{{18}}}}"> <mrow> <msup> <mn>12</mn> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> </msup> </mrow> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{12^{\frac{1}{6}}}{{\text{e}}^{\frac{{17\pi {\text{i}}}}{{18}}}}"> <mrow> <msup> <mn>12</mn> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> <mrow> <mtext>i</mtext> </mrow> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> </msup> </mrow> </math></span>       <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Ignore labels for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> at this stage.</p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>METHOD 1</strong></em><br>attempting to find the total area of (congruent) triangles UOV, VOW and UOW        <em><strong>M1</strong></em></p>
<p>Area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\left( {\frac{1}{2}} \right)\left( {{{12}^{\frac{1}{6}}}} \right)\left( {{{12}^{\frac{1}{6}}}} \right){\text{sin}}\frac{{2\pi }}{3}"> <mo>=</mo> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span>      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{{12}^{\frac{1}{6}}}} \right)\left( {{{12}^{\frac{1}{6}}}} \right)"> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> and <em><strong>A1</strong></em> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\frac{{2\pi }}{3}"> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span></p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\sqrt 3 }}{4}\left( {{{12}^{\frac{1}{3}}}} \right)"> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> (or equivalent)     <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>METHOD 2</strong></em></p>
<p>UV<sup>2</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\left( {{{12}^{\frac{1}{6}}}} \right)^2} + {\left( {{{12}^{\frac{1}{6}}}} \right)^2} - 2\left( {{{12}^{\frac{1}{6}}}} \right)\left( {{{12}^{\frac{1}{6}}}} \right){\text{cos}}\frac{{2\pi }}{3}"> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mn>3</mn> </mfrac> </math></span> (or equivalent)     <em><strong>A1</strong></em></p>
<p>UV <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt 3 \left( {{{12}^{\frac{1}{6}}}} \right)"> <mo>=</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> (or equivalent)     <em><strong>A1</strong></em></p>
<p>attempting to find the area of UVW using Area = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{2}} "> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </math></span> × UV × VW × sin <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha "> <mi>α</mi> </math></span> for example        <em><strong>M1</strong></em></p>
<p>Area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}\left( {\sqrt 3  \times {{12}^{\frac{1}{6}}}} \right)\left( {\sqrt 3  \times {{12}^{\frac{1}{6}}}} \right){\text{sin}}\frac{\pi }{3}"> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> <mo>×</mo> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msqrt> <mn>3</mn> </msqrt> <mo>×</mo> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </math></span></p>
<p>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\sqrt 3 }}{4}\left( {{{12}^{\frac{1}{3}}}} \right)"> <mfrac> <mrow> <mn>3</mn> <msqrt> <mn>3</mn> </msqrt> </mrow> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mrow> <mn>12</mn> </mrow> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> (or equivalent)     <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> = 0     <em><strong>R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{12^{\frac{1}{6}}}\left( {{\text{cos}}\left( { - \frac{{7\pi }}{{18}}} \right) + {\text{i}}\,{\text{sin}}\left( { - \frac{{7\pi }}{{18}}} \right) + {\text{cos}}\frac{{5\pi }}{{18}} + {\text{i}}\,{\text{sin}}\frac{{5\pi }}{{18}} + {\text{cos}}\frac{{17\pi }}{{18}} + {\text{i}}\,{\text{sin}}\frac{{17\pi }}{{18}}} \right) = 0"> <mrow> <msup> <mn>12</mn> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>     <em><strong>A1</strong></em></p>
<p>consideration of real parts       <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{12^{\frac{1}{6}}}\left( {{\text{cos}}\left( { - \frac{{7\pi }}{{18}}} \right) + {\text{cos}}\frac{{5\pi }}{{18}} + {\text{cos}}\frac{{17\pi }}{{18}}} \right) = 0"> <mrow> <msup> <mn>12</mn> <mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( { - \frac{{7\pi }}{{18}}} \right) = {\text{cos}}\frac{{17\pi }}{{18}}"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> </math></span> explicitly stated      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{{5\pi }}{{18}} + {\text{cos}}\frac{{7\pi }}{{18}} + {\text{cos}}\frac{{17\pi }}{{18}} = 0"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>     <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi><mo> </mo><mo>\</mo><mo> </mo><mfenced open="{" close="}"><mi>k</mi></mfenced></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mn>2</mn></msup><mo>≠</mo><mn>5</mn></math>.&nbsp;</p>
</div>

<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation of the vertical asymptote on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation of the horizontal asymptote on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an algebraic method to determine whether <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is a self-inverse function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, stating clearly the equations of any asymptotes and the coordinates of any points of intersections with the coordinate axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region bounded by the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>7</mn></math> is rotated through <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi mathvariant="normal">π</mi></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. Find the volume of the solid generated, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>)</mo><mo> </mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>      <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>k</mi></math>      <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfrac></mstyle></mfenced><mo>-</mo><mn>5</mn></mrow><mrow><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfrac></mstyle></mfenced><mo>-</mo><mi>k</mi></mrow></mfrac></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi>k</mi><mfenced><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mo>-</mo><mn>5</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfenced></mrow><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn><mo>-</mo><mi>k</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfenced></mrow></mfrac></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mi>k</mi><mn>2</mn></msup><mi>x</mi><mo>-</mo><mn>5</mn><mi>k</mi><mo>-</mo><mn>5</mn><mi>x</mi><mo>+</mo><mn>5</mn><mi>k</mi></mrow><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn><mo>-</mo><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>k</mi><mn>2</mn></msup></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mi>k</mi><mn>2</mn></msup><mi>x</mi><mo>-</mo><mn>5</mn><mi>x</mi></mrow><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn></mrow></mfrac></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi>x</mi><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn></mrow></mfenced></mrow><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mn>5</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi></math> , (hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is self-inverse)        <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> The statement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>=</mo><mi>x</mi></math> could be seen anywhere in the candidate’s working to award <em><strong>R1</strong></em>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>k</mi><mi>y</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>y</mi><mo>-</mo><mi>k</mi></mrow></mfrac></math>        <em><strong>M1</strong></em></p>
<p><strong><br>Note:</strong> Interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> can be done at any stage.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced><mrow><mi>y</mi><mo>-</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mi>k</mi><mi>y</mi><mo>-</mo><mn>5</mn></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>-</mo><mi>x</mi><mi>k</mi><mo>=</mo><mi>k</mi><mi>y</mi><mo>-</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>-</mo><mi>k</mi><mi>y</mi><mo>=</mo><mi>x</mi><mi>k</mi><mo>-</mo><mn>5</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mfenced><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfrac></math>  (hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is self-inverse)        <em><strong>R1</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>attempt to draw both branches of a rectangular hyperbola        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>3</mn></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mfrac><mn>5</mn><mn>3</mn></mfrac></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>5</mn><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>        <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>volume</mtext><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>5</mn><mn>7</mn></msubsup><msup><mfenced><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></mfenced><mn>2</mn></msup><mi mathvariant="normal">d</mi><mi>x</mi></math>       <em><strong>(M1)</strong></em></p>
<p><strong>EITHER</strong></p>
<p>attempt to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mfrac><mi>q</mi><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>       <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>=</mo><mn>3</mn><mo>+</mo><mfrac><mn>4</mn><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>       <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></mfenced><mn>2</mn></msup></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup></math> and divide out       <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mn>9</mn><mo>+</mo><mfrac><mrow><mn>24</mn><mi>x</mi><mo>-</mo><mn>56</mn></mrow><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>       <em><strong>A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mn>9</mn><mo>+</mo><mfrac><mn>24</mn><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>16</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>       <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>volume</mtext><mo>=</mo><mi mathvariant="normal">π</mi><munderover><mo>∫</mo><mn>5</mn><mn>7</mn></munderover><mfenced><mrow><mn>9</mn><mo>+</mo><mfrac><mn>24</mn><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mn>16</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup></mfrac></mrow></mfenced><mo> </mo><mtext>d</mtext><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mn>9</mn><mi>x</mi><mo>+</mo><mn>24</mn><mo> </mo><mi>ln</mi><mo> </mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mfrac><mn>16</mn><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></mrow></mfenced><mn>5</mn><mn>7</mn></msubsup></math>       <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><mfenced open="⌊" close="⌋"><mrow><mfenced><mrow><mn>63</mn><mo>+</mo><mn>24</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>4</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mn>45</mn><mo>+</mo><mn>24</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>-</mo><mn>8</mn></mrow></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mn>22</mn><mo>+</mo><mn>24</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math>       <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>volume</mtext><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>5</mn><mn>7</mn></msubsup><msup><mfenced><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></mfenced><mn>2</mn></msup><mi mathvariant="normal">d</mi><mi>x</mi></math>       <em><strong>(M1)</strong></em></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>3</mn><mo>⇒</mo><mfrac><mrow><mtext>d</mtext><mi>u</mi></mrow><mrow><mtext>d</mtext><mi>x</mi></mrow></mfrac><mo>=</mo><mn>1</mn></math>       <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mn>5</mn><mo>=</mo><mn>3</mn><mfenced><mrow><mi>u</mi><mo>+</mo><mn>3</mn></mrow></mfenced><mo>-</mo><mn>5</mn><mo>=</mo><mn>3</mn><mi>u</mi><mo>+</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>volume</mtext><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>2</mn><mn>4</mn></msubsup><msup><mfenced><mfrac><mrow><mn>3</mn><mi>u</mi><mo>+</mo><mn>4</mn></mrow><mi>u</mi></mfrac></mfenced><mn>2</mn></msup><mtext>d</mtext><mi>u</mi></math>       <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mo>∫</mo><mn>2</mn><mn>4</mn></msubsup><mn>9</mn><mo>+</mo><mfrac><mn>16</mn><msup><mi>u</mi><mn mathvariant="italic">2</mn></msup></mfrac><mo>+</mo><mfrac><mn>24</mn><mi>u</mi></mfrac><mo> </mo><mtext>d</mtext><mi>u</mi></math>       <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><msubsup><mfenced open="[" close="]"><mrow><mn>9</mn><mi>u</mi><mo>-</mo><mfrac><mn>16</mn><mi>u</mi></mfrac><mo>+</mo><mn>24</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>u</mi></mrow></mfenced><mn>2</mn><mn>4</mn></msubsup></math>       <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Ignore absence of or incorrect limits seen up to this point.</p>
<p><em><strong><br></strong></em><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi mathvariant="normal">π</mi><mfenced><mrow><mn>22</mn><mo>+</mo><mn>24</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn></mrow></mfenced></math><em><strong>       A1<br></strong></em></p>
<p><em><strong><br></strong></em><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></math>&nbsp;, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mi>b</mi><mo>,</mo><mo>&nbsp;</mo><mi>c</mi><mo>,</mo><mo>&nbsp;</mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.&nbsp;</p>
</div>

<div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>8</mn></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> may be obtained by transforming the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup></math> using a&nbsp;sequence of three transformations.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> does not exist, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>3</mn><mi>a</mi><mi>c</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> exists.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>(</mo><mi>x</mi><mo>−</mo><mn>2</mn><msup><mo>)</mo><mn>3</mn></msup><mo>+</mo><mi>q</mi></math> , where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State each of the transformations in the order in which they are applied.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math> on the same set of axes, indicating the points where each graph crosses the coordinate axes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>        <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> does not exist, there must be two turning points       <em><strong>R1</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> has more than one solution)</p>
<p>using the discriminant <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>&gt;</mo><mn>0</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>a</mi><mi>c</mi><mo>&gt;</mo><mn>0</mn></math>        <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>a</mi><mi>c</mi><mo>&gt;</mo><mn>0</mn></math>        <em><strong>AG</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>a</mi><mi>c</mi><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>3</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>3</mn><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mo>-</mo><mn>9</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math>        <em><strong>A1</strong></em></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> exists        <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>6</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>×</mo><mn>6</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Δ</mi><mo>=</mo><mn>36</mn><mo>-</mo><mn>36</mn><mo>=</mo><mn>0</mn><mo>⇒</mo></math> there is (only) one point with gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and this must be a point of inflexion (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced></math> is a cubic.)       <em><strong>R1</strong></em></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> exists        <em><strong>AG</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mn>3</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi><mo>-</mo><mn>8</mn></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>12</mn><mi>x</mi><mo>-</mo><mn>8</mn></mrow></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>4</mn><mo>⇒</mo><mi>q</mi><mo>=</mo><mo>-</mo><mn>4</mn></math>        <em><strong>A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mn>4</mn></math>          <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> can be done at any stage.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>=</mo><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mn>3</mn></msup></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mroot><mrow><mn>2</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow><mn>3</mn></mroot><mo>=</mo><mi>y</mi><mo>-</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mroot><mrow><mn>2</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow><mn>3</mn></mroot><mo>+</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mroot><mrow><mn>2</mn><mfenced><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow><mn>3</mn></mroot><mo>+</mo><mn>2</mn></math>        <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>…</mo></math> must be seen for the final <em><strong>A</strong></em> mark.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>translation through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced></math>,          <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> This can be seen anywhere.</p>
