File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 1/markSceme-HL-paper3html
File size: 582.79 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>This question will investigate power series, as an extension to the Binomial Theorem for negative and fractional indices.</p>
<p>A power series in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is defined as a function of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + ...">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> where the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_i} \in \mathbb{R}">
<mrow>
<msub>
<mi>a</mi>
<mi>i</mi>
</msub>
</mrow>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>It can be considered as an infinite polynomial.</p>
</div>
<div class="specification">
<p>This is an example of a power series, but is only a finite power series, since only a finite number of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_i}">
<mrow>
<msub>
<mi>a</mi>
<mi>i</mi>
</msub>
</mrow>
</math></span> are non-zero.</p>
</div>
<div class="specification">
<p>We will now attempt to generalise further.</p>
<p>Suppose <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^q}{\text{,}}\,\,q \in \mathbb{Q}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>q</mi>
</msup>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span> can be written as the power series <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + ...">
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^5}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</math></span> using the Binomial Theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the power series <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - x + {x^2} - {x^3} + {x^4} - ...">
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span></p>
<p>By considering the ratio of consecutive terms, explain why this series is equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 1}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and state the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for which this equality is true.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Differentiate the equation obtained part (b) and hence, find the first four terms in a power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 2}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Repeat this process to find the first four terms in a power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 3}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, by recognising the pattern, deduce the first four terms in a power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - n}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mi>n</mi>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }">
<mi>n</mi>
<mo>∈</mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_0}">
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating both sides of the expression and then substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_1}">
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Repeat this procedure to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_2}">
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_3}">
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the first four terms in what is called the Extended Binomial Theorem for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^q}{\text{,}}\,\,q \in \mathbb{Q}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>q</mi>
</msup>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{1 + {x^2}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, using integration, find the power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{arctan}}\,x">
<mrow>
<mtext>arctan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>, giving the first four non-zero terms.</p>
<div class="marks">[4]</div>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 + 5x + 10{x^2} + 10{x^3} + 5{x^4} + {x^5}">
<mn>1</mn>
<mo>+</mo>
<mn>5</mn>
<mi>x</mi>
<mo>+</mo>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It is an infinite GP with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 1{\text{,}}\,\,r = - x">
<mi>a</mi>
<mo>=</mo>
<mn>1</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>r</mi>
<mo>=</mo>
<mo>−</mo>
<mi>x</mi>
</math></span> <em><strong>R1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{S_\infty } = \frac{1}{{1 - \left( { - x} \right)}} = \frac{1}{{1 + x}} = {\left( {1 + x} \right)^{ - 1}}">
<mrow>
<msub>
<mi>S</mi>
<mi mathvariant="normal">∞</mi>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> <em><strong>M1A1AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 1}} = 1 - x + {x^2} - {x^3} + {x^4} - ...">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1{\left( {1 + x} \right)^{ - 2}} = - 1 + 2x - 3{x^2} + 4{x^3} - ...">
<mo>−</mo>
<mn>1</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 2}} = 1 - 2x + 3{x^2} - 4{x^3} + ...">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>4</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2{\left( {1 + x} \right)^{ - 3}} = - 2 + 6x - 12{x^2} + 20{x^3}...">
<mo>−</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mo>−</mo>
<mn>2</mn>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>−</mo>
<mn>12</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>20</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 3}} = 1 - 3x + 6{x^2} - 10{x^3}...">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>10</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - n}} = 1 - nx + \frac{{n\left( {n + 1} \right)}}{{2{\text{!}}}}{x^2} - \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3{\text{!}}}}{x^3}...">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mi>n</mi>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mi>n</mi>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mrow>
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<mtext>!</mtext>
</mrow>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mrow>
<mtext>!</mtext>
</mrow>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{1^q} = {a_0} \Rightarrow {a_0} = 1">
<mrow>
<msup>
<mn>1</mn>
<mi>q</mi>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mo stretchy="false">⇒</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>=</mo>
<mn>1</mn>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q{\left( {1 + x} \right)^{q - 1}} = {a_1} + 2{a_2}x + 3{a_3}{x^2} + ...">
<mi>q</mi>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>3</mn>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_1} = q">
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mo>=</mo>
<mi>q</mi>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q\left( {q - 1} \right){\left( {1 + x} \right)^{q - 2}} = 1 \times 2{a_2} + 2 \times 3{a_3}x + ...">
<mi>q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>×</mo>
<mn>2</mn>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>+</mo>
<mn>2</mn>
<mo>×</mo>
<mn>3</mn>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_2} = \frac{{q\left( {q - 1} \right)}}{{2{\text{!}}}}">
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<mtext>!</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q\left( {q - 1} \right)\left( {q - 2} \right){\left( {1 + x} \right)^{q - 3}} = 1 \times 2 \times 3{a_3} + ...">
<mi>q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>×</mo>
<mn>2</mn>
<mo>×</mo>
<mn>3</mn>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_3} = \frac{{q\left( {q - 1} \right)\left( {q - 2} \right)}}{{3{\text{!}}}}">
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mrow>
<mtext>!</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^q} = 1 + qx + \frac{{q\left( {q - 1} \right)}}{{2{\text{!}}}}{x^2} + \frac{{q\left( {q - 1} \right)\left( {q - 2} \right)}}{{3{\text{!}}}}{x^3}...">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>q</mi>
</msup>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mi>q</mi>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mrow>
<mi>q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<mtext>!</mtext>
</mrow>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mfrac>
<mrow>
<mi>q</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>q</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mrow>
<mtext>!</mtext>
</mrow>
</mrow>
</mfrac>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{1 + {x^2}}} = 1 - {x^2} + {x^4} - {x^6} + ...">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>1</mn>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>6</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{arctan}}\,x + c = x - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} - \frac{{{x^7}}}{7} + ...">
<mrow>
<mtext>arctan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>c</mi>
<mo>=</mo>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mn>5</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>7</mn>
</msup>
</mrow>
</mrow>
<mn>7</mn>
</mfrac>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>M1A1</strong></em></p>
<p>Putting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0 \Rightarrow c = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
<mo stretchy="false">⇒</mo>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> <em><strong>R1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{arctan}}\,x = x - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} - \frac{{{x^7}}}{7} + ...">
<mrow>
<mtext>arctan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>=</mo>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mn>3</mn>
</mfrac>
<mo>+</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mn>5</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>7</mn>
</msup>
</mrow>
</mrow>
<mn>7</mn>
</mfrac>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">3</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">4</mtext></math>.</strong></p>
<p> <br>The cubic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Noah believes that if <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>≥</mo><mn>3</mn><mi>q</mi></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> are all real.</p>
</div>
<div class="specification">
<p>Now consider polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>,</mo><mo> </mo><mi>s</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>,</mo><mo> </mo><mi>γ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math>.</p>
<p>In a similar way to the cubic equation, it can be shown that:</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>α</mi><mi>β</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>β</mi><mi>δ</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mi>δ</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mi>α</mi><mi>β</mi><mi>γ</mi><mi>δ</mi></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>, has one integer root.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math> show that:</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi></math>, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> cannot all be real.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the result from part (c), show that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>17</mn></math>, this equation has at least one complex root.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By varying the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, determine the smallest positive integer value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> required to show that Noah is incorrect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the equation will have at least one real root for all values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state a condition in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> that would imply <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your result from part (f)(ii) to show that the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what the result in part (f)(ii) tells us when considering this equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integer root of this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn></math> as a product of one linear and one cubic factor, prove that the equation has at least one complex root.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math> <strong> </strong><em> <strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mi>x</mi><mo>+</mo><mi>α</mi><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><mi>x</mi><mo>+</mo><mi>β</mi><mi>γ</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi></mrow></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced><mi>x</mi><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math> <em><strong>A1</strong></em></p>
<p>comparing coefficients:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced></math> <em><strong>AG</strong> </em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math> <em><strong>AG</strong> </em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math> <em><strong>AG</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> For candidates who do not include the <em><strong>AG</strong> </em>lines award full marks.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>=</mo><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math> <strong> </strong><em> <strong>(A1)</strong></em></p>
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup></math> <strong> </strong><em> <strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math> or equivalent <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></math> <em><strong>AG</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent working from RHS to LHS.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup></math> <strong> </strong><em> <strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>α</mi><mi>β</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>β</mi><mi>γ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>α</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>γ</mi><mi>α</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>q</mi></math> or equivalent <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math> <em><strong>AG</strong> </em></p>
<p><br><strong>OR</strong></p>
<p>attempt to write <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>,</mo><mo> </mo><mi>γ</mi></math> <strong> </strong><em> <strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>q</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>α</mi><mi>β</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>β</mi><mi>γ</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>α</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>γ</mi><mi>α</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>AG</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent working where LHS and RHS are expanded to identical expressions.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi><mo>⇒</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi><mo><</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo><</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p>if all roots were real <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>≥</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><strong><br>Note:</strong> Condone strict inequality in the <em><strong>R1</strong> </em>line.<br><strong>Note:</strong> Do not award <em><strong>A0R1</strong></em>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo></math>roots cannot all be real <em><strong>AG</strong> </em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>49</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>q</mi><mo>=</mo><mn>51</mn></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi><mo>⇒</mo></math> the equation has at least one complex root <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Allow equivalent comparisons; e.g. checking <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>6</mn><mi>q</mi></math></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of GDC (<em>eg</em> graphs or tables) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>complex roots appear in conjugate pairs (so if complex roots occur the other root will be real OR all 3 roots will be real).</p>