<p><br><strong>EITHER<br></strong>a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> parallel to the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis then a translation through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr></mtable></mfenced></math>          <em><strong>A2<br></strong></em><strong>OR<br></strong>a translation through <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>8</mn></mtd></mtr></mtable></mfenced></math> then a stretch scale factor <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> parallel to the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis          <em><strong>A2</strong></em></p>
<p><strong><br>Note:</strong> Accept ‘shift’ for translation, but do not accept ‘move’. Accept ‘scaling’ for ‘stretch’.</p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">        <em><strong>A1A1A1M1A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for correct ‘shape’ of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> (allow non-stationary point of inflexion)<br>Award <em><strong>A1</strong></em> for each correct intercept of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math><br>Award <em><strong>M1</strong></em> for attempt to reflect their graph in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>, <em><strong>A1</strong></em> for completely correct <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> including intercepts</p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mi>p</mi><mo>&#8202;</mo><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mo>&#8230;</mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#62;</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>p</mi><mo>&#8800;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>Consider the case where the series is geometric.</p>
</div>

<div class="specification">
<p>Now consider the case where the series is arithmetic with common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, show that the series is convergent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&gt;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the series is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup></mfrac></mfenced></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;">attempt to use a ratio from consecutive terms        <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced><msup><mi>r</mi><mn>2</mn></msup></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mfenced><mfrac><mn>1</mn><mrow><mn>3</mn><mi>p</mi></mrow></mfrac></mfenced></math></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Candidates may use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><msup><mi>x</mi><mn>1</mn></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mi>p</mi></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup><mo>+</mo><mo>…</mo></math> and consider the powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in geometric sequence</p>
<p style="text-align:left;">Award <em><strong>M1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>p</mi><mn>1</mn></mfrac><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mi>p</mi></mfrac></math>.</p>
<p style="text-align:left;"><strong><br>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mi>p</mi></math>  and  <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>        <em><strong>M1</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>Note:</strong> Award <em><strong>M0A0</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> with no other working seen.</p>
<p style="text-align:left;"> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;">since, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi>p</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac><mo>&lt;</mo><mn>1</mn></math>          <em><strong>R1</strong></em></p>
<p style="text-align:left;"><br><strong>OR</strong></p>
<p style="text-align:left;">since, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi>p</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></math>          <em><strong>R1</strong></em></p>
<p style="text-align:left;"><br><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo></math> the geometric series converges.          <em><strong>AG</strong></em></p>
<p style="text-align:left;"><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.<br>Award <em><strong>R0</strong> </em>if both values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> not considered.</p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></mstyle></mrow></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mo>-</mo><mfrac><mn>3</mn><msqrt><mn>3</mn></msqrt></mfrac><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mfrac><msqrt><mn>3</mn></msqrt><msqrt><mn>3</mn></msqrt></mfrac></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mn>1</mn><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>2</mn></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mtext>e</mtext><mn>2</mn></msup></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;">attempt to find a difference from consecutive terms or from <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;">correct equation          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mfenced><mrow><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math></p>
<p style="text-align:left;"><strong><br>Note:</strong> Candidates may use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><msup><mi>x</mi><mn>1</mn></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mi>p</mi></msup><mo>+</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup><mo>+</mo><mo>…</mo></math> and consider the powers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in arithmetic sequence.</p>
<p style="text-align:left;">Award <em><strong>M1A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>-</mo><mn>1</mn><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>-</mo><mi>p</mi></math></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>p</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;">attempt to use arithmetic mean <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub><mo>=</mo><mfrac><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>3</mn></msub></mrow><mn>2</mn></mfrac></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>3</mn></mfrac></mstyle><mi>ln</mi><mo> </mo><mi>x</mi></mrow><mn>2</mn></mfrac></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mn>2</mn><mi>p</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 3</strong></p>
<p style="text-align:left;">attempt to find difference using <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>3</mn></msub></math>          <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>2</mn><mi>d</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>⇒</mo><mi>d</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>          <em><strong>AG</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>       <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced open="⌊" close="⌋"><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow></mfenced></math></p>
<p style="text-align:left;">attempt to substitute into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> and equate to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup></mfrac></mfenced></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced open="⌊" close="⌋"><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>ln</mi><mfenced><mfrac><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup></mfrac></mfenced></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup></mfrac></mfenced><mo>=</mo><mo>-</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mn>3</mn></msup><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;">correct working with <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> (seen anywhere)           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced open="⌊" close="⌋"><mrow><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mi>n</mi><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>6</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfenced><mfrac><mrow><mn>4</mn><mo>-</mo><mi>n</mi></mrow><mn>3</mn></mfrac></mfenced><mi>ln</mi><mo> </mo><mi>x</mi></mrow></mfenced></math></p>
<p style="text-align:left;">correct equation without <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mi>n</mi><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>-</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>6</mn></mfrac><mo>=</mo><mo>-</mo><mn>3</mn></math> or equivalent</p>
<p style="text-align:left;"><strong><br>Note:</strong> Award as above if the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mi>p</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>+</mo><mo>…</mo></math> is considered leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mfrac><mn>7</mn><mn>3</mn></mfrac><mo>-</mo><mfrac><mi>n</mi><mn>3</mn></mfrac></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn></math>.</p>
<p style="text-align:left;"><br>attempt to form a quadratic <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math>           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>7</mn><mi>n</mi><mo>-</mo><mn>18</mn><mo>=</mo><mn>0</mn></math></p>
<p style="text-align:left;">attempt to solve their quadratic           <em><strong>(M1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>-</mo><mn>9</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>9</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup></mfrac></mfenced><mo>=</mo><mo>-</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mn>3</mn></msup><mfenced><mrow><mo>=</mo><mi>ln</mi><mo> </mo><msup><mi>x</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfenced></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;">listing the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> terms of the sequence           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mn>0</mn><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mo>…</mo></math></p>
<p style="text-align:left;">recognizing first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> terms sum to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math>           <em><strong>M1</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math><sup>th</sup> term is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math><sup>th</sup> term is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>5</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;">sum of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math><sup>th</sup> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math><sup>th</sup> term <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>           <em><strong>(A1)</strong></em></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>9</mn></math>          <em><strong>A1</strong></em></p>
<p style="text-align:left;"> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a)(i) was well done with few candidates incorrectly using the value of <em>p</em> to verify rather than to 'show' the given result. In part (a)(ii) most did not consider both values of <em>r</em> and some did know the condition for convergence of a geometric series. Part (a)(iii) was generally well done but some had difficulty in simplifying the surd. Part (b) (i) and (ii) was generally well done. Although many completely correct answers to part b (iii) were noted, weaker candidates often made errors in properties of logarithms or algebraic manipulation leading to an incorrect quadratic equation.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="question">
<p>The cubic equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>k</mi><mo>=</mo><mn>0</mn></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;has roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo>&nbsp;</mo><mi>β</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi></math>.</p>
<p>Given that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi><mo>=</mo><mo>-</mo><mfrac><msup><mi>k</mi><mn>2</mn></msup><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mi>k</mi></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mfrac><mi>k</mi><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mi>k</mi></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mfrac><msup><mi>k</mi><mn>2</mn></msup><mn>4</mn></mfrac></mrow></mfenced><mfenced><mfrac><mi>k</mi><mn>2</mn></mfrac></mfenced><mo>=</mo><mo>-</mo><mn>3</mn><mi>k</mi><mo>&nbsp;</mo><mo>&nbsp;</mo><mfenced><mrow><mo>-</mo><mfrac><msup><mi>k</mi><mn>3</mn></msup><mn>8</mn></mfrac><mo>=</mo><mo>-</mo><mn>3</mn><mi>k</mi></mrow></mfenced></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></p>
<p>attempting to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><msup><mi>k</mi><mn>3</mn></msup><mn>8</mn></mfrac><mo>+</mo><mn>3</mn><mi>k</mi><mo>=</mo><mn>0</mn></math>&nbsp;(or equivalent) for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>2</mn><msqrt><mn>6</mn></msqrt><mo>&nbsp;</mo><mfenced><mrow><mo>=</mo><msqrt><mn>24</mn></msqrt></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>&gt;</mo><mn>0</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>±</mo><mn>2</mn><msqrt><mn>6</mn></msqrt><mo>&nbsp;</mo><mfenced><mrow><mo>±</mo><msqrt><mn>24</mn></msqrt></mrow></mfenced></math>.</p>
<p>&nbsp;</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mo>−<!-- − --></mo>
      <mn>3</mn>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>5</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{2^a},\,b \times {2^{ - 3a}}} \right)"> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mi>a</mi> </msup> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mi>b</mi> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>3</mn> <mi>a</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> where <em>a</em>, <em>b</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Q}"> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Q</mi> </mrow> </math></span>. Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate     <em><strong> (M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) =  - 3{x^{ - 4}} - 3x"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> <mo>−</mo> <mn>3</mn> <mi>x</mi> </math></span>     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for using quotient or product rule award <em><strong>A1</strong> </em>if correct derivative seen even in unsimplified form, for example <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{ - 15{x^4} \times 2{x^3} - 6{x^2}\left( {2 - 3{x^5}} \right)}}{{{{\left( {2{x^3}} \right)}^2}}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>15</mn> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>×</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>6</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>−</mo> <mn>3</mn> <mrow> <msup> <mi>x</mi> <mn>5</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{{{x^4}}} - 3x = 0"> <mo>−</mo> <mfrac> <mn>3</mn> <mrow> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> </mrow> </mfrac> <mo>−</mo> <mn>3</mn> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {x^5} =  - 1 \Rightarrow x =  - 1"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>x</mi> <mn>5</mn> </msup> </mrow> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( { - 1,\, - \frac{5}{2}} \right)"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 0"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right) = 12{x^{ - 5}} - 3\left( { = 0} \right)"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>12</mn> <mrow> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> <mo>−</mo> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct derivative seen even if not simplified.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)"> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mroot> <mn>4</mn> <mn>5</mn> </mroot> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>A1</strong></em></p>
<p>hence (at most) one point of inflexion      <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> This mark is independent of the two <em><strong>A1</strong> </em>marks above. If they have shown or stated their equation has only one solution this mark can be awarded.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f''\left( x \right)"> <msup> <mi>f</mi> <mo>″</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> changes sign at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)"> <mi>x</mi> <mo>=</mo> <mroot> <mn>4</mn> <mn>5</mn> </mroot> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>R1</strong></em></p>
<p>so exactly one point of inflexion</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \sqrt[5]{4} = {2^{\frac{2}{5}}}\left( { \Rightarrow a = \frac{2}{5}} \right)"> <mi>x</mi> <mo>=</mo> <mroot> <mn>4</mn> <mn>5</mn> </mroot> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">⇒</mo> <mi>a</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {{2^{\frac{2}{5}}}} \right) = \frac{{2 - 3 \times {2^2}}}{{2 \times {2^{\frac{6}{5}}}}} =  - 5 \times {2^{ - \frac{6}{5}}}\left( { \Rightarrow b =  - 5} \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>−</mo> <mn>3</mn> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>2</mn> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>6</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> </mrow> </mfrac> <mo>=</mo> <mo>−</mo> <mn>5</mn> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mfrac> <mn>6</mn> <mn>5</mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">⇒</mo> <mi>b</mi> <mo>=</mo> <mo>−</mo> <mn>5</mn> </mrow> <mo>)</mo> </mrow> </math></span>     <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for the substitution of their value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> into <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for shape for <em>x</em> &lt; 0<br><em><strong>A1 </strong></em>for shape for <em>x</em> &gt; 0<br><em><strong>A1 </strong></em>for maximum at A<br><em><strong>A1 </strong></em>for POI at B.</p>
<p><strong>Note:</strong> Only award last two <em><strong>A1</strong></em>s if A and B are placed in the correct quadrants, allowing for follow through.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>a</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a positive constant.</p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = x\sqrt {f(x)} ">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>x</mi>
  <msqrt>
    <mi>f</mi>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo stretchy="false">)</mo>
  </msqrt>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| x \right| > a">
  <mrow>
    <mo>|</mo>
    <mi>x</mi>
    <mo>|</mo>
  </mrow>
  <mo>&gt;</mo>
  <mi>a</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{f(x)}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span>;</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| {\frac{1}{{f(x)}}} \right|"> <mi>y</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f(x)\cos x{\text{d}}x} "> <mo>∫</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> is an increasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.15.01.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M"></p>
<p><strong><em>A1 </em></strong>for correct shape</p>
<p><strong><em>A1 </em></strong>for correct <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts and minimum point</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.17.28.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M"></p>
<p><strong><em>A1 </em></strong>for correct shape</p>
<p><strong><em>A1 </em></strong>for correct vertical asymptotes</p>
<p><strong><em>A1 </em></strong>for correct implied horizontal asymptote</p>
<p><strong><em>A1 </em></strong>for correct maximum point</p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.20.22.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M"></p>
<p><strong><em>A1 </em></strong>for reflecting negative branch from (ii) in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis</p>
<p><strong><em>A1 </em></strong>for correctly labelled minimum point</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt at integration by parts     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x - \int {2x\sin x{\text{d}}x} } "> <mo>∫</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mn>2</mn> <mi>x</mi> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </math></span>     <strong><em>A1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ({x^2} - {a^2})\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]"> <mo>=</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mo>∫</mo> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> <mo>]</mo> </mrow> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ({x^2} - {a^2})\sin x + 2x\cos - 2\sin x + c"> <mo>=</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>−</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> </math></span>     <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {({x^2} - {a^2})\cos x{\text{d}}x = \int {{x^2}\cos x{\text{d}}x - \int {{a^2}\cos x{\text{d}}x} } } "> <mo>∫</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </mrow> </math></span></p>
<p>attempt at integration by parts     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{x^2}\cos x{\text{d}}x = {x^2}\sin x - \int {2x\sin x{\text{d}}x} } "> <mo>∫</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>−</mo> <mo>∫</mo> <mrow> <mn>2</mn> <mi>x</mi> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> </math></span>     <strong><em>A1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^2}\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]"> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mrow> <mo>[</mo> <mrow> <mo>−</mo> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mo>∫</mo> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </mrow> <mo>]</mo> </mrow> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^2}\sin x + 2x\cos x - 2\sin x"> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \int {{a^2}\cos x{\text{d}}x = - {a^2}\sin x} "> <mo>−</mo> <mo>∫</mo> <mrow> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x + 2x\cos x - 2\sin x + c} "> <mo>∫</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = x{({x^2} - {a^2})^{\frac{1}{2}}}"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msup> <mo stretchy="false">)</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + \frac{1}{2}x{({x^2} - {a^2})^{ - \frac{1}{2}}}(2x)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msup> <mo stretchy="false">)</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msup> <mo stretchy="false">)</mo> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>     <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Method mark is for differentiating the product. Award <strong><em>A1 </em></strong>for each correct term.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + {x^2}{({x^2} - {a^2})^{ - \frac{1}{2}}}"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msup> <mo stretchy="false">)</mo> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>+</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <msup> <mo stretchy="false">)</mo> <mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span></p>
<p>both parts of the expression are positive hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> is positive     <strong><em>R1</em></strong></p>
<p>and therefore <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> is an increasing function (for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| x \right| &gt; a"> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mo>&gt;</mo> <mi>a</mi> </math></span>)     <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{1 - 3x}}{{x - 2}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span>, showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.</p>
<p><img src="images/Schermafbeelding_2018-02-07_om_17.42.06.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src="images/Schermafbeelding_2018-02-07_om_17.44.18.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a/M"></p>
<p>correct vertical asymptote     <strong><em>A1</em></strong></p>
<p>shape including correct horizontal asymptote     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{1}{3},{\text{ }}0} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,{\text{ }} - \frac{1}{2}} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{3}"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - \frac{1}{2}"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span> marked on the axes.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>Write down the equation of</p>
</div>

<div class="specification">
<p>Find the coordinates where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> crosses</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the vertical asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the horizontal asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the axes below.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>, determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>   (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></mfenced></math>   (accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>0</mn></mfenced><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></math>)                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">                <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong></em> for completely correct shape: two branches in correct quadrants with asymptotic behaviour.</p>
<p> </p>
<p><em><strong>[</strong></em><em><strong>1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo></mrow></mfenced><mi>y</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math></p>
<p>attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>                <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong> exchange <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> and attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>y</mi><mo>-</mo><mi>x</mi><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></math>                <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>x</mi><mi>y</mi><mo>=</mo><mn>3</mn><mi>y</mi><mo>-</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced><mrow><mi>a</mi><mo>+</mo><mi>y</mi></mrow></mfenced><mo>=</mo><mn>3</mn><mi>y</mi><mo>-</mo><mn>4</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi>y</mi><mo>-</mo><mn>4</mn></mrow><mrow><mi>y</mi><mo>+</mo><mi>a</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>4</mn></mrow><mrow><mi>x</mi><mo>+</mo><mi>a</mi></mrow></mfrac></math>                <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Condone use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo></math></p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>≡</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac><mo>≡</mo><mfrac><mrow><mn>3</mn><mi>x</mi><mo>-</mo><mn>4</mn></mrow><mrow><mi>x</mi><mo>+</mo><mi>a</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math></p>
<p>attempt to find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></math> and equate to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>a</mi><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></mstyle></mfenced><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mfenced><mstyle displaystyle="true"><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></mstyle></mfenced></mrow></mfrac><mo>=</mo><mi>x</mi></math>                <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mn>4</mn><mfenced><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mfenced><mrow><mn>9</mn><mo>-</mo><mn>3</mn><mi>x</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo>=</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>a</mi><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mn>4</mn><mfenced><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfenced></mrow><mrow><mn>5</mn><mo>-</mo><mfenced><mrow><mn>3</mn><mo>+</mo><mi>a</mi></mrow></mfenced><mi>x</mi></mrow></mfrac><mo>=</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mfenced><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfenced><mo>+</mo><mn>4</mn><mfenced><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mi>x</mi><mfenced><mrow><mn>5</mn><mo>-</mo><mfenced><mrow><mn>3</mn><mo>+</mo><mi>a</mi></mrow></mfenced><mi>x</mi></mrow></mfenced></math>                <em><strong>A1</strong></em></p>
<p>equating coefficients of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math>  (or similar)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>3</mn></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{x^2} - 10x + 5}}{{x + 1}}{\text{,}}\,\,x \in \mathbb{R}{\text{,}}\,\,x \ne&nbsp; - 1">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−<!-- − --></mo>
      <mn>10</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>5</mn>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the co-ordinates of all stationary points.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With justification, state if each stationary point is a minimum, maximum or horizontal point of inflection.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{\left( {2x - 10} \right)\left( {x + 1} \right) - \left( {{x^2} - 10x + 5} \right)1}}{{{{\left( {x + 1} \right)}^2}}}">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>2</mn>
          <mi>x</mi>
          <mo>−</mo>
          <mn>10</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mn>1</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>−</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <msup>
              <mi>x</mi>
              <mn>2</mn>
            </msup>
          </mrow>
          <mo>−</mo>
          <mn>10</mn>
          <mi>x</mi>
          <mo>+</mo>
          <mn>5</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mi>x</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>         <em><strong> M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0 \Rightarrow {x^2} + 2x - 15 = 0 \Rightarrow \left( {x + 5} \right)\left( {x - 3} \right) = 0">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>15</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>5</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span>         <em><strong> M1</strong></em></p>
<p>Stationary points are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 5{\text{,}}\,\, - 20} \right)\,\,{\text{and}}\,\,\left( {3{\text{,}}\,\, - 4} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>5</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mn>20</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>and</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mn>4</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>         <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span>        <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Looking at the nature table</p>
<p><img src="">        <em><strong>M1</strong><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 5{\text{,}}\, - 20} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−</mo>
      <mn>5</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mn>20</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> is a max and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {3{\text{,}}\, - 4} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mo>−</mo>
      <mn>4</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> is a min         <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{ln}}\left| x \right|">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>|</mo>
    <mi>x</mi>
    <mo>|</mo>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ 0 \right\}">
  <mrow>
    <mo>{</mo>
    <mn>0</mn>
    <mo>}</mo>
  </mrow>
</math></span>, and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {\text{ln}}\left| {x + k} \right|">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>|</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mi>k</mi>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ { - k} \right\}">
  <mrow>
    <mo>{</mo>
    <mrow>
      <mo>−<!-- − --></mo>
      <mi>k</mi>
    </mrow>
    <mo>}</mo>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k > 2">
  <mi>k</mi>
  <mo>&gt;</mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> intersect at the point P .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the transformation by which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is transformed to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> on the same axes, clearly stating the points of intersection with any axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p>translation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> units to the left (or equivalent)     <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>range is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g\left( x \right) \in } \right)\mathbb{R}"> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>∈</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct shape of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>       <em><strong>A1</strong></em></p>
<p>their <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> translated <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> units to left (possibly shown by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> </math></span> marked on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis)       <em><strong>A1</strong></em></p>