<p>OR</p>
<p>a cubic curve always crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at at least one point. <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>⇒</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup><mo>=</mo></mrow></mfenced><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>2</mn><mi>q</mi></math> <strong>OR </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo><</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Allow <em><strong>FT</strong> </em>on their result from part (f)(i).</p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo><</mo><mn>6</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>2</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>×</mo><mn>3</mn><mo><</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p>hence there is at least one complex root. <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Allow <em><strong>FT</strong> </em>from part (f)(ii) for the <em><strong>R</strong></em> mark provided numerical reasoning is seen.</p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>></mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mn>81</mn><mo>></mo><mn>2</mn><mo>×</mo><mn>24</mn></mrow></mfenced></math> (so) nothing can be deduced <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Do not allow <em><strong>FT</strong> </em>for the <em><strong>R</strong></em> mark.</p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to express as a product of a linear and cubic factor <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>10</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>34</mn><mi>x</mi><mo>-</mo><mn>12</mn></mrow></mfenced></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each factor. Award at most <em><strong>A1A0</strong></em> if not written as a product.</p>
<p> </p>
<p>since for the cubic, <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi><mo> </mo><mfenced><mrow><mn>100</mn><mo><</mo><mn>102</mn></mrow></mfenced></math> <em><strong>R1</strong></em></p>
<p>there is at least one complex root <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks</strong></em><em><strong>]</strong></em></p>
<div class="question_part_label">h.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The first part of this question proved to be very accessible, with the majority of candidates expanding their brackets as required, to find the coefficients <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The first part of this question was usually answered well, though presentation in the second part sometimes left a lot to be desired. The expression <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>q</mi></math> was expected to be seen more often, as a 'pivot' to reaching the required result. Algebra was often lengthy, but untidily so, sometimes leaving examiners to do some mental tidying up on behalf of the candidate.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A good number of candidates recognised the reasoning required in this part of the question and were able to score both marks.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates found applying this specific case to be very straightforward.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates offered incorrect answers in the first part; despite their working suggested utilisation of the GDC, it was clear that many did not appreciate what the question was asking. The second part was usually answered well, with the idea of complex roots occurring in conjugate pairs being put to good use.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some very dubious algebra was seen here, and often no algebra at all. Despite this, a good number of candidates seemed to make the 'leap' to the correct expression <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></math>, perhaps fortuitously so in a number of cases.</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Of those finding <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi></math> in part f, a surprising number of answers seen employed the test of checking whether <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi></math>.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part i was usually not answered successfully, which may have been due to shortage of time. However, it was pleasing to see a number of candidates reach the end of the paper and successfully factorise the given quartic using a variety of methods. The final part required the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi></math> test. Though correct reasoning was sometimes seen, it was rare for this final mark to be gained.</p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question will explore connections between complex numbers and regular polygons.</p>
<p>The diagram below shows a sector of a circle of radius 1, with the angle subtended at the centre <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="O">
<mi>O</mi>
</math></span> being <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha {\text{,}}\,\,0 < \alpha < \frac{\pi }{2}">
<mi>α<!-- α --></mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
<mo><</mo>
<mi>α<!-- α --></mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>. A perpendicular is drawn from point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> to intersect the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q">
<mi>Q</mi>
</math></span>. The tangent to the circle at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the area of two triangles and the area of the sector show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\alpha \,{\text{sin}}\,\alpha < \alpha < \frac{{{\text{sin}}\,\alpha }}{{{\text{cos}}\,\alpha }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo><</mo> <mi>α</mi> <mo><</mo> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{\alpha \to 0} \frac{\alpha }{{{\text{sin}}\,\alpha }} = 1"> <munder> <mrow> <mrow> <mtext>lim</mtext> </mrow> </mrow> <mrow> <mi>α</mi> <mo stretchy="false">→</mo> <mn>0</mn> </mrow> </munder> <mo></mo> <mfrac> <mi>α</mi> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^n} = 1{\text{,}}\,\,z \in \mathbb{C}{\text{,}}\,\,n \in \mathbb{N}{\text{,}}\,\,n \geqslant 5"> <mrow> <msup> <mi>z</mi> <mi>n</mi> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>z</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">C</mi> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>n</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">N</mi> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>n</mi> <mo>⩾</mo> <mn>5</mn> </math></span>. Working in modulus/argument form find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> solutions to this equation.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Represent these <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> solutions on an Argand diagram. Let their positions be denoted by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{\text{,}}\,\,{P_1}{\text{,}}\,\,{P_2}{\text{,}}\, \ldots {P_{n - 1}}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mo>…</mo> <mrow> <msub> <mi>P</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </math></span> placed in order in an anticlockwise direction round the circle, starting on the positive <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Show the positions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{\text{,}}\,\,{P_1}{\text{,}}\,\,{P_2}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_{n - 1}}"> <mrow> <msub> <mi>P</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the length of the line segment <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{P_1}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{sin}}\frac{\pi }{n}"> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mi>n</mi> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the total length of the perimeter of the regular <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> sided polygon <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{P_1}{P_2} \ldots {P_{n - 1}}{P_0}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> <mo>…</mo> <mrow> <msub> <mi>P</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using part (b) find the limit of this perimeter as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to \infty "> <mi>n</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total area of this <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> sided polygon.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using part (b) find the limit of this area as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to \infty "> <mi>n</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Area triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="OPQ = \frac{1}{2}{\text{cos}}\,\alpha \,{\text{sin}}\,\alpha "> <mi>O</mi> <mi>P</mi> <mi>Q</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </math></span> <em><strong>A1</strong></em></p>
<p>Area sector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{2}{1^2}\alpha "> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <msup> <mn>1</mn> <mn>2</mn> </msup> </mrow> <mi>α</mi> </math></span> <em><strong>A1</strong></em></p>
<p>Area triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="OPR = \frac{1}{2}1\,{\text{tan}}\,\alpha "> <mi>O</mi> <mi>P</mi> <mi>R</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </math></span> <em><strong>A1</strong></em></p>
<p>So looking at the diagram <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}{\text{cos}}\,\alpha \,{\text{sin}}\,\alpha < \frac{1}{2}\alpha < \frac{1}{2}\frac{{{\text{sin}}\,\alpha }}{{{\text{cos}}\,\alpha }}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo><</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>α</mi> <mo><</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {\text{cos}}\,\alpha \,{\text{sin}}\,\alpha < \alpha < \frac{{{\text{sin}}\,\alpha }}{{{\text{cos}}\,\alpha }}"> <mo stretchy="false">⇒</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo><</mo> <mi>α</mi> <mo><</mo> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Hence <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\alpha < \frac{\alpha }{{{\text{sin}}\,\alpha }} < \frac{1}{{{\text{cos}}\,\alpha }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo><</mo> <mfrac> <mi>α</mi> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> <mo><</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> </math></span> and as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha \to 0{\text{,}}\,\,{\text{cos}}\,\alpha \to 1"> <mi>α</mi> <mo stretchy="false">→</mo> <mn>0</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo stretchy="false">→</mo> <mn>1</mn> </math></span> we have <em><strong>M1R1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{\alpha \to 0} \frac{\alpha }{{{\text{sin}}\,\alpha }} = 1"> <munder> <mrow> <mrow> <mtext>lim</mtext> </mrow> </mrow> <mrow> <mi>α</mi> <mo stretchy="false">→</mo> <mn>0</mn> </mrow> </munder> <mo></mo> <mfrac> <mi>α</mi> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {r\,cis\,\theta } \right)^n} = 1\,cis\,0 \Rightarrow {r^n}cis\,n\,\theta = 1\,cis\,\theta "> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mspace width="thinmathspace"></mspace> <mn>0</mn> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>r</mi> <mi>n</mi> </msup> </mrow> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mspace width="thinmathspace"></mspace> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span> <em><strong>M1A1</strong></em><em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r^n} = 1 \Rightarrow r = 1"> <mrow> <msup> <mi>r</mi> <mi>n</mi> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mo stretchy="false">⇒</mo> <mi>r</mi> <mo>=</mo> <mn>1</mn> </math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\theta = 0 + 2\pi k{\text{,}}\,\,k \in \mathbb{Z}"> <mi>n</mi> <mi>θ</mi> <mo>=</mo> <mn>0</mn> <mo>+</mo> <mn>2</mn> <mi>π</mi> <mi>k</mi> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{{2\pi k}}{n}{\text{,}}\,\,0 \leqslant k \leqslant n - 1"> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> <mi>k</mi> </mrow> <mi>n</mi> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> <mo>⩽</mo> <mi>k</mi> <mo>⩽</mo> <mi>n</mi> <mo>−</mo> <mn>1</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = cis\frac{{2\pi k}}{n}{\text{,}}\,\,0 \leqslant k \leqslant n - 1"> <mi>z</mi> <mo>=</mo> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> <mi>k</mi> </mrow> <mi>n</mi> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mn>0</mn> <mo>⩽</mo> <mi>k</mi> <mo>⩽</mo> <mi>n</mi> <mo>−</mo> <mn>1</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Bisecting the triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="O{P_0}{P_1}"> <mi>O</mi> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> </math></span> to form two right angle triangles <em><strong>M1</strong></em></p>
<p><img src=""> </p>
<p>Length of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{P_1} = 2t"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mn>2</mn> <mi>t</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = {\text{sin}}\left( {\frac{{\frac{{2\pi }}{n}}}{2}} \right)"> <mi>t</mi> <mo>=</mo> <mrow> <mtext>sin</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <strong> </strong><em><strong> M1A1A1</strong></em></p>
<p>So length is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{sin}}\frac{\pi }{n}"> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mi>n</mi> </mfrac> </math></span> <em><strong>A</strong><strong>G</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Length of perimeter is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2n\,{\text{sin}}\frac{\pi }{n}"> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mi>n</mi> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2n\,{\text{sin}}\frac{\pi }{n} = 2\pi \frac{n}{\pi }{\text{sin}}\frac{\pi }{n} \to 2\pi "> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mi>n</mi> </mfrac> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mfrac> <mi>n</mi> <mi>π</mi> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mi>n</mi> </mfrac> <mo stretchy="false">→</mo> <mn>2</mn> <mi>π</mi> </math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to \infty "> <mi>n</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="O{P_0}{P_1} = \frac{1}{2}1 \times 1\,{\text{sin}}\frac{{2\pi }}{n}"> <mi>O</mi> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mn>1</mn> <mo>×</mo> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> </math></span> so total area is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{n}{2}{\text{sin}}\frac{{2\pi }}{n}"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> </math></span>. <em><strong>M1A1A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{n}{2}{\text{sin}}\frac{{2\pi }}{n} = \pi \frac{n}{{2\pi }}{\text{sin}}\frac{{2\pi }}{n} \to \pi "> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> <mo>=</mo> <mi>π</mi> <mfrac> <mi>n</mi> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mi>n</mi> </mfrac> <mo stretchy="false">→</mo> <mi>π</mi> </math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to \infty "> <mi>n</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span> <em><strong>M1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question you will be exploring the strategies required to solve a system of linear differential equations.</strong></p>