<p>asymptote included and marked as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>1</mn> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - k + 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> intersects <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{ln}}\,k"> <mi>y</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>k</mi> </math></span>       <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not penalise candidates if their graphs “cross” as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to  \pm \infty "> <mi>x</mi> <mo stretchy="false">→</mo> <mo>±</mo> <mi mathvariant="normal">∞</mi> </math></span>.</p>
<p><strong>Note:</strong> Do not award <em><strong>FT</strong> </em>marks from the candidate’s part (a) to part (c).</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at P  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {x + k} \right) = {\text{ln}}\left( { - x} \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mi>k</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>attempt to solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + k =  - x"> <mi>x</mi> <mo>+</mo> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mi>x</mi> </math></span> (or equivalent)       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - \frac{k}{2} \Rightarrow y = {\text{ln}}\left( {\frac{k}{2}} \right)\,\,"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo stretchy="false">⇒</mo> <mi>y</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> </math></span>  (or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\text{ln}}\left| {\frac{k}{2}} \right|"> <mi>y</mi> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </math></span>)       <em><strong>A1</strong></em></p>
<p>P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{k}{2},\,\,{\text{ln}}\frac{k}{2}} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>  (or P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{k}{2},\,\,{\text{ln}}\left| {\frac{k}{2}} \right|} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>|</mo> <mrow> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>)</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="specification">
<p>The region <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> is bounded by the curve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, the&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the lines&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mn>6</mn></msqrt></math>. Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>&nbsp;be the area of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>.</p>
</div>

<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math> divides <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> into two regions of equal area.</p>
</div>

<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> be the gradient of a tangent to the curve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>6</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the maximum value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>27</mn><mn>32</mn></mfrac><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p style="text-align:center;"><img src=""></p>
<p>a curve symmetrical about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis with correct concavity that has a local maximum point on the positive <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>a curve clearly showing that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>→</mo><mn>0</mn></math>&nbsp;as&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>→</mo><mo>±</mo><mo>∞</mo></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>horizontal asymptote <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p>&nbsp;</p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">attempts to find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mi mathvariant="normal">d</mi><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="[" close="]"><mrow><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mi>arctan</mi><mfrac><mi>x</mi><msqrt><mn>2</mn></msqrt></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Award <strong>M1A0</strong> for obtaining&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><mi>k</mi><mo>&nbsp;</mo><mi>arctan</mi><mfrac><mi>x</mi><msqrt><mn>2</mn></msqrt></mfrac></mrow></mfenced></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>≠</mo><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac></math>.</p>
<p style="text-align:left;"><strong>Note:</strong> Condone the absence of or use of incorrect limits to this stage.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mfenced><mrow><mi>arctan</mi><mo> </mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mi>arctan</mi><mo> </mo><mn>0</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mo>×</mo><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><msqrt><mn>2</mn></msqrt></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;"><strong>METHOD 1</strong></p>
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mi>k</mi></munderover><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle></mrow><mn>4</mn></mfrac></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>k</mi><msqrt><mn>6</mn></msqrt></munderover><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mstyle displaystyle="true"><mi mathvariant="normal">π</mi></mstyle></mrow><mn>4</mn></mfrac></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mfenced><mrow><mi>arctan</mi><mo> </mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>arctan</mi><mo> </mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>THEN</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><msqrt><mn>6</mn></msqrt><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>METHOD 2</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mi>k</mi></munderover><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mi mathvariant="normal">d</mi><mi>x</mi><mo>=</mo><munderover><mo>∫</mo><mi>k</mi><msqrt><mn>6</mn></msqrt></munderover><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mi mathvariant="normal">d</mi><mi>x</mi></math></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mfrac><mn>3</mn><msqrt><mn>2</mn></msqrt></mfrac><mfenced><mrow><mi>arctan</mi><mo> </mo><msqrt><mn>3</mn></msqrt><mo>-</mo><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>arctan</mi><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>k</mi><msqrt><mn>2</mn></msqrt></mfrac><mo>=</mo><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><msqrt><mn>6</mn></msqrt><mn>3</mn></mfrac><mfenced><mrow><mo>=</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">attempts to find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mo>d</mo><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mfenced><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mn>3</mn></mfenced><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>6</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp; <strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[2 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">attempts product rule or quotient rule differentiation&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><strong>EITHER</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>m</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfenced><mrow><mo>-</mo><mn>6</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>+</mo><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mrow><mo>-</mo><mn>2</mn></mrow></msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><strong>OR</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>m</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup><mfenced><mrow><mo>-</mo><mn>6</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mo>-</mo><mn>6</mn><mi>x</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>4</mn></msup></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Award <strong>A0</strong> if the denominator is incorrect. Subsequent marks can be awarded.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>THEN</strong></p>
<p style="text-align:left;">attempts to express their <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>m</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac></math> as a rational fraction with a factorized numerator&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>m</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>4</mn></msup></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>6</mn><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>3</mn></msup></mfrac></mrow></mfenced></math></p>
<p style="text-align:left;">attempts to solve their&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>m</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>±</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">from the curve, the maximum value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>&nbsp;occurs at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>R1</strong></p>
<p style="text-align:left;">(the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></math>)</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Award <strong>R1</strong> for any equivalent valid reasoning.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;">maximum value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mn>6</mn><mfenced><mrow><mo>-</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></mrow></mfenced></mrow><mstyle displaystyle="true"><msup><mfenced><mrow><mstyle displaystyle="true"><msup><mfenced><mrow><mo>-</mo><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></mrow></mfenced><mn>2</mn></msup></mstyle><mstyle displaystyle="true"><mo>+</mo></mstyle><mstyle displaystyle="true"><mn>2</mn></mstyle></mrow></mfenced><mn>2</mn></msup></mstyle></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">leading to a maximum value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>27</mn><mn>32</mn></mfrac><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[7 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{x}{2} + 1"> <mi>y</mi> <mo>=</mo> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| {x - 2} \right|"> <mi>y</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>|</mo> </mrow> </math></span> on the following axes.</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""></p>
<p>straight line graph with correct axis intercepts      <em><strong>A1</strong></em></p>
<p>modulus graph: V shape in upper half plane      <em><strong>A1</strong></em></p>
<p>modulus graph having correct vertex and <em>y</em>-intercept      <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#62;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>The inverse of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfrac><mi>x</mi><mn>2</mn></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p>Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mfrac><mi>q</mi><mn>2</mn></mfrac><msqrt><mi>r</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><img src=""></strong></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Accept an indication of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></math> on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<p><br>vertical asymptotes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>          <em><strong>A1</strong></em></p>
<p>horizontal asymptote <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>          <em><strong>A1</strong></em></p>
<p>uses a valid method to find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the local maximum point          <em><strong>(M1)</strong></em></p>
<p><strong><br>Note:</strong> For example, uses the axis of symmetry or attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<p><br>local maximum point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>,</mo><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>(M1)A0</strong></em> for a local maximum point at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> and coordinates not given.</p>
<p><br>three correct branches with correct asymptotic behaviour and the key features in approximately correct relative positions to each other          <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>           <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong> </em>for interchanging <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> (this can be done at a later stage).</p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>attempts to complete the square           <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>y</mi><mo>-</mo><mn>3</mn><mo>=</mo><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>=</mo><mfrac><mn>1</mn><mi>x</mi></mfrac><mfenced><mrow><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>4</mn><mo>+</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></mrow></mfenced></math>          <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>1</mn><mo>=</mo><mo>±</mo><msqrt><mn>4</mn><mo>+</mo><mfrac><mn>1</mn><mi>x</mi></mfrac></msqrt><mo> </mo><mfenced><mrow><mo>=</mo><mo>±</mo><msqrt><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mi>x</mi></mfrac></msqrt></mrow></mfenced></math></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mi>y</mi><mo>-</mo><mn>3</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mfenced><mrow><mn>3</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></msqrt></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math>         <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award <em><strong>A1</strong> </em>even if <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> (in <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo></math>) is missing</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>±</mo><msqrt><mn>16</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi></msqrt></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn><mo>±</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>&gt;</mo><mn>3</mn></math> and hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>-</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math> is rejected                <em><strong>R1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for concluding that the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> must have the ‘<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo></math>’ sign.<br>The <em><strong>R1</strong> </em>may be awarded earlier for using the condition <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>3</mn></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>         <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced></math>          <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac></mfenced></mrow></mfenced></math>          <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow><mn>2</mn></mfrac></mfenced><mi mathvariant="normal">=</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo> </mo><mo> </mo><mo> </mo><mfenced><mrow><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><mfenced><mrow><msup><mi mathvariant="normal">a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi mathvariant="normal">a</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfrac></mfenced><mi mathvariant="normal">=</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p>attempts to solve for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><mn>2</mn><mo> </mo><mo> </mo><mfenced><mrow><mfrac><mn>1</mn><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mfrac><mo>=</mo><mn>2</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>a</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>2</mn></mfenced></math>         <em><strong>A1</strong></em></p>
<p>attempts to find their <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mn>2</mn></mfenced></math>         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mfenced><mn>2</mn></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn></msqrt><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award all available marks to this stage if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mo>-</mo><mn>7</mn><mo>=</mo><mn>0</mn></math>         <em><strong>A1</strong></em></p>
<p>attempts to solve their quadratic equation         <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>4</mn><mfenced><mn>2</mn></mfenced><mfenced><mn>7</mn></mfenced></msqrt></mrow><mn>4</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>4</mn><mo>±</mo><msqrt><mn>72</mn></msqrt></mrow><mn>4</mn></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award all available marks to this stage if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> is used instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><msqrt><mn>2</mn></msqrt></math>  (as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&gt;</mo><mn>3</mn></math>)         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>=</mo><mn>2</mn></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msqrt><mn>18</mn></msqrt></math>  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>q</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>r</mi><mo>=</mo><mn>18</mn></mrow></mfenced></math></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was generally well done. It was pleasing to see how often candidates presented complete sketches here. Several decided to sketch using the reciprocal function. Occasionally, candidates omitted the upper branches or forgot to calculate the <em>y</em>-coordinate of the maximum.</p>
<p>Part (b): The majority of candidates knew how to start finding the inverse, and those who attempted completing the square or using the quadratic formula to solve for y made good progress (both methods equally seen). Otherwise, they got lost in the algebra. Very few explicitly justified the rejection of the negative root.</p>
<p>Part (c) was well done in general, with some algebraic errors seen in occasions.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^{2x}} - 6{{\text{e}}^x} + 5{\text{,}}\,\,x \in \mathbb{R}{\text{,}}\,\,x \leqslant a">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>a</mi>
</math></span>. The graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has an inverse function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>, stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate and set equal to zero<em><strong>       M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 2{{\text{e}}^{2x}} - 6{{\text{e}}^x} = 2{{\text{e}}^x}\left( {{{\text{e}}^x} - 3} \right) = 0">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>e</mtext>
          </mrow>
          <mi>x</mi>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
</math></span><em><strong>       A1</strong></em></p>
<p>minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{ln}}\,3">
  <mi>x</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>3</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = {\text{ln}}\,3">
  <mi>a</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>3</mn>
</math></span><em><strong>       A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> Interchanging <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> can be done at any stage.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left( {{{\text{e}}^x} - 3} \right)^2} - 4">
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>e</mtext>
              </mrow>
              <mi>x</mi>
            </msup>
          </mrow>
          <mo>−</mo>
          <mn>3</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>4</mn>
</math></span>     <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{e}}^x} - 3 =  \pm \sqrt {y + 4} ">
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>3</mn>
  <mo>=</mo>
  <mo>±</mo>
  <msqrt>
    <mi>y</mi>
    <mo>+</mo>
    <mn>4</mn>
  </msqrt>
</math></span>     <em><strong>A1</strong></em></p>
<p>as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \leqslant {\text{ln}}\,3">
  <mi>x</mi>
  <mo>⩽</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>3</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{ln}}\left( {3 - \sqrt {y + 4} } \right)">
  <mi>x</mi>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mo>−</mo>
      <msqrt>
        <mi>y</mi>
        <mo>+</mo>
        <mn>4</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>       <strong><em>R1</em></strong></p>
<p>so <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right) = {\text{ln}}\left( {3 - \sqrt {x + 4} } \right)">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mo>−</mo>
      <msqrt>
        <mi>x</mi>
        <mo>+</mo>
        <mn>4</mn>
      </msqrt>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong>A1</strong></em></p>
<p>domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 4 \leqslant x &lt; 5">
  <mo>−</mo>
  <mn>4</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>5</mn>
</math></span>    <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <em>f</em>(<em>x</em>) = <em>x</em><sup>4</sup> + <em>px</em><sup>3</sup> + <em>qx</em> + 5 where <em>p</em>, <em>q</em> are constants.</p>
<p>The remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> + 1) is 7, and the remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> − 2) is 1. Find the value of <em>p</em> and the value of <em>q</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p>attempt to substitute <em>x</em> = −1 or <em>x</em> = 2 or to divide polynomials      <em><strong>(M1)</strong></em></p>
<p>1 − <em>p</em> − <em>q</em> + 5 = 7, 16 + 8<em>p</em> + 2<em>q</em> + 5 = 1 or equivalent      <em><strong>A1A1</strong></em></p>
<p>attempt to solve their two equations <em><strong>M1</strong></em></p>
<p><em>p</em> = −3, <em>q</em> = 2     <em><strong> A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(x) = 3{x^3} - 11{x^2} + kx + 8">
  <mi>q</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>11</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mn>8</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(x)"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> has a factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x - 4)"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−</mo> <mn>4</mn> <mo stretchy="false">)</mo> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(x)">
  <mi>q</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> as a product of linear factors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(4) = 0"> <mi>q</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="192 - 176 + 4k + 8 = 0{\text{ }}(24 + 4k = 0)"> <mn>192</mn> <mo>−</mo> <mn>176</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> <mo>+</mo> <mn>8</mn> <mo>=</mo> <mn>0</mn> <mrow> <mtext>&nbsp;</mtext> </mrow> <mo stretchy="false">(</mo> <mn>24</mn> <mo>+</mo> <mn>4</mn> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k =&nbsp; - 6"> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>6</mn> </math></span> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^3} - 11{x^2} - 6x + 8 = (x - 4)(3{x^2} + px - 2)">
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>11</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>8</mn>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>p</mi>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
<p>equate coefficients of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>:     <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 12 + p =  - 11">
  <mo>−</mo>
  <mn>12</mn>
  <mo>+</mo>
  <mi>p</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>11</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 1">
  <mi>p</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x - 4)(3{x^2} + x - 2)">
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x - 4)(3x - 2)(x + 1)">
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−</mo>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Allow part (b) marks if any of this work is seen in part (a).</p>
<p> </p>
<p><strong>Note:</strong>     Allow equivalent methods (<em>eg</em>, synthetic division) for the <strong><em>M </em></strong>marks in each part.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>1</mn></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is shown below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≤</mo><mi>y</mi><mo>≤</mo><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempts to replace <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mo>=</mo><mo>-</mo><mi>x</mi><msqrt><mn>1</mn><mo>-</mo><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></msqrt></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mi>x</mi><msqrt><mn>1</mn><mo>-</mo><msup><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced><mn>2</mn></msup></msqrt><mfenced><mrow><mo>=</mo><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M1A1</strong></em> for an attempt to calculate both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>f</mi><mfenced><mrow><mo>-</mo><mi>x</mi></mrow></mfenced></math> independently, showing that they are equal.<br><strong>Note:</strong> Award <em><strong>M1A0</strong></em> for a graphical approach including evidence that <strong>either</strong> the graph is invariant after rotation by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo>°</mo></math> about the origin <strong>or</strong> the graph is invariant after a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis and then in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis (or vice versa).</p>
<p> </p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an odd function         <em><strong>AG</strong></em></p>
<p>  </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts both product rule and chain rule differentiation to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>×</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mfenced><mrow><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><mo>×</mo><msup><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo>+</mo><msup><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><mo>×</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt><mo>-</mo><mfrac><msup><mi>x</mi><mn>2</mn></msup><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup></mrow><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></mfrac></math></p>
<p>sets their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>        <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>x</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></math>         <em><strong>A1</strong></em></p>
<p>attempts to find at least one of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mrow></mfenced></math>         <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <strong>M1</strong> for an attempt to evaluate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at least at one of their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>  roots.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>  and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>≤</mo><mi>y</mi><mo>≤</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>.</p>
<p>  </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2x + 6}}{{{x^2} + 6x + 10}}{\text{,}}\,\,x \in \mathbb{R}.">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>6</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mn>6</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>10</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>.</mo>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> has no vertical asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the horizontal asymptote. </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {f\left( x \right)} \,dx">
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>1</mn>
  </munderover>
  <mrow>
    <mi>f</mi>
    <mrow>
      <mo>(</mo>
      <mi>x</mi>
      <mo>)</mo>
    </mrow>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>d</mi>
  <mi>x</mi>
</math></span>, giving the answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,q{\text{,}}\,\,q \in \mathbb{Q}">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>q</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>q</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Q</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 6x + 10 = {x^2} + 6x + 9 + 1 = {\left( {x + 3} \right)^2} + 1">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>10</mn>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>9</mn>
  <mo>+</mo>
  <mn>1</mn>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span>      <em><strong>M1A1</strong></em></p>
<p>So the denominator is never zero and thus there are no vertical asymptotes. (or use of discriminant is negative)       <em><strong>R1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to  \pm \infty {\text{,}}\,\,f\left( x \right) \to 0">
  <mi>x</mi>
  <mo stretchy="false">→</mo>
  <mo>±</mo>
  <mi mathvariant="normal">∞</mi>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo stretchy="false">→</mo>
  <mn>0</mn>
</math></span> so the equation of the horizontal asymptote is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =0">
  <mi>y</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>   <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {\frac{{2x + 6}}{{{x^2} + 6x + 10}}} \,dx = \left[ {{\text{ln}}\left( {{x^2} + 6x + 10} \right)} \right]_0^1 = {\text{ln}}\,17 - {\text{ln}}\,10 = {\text{ln}}\,\frac{{17}}{{10}}">
  <munderover>
    <mo>∫</mo>
    <mn>0</mn>
    <mn>1</mn>
  </munderover>
  <mrow>
    <mfrac>
      <mrow>
        <mn>2</mn>
        <mi>x</mi>
        <mo>+</mo>
        <mn>6</mn>
      </mrow>
      <mrow>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>+</mo>
        <mn>6</mn>
        <mi>x</mi>
        <mo>+</mo>
        <mn>10</mn>
      </mrow>
    </mfrac>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>d</mi>
  <mi>x</mi>
  <mo>=</mo>
  <msubsup>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mrow>
          <mtext>ln</mtext>
        </mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mrow>
              <msup>
                <mi>x</mi>
                <mn>2</mn>
              </msup>
            </mrow>
            <mo>+</mo>
            <mn>6</mn>
            <mi>x</mi>
            <mo>+</mo>
            <mn>10</mn>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
      <mo>]</mo>
    </mrow>
    <mn>0</mn>
    <mn>1</mn>
  </msubsup>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>17</mn>
  <mo>−</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>10</mn>
  <mo>=</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mfrac>
    <mrow>
      <mn>17</mn>
    </mrow>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
</math></span>      <em><strong>M1A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>p</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi>p</mi></math>&nbsp;has two real, distinct roots.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the case when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>4</mn></math>. The roots of the equation can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>±</mo><msqrt><mn>13</mn></msqrt></mrow><mn>6</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use discriminant <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi><mfenced><mrow><mo>&gt;</mo><mn>0</mn></mrow></mfenced></math>                <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>2</mn><mi>p</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mrow><mn>3</mn><mi>p</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mi>p</mi></mrow></mfenced><mfenced><mrow><mo>&gt;</mo><mn>0</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>p</mi><mfenced><mrow><mo>&gt;</mo><mn>0</mn></mrow></mfenced></math>                <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mfenced><mrow><mn>4</mn><mi>p</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mfenced><mrow><mo>&gt;</mo><mn>0</mn></mrow></mfenced></math></p>
<p>attempt to find critical values <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>p</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></mfenced></math>                <em><strong>M1</strong></em></p>
<p>recognition that discriminant <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&gt;</mo><mn>0</mn></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&lt;</mo><mn>0</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&gt;</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math>                 <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Condone ‘or’ replaced with ‘and’, a comma, or no separator</p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>4</mn><mo>⇒</mo><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></math></p>
<p>valid attempt to use <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mi>b</mi><mo>±</mo><msqrt><msup><mi>b</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>a</mi><mi>c</mi></msqrt></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></math> (or equivalent)                <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>8</mn><mo>±</mo><msqrt><mn>208</mn></msqrt></mrow><mn>24</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>2</mn><mo>±</mo><msqrt><mn>13</mn></msqrt></mrow><mn>6</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>                 <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2</strong></em><em><strong> marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2x - 4}}{{{x^2} - 1}}{\text{, }} - 1 < x < 1">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>4</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−<!-- − --></mo>
      <mn>1</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>For the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2 - \sqrt 3 "> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mo>−</mo> <msqrt> <mn>3</mn> </msqrt> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that there are no <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph, showing clearly any asymptotic behaviour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{x + 1}} - \frac{1}{{x - 1}} = \frac{{2x - 4}}{{{x^2} - 1}}"> <mfrac> <mn>3</mn> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The area enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4"> <mi>y</mi> <mo>=</mo> <mn>4</mn> </math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,v"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>v</mi> </math></span>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule (or equivalent)       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = \frac{{\left( {{x^2} - 1} \right)\left( 2 \right) - \left( {2x - 4} \right)\left( {2x} \right)}}{{{{\left( {{x^2} - 1} \right)}^2}}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span>       <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{ - 2{x^2} + 8x - 2}}{{{{\left( {{x^2} - 1} \right)}^2}}}"> <mo>=</mo> <mfrac> <mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> <mrow> <mrow> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> </mrow> </mfrac> </math></span></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span></p>