<p> </p>
<p>Consider the system of linear differential equations of the form:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>y</mi></math>,</p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>,</mo><mo> </mo><mi>t</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is a parameter.</p>
<p>First consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>4</mn></math>.</p>
</div>
<div class="specification">
<p>From previous cases, we might conjecture that a solution to this differential equation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> is a constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation in part (a)(ii) to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>2</mn><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> that satisfy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let the two values found in part (c)(ii) be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math>.</p>
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math> is a solution to the differential equation in (c)(i),where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is a constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>=</mo><mi>y</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mi>y</mi></mfrac><mo>=</mo><mo>∫</mo><mo>d</mo><mtext>t</mtext></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>y</mi><mo>=</mo><mi>t</mi><mo>+</mo><mi>c</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mfenced open="|" close="|"><mi>y</mi></mfenced><mo>=</mo><mi>t</mi><mo>+</mo><mi>c</mi></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>y</mi></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>rearranging to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>-</mo><mi>y</mi><mo>=</mo><mn>0</mn></math> AND multiplying by integrating factor <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mi>A</mi></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> into differential equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>integrating factor (IF) is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>∫</mo><mo>-</mo><mn>1</mn><mo>d</mo><mi>t</mi></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mtext>t</mtext></mrow></mfrac><mo>-</mo><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mi>A</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>D</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfenced><mrow><mo>-</mo><mi>A</mi><mi>t</mi><mo>+</mo><mi>D</mi></mrow></mfenced><msup><mtext>e</mtext><mi>t</mi></msup></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> The first constant must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>, and the second can be any constant for the final <em><strong>A1</strong></em> to be awarded. Accept a change of constant applied at the end.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>x</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac><mo>+</mo><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>Y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>2</mn><mi>Y</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∫</mo><mfrac><mrow><mo>d</mo><mi>Y</mi></mrow><mi>Y</mi></mfrac><mo>=</mo><mo>∫</mo><mn>2</mn><mo>d</mo><mi>t</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced open="|" close="|"><mi>Y</mi></mfenced><mo>=</mo><mn>2</mn><mi>t</mi><mo>+</mo><mi>c</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>Y</mi><mo>=</mo><mn>2</mn><mi>t</mi><mo>+</mo><mi>c</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>∫</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mtext> </mtext><mo>d</mo><mi>t</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> The first constant must be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, and the second can be any constant for the final <em><strong>A1</strong></em> to be awarded. Accept a change of constant applied at the end.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> and their (iii) into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></math> <em><strong>M1(M1)</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math> A1</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math> AG</strong></em></p>
<p><strong>Note:</strong> Follow through from incorrect part (iii) cannot be awarded if it does not lead to the <em><strong>AG</strong></em>.</p>
<p><br><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>C</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>C</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mfenced><mrow><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>∫</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mtext> </mtext><mo>d</mo><mi>t</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>+</mo><mi>D</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi><mo>+</mo><mi>D</mi><msup><mtext>e</mtext><mi>t</mi></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>⇒</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>=</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>C</mi><mo>-</mo><mi>D</mi><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi><mo>⇒</mo><mi>D</mi><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math> AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mi>y</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math> seen anywhere <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mo>-</mo><mn>4</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p>attempt to eliminate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mn>4</mn><mfenced><mrow><mfrac><mn>1</mn><mn>4</mn></mfrac><mfenced><mrow><mi>y</mi><mo>-</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></mrow></mfenced><mo>-</mo><mi>y</mi></mrow></mfenced><mo>+</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>+</mo><mn>3</mn><mi>y</mi></math><em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math><em><strong> AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>rewriting LHS in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mfenced><mrow><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>5</mn><mi>y</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mfenced><mrow><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mfenced><mo>-</mo><mn>3</mn><mi>y</mi></math><em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math><em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>F</mi><mi>λ</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>F</mi><msup><mi>λ</mi><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math><em><strong> (A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><msup><mi>λ</mi><mn>2</mn></msup><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mi>F</mi><mi>λ</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>-</mo><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>=</mo><mn>0</mn></math><em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup><mo>≠</mo><mn>0</mn></math>)<em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> (either order)<em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>9</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math> <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>9</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced></math><em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>9</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>6</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup><mo>-</mo><mn>3</mn><mi>F</mi><msup><mtext>e</mtext><mrow><mn>3</mn><mi>t</mi></mrow></msup><mo>-</mo><mn>3</mn><mi>G</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></math><em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math><em><strong> AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>F</mi><msub><mi>λ</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msub><mi>λ</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup><mo>,</mo><mo> </mo><mfrac><mstyle displaystyle="true"><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mstyle></mfrac><mo>=</mo><mi>F</mi><msup><msub><mi>λ</mi><mn>1</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><msub><mi>λ</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math> <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mi>F</mi><msup><msub><mi>λ</mi><mn>1</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><msub><mi>λ</mi><mn>2</mn></msub><mn>2</mn></msup><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>F</mi><msub><mi>λ</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msub><mi>λ</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></mrow></mfenced><mo>-</mo><mn>3</mn><mfenced><mrow><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></mrow></mfenced></math><em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mfenced><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup><mfenced><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>λ</mi><mo>-</mo><mn>3</mn></mrow></mfenced></math><em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn></math><em><strong> AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A <strong>Gaussian integer</strong> is a complex number, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.</p>
</div>
<div class="specification">
<p>Consider two Gaussian integers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>3</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mn>1</mn><mo>-</mo><mn>2</mn><mtext>i</mtext></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>=</mo><mi>α</mi><mi>β</mi></math> for some Gaussian integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
</div>
<div class="specification">
<p>Now consider two Gaussian integers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>3</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>=</mo><mn>11</mn><mo>+</mo><mn>2</mn><mtext>i</mtext></math>.</p>
</div>
<div class="specification">
<p>The norm of a complex number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, denoted by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>z</mi></mfenced></math>, is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><msup><mfenced open="|" close="|"><mi>z</mi></mfenced><mn>2</mn></msup></math>. For example, if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>2</mn><mo>+</mo><mn>3</mn><mtext>i</mtext></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mtext>i</mtext></mrow></mfenced><mo>=</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>3</mn><mn>2</mn></msup><mo>=</mo><mn>13</mn></math>.</p>
</div>
<div class="specification">
<p>A <strong>Gaussian prime</strong> is a Gaussian integer, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, that <strong>cannot</strong> be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mi>α</mi><mi>β</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> are Gaussian integers with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>></mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>The positive integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> is a prime number, however it is not a Gaussian prime.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> be Gaussian integers.</p>
</div>
<div class="specification">
<p>The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>γ</mi><mi>α</mi></mfrac></math> is a Gaussian integer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On an Argand diagram, plot and label all Gaussian integers that have a norm less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expressing the positive integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math> as a product of two Gaussian integers each of norm <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is not a Gaussian prime.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> is not a Gaussian prime.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down another prime number of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math> that is not a Gaussian prime and express it as a product of two Gaussian integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> is a Gaussian prime.</p>
<div class="marks">[3]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use proof by contradiction to prove that a prime number, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, that is not of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> is a Gaussian prime.</p>
<div class="marks">[6]</div>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="color:#999;font-size:90%;font-style:italic;">* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mtext>i</mtext></mrow></mfenced><mo>=</mo><mn>11</mn><mo>-</mo><mn>2</mn><mtext>i</mtext></math> <em><strong>(M1)</strong><strong>A1</strong></em> </p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>γ</mi><mi>α</mi></mfrac><mo>=</mo><mfrac><mn>41</mn><mn>25</mn></mfrac><mo>-</mo><mfrac><mn>38</mn><mn>25</mn></mfrac><mtext>i</mtext></math> <em><strong>(M1)</strong><strong>A1</strong></em> </p>
<p>(Since <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Re</mtext><mfrac><mi>γ</mi><mi>α</mi></mfrac><mfenced><mrow><mo>=</mo><mfrac><mn>41</mn><mn>25</mn></mfrac></mrow></mfenced></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Im</mtext><mfrac><mi>γ</mi><mi>α</mi></mfrac><mfenced><mrow><mo>=</mo><mo>-</mo><mfrac><mn>38</mn><mn>25</mn></mfrac></mrow></mfenced></math> are not integers)</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>γ</mi><mi>α</mi></mfrac></math> is not a Gaussian integer <em><strong> R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award<em><strong> R1</strong></em> for correct conclusion from their answer.</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>±</mo><mtext>i</mtext><mo>,</mo><mo> </mo><mn>0</mn></math> plotted and labelled <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>±</mo><mtext>i</mtext><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>±</mo><mtext>i</mtext></math> plotted and labelled <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> if extra points to the above are plotted and labelled.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi>z</mi></mfenced><mo>=</mo><msqrt><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></msqrt></math> (and as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><msup><mfenced open="|" close="|"><mi>z</mi></mfenced><mn>2</mn></msup></math>) <em><strong>A1</strong></em></p>
<p>then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>(</mo><mi>α</mi><mo>)</mo><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup><mo>=</mo><mfenced><mrow><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>d</mi><mtext>i</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext></mrow></mfenced><mo>=</mo><mi>N</mi><mfenced><mrow><mi>c</mi><mo>-</mo><mi>d</mi><mtext>i</mtext></mrow></mfenced><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math> <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext></mrow></mfenced><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mrow><mi>c</mi><mo>-</mo><mi>d</mi><mtext>i</mtext></mrow></mfenced><mo>></mo><mn>1</mn></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi></math> are positive) <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math> is not a Gaussian prime, by definition <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mfenced><mrow><mo>=</mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mtext>i</mtext></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mtext>i</mtext></mrow></mfenced><mo>=</mo><mi>N</mi><mfenced><mrow><mn>1</mn><mo>-</mo><mtext>i</mtext></mrow></mfenced><mo>=</mo><mn>2</mn></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> is not a Gaussian prime <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>For example, </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mfenced><mrow><mo>=</mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>2</mn><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mtext>i</mtext></mrow></mfenced></math> <em><strong>(M1)A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mi>m</mi><mo>+</mo><mi>n</mi><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mi>p</mi><mo>+</mo><mi>q</mi><mtext>i</mtext></math></p>