<p>simplifying numerator (may be seen in part (i))       <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {x^2} - 4x + 1 = 0"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </math></span> or equivalent quadratic equation       <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>use of quadratic formula</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = \frac{{4 \pm \sqrt {12} }}{2}"> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <mo>±</mo> <msqrt> <mn>12</mn> </msqrt> </mrow> <mn>2</mn> </mfrac> </math></span>       <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>use of completing the square</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x - 2} \right)^2} = 3"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>3</mn> </math></span>       <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2 - \sqrt 3 "> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mo>−</mo> <msqrt> <mn>3</mn> </msqrt> </math></span>  (since <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 + \sqrt 3 "> <mn>2</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </math></span> is outside the domain)       <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not condone verification that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2 - \sqrt 3  \Rightarrow f'\left( x \right) = 0"> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mo>−</mo> <msqrt> <mn>3</mn> </msqrt> <mo stretchy="false">⇒</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<p>Do not award the final <em><strong>A1</strong></em> as follow through from part (i).</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(0, 4)       <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x - 4 = 0 \Rightarrow x = 2"> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> <mo>=</mo> <mn>0</mn> <mo stretchy="false">⇒</mo> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>      <em><strong>A1</strong></em></p>
<p>outside the domain       <em><strong>R1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>award <em><strong>A1</strong></em> for concave up curve over correct domain with one minimum point in the first quadrant<br>award <em><strong>A1</strong></em> for approaching <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  \pm 1"> <mi>x</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> </math></span> asymptotically</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>valid attempt to combine fractions (using common denominator)      <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3\left( {x - 1} \right) - \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}"> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3x - 3 - x - 1}}{{{x^2} - 1}}"> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mn>3</mn> <mo>−</mo> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{2x - 4}}{{{x^2} - 1}}"> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span>      <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 4 \Rightarrow 2x - 4 = 4{x^2} - 4"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mo stretchy="false">⇒</mo> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> <mo>=</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> </math></span>      <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p>       (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span>  or)  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p>area under the curve is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{\frac{1}{2}} {f\left( x \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>      <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \int_0^{\frac{1}{2}} {\frac{3}{{x + 1}} - \frac{1}{{x - 1}}{\text{d}}x} "> <mo>=</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mfrac> <mn>3</mn> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p><strong>Note:</strong> Ignore absence of, or incorrect limits up to this point.</p>
<p> </p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {3\,{\text{ln}}\,\left| {x + 1} \right| - {\text{ln}}\,\left| {x - 1} \right|} \right]_0^{\frac{1}{2}}"> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>|</mo> </mrow> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>|</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 3\,{\text{ln}}\frac{3}{2} - {\text{ln}}\frac{1}{2}\left( { - 0} \right)"> <mo>=</mo> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ln}}\frac{{27}}{4}"> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mrow> <mn>27</mn> </mrow> <mn>4</mn> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p>area is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 - \int_0^{\frac{1}{2}} {f\left( x \right){\text{d}}x} "> <mn>2</mn> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>  or  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{\frac{1}{2}} {4\,{\text{d}}x}  - \int_0^{\frac{1}{2}} {f\left( x \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>      <em><strong>M</strong></em><em><strong>1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2 - {\text{ln}}\frac{{27}}{4}"> <mo>=</mo> <mn>2</mn> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mrow> <mn>27</mn> </mrow> <mn>4</mn> </mfrac> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {\text{ln}}\frac{{4\,{{\text{e}}^2}}}{{27}}"> <mo>=</mo> <mrow> <mtext>ln</mtext> </mrow> <mfrac> <mrow> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> </math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { \Rightarrow v = \frac{{4\,{{\text{e}}^2}}}{{27}}} \right)"> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">⇒</mo> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mn>2</mn> </msup> </mrow> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p> </p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>. The graph has a horizontal asymptote at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 1">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span>. The graph crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>, and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2">
  <mi>y</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p>On the following set of axes, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left[ {f\left( x \right)} \right]^2} + 1">
  <mi>y</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mi>f</mi>
          <mrow>
            <mo>(</mo>
            <mi>x</mi>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span>, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.</p>
<p><img src=""></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src=""></p>
<p>no <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> values below 1        <em><strong>A1</strong></em></p>
<p>horizontal asymptote at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2">
  <mi>y</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> with curve approaching from below as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to  \pm \infty ">
  <mi>x</mi>
  <mo stretchy="false">→</mo>
  <mo>±</mo>
  <mi mathvariant="normal">∞</mi>
</math></span>        <em><strong>A1</strong></em></p>
<p>(±1,1) local minima        <em><strong>A1</strong></em></p>
<p>(0,5) local maximum        <em><strong>A1</strong></em></p>
<p>smooth curve and smooth stationary points        <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4\,{\text{cos}}\,x + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
</math></span>,&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \leqslant x \leqslant \frac{\pi }{2}">
  <mi>a</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < \frac{\pi }{2}">
  <mi>a</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - \frac{\pi }{2}"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>. Indicate clearly the maximum and minimum values of the function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> has an inverse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""></p>
<p>concave down and symmetrical over correct domain       <em><strong>A1</strong></em></p>
<p>indication of maximum and minimum values of the function (correct range)       <em><strong>A1A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 0      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> = 0 only if consistent with their graph.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant x \leqslant 5"> <mn>1</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>5</mn> </math></span>     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow FT from their graph.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4\,{\text{cos}}\,x + 1"> <mi>y</mi> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4\,{\text{cos}}\,y + 1"> <mi>x</mi> <mo>=</mo> <mn>4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> <mo>+</mo> <mn>1</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{x - 1}}{4} = {\text{cos}}\,y"> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> <mo>=</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>y</mi> </math></span>      <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow y = {\text{arccos}}\left( {\frac{{x - 1}}{4}} \right)"> <mo stretchy="false">⇒</mo> <mi>y</mi> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {g^{ - 1}}\left( x \right) = {\text{arccos}}\left( {\frac{{x - 1}}{4}} \right)"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>arccos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^4} - 6{x^2} - 2x + 4">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is translated two units to the left to form the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{x^4} + b{x^3} + c{x^2} + dx + e">
  <mi>a</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>d</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>e</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e \in \mathbb{Z}">
  <mi>e</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = f\left( {x + 2} \right)\left( { = {{\left( {x + 2} \right)}^4} - 6{{\left( {x + 2} \right)}^2} - 2\left( {x + 2} \right) + 4} \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mi>x</mi>
                <mo>+</mo>
                <mn>2</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>4</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>6</mn>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mi>x</mi>
                <mo>+</mo>
                <mn>2</mn>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−</mo>
      <mn>2</mn>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mo>+</mo>
      <mn>4</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p>attempt to expand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{{\left( {x + 2} \right)}^4}}">
  <mrow>
    <mrow>
      <msup>
        <mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mi>x</mi>
              <mo>+</mo>
              <mn>2</mn>
            </mrow>
            <mo>)</mo>
          </mrow>
        </mrow>
        <mn>4</mn>
      </msup>
    </mrow>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {x + 2} \right)^4} = {x^4} + 4\left( {2{x^3}} \right) + 6\left( {{2^2}{x^2}} \right) + 4\left( {{2^3}x} \right) + {2^4}">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>+</mo>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mn>2</mn>
          <mn>2</mn>
        </msup>
      </mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mn>2</mn>
          <mn>3</mn>
        </msup>
      </mrow>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mn>2</mn>
      <mn>4</mn>
    </msup>
  </mrow>
</math></span>       <em><strong>(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^4} + 8{x^3} + 24{x^2} + 32x + 16">
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>24</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>32</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>16</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^4} + 8{x^3} + 24{x^2} + 32x + 16 - 6\left( {{x^2} + 4x + 4} \right) - 2x - 4 + 4">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>24</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>32</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>16</mn>
  <mo>−</mo>
  <mn>6</mn>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mn>4</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>4</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>4</mn>
  <mo>+</mo>
  <mn>4</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = {x^4} + 8{x^3} + 18{x^2} + 6x - 8">
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>8</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>18</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>8</mn>
</math></span>      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> For correct expansion of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {x - 2} \right) = {x^4} - 8{x^3} + 18{x^2} - 10x">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>8</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>18</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>10</mn>
  <mi>x</mi>
</math></span> award max  <em><strong>M0M1(A1)A0A1</strong></em>.</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{ax + b}}{{cx + d}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>a</mi>
      <mi>x</mi>
      <mo>+</mo>
      <mi>b</mi>
    </mrow>
    <mrow>
      <mi>c</mi>
      <mi>x</mi>
      <mo>+</mo>
      <mi>d</mi>
    </mrow>
  </mfrac>
</math></span>, for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R},\,\,x \ne&nbsp; - \frac{d}{c}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mi>d</mi>
    <mi>c</mi>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = \frac{{2x - 3}}{{x - 2}},\,\,x \in \mathbb{R},\,\,x \ne 2">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>3</mn>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>2</mn>
</math></span></p>
</div>

<div class="question">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A + \frac{B}{{x - 2}}"> <mi>A</mi> <mo>+</mo> <mfrac> <mi>B</mi> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span> where A, B are constants.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 2 + \frac{1}{{x - 2}}"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span>    <em><strong> A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{x - 4}}{{2x - 5}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>5</mn> </mrow> </mfrac> </math></span>, stating the equations of any asymptotes and the coordinates of any points of intersection with the axes.</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p>
<p><img src=""></p>
<p>correct shape: two branches in correct quadrants with asymptotic behaviour      <em><strong>A1</strong></em></p>
<p>crosses at (4, 0) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0{\text{,}}\,\,\frac{4}{5}} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p>asymptotes at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{5}{2}"> <mi>x</mi> <mo>=</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{2}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>      <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the probability density function</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable><mtr><mtd><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>a</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>c</mi></mtd></mtr><mtr><mtd><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>b</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>b</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>c</mi><mo>&lt;</mo><mi>x</mi><mo>≤</mo><mi>b</mi></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math>.</p>
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>b</mi></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>≥</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mn>2</mn></mfrac></math>, find an expression for the median of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> be the median</p>
<p><strong><br>EITHER</strong></p>
<p>attempts to find the area of the required triangle          <em><strong>M1</strong></em></p>
<p>base is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math>          <em><strong>(A1)</strong></em></p>
<p>and height is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math></p>
<p>area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>×</mo><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><msup><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac></mrow></mfenced></math>         <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to integrate the correct function          <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>a</mi><mi>m</mi></munderover><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><msubsup><mfenced open="[" close="]"><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup></mrow></mfenced><mi>a</mi><mi>m</mi></msubsup></math>  OR  <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><msubsup><mfenced open="[" close="]"><mrow><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>-</mo><mi>a</mi><mi>x</mi></mrow></mfenced><mi>a</mi><mi>m</mi></msubsup></math>         <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for correct integration and <em><strong>A1</strong> </em>for correct limits.</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>sets up (their) <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mi>a</mi><mi>m</mi></munderover><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo> </mo><mo>d</mo><mi>x</mi></math> or area <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>         <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0A0A0M1A0A0</strong></em> if candidates conclude that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>&gt;</mo><mi>c</mi></math> and set up their area or sum of integrals <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mfenced><mrow><mi>m</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>a</mi><mo>±</mo><msqrt><mfrac><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></msqrt></math>         <em><strong>(A1)</strong></em></p>
<p> </p>
<p>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>&gt;</mo><mi>a</mi></math>, rejects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>a</mi><mo>-</mo><msqrt><mfrac><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></msqrt></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>a</mi><mo>+</mo><msqrt><mfrac><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></msqrt></math>         <em><strong>A1</strong></em></p>
<p>  </p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>+</mo>
      <mn>3</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x + h)^2} + k"> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>k</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, indicating on it the equations of the asymptotes, the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f(x){\text{d}}x = \ln (p)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and the lines with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} - \frac{1}{4}"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2 = (x + 2)(x + 1)"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span>     <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_13.58.40.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.b/M"></p>
<p><strong><em>A1</em></strong> for the shape</p>
<p><strong><em>A1</em></strong> for the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 0"> <mi>y</mi> <mo>=</mo> <mn>0</mn> </math></span></p>
<p><strong><em>A1</em></strong> for asymptotes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 2"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span></p>
<p><strong><em>A1</em></strong> for coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - \frac{3}{2},{\text{ }} - 4} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mo>−</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong><em>A1</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {0,{\text{ }}\frac{1}{2}} \right)"> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}{\text{d}}x} "> <munderover> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </munderover> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left[ {\ln (x + 1) - \ln (x + 2)} \right]_0^1"> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mn>0</mn> <mn>1</mn> </msubsup> </math></span>     <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ln 2 - \ln 3 - \ln 1 + \ln 2"> <mo>=</mo> <mi>ln</mi> <mo>⁡</mo> <mn>2</mn> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mn>3</mn> <mo>−</mo> <mi>ln</mi> <mo>⁡</mo> <mn>1</mn> <mo>+</mo> <mi>ln</mi> <mo>⁡</mo> <mn>2</mn> </math></span>     <strong><em>M1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ln \left( {\frac{4}{3}} \right)"> <mo>=</mo> <mi>ln</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>M1A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\therefore p = \frac{4}{3}"> <mo>∴</mo> <mi>p</mi> <mo>=</mo> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </math></span></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_14.20.03.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.e/M"></p>
<p>symmetry about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-axis     <strong><em>M1</em></strong></p>
<p>correct shape     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Allow <strong><em>FT </em></strong>from part (b).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\int_0^1 {f(x){\text{d}}x} "> <mn>2</mn> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>     <strong><em>(M1)(A1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 2\ln \left( {\frac{4}{3}} \right)"> <mo>=</mo> <mn>2</mn> <mi>ln</mi> <mo>⁡</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>     <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Do not award <strong><em>FT </em></strong>from part (e).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2{x^2} - 5x - 12}}{{x + 2}}{\text{,}}\,\,x \in \mathbb{R}{\text{,}}\,\,x \ne&nbsp; - 2">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>2</mn>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>−<!-- − --></mo>
      <mn>5</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>12</mn>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find all the intercepts of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> with both the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to  \pm \infty ">
  <mi>x</mi>
  <mo stretchy="false">→</mo>
  <mo>±</mo>
  <mi mathvariant="normal">∞</mi>
</math></span> the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> approaches an oblique straight line asymptote.</p>
<p>Divide <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^2} - 5x - 12">
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>5</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>12</mn>
</math></span> by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 2">
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
</math></span> to find the equation of this asymptote.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0 \Rightarrow y =  - 6">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>6</mn>
</math></span> intercept on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> axes is (0, −6)    <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^2} - 5x - 12 = 0 \Rightarrow \left( {2x + 3} \right)\left( {x - 4} \right) = 0 \Rightarrow x = \frac{{ - 3}}{2}\,\,{\text{or}}\,\,{\text{4}}">
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>5</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>12</mn>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>3</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−</mo>
      <mn>4</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0</mn>
  <mo stretchy="false">⇒</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>3</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>or</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>4</mtext>
  </mrow>
</math></span>      <em><strong>M1</strong></em></p>
<p>intercepts on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> axes are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{ - 3}}{2}{\text{,}}\,\,0} \right)\,\,{\text{and}}\,\,\left( {4{\text{,}}\,\,0} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mo>−</mo>
          <mn>3</mn>
        </mrow>
        <mn>2</mn>
      </mfrac>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>and</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>4</mn>
      <mrow>
        <mtext>,</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong> A1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - 2">
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span>   <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2x - 9 + \frac{6}{{x + 2}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>9</mn>
  <mo>+</mo>
  <mfrac>
    <mn>6</mn>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
    </mrow>
  </mfrac>
</math></span>         <em><strong> M1A1</strong></em></p>
<p>So equation of asymptote is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2x - 9">
  <mi>y</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>9</mn>
</math></span>         <em><strong> M1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{x^3} + 5,{\text{ }} - 2 \leqslant x \leqslant 2">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>2</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}(x)">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 11 \leqslant f(x) \leqslant 21">
  <mo>−</mo>
  <mn>11</mn>
  <mo>⩽</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>⩽</mo>
  <mn>21</mn>
</math></span>     <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     <strong><em>A1 </em></strong>for correct end points, <strong><em>A1 </em></strong>for correct inequalities.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}(x) = \sqrt[3]{{\frac{{x - 5}}{2}}}">
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mroot>
    <mrow>
      <mfrac>
        <mrow>
          <mi>x</mi>
          <mo>−</mo>
          <mn>5</mn>
        </mrow>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mn>3</mn>
  </mroot>
</math></span>     <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 11 \leqslant x \leqslant 21,{\text{ }} - 2 \leqslant {f^{ - 1}}(x) \leqslant 2">
  <mo>−</mo>
  <mn>11</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>21</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mo>⩽</mo>
  <mrow>
    <msup>
      <mi>f</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>⩽</mo>
  <mn>2</mn>
</math></span>     <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><msqrt><mi>x</mi></msqrt><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mo> </mo><msub><mi>log</mi><mn>2</mn></msub><mo> </mo><mn>3</mn></mrow></mfrac><mo>+</mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to use change the base                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><msqrt><mi>x</mi></msqrt><mo>=</mo><mfrac><mrow><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><mn>2</mn></mrow><mn>2</mn></mfrac><mo>+</mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math></p>
<p>attempt to use the power rule                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><msqrt><mi>x</mi></msqrt><mo>=</mo><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><msqrt><mn>2</mn></msqrt><mo>+</mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math></p>
<p>attempt to use product or quotient rule for logs, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>a</mi><mo>+</mo><mi>ln</mi><mo> </mo><mi>b</mi><mo>=</mo><mi>ln</mi><mo> </mo><mi>a</mi><mi>b</mi></math>                <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><msqrt><mi>x</mi></msqrt><mo>=</mo><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><mfenced><mrow><mn>4</mn><msqrt><mn>2</mn></msqrt><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math></p>
<p><strong><br>Note:</strong> The <em><strong>M</strong></em> marks are for attempting to use the relevant log rule and may be applied in any order and at any time during the attempt seen.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><msqrt><mi>x</mi></msqrt><mo>=</mo><mn>4</mn><msqrt><mn>2</mn></msqrt><msup><mi>x</mi><mn>3</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>32</mn><msup><mi>x</mi><mn>6</mn></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>5</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>32</mn></mfrac></math>                <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math>                <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5</strong></em><em><strong> marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The quadratic equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 2kx + (k - 1) = 0">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>k</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mo stretchy="false">(</mo>
  <mi>k</mi>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0</mn>
</math></span> has roots <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta ">
  <mi>β</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\alpha ^2} + {\beta ^2} = 4">
  <mrow>
    <msup>
      <mi>α</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>β</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
</math></span>. Without solving the equation, find the possible values of the real number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha  + \beta  = 2k">
  <mi>α</mi>
  <mo>+</mo>
  <mi>β</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mi>k</mi>
</math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha \beta  = k - 1">
  <mi>α</mi>
  <mi>β</mi>
  <mo>=</mo>
  <mi>k</mi>
  <mo>−</mo>
  <mn>1</mn>
</math></span>    <strong><em>A1</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(\alpha  + \beta )^2} = 4{k^2} \Rightarrow {\alpha ^2} + {\beta ^2} + 2\underbrace {\alpha \beta }_{k - 1} = 4{k^2}">
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>α</mi>
    <mo>+</mo>
    <mi>β</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">⇒</mo>
  <mrow>
    <msup>
      <mi>α</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>β</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <munder>
    <mrow>
      <munder>
        <mrow>
          <mi>α</mi>
          <mi>β</mi>
        </mrow>
        <mo>⏟</mo>
      </munder>
    </mrow>
    <mrow>
      <mi>k</mi>
      <mo>−</mo>
      <mn>1</mn>
    </mrow>
  </munder>
  <mo>=</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>    <strong><em>(M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\alpha ^2} + {\beta ^2} = 4{k^2} - 2k + 2">
  <mrow>
    <msup>
      <mi>α</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>β</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>k</mi>
  <mo>+</mo>
  <mn>2</mn>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\alpha ^2} + {\beta ^2} = 4 \Rightarrow 4{k^2} - 2k - 2 = 0">
  <mrow>
    <msup>
      <mi>α</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mi>β</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mo stretchy="false">⇒</mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mi>k</mi>
  <mo>−</mo>
  <mn>2</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>    <strong><em>A1</em></strong></p>
<p>attempt to solve quadratic     (<strong><em>M1)</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 1,{\text{ }} - \frac{1}{2}">
  <mi>k</mi>
  <mo>=</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>−</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>    <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) &lt; 2{\left( {{\text{ln}}\,2} \right)^2}">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>ln</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>&lt;</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>ln</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="color: #999;font-size: 90%;font-style: italic;">* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.</p><p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) - 2{\left( {{\text{ln}}\,2} \right)^2}\left( { = 0} \right)">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>ln</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mi>x</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>−</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mrow>
            <mtext>ln</mtext>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mn>2</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,x = \frac{{{\text{ln}}\,2 \pm \sqrt {{{\left( {{\text{ln}}\,2} \right)}^2} + 8{{\left( {{\text{ln}}\,2} \right)}^2}} }}{2}">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mo>±</mo>
      <msqrt>
        <mrow>
          <msup>
            <mrow>
              <mrow>
                <mo>(</mo>
                <mrow>
                  <mrow>
                    <mtext>ln</mtext>
                  </mrow>
                  <mspace width="thinmathspace"></mspace>
                  <mn>2</mn>
                </mrow>
                <mo>)</mo>
              </mrow>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
        <mo>+</mo>
        <mn>8</mn>
        <mrow>
          <msup>
            <mrow>
              <mrow>
                <mo>(</mo>
                <mrow>
                  <mrow>
                    <mtext>ln</mtext>
                  </mrow>
                  <mspace width="thinmathspace"></mspace>
                  <mn>2</mn>
                </mrow>
                <mo>)</mo>
              </mrow>
            </mrow>
            <mn>2</mn>
          </msup>
        </mrow>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>     <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{\text{ln}}\,2 \pm 3\,{\text{ln}}\,2}}{2}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
      <mo>±</mo>