<p>LHS:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi><mo>=</mo><mfenced><mrow><mi>m</mi><mi>p</mi><mo>-</mo><mi>n</mi><mi>q</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>m</mi><mi>q</mi><mo>+</mo><mi>n</mi><mi>p</mi></mrow></mfenced><mtext>i</mtext></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mo>=</mo><msup><mfenced><mrow><mi>m</mi><mi>p</mi><mo>-</mo><mi>n</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>m</mi><mi>q</mi><mo>+</mo><mi>n</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>m</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mi>n</mi><mi>p</mi><mi>q</mi><mo>+</mo><msup><mfenced><mrow><mi>n</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>m</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>m</mi><mi>n</mi><mi>p</mi><mi>q</mi><mo>+</mo><msup><mfenced><mrow><mi>n</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>m</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>n</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>m</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>n</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p>RHS:</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>=</mo><mfenced><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><msup><mi>n</mi><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><msup><mi>q</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>m</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>m</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>n</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>n</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p>LHS = RHS and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mi>m</mi><mo>+</mo><mi>n</mi><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mi>p</mi><mo>+</mo><mi>q</mi><mtext>i</mtext></math></p>
<p>LHS</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><msup><mi>m</mi><mn>2</mn></msup><mo>+</mo><msup><mi>n</mi><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><msup><mi>p</mi><mn>2</mn></msup><mo>+</mo><msup><mi>q</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mi>m</mi><mo>+</mo><mi>n</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>m</mi><mo>-</mo><mi>n</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>p</mi><mo>-</mo><mi>q</mi><mtext>i</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mi>m</mi><mo>+</mo><mi>n</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>p</mi><mo>+</mo><mi>q</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>m</mi><mo>-</mo><mi>n</mi><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mi>p</mi><mo>-</mo><mi>q</mi><mtext>i</mtext></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced><mrow><mfenced><mrow><mi>m</mi><mi>p</mi><mo>-</mo><mi>n</mi><mi>q</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>m</mi><mi>q</mi><mo>+</mo><mi>n</mi><mi>p</mi></mrow></mfenced><mtext>i</mtext></mrow></mfenced><mfenced><mrow><mfenced><mrow><mi>m</mi><mi>p</mi><mo>-</mo><mi>n</mi><mi>q</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>m</mi><mi>q</mi><mo>+</mo><mi>n</mi><mi>p</mi></mrow></mfenced><mtext>i</mtext></mrow></mfenced></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mi>m</mi><mi>p</mi><mo>-</mo><mi>n</mi><mi>q</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>m</mi><mi>q</mi><mo>+</mo><mi>n</mi><mi>p</mi></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfenced><mrow><mfenced><mrow><mi>m</mi><mi>p</mi><mo>-</mo><mi>n</mi><mi>q</mi></mrow></mfenced><mo>+</mo><mfenced><mrow><mi>m</mi><mi>q</mi><mo>+</mo><mi>n</mi><mi>p</mi></mrow></mfenced><mtext>i</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math> (= RHS) <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></mrow></mfenced><mo>=</mo><mn>17</mn></math> which is a prime (in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">ℤ</mi></math>) <em><strong>R1</strong></em></p>
<p>if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><mtext>i</mtext><mo>=</mo><mi>α</mi><mi>β</mi></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>=</mo><mi>N</mi><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math> <em><strong>R1</strong></em></p>
<p>we cannot have <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>></mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>R1</strong></em> for stating that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> is not the product of Gaussian integers of smaller norm because no such norms divide <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn></math></p>
<p> </p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> is a Gaussian prime <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Assume <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> is not a Gaussian prime</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>p</mi><mo>=</mo><mi>α</mi><mi>β</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> are Gaussian integers and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>></mo><mn>1</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>N</mi><mfenced><mi>p</mi></mfenced><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math> <em><strong>A1</strong></em></p>
<p>It cannot be <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>=</mo><msup><mi>p</mi><mn>2</mn></msup></math> from definition of Gaussian prime <em><strong>R1</strong></em></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><mi>p</mi><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>=</mo><mi>p</mi></math> <em><strong>R1</strong></em></p>
<p>If <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mi>p</mi></math> which is a contradiction <em><strong>R1</strong></em></p>
<p>hence a prime number, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, that is not of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> is a Gaussian prime <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question you will explore some of the properties of special functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">g</mi></math> and their relationship with the trigonometric functions, sine and cosine.</strong></p>
<p><br>Functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>,</mo><mo> </mo><mi>u</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Using <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math>, find expressions, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>u</mi></math>, for</p>
</div>
<div class="specification">
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi></math> are known as circular functions as the general point (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>,</mo><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>) defines points on the unit circle with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>.</p>
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> are known as hyperbolic functions, as the general point ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mo>,</mo><mo> </mo><mi>g</mi><mo>(</mo><mi>θ</mi><mo>)</mo></math> ) defines points on a curve known as a hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>. This hyperbola has two asymptotes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math> satisfies the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>u</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find, and simplify, an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>, stating the coordinates of any axis intercepts and the equation of each asymptote.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> can be rotated to coincide with the curve defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>=</mo><mi>k</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup></math></p>
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup></mrow><mn>2</mn></mfrac><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><msup><mtext>e</mtext><mi>t</mi></msup></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mfenced><mn>2</mn></msup></mrow><mn>2</mn></mfrac><mo> </mo></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math> <em><strong>M1A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup></math> <em><strong>AG</strong></em></p>
<p><em><strong><br></strong></em><strong>Note: </strong>Accept combinations of METHODS 1 & 2 that meet at equivalent expressions.</p>
<p><em><strong><br></strong></em><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math> into the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> <em><strong>(M1)</strong></em></p>
<p>obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>-i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>-</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi><mo>+</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>-</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p><br><strong>Note:</strong> The <em><strong>M1</strong></em> can be awarded for the use of sine and cosine being odd and even respectively.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi></math> <em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi><mo>-</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p>substituting and attempt to simplify <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>2</mn><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math> <em><strong>A1</strong></em></p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math></p>
<p>substituting expressions found in part (c) <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo>-</mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo> </mo><mo> </mo><mfenced><mrow><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mn>2</mn><mtext>i</mtext><mi>u</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mtext>i</mtext><mi>u</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mtext>i</mtext><mi>u</mi></mrow></msup></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>u</mi><mo>+</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi><mo>-</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mn>2</mn><mi>u</mi></mrow><mn>2</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>u</mi></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent final answers that have been simplified removing all imaginary parts eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo>−</mo><mn>1</mn></math>etc</p>
<p><em><strong><br></strong></em><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mfrac><mrow><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><msup><mtext>e</mtext><mi>t</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mn>2</mn></msup></mrow><mn>4</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mn>2</mn><mi>t</mi></mrow></msup><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mn>4</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>4</mn><mn>4</mn></mfrac><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for a value of 1 obtained from either LHS or RHS of given expression.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>u</mi><mo>+</mo><msup><mi>sin</mi><mn>2</mn></msup><mo> </mo><mi>u</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>1</mn></math> (hence <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>) <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Award full marks for showing that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>z</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>z</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>∀</mo><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.<br><br><em><strong><br></strong></em><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct curves in the upper quadrants, <em><strong>A1</strong></em> for correct curves in the lower quadrants, <em><strong>A1</strong></em> for correct <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> (condone <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>−</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>), <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>−</mo><mi>x</mi></math>.</p>
<p><br><em><strong><br></strong></em><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to rotate by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math> in either direction <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Evidence of an attempt to relate to a sketch of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>=</mo><mi>k</mi></math> would be sufficient for this <em><strong>(M1)</strong></em>.</p>
<p><br>attempting to rotate a particular point, eg <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> rotates to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mo>,</mo><mo> </mo><mo>±</mo><mfrac><mstyle displaystyle="true"><mn>1</mn></mstyle><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></mfrac></mrow></mfenced></math> (or similar) <em><strong>(A1)</strong></em></p>
<p>hence <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><em><strong><br>[5 marks]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to investigate and prove a geometric property involving the roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> for integers <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>≥</mo><mn>2</mn></math>.</strong></p>
<p><br>The roots of the equation <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></math></strong> where <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math></strong> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msup><mtext>e</mtext><mfrac><mrow><mn>2</mn><mi>πi</mi></mrow><mi>n</mi></mfrac></msup></math>. Each root can be represented by a point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>2</mn></msub><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math>, respectively, on an Argand diagram.</p>
<p>For example, the roots of the equation <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math></strong> where <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math></strong> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>. On an Argand diagram, the root <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> can be represented by a point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub></math> and the root <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> can be represented by a point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>1</mn></msub></math>.</p>
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math>.</p>
<p>The roots of the equation <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>3</mn></msup><mo>=</mo><mn>1</mn></math></strong> where <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math></strong> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>2</mn></msup></math>. On the following Argand diagram, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>2</mn></msub></math> lie on a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Line segments <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo></math> are added to the Argand diagram in part (a) and are shown on the following Argand diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math>is the length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math> is the length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo></math>.</p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>.</p>
<p>The roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>4</mn></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>3</mn></msup></math>.</p>