      <mn>3</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>     <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{ln}}\,x - 2\,{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x + 2\,{\text{ln}}\,2} \right)\left( { = 0} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>−</mo>
      <mn>2</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>ln</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>=</mo>
      <mn>0</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>    <em><strong> M1A1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,x = 2\,{\text{ln}}\,2">
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ln}}\,2">
  <mo>−</mo>
  <mrow>
    <mtext>ln</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
</math></span>     <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow x = 4">
  <mo stretchy="false">⇒</mo>
  <mi>x</mi>
  <mo>=</mo>
  <mn>4</mn>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>      <em><strong> (M1)A1</strong></em>   </p>
<p><strong>Note:</strong> <em><strong>(M1)</strong></em> is for an appropriate use of a log law in either case, dependent on the previous <em><strong>M1</strong></em> being awarded, <strong>A1</strong> for both correct answers.</p>
<p>solution is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} &lt; x &lt; 4">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>4</mn>
</math></span>     <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>,&nbsp;with asymptotes at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>4</mn></mfrac></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a sequence of transformations that transforms the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan </mtext><mi>x</mi></math> to the&nbsp;graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>p</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi><mo>≡</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mi>q</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>&lt;</mo><mn>1</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan </mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>arctan </mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi mathvariant="normal">+</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using mathematical induction and the result from part (b), prove that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong><br>horizontal stretch/scaling with scale factor&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math></p>
<p><br><strong>Note:</strong> Do not allow ‘shrink’ or ‘compression’</p>
<p><br>followed by a horizontal translation/shift&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp;units to the left&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><br><strong>Note:</strong> Do not allow ‘move’</p>
<p><br><em><strong>OR</strong></em></p>
<p>horizontal translation/shift&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit to the left</p>
<p>followed by horizontal stretch/scaling with scale factor&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp; &nbsp; &nbsp;<em><strong>A2</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>vertical translation/shift up by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;(or translation through&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mtd></mtr></mtable></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><br>(may be seen anywhere)</p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mi>p</mi></math></strong> and&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>M1</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mtext>tan</mtext><mo> </mo><mi>α</mi></math>&nbsp;</strong>and&nbsp;<strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mtext>tan</mtext><mo> </mo><mi>β</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>(A1)</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>p</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi><mo>≡</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mi>q</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>&lt;</mo><mn>1</mn></math>.&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>=</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn></math>&nbsp;(or equivalent)<strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>+</mo><mtext>arctan</mtext><mo> </mo><mn>1</mn><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mfenced><mn>1</mn></mfenced></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi><mo>+</mo><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>x</mi></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>=</mo><mn>1</mn></math>&nbsp;(or equivalent)<strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>Consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mrow><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>+1</mo><mo>-</mo><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mfrac><mrow><mi>x</mi><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+1</mo></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>x</mi></mstyle><mstyle displaystyle="true"><mi>x</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>x</mi><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mstyle></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan 1</mtext></math>&nbsp; &nbsp; &nbsp; &nbsp;<em><strong>AG</strong></em></p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>tan </mtext><mfenced><mrow><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mi mathvariant="normal">=</mi><mi>tan</mi><mo> </mo><mfenced><mrow><mtext>arctan</mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi mathvariant="normal">+</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac><mo>=</mo><mn>1</mn></math>&nbsp;(or equivalent)<strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>LHS</mtext><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext><mo>=</mo><mfrac><mrow><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle><mo>+</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>-</mo><mstyle displaystyle="true"><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mrow></mfrac><mfenced><mrow><mo>=</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>n</mi></mfenced></math> be the proposition that&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math></p>
<p>consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced></math></p>
<p>when&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mn>1</mn></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mo>=</mo><mtext>RHS</mtext></math>&nbsp;and so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced></math> is true&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></p>
<p>assume&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math>&nbsp;is true, ie.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi>&nbsp;</mi><mfenced><mrow><mi>k</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>M0</strong></em> for statements such as “let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>”.<br><strong>Note:</strong> Subsequent marks after this <em><strong>M1</strong></em> are independent of this mark and can be&nbsp;awarded.</p>
<p>&nbsp;</p>
<p>consider&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>+</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>+</mo><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mstyle displaystyle="true"><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mi mathvariant="normal">+</mi><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mstyle><mrow><mn>1</mn><mo>-</mo><mfenced><mstyle displaystyle="true"><mfrac><mi>k</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mstyle></mfenced><mfenced><mstyle displaystyle="true"><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></mrow></mfrac></mstyle></mfenced></mrow></mfrac></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>2</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>3</mn></msup><mo>-</mo><mi>k</mi></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct numerator, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi mathvariant="normal">k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math> factored. Denominator does not&nbsp;need to be simplified</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mn>2</mn><msup><mi>k</mi><mn>3</mn></msup><mo>+</mo><mn>6</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>5</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for denominator correctly expanded. Numerator does not need to&nbsp;be simplified. These two <em><strong>A</strong></em> marks may be awarded in any order</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mfenced><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mfenced></math><strong>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> The word ‘arctan’ must be present to be able to award the last three A marks</p>
<p>&nbsp;</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>&nbsp;is true whenever&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math>&nbsp;is true and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mn>1</mn></mfenced></math>&nbsp;is true, so</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>n</mi></mfenced></math>&nbsp;is true for&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award the final <em><strong>R1</strong></em> mark provided at least four of the previous marks have&nbsp;been awarded.<br><strong>Note:</strong> To award the final <em><strong>R1</strong></em>, the truth of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math> must be mentioned. ‘<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mi>k</mi></mfenced></math> implies <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>’ is insufficient to award the mark.</p>
<p>&nbsp;</p>
<p><em><strong>[9 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the binomial theorem to expand&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></math>.&nbsp;Give your answer in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mi mathvariant="normal">i</mi></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp;are expressed in terms of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use de Moivre’s theorem and the result from part (a) to show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the identity from part (b) to show that the quadratic equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;has roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a quadratic equation with integer coefficients, having roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p style="text-align:left;">uses the binomial theorem on&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mmultiscripts><mi>C</mi><mn>0</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mmultiscripts><mi>C</mi><mn>1</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mfenced><mrow><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>2</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mfenced><mrow><msup><mi mathvariant="normal">i</mi><mn>2</mn></msup><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>3</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mfenced><mrow><msup><mi mathvariant="normal">i</mi><mn>3</mn></msup><mo> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mmultiscripts><mi>C</mi><mn>4</mn><mprescripts></mprescripts><mn>4</mn></mmultiscripts><mfenced><mrow><msup><mi mathvariant="normal">i</mi><mn>4</mn></msup><mo> </mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo> </mo><mfenced><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mi mathvariant="normal">i</mi><mfenced><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">(using de Moivre’s theorem with&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>&nbsp;gives)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p style="text-align:left;">equates both the real and imaginary parts of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfenced><mo>+</mo><mi mathvariant="normal">i</mi><mfenced><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo mathvariant="italic">-</mo><mn>4</mn><mo mathvariant="italic"> </mo><mi>cos</mi><mo mathvariant="italic"> </mo><mi>θ</mi><mo mathvariant="italic"> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo mathvariant="italic"> </mo><mi>θ</mi></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; and&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi></math></p>
<p style="text-align:left;">recognizes that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow><mrow><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p style="text-align:left;">substitutes for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi></math>&nbsp;into&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>cos</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow><mrow><mi>sin</mi><mo> </mo><mn>4</mn><mi>θ</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo mathvariant="italic">-</mo><mn>4</mn><mo mathvariant="italic"> </mo><mi>cos</mi><mo mathvariant="italic"> </mo><mi>θ</mi><mo mathvariant="italic"> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo mathvariant="italic"> </mo><mi>θ</mi></mrow></mfrac></math></p>
<p style="text-align:left;">divides the numerator and denominator by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp;to obtain</p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mstyle displaystyle="true"><mfrac><mrow><msup><mi>cos</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow><mrow><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfrac></mstyle><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mo> </mo><msup><mi>cos</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi><mo mathvariant="italic">-</mo><mn>4</mn><mo mathvariant="italic"> </mo><mi>cos</mi><mo mathvariant="italic"> </mo><mi>θ</mi><mo mathvariant="italic"> </mo><msup><mi>sin</mi><mn>3</mn></msup><mo mathvariant="italic"> </mo><mi>θ</mi></mrow><mrow><msup><mi>sin</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi></mrow></mfrac></mstyle></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">setting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>0</mn></math>&nbsp;and putting&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp;in the numerator of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>&nbsp;gives&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;">attempts to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mo> </mo><mo>…</mo><mo>&nbsp;</mo><mfenced><mrow><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mi mathvariant="normal">π</mi><mo>,</mo><mo> </mo><mi mathvariant="normal">n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mo>…</mo></mrow></mfenced></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(A1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Do not award the final <strong>A1</strong> if solutions other than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp;are listed.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;">finding the roots of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mn>0</mn><mo>&nbsp;</mo><mfenced><mrow><mi>θ</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>,</mo><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></mrow></mfenced></math>&nbsp;corresponds to finding the roots of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>R1</strong></p>
<p style="text-align:left;">so the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> as roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>AG</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[5 marks]</strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">attempts to solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn><mo>±</mo><mn>2</mn><msqrt><mn>2</mn></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">since&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac><mo>&gt;</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac><mo>,</mo><mo>&nbsp;</mo><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>&nbsp;has the smaller value of the two roots&nbsp; &nbsp; &nbsp; &nbsp; <strong>R1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;"><strong>Note:</strong> Award <strong>R1</strong> for an alternative convincing valid reason.</p>
<p style="text-align:left;">&nbsp;</p>
<p style="text-align:left;">so&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac><mo>=</mo><mn>3</mn><mo>-2</mo><msqrt><mn>2</mn></msqrt></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[4 marks]</strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math></p>
<p style="text-align:left;">uses&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>=</mo><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>1</mn></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>(M1)</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn><mo>⇒</mo><msup><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>6</mn><mfenced><mrow><mi>y</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>M1</strong></p>
<p style="text-align:left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>y</mi><mo>+</mo><mn>8</mn><mo>=</mo><mn>0</mn></math>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<strong>A1</strong></p>
<p style="text-align:left;">&nbsp;</p>
<p><strong>[3 marks]</strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br>