</div>
<div class="specification">
<p>On the following Argand diagram, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>3</mn></msub></math> lie on a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>]</mo></math> are line segments.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>For the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>5</mn></math>, the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>5</mn></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>3</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>4</mn></msup></math>.</p>
<p>It can be shown that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>4</mn></msub><mo>=</mo><mn>5</mn></math>.</p>
<p>Now consider the general case for integer values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>≥</mo><mn>2</mn></math>.</p>
<p>The roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>. On an Argand diagram, these roots can be represented by the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>2</mn></msub><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math> respectively where <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo><mo>,</mo><mo> </mo><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>]</mo></math> are line segments. The roots lie on a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>|</mo><mn>1</mn><mo>-</mo><mi>ω</mi><mo>|</mo></math>.</p>
</div>
<div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>-</mo><mn>1</mn><mo>=</mo><mo>(</mo><mi>z</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo> </mo></math>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>ω</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mn>1</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mn>3</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By factorizing <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>4</mn></msup><mo>-</mo><mn>1</mn></math>, or otherwise, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a value for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><mo> </mo><mo>…</mo><mo> </mo><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down expressions for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo> </mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn></math> as a product of linear factors over the set <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">ℂ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, using the part (g)(i) and part (f) results, or otherwise, prove your suggested result to part (e).</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>ω</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>)</mo></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>-</mo><mi>ω</mi><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts polynomial division on <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><mi>ω</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>ω</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mn>1</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> In part (a), award marks as appropriate where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> has been converted into Cartesian, modulus-argument (polar) or Euler form.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> is a root of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>3</mn></msup><mo>=</mo><mn>1</mn></math>)<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>≠</mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> In part (a), award marks as appropriate where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> has been converted into Cartesian, modulus-argument (polar) or Euler form.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts to find either <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math> <em><strong> (M1)</strong></em></p>
<p>accept any valid method</p>
<p><em>e.g.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mi>sin</mi><mfrac><mi mathvariant="normal">π</mi><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mo> </mo><msup><mn>1</mn><mn>2</mn></msup><mo>+</mo><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>2</mn><mo> </mo><mi>cos</mi><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac><mo>,</mo><mo> </mo><mo> </mo><mfrac><mn>1</mn><mrow><mi>sin</mi><mstyle displaystyle="true"><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></mstyle></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></mrow><mrow><mi>sin</mi><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mstyle></mrow></mfrac></math>from either <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>ΔOP</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>ΔOP</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math></p>
<p><em>e.g.</em> use of Pythagoras’ theorem</p>
<p><em>e.g.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>2</mn><mi mathvariant="normal">π</mi></mrow><mn>3</mn></mfrac></mrow></msup></mrow></mfenced><mo>,</mo><mo> </mo><mo> </mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><msqrt><mn>3</mn></msqrt><mn>2</mn></mfrac><mtext>i</mtext></mrow></mfenced></mrow></mfenced></math> by calculating the distance between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> points</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mi mathvariant="normal">=</mi><msqrt><mn>3</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mi mathvariant="normal">=</mi><msqrt><mn>3</mn></msqrt></math> <em><strong>A1</strong></em></p>
<p><strong><br>Note:</strong> Award a maximum of <em><strong>M1A1A0</strong></em> for any decimal approximation seen in the calculation of either <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math> or both.</p>
<p><br>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mn>3</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong> (M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>-</mo><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mfenced><mrow><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>2</mn></mrow></mfenced></math> and since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mn>3</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>4</mn></msup><mo>−</mo><mn>1</mn><mo>=</mo><mfenced><mrow><mi>z</mi><mo>−</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>3</mn></msup><mo>+</mo><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> is a root hence) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>4</mn></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>≠</mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Condone the use of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> throughout.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>considers the sum of roots of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>4</mn></msup><mo>-</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong> (M1)</strong></em></p>
<p>the sum of roots is zero (there is no <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>3</mn></msup></math> term) <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>substitutes for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> <em><strong> (M1)</strong></em></p>
<p><em>e.g.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>LHS</mtext><mo>=</mo><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mrow><mn>3</mn><mtext>π</mtext></mrow><mn>2</mn></mfrac></mrow></msup><mo>+</mo><msup><mtext>e</mtext><mi>πi</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfrac><mtext>π</mtext><mn>2</mn></mfrac></mrow></msup><mo>+</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mo>-</mo><mtext>i</mtext><mo>-</mo><mn>1</mn><mo>+</mo><mtext>i</mtext><mo>+</mo><mn>1</mn></math> <em><strong> A1</strong></em></p>
<p><br><strong>Note:</strong> This can be demonstrated geometrically or by using vectors. Accept Cartesian or modulus-argument (polar) form.<br><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mrow><msup><mi>ω</mi><mn>4</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><mi>ω</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mn>0</mn><mrow><mi>ω</mi><mo>-</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mn>0</mn></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>≠</mo><mn>1</mn></math> <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mi mathvariant="normal">2</mi></msub><mo>=</mo><mn>2</mn></math> <em><strong> A1</strong></em></p>
<p>attempts to find either <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub></math> <em><strong> (M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> For example <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mi mathvariant="normal">=</mi><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi mathvariant="normal">i</mi></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mi mathvariant="normal">=</mi><mfenced open="|" close="|"><mrow><mn>1</mn><mo>+</mo><mi mathvariant="normal">i</mi></mrow></mfenced></math>.<br> Various geometric and trigonometric approaches can be used by candidates.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mi mathvariant="normal">=</mi><msqrt><mn>2</mn></msqrt><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mi mathvariant="normal">=</mi><msqrt><mn>2</mn></msqrt></math> <em><strong> A1</strong></em><em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Award a maximum of <em><strong>A1M1A1A0</strong></em> if labels such as <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> are not clearly shown.<br> Award full marks if the lengths are shown on a clearly labelled diagram.<br> Award a maximum of <em><strong>A1M1A1A0</strong></em> for any decimal approximation seen in the calculation of either <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub></math> or both.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mn>4</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>3</mn></msup></mrow></mfenced></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mo>-</mo><msup><mi>ω</mi><mn>6</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>5</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>4</mn></msup><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>-</mo><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="|" close="|"><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>+</mo><msup><mi>ω</mi><mn>5</mn></msup><mo>+</mo><mn>1</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>6</mn></msup><mo>=</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>4</mn></msup><mo>=</mo><mn>1</mn></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="|" close="|"><mrow><msup><mi>ω</mi><mn>5</mn></msup><mo>-</mo><mi>ω</mi><mo>+</mo><mn>4</mn></mrow></mfenced></math> and since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>5</mn></msup><mo>=</mo><mi>ω</mi></math> <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mn>4</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mi mathvariant="normal">2</mi></msub><mo>=</mo><mn>2</mn></math> <em><strong> A1</strong></em></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>3</mn></msup></mrow></mfenced></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><msup><mi>ω</mi><mn>4</mn></msup><mo>-</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mi>ω</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfenced open="|" close="|"><mrow><mn>2</mn><mo>-</mo><mfenced><mrow><mo>-</mo><mi>ω</mi></mrow></mfenced><mo>-</mo><mi>ω</mi></mrow></mfenced></math> since <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>4</mn></msup><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>3</mn></msup><mo>=</mo><mo>-</mo><mi>ω</mi></math> <em><strong>R1</strong></em> </p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mn>4</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><mo> </mo><mo>…</mo><mo> </mo><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></mrow></mfenced><mo>=</mo><mi>n</mi></math> <em><strong> A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>3</mn></msup></mrow></mfenced></math> <em><strong> A1</strong></em><em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>=</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong> A1</strong></em><em><strong>A1</strong></em></p>
<p> <br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced></math> from symmetry.</p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>-</mo><mn>1</mn><mo>=</mo><mfenced><mrow><mi>z</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo> </mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math></p>
<p>considers the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo> </mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong> (M1)</strong></em></p>
<p>the roots are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mo>…</mo><mo> </mo><mo>,</mo><mo> </mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math> <em><strong> (A1)</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced><mrow><mi>z</mi><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>…</mo><mfenced><mrow><mi>z</mi><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> <em><strong> A1</strong></em></p>
<p><em><strong><br>[3 marks]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>1</mn></math>into <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced><mrow><mi>z</mi><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>…</mo><mfenced><mrow><mi>z</mi><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>≡</mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo> </mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn></math> <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>…</mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>=</mo><mi>n</mi></math> <em><strong> (A1)</strong></em></p>
<p>takes modulus of both sides <em><strong> M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mfenced><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>…</mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow></mfenced><mo>=</mo><mfenced open="|" close="|"><mi>n</mi></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>…</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>=</mo><mi>n</mi></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><mo>…</mo><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>n</mi></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award a maximum of <em><strong>M1A1FTM1A0</strong></em> from part (e).</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mo>,</mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced></math> are the roots of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>v</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mfenced><mrow><mn>1</mn><mo>-</mo><mi>v</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo>+</mo><mo> </mo><mfenced><mrow><mn>1</mn><mo>-</mo><mi>v</mi></mrow></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> <em><strong> M1</strong></em></p>
<p>coefficient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>v</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math> and the coefficient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> <em><strong>A1</strong></em></p>
<p>product of the roots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>n</mi></mrow><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mfrac><mo>=</mo><mi>n</mi></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><mi>ω</mi></mrow></mfenced><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mn>2</mn></msup></mrow></mfenced><mo>…</mo><mfenced open="|" close="|"><mrow><mn>1</mn><mo>-</mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>=</mo><mi>n</mi></math> <em><strong>A1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><mo>…</mo><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>n</mi></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.</strong></p>
<p><br>A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.</p>
<p>For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>,</mo><mo> </mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math>.</p>
<p>The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>For an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>-sided regular polygon, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th polygonal number <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p style="text-align: left;">Hence, for square numbers, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>4</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>4</mn><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mn>4</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup></math>.</p>
</div>
<div class="specification">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th pentagonal number can be represented by the arithmetic series</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>+</mo><mo>…</mo><mo>+</mo><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For triangular numbers, verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The number <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>351</mn></math> is a triangular number. Determine which one it is.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>, sketch a diagram clearly showing your answer to part (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> is the square of an odd number for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable table of values or otherwise, determine the smallest positive integer, greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, that is both a triangular number and a pentagonal number.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A polygonal number, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math>, can be represented by the series</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>.</p>
<p>Use mathematical induction to prove that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>3</mn><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mn>3</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mo>-</mo><mi>n</mi></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0A1</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow><mn>2</mn></mfrac></math> only is seen.</p>
<p>Do not award any marks for numerical verification.</p>
<p> </p>
<p>so for triangular numbers, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>uses a table of values to find a positive integer that satisfies <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>351</mn></math> <em><strong>(M1)</strong></em></p>
<p>for example, a list showing at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> consecutive terms <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>…</mo><mn>325</mn><mo>,</mo><mo> </mo><mn>351</mn><mo>,</mo><mo> </mo><mn>378</mn><mo>…</mo></mrow></mfenced></math></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for use of a GDC’s numerical solve or graph feature.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>26</mn></math>th triangular number) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mo>−</mo><mn>27</mn><mo>,</mo><mn>26</mn></math>. Award <em><strong>A0</strong></em> if additional solutions besides <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math> are given.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempts to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>351</mn><mo> </mo><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi><mo>-</mo><mn>702</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mn>1</mn></mfenced><mfenced><mrow><mo>-</mo><mn>702</mn></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>-</mo><mn>26</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>27</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math> (<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>26</mn></math>th triangular number) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mo>−</mo><mn>27</mn><mo>,</mo><mn>26</mn></math>. Award <em><strong>A0</strong></em> if additional solutions besides <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>26</mn></math> are given.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempts to form an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfrac><mrow><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo> </mo><mfenced><mrow><mo>≡</mo><mfrac><mrow><mn>2</mn><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><mfenced><mrow><mfrac><msup><mi>n</mi><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mi>n</mi><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mfenced><mrow><mfrac><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mn>2</mn></mfrac><mo>+</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><mfenced><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mfenced><mfrac><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>≡</mo><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≡</mo><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the sum of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>th triangular numbers</p>
<p>is the <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math>th square number <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Accept equivalent single diagrams, such as the one above, where the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>th and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>th triangular numbers and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>th square number are clearly shown.<br>Award <em><strong>A1</strong> </em>for a diagram that show <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mn>4</mn></mfenced></math> (a triangle with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> dots) and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mn>5</mn></mfenced></math> (a triangle with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> dots) and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>4</mn></msub><mfenced><mn>5</mn></mfenced></math> (a square with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo> </mo></math>dots).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>8</mn><mfenced><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempts to expand their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is odd <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>8</mn><mfenced><mrow><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mn>1</mn><mfenced><mrow><mo>=</mo><mn>8</mn><mfenced><mrow><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfrac><mrow><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></mfenced><mspace linebreak="newline"></mspace></math> <em><strong>A1</strong></em></p>
<p>attempts to expand their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>4</mn><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is odd <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Method 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn><mo>=</mo><mn>8</mn><mfenced><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><msup><mfenced><mrow><mi>A</mi><mi>n</mi><mo>+</mo><mi>B</mi></mrow></mfenced><mn>2</mn></msup></mrow></mfenced></math> (where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>) <em><strong>A1</strong></em></p>
<p>attempts to expand their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> <em><strong>(M1)</strong></em></p>
<p><em><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo> </mo><mfenced><mrow><mo>=</mo><msup><mi>A</mi><mn>2</mn></msup><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>A</mi><mi>B</mi><mi>n</mi><mo>+</mo><msup><mi>B</mi><mn>2</mn></msup></mrow></mfenced></math></em></p>
<p>now equates coefficients and obtains <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><msup><mfenced><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p>and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is odd <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>3</mn></math> <em><strong>(A1)</strong></em></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mi>d</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>3</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></math> <em><strong>(A1)</strong></em></p>
<p>substitutes their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mi>n</mi></msub></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfenced><mrow><mn>3</mn><mfenced><mn>1</mn></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>3</mn><mfenced><mn>2</mn></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>3</mn><mfenced><mn>3</mn></mfenced><mo>-</mo><mn>2</mn></mrow></mfenced><mo>+</mo><mo>…</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfenced><mrow><mn>3</mn><mfenced><mn>1</mn></mfenced><mo>+</mo><mn>3</mn><mfenced><mn>2</mn></mfenced><mo>+</mo><mn>3</mn><mfenced><mn>3</mn></mfenced><mo>+</mo><mo>…</mo><mo>+</mo><mn>3</mn><mi>n</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>n</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>3</mn><mfenced><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>+</mo><mo>…</mo><mo>+</mo><mi>n</mi></mrow></mfenced><mo>-</mo><mn>2</mn><mi>n</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> into their expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>3</mn><mfenced><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></mfenced><mo>-</mo><mn>2</mn><mi>n</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>3</mn><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mn>4</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>attempts to find the arithmetic mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>multiplies the above expression by the number of terms <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mi>n</mi><mn>2</mn></mfrac><mfenced><mrow><mn>1</mn><mo>+</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>forms a table of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced></math> values that includes some values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>></mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p>forms a table of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> values that includes some values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>></mo><mn>5</mn></math> <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1)</em></strong> if at least one <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced></math> value is correct. Award <strong><em>(M1)</em></strong> if at least one <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> value is correct. Accept as above for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow></mfenced></math> values and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mi>m</mi></mrow></mfenced></math> values.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> for triangular numbers <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> for pentagonal numbers <em><strong>(A1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> is seen in or out of a table. Award <em><strong>(A1)</strong></em> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> is seen in or out of a table. Condone the use of the same parameter for triangular numbers and pentagonal numbers, for example, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> for triangular numbers and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>12</mn></math> for pentagonal numbers.</p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award all five marks for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> seen anywhere with or without working shown.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><strong>EITHER</strong></p>
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> as a quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math> (or equivalent)</p>
<p>attempts to solve their quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><mn>12</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>m</mi><mo>+</mo><mn>1</mn></msqrt></mrow><mn>2</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mo>-</mo><mn>1</mn><mo>±</mo><msqrt><msup><mn>1</mn><mn>2</mn></msup><mo>-</mo><mn>4</mn><mfenced><mrow><mi>m</mi><mo>-</mo><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup></mrow></mfenced></msqrt></mrow><mn>2</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p style="text-align:left;"><strong>OR</strong></p>
<p>attempts to express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>m</mi></mfenced></math> as a quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mi>m</mi><mo>-</mo><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow></mfenced><mfenced><mrow><mo>=</mo><mn>0</mn></mrow></mfenced></math> (or equivalent)</p>
<p>attempts to solve their quadratic in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>±</mo><msqrt><mn>12</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>n</mi><mo>+</mo><mn>1</mn></msqrt></mrow><mn>6</mn></mfrac><mfenced><mrow><mo>=</mo><mfrac><mrow><mn>1</mn><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>12</mn><mfenced><mrow><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi></mrow></mfenced></msqrt></mrow><mn>6</mn></mfrac></mrow></mfenced></math></p>
<p> </p>
<p><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> for triangular numbers <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> for pentagonal numbers <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><mfenced><mrow><mn>3</mn><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>m</mi><mo>+</mo><mi>k</mi><mo> </mo><mfenced><mrow><mi>n</mi><mo>></mo><mi>m</mi></mrow></mfenced></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mi>m</mi><mo>=</mo><mfenced><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></mfenced><mfenced><mrow><mi>m</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mi>m</mi><mo>-</mo><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p>attempts to find the discriminant of their quadratic</p>
<p>and recognises that this must be a perfect square <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>8</mn><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>N</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mn>8</mn><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math></p>
<p>determines that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>8</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>m</mi><mn>2</mn></msup><mo>-</mo><mn>18</mn><mi>m</mi><mo>-</mo><mn>72</mn><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>m</mi><mo>=</mo><mo>-</mo><mn>3</mn><mo>,</mo><mn>12</mn></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>12</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number) <em><strong>A1</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 4</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><mfenced><mrow><mn>3</mn><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>n</mi><mo>-</mo><mi>k</mi><mo> </mo><mfenced><mrow><mi>m</mi><mo><</mo><mi>n</mi></mrow></mfenced></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mi>n</mi><mo>=</mo><mfenced><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></mfenced><mfenced><mrow><mn>3</mn><mfenced><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></mfenced><mo>-</mo><mn>1</mn></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mi>n</mi><mo>+</mo><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p>attempts to find the discriminant of their quadratic</p>
<p>and recognises that this must be a perfect square <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Δ</mtext><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>8</mn><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>N</mi><mn>2</mn></msup><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>8</mn><mfenced><mrow><mn>3</mn><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mi>k</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mo>=</mo><mn>4</mn><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>3</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced></math></p>
<p>determines that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>8</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>200</mn><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>n</mi><mo>=</mo><mn>5</mn><mo>,</mo><mn>20</mn></math> and so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>20</mn></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>210</mn></math> (is a triangular number and a pentagonal number) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Note:</strong> Award a maximum of <em><strong>R1M0M0A1M1A1A1R0</strong></em> for a ‘correct’ proof using <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>+</mo><mn>1</mn></math>.</p>
<p> </p>
<p>consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn><mo>:</mo><mo> </mo><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfenced><mrow><mn>1</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><msup><mn>1</mn><mn>2</mn></msup></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mfenced><mn>1</mn></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>1</mn></math></p>
<p>so true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math> <em><strong>R1</strong> </em></p>
<p> </p>
<p><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><msup><mn>1</mn><mn>2</mn></msup></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mfenced><mn>1</mn></mfenced></mrow><mn>2</mn></mfrac><mo>=</mo><mn>1</mn></math>.<br>Do not accept one-sided considerations such as '<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>1</mn></math> and so true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math>'.<br>Subsequent marks after this <em><strong>R1</strong> </em>are independent of this mark can be awarded.</p>
<p> </p>
<p>Assume true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math>, <em>ie.</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>k</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi></mrow><mn>2</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>M0</strong> </em>for statements such as “let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math> ”. The assumption of truth must be clear.<br>Subsequent marks after this <em><strong>M1</strong> </em>are independent of this mark and can be awarded.</p>
<p> </p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>:</mo></math></p>
<p>(<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></math> can be represented by the sum</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> and so</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi></mrow><mn>2</mn></mfrac><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><msub><mi>P</mi><mi>r</mi></msub><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>k</mi></mfenced><mo>+</mo><mfenced><mrow><mn>1</mn><mo>+</mo><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>+</mo><mn>2</mn><mo>+</mo><mn>2</mn><mi>k</mi><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mfenced><mrow><msup><mi>k</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mn>2</mn></mfrac></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>k</mi><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>(A1)</strong></em></p>
<p> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mfenced><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> <em><strong>A1</strong></em></p>
<p>hence true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi></math> true <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇒</mo><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></math> true <em><strong>R1</strong></em></p>
<p>therefore true for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math></p>
<p> </p>
<p><strong>Note:</strong> Only award the final <em><strong>R1</strong> </em>if the first five marks have been awarded. Award marks as appropriate for solutions that expand both the LHS and (given) RHS of the equation.</p>
<p> </p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) (i) was generally well done. Unfortunately, some candidates adopted numerical verification. Part (a) (ii) was generally well done with the majority of successful candidates using their GDC judiciously and disregarding <em>n </em>= −27 as a possible solution. A few candidates interpreted the question as needing to deal with P<sub>3</sub>(351).</p>
<p>Although part (b) (i) was generally well done, a significant number of candidates laboured unnecessarily to show the required result. Many candidates set their LHS to equal the RHS throughout the solution. Part (b) (ii) was generally not well done with many candidates unable to articulate clearly in words and symbols what the given identity shows for the sum of two consecutive triangular numbers. In part (b) (iii), most candidates were unable to produce a clear diagram illustrating the identity stated in part (b) (i). </p>
<p>Part (c) was reasonably well done. Most candidates were able to show algebraically that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>=</mo><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math>. A good number of candidates were then able to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></msup></math> and conclude that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math> is odd. Rather than making the connection that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math> is a perfect square, many candidates attempted instead to analyse the parity of either <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mi>n</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><msup><mi>n</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>1</mn></math>. As with part (b) (i), many candidates set their LHS to equal the RHS throughout the solution. A number of candidates unfortunately adopted numerical verification.</p>
<p>Part (d) was not answered as well as anticipated with many candidates not understanding what was<br>required. Instead of using the given arithmetic series to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>(</mo><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mn>2</mn></mfrac></math>, a large number of<br>candidates used <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mo>(</mo><mn>5</mn><mo>-</mo><mn>2</mn><mo>)</mo><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mo>(</mo><mn>5</mn><mo>-</mo><mn>4</mn><mo>)</mo><mi>n</mi></mrow><mn>2</mn></mfrac></math> . Unfortunately, a number of candidates adopted numerical verification.</p>
<p>In part (e), the overwhelming majority of candidates who successfully determined that 210 is the smallest positive integer greater than 1 that is both triangular and pentagonal used a table of values. Unfortunately, a large proportion of these candidates seemingly spent quite a few minutes listing the first 20 triangular numbers and the first 12 pentagonal numbers. And it can be surmised that a number of these candidates constructed their table of values either without the use of a GDC or with the arithmetic functionality of a GDC rather than with a GDC's table of values facility. Candidates should be aware that a relevant excerpt from a table of values is sufficient evidence of correct working. A number of candidates started constructing a table of values but stopped before identifying 210. Disappointingly, a significant number of candidates attempted to solve <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msub><mi>P</mi><mn>5</mn></msub><mo>(</mo><mi>n</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<p>Part (f) proved beyond the reach of most with only a small number of candidates successfully proving the given result. A significant number of candidates were unable to show that the result is true for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>1</mn></math>. A number of candidates established the validity of the base case for the RHS only while a number of other candidates attempted to prove the base case for <em>r</em> = 3. A large number of candidates did not state the inductive step correctly with the assumption of truth not clear. A number of candidates then either attempted to work backwards from the given result or misinterpreted the question and attempted to prove the result stated in the question stem rather than the result stated in the question. Some candidates who were awarded the first answer mark when considering the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>k</mi><mo>+</mo><mn>1</mn></math> case were unable to complete the square or equivalent simplification correctly. Disappointingly, a significant number listed the steps involved in an induction proof without engaging in the actual proof.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore cubic polynomials of the form</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> <strong>and corresponding cubic equations with one real root and two complex roots of the form </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>z</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo><mn>0</mn></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<p> </p>
</div>
<div class="specification">
<p>In parts (a), (b) and (c), let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>a</mi><mo>=</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>1</mn></math>.</p>
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>z</mi><mo>+</mo><mn>17</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>On the Cartesian plane, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mo>-</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math> represent the real and imaginary parts of the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<p><br>The following diagram shows a particular curve of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced></math> and the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mn>80</mn></mrow></mfenced></math>. The curve and the tangent both intersect the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math> are also shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mi>r</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mo>(</mo><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> are as defined in part (d)(ii). The curve has a point of inflexion at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="specification">
<p>Consider the special case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mtext>i</mtext></math> are roots of the equation, write down the third root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the mean of the two complex roots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the tangent to the curve at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, clearly showing where the tangent crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, prove that the tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow></mfenced></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce from part (d)(i) that the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this diagram to determine the roots of the corresponding equation of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced></math>.</p>
<p>You are <strong>not</strong> required to demonstrate a change in concavity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe numerically the horizontal position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> relative to the horizontal positions of the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>, state in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, the coordinates of points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mtext>i</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mean<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mfenced><mrow><mn>4</mn><mo>+</mo><mtext>i</mtext><mo>+</mo><mn>4</mn><mo>-</mo><mtext>i</mtext></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempts product rule differentiation <em><strong>(M1)</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for attempting to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math> as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>25</mn><mi>x</mi><mo>-</mo><mn>17</mn></math></p>
<p> </p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>8</mn></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn><mo> </mo><mo> </mo><mfenced><mrow><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>18</mn><mi>x</mi><mo>+</mo><mn>25</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mn>4</mn></mfenced><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> is correct, award <em><strong>A1</strong></em> for solving <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn></math> and obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mn>3</mn><mo>=</mo><mn>1</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mi>c</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>=</mo><mn>4</mn><mo>+</mo><mi>c</mi><mo>⇒</mo><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>OR</strong></p>
<p>states the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is also <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and verifies that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math> lies on the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><strong><br>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to the curve at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award a maximum of <em><strong>(M0)A0A1A1</strong></em> to a candidate who does not attempt to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> to form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mn>1</mn><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo> </mo><mo> </mo><mfenced><mrow><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>24</mn><mi>x</mi><mo>-</mo><mn>16</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempts to solve a correct cubic equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>4</mn></math></p>
<p><strong><br>OR</strong></p>
<p>recognises that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mn>1</mn></math> and forms <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn><mo>=</mo><mn>1</mn><mo> </mo><mo> </mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>16</mn><mo>=</mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>attempts to solve a correct quadratic equation <em><strong>(M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mn>4</mn></math></p>
<p><strong><br>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math> is a double root <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to the curve at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Candidates using this method are not required to verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>3</mn></math>.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="padding-left:60px;"><img src=""></p>
<p>a positive cubic with an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math>, and a local maximum and local minimum in the first quadrant both positioned to the left of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> As the local minimum and point A are very close to each other, condone graphs that seem to show these points coinciding.<br>For the point of tangency, accept labels such as <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>,</mo><mo> </mo><mfenced><mrow><mn>4</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math> or the point labelled from both axes. Coordinates are not required.</p>
<p> </p>
<p>a correct sketch of the tangent passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and crossing the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the same point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></mfenced></math> as the curve <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note:</strong> Award <em><strong>A1A0</strong></em> if both graphs cross the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at distinctly different points.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>(M1)A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>r</mi></mrow></mfenced><mi>x</mi><mo>-</mo><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mi>r</mi></math></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>a</mi><mi>r</mi></math></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mfenced><mrow><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced><mi>x</mi><mo>+</mo><mn>2</mn><mi>a</mi><mi>r</mi><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>=</mo><mn>2</mn><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mi>a</mi><mi>x</mi><mo>-</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>a</mi><mi>r</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p>attempts to substitute their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mi>x</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mi>r</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR </strong></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mo>-</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mi>a</mi></math> <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math> <em><strong>A1</strong></em><br><strong><br>THEN</strong></p>
<p>so the tangent intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p>attempts to substitute their <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>a</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mi>x</mi><mo>+</mo><mi>c</mi></math> and attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mi>r</mi></math></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo> </mo><mfenced><mrow><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mi>x</mi><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup><mi>r</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>=</mo><mi>r</mi></math> <em><strong>R1</strong></em></p>
<p><br><strong>OR</strong></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math> so <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math> OR <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn><mo>⇒</mo><mi>x</mi><mo>-</mo><mi>r</mi><mo>=</mo><mn>0</mn></math> <em><strong>R1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>(A1)</strong></em></p>
<p>the line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> parallel to the tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has equation<br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math> to form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mfenced><mrow><mi>x</mi><mo>≠</mo><mi>r</mi></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p>since there is a double root <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>=</mo><mi>a</mi></mrow></mfenced></math>, this parallel line through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> is the required tangent at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> <em><strong>R1</strong></em></p>
<p> </p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mo>⇒</mo><mi>b</mi><mo>=</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math> (since <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>) <em><strong>R1</strong></em><br><br><br><strong>Note:</strong> Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mo>±</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>.</p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i=</mtext></mrow></mfenced><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><msup><mi>b</mi><mn>2</mn></msup></msqrt></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> <em><strong>R1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>hence the complex roots can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>4</mn></math> (seen anywhere) <em><strong>A1</strong></em></p>
<p><strong><br>EITHER</strong></p>
<p>attempts to find the gradient of the tangent in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and equates to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> <em><strong>(M1)</strong></em><br><br><br><strong>OR</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>80</mn></math> to form <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn><mo>=</mo><mfenced><mrow><mi>a</mi><mo>-</mo><mfenced><mrow><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>OR</strong></p>
<p>substitutes <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>=</mo><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>80</mn></math> into <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>16</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>THEN</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>80</mn><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>16</mn><mo>⇒</mo><mi>a</mi><mo>=</mo><mn>3</mn></math></p>
<p>roots are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> (seen anywhere) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>±</mo><mn>4</mn><mtext>i</mtext></math> <em><strong>A1A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Award <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> and <em><strong>A1</strong> </em>for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>±</mo><mn>4</mn><mtext>i</mtext></math>. Do not accept coordinates.</p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>4</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>−</mo><mn>4</mn></math>”.<br>Do not award <em><strong>A1FT</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mo>−</mo><mn>4</mn><mo>)</mo></math>. </p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math></p>
<p>attempts to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced></math> <em><strong>M1</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mo>+</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>a</mi><mo> </mo><mfenced><mrow><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>r</mi><mo>-</mo><mn>4</mn><mi>a</mi></mrow></mfenced></math></p>
<p>sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> and correctly solves for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> <em><strong>A1</strong></em></p>
<p>for example, obtaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>-</mo><mi>r</mi><mo>+</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn></math> leading to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>=</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></math></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced></math> <em><strong>AG</strong></em></p>
<p><br><strong>Note:</strong> Do not award <em><strong>A1</strong></em> if the answer does not lead to the <em><strong>A</strong><strong>G</strong></em>.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>2</mn><mn>3</mn></mfrac></math> of the horizontal distance (way) from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Accept equivalent numerical statements or a clearly labelled diagram displaying the numerical relationship.<br>Award <em><strong>A0</strong></em> for non-numerical statements such as “<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, closer to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>”.</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></math> <em><strong>(A1)</strong></em></p>
<p><img src=""></p>
<p>a positive cubic with no stationary points and a non-stationary point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> <em><strong>A1</strong></em></p>
<p><br><strong>Note:</strong> Graphs may appear approximately linear. Award this <em><strong>A1</strong> </em>if a change of concavity either side of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math> is apparent.<br>Coordinates are not required and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept need not be indicated.</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) (i) was generally well done with a significant majority of candidates using the conjugate root theorem to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mtext>i</mtext></math> as the third root. A number of candidates, however, wasted considerable time attempting an algebraic method to determine the third root. Part (a) (ii) was reasonably well done. A few candidates however attempted to calculate the product of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mtext>i</mtext></math>.</p>
<p>Part (b) was reasonably well done by a significant number of candidates. Most were able to find a correct expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> and a good number of those candidates were able to determine that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mn>4</mn><mo>)</mo><mo>=</mo><mn>1</mn></math>. Candidates that did not determine the equation of the tangent had to state that the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is also 1 and verify that the point (4,3) lies on the line. A few candidates only met one of those requirements. Weaker candidates tended to only verify that the point (4,3) lies on the curve and the tangent line without attempting to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>Part (c) was not answered as well as anticipated. A number of sketches were inaccurate and carelessly drawn with many showing both graphs crossing the <em>x-</em>axis at distinctly different points.</p>
<p>Part (d) (i) was reasonably well done by a good number of candidates. Most successful responses involved use of the product rule. A few candidates obtained full marks by firstly expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, then differentiating to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>and finally simplifying to obtain the desired result. A number of candidates made elementary mistakes when differentiating. In general, the better candidates offered reasonable attempts at showing the general result in part (d) (ii). A good number gained partial credit by determining that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> and/or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup><mo>(</mo><mi>a</mi><mo>-</mo><mi>r</mi><mo>)</mo></math>. Only the very best candidates obtained full marks by concluding that as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>≠</mo><mn>0</mn></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>r</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<p>In general, only the best candidates were able to use the result <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><msup><mi>b</mi><mn>2</mn></msup></math> to deduce that the complex roots of the equation can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mo>(</mo><mi>a</mi><mo>)</mo></msqrt></math>. Although given the complex roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i</mtext></math>, a significant number of candidates attempted, with mixed success, to use the quadratic formula to solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></math>.</p>
<p>In part (f) (i), only a small number of candidates were able to determine all the roots of the equation. Disappointingly, a large number did not state <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn></math> as a root. Some candidates determined that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>4</mn></math> but were unable to use the diagram to determine that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>3</mn></math>. Of the candidates who determined all the roots in part (f) (i), very few gave the correct coordinates for C<sub>2</sub> . The most frequent error was to give the <em>y-</em>coordinate as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>-</mo><mn>4</mn><mtext>i</mtext></math>.</p>
<p>Of the candidates who attempted part (g) (i), most were able to find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>''</mo><mo>(</mo><mi>x</mi><mo>)</mo></math> and a reasonable number of these were then able to convincingly show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>(</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi><mo>)</mo></math>. It was very rare to see a correct response to part (g) (ii). A few candidates stated that P is between R and A with some stating that P was closer to A. A small number restated <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mo>(</mo><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi><mo>)</mo></math> in words.</p>
<p>Of the candidates who attempted part (h) (i), most were able to determine that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>5</mn></mrow></mfenced></math>. However, most graphs were poorly drawn with many showing a change in concavity at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> rather than at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn></math>. In part (h) (ii), only a very small number of candidates determined that A and P coincide at (<em>r</em>,0).</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question investigates some applications of differential equations to modeling population growth.</p>
<p>One model for population growth is to assume that the rate of change of the population is proportional to the population, i.e. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = kP">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>P</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mi>k</mi>
<mi>P</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time (in years) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> is the population</p>
</div>
<div class="specification">
<p>The initial population is 1000.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.003">
<mi>k</mi>
<mo>=</mo>
<mn>0.003</mn>
</math></span>, use your answer from part (a) to find</p>
</div>
<div class="specification">
<p>Consider now the situation when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> is not a constant, but a function of time.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.003 + 0.002t">
<mi>k</mi>
<mo>=</mo>
<mn>0.003</mn>
<mo>+</mo>
<mn>0.002</mn>
<mi>t</mi>
</math></span>, find</p>
</div>
<div class="specification">
<p>Another model for population growth assumes</p>
<ul>
<li>there is a maximum value for the population, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</li>
<li>that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> is not a constant, but is proportional to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - \frac{P}{L}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−<!-- − --></mo>
<mfrac>
<mi>P</mi>
<mi>L</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</li>
</ul>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the general solution of this differential equation is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = A{{\text{e}}^{kt}}"> <mi>P</mi> <mo>=</mo> <mi>A</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mi>k</mi> <mi>t</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \in \mathbb{R}"> <mi>A</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the population after 10 years</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the number of years it will take for the population to triple.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{t \to \infty } P"> <munder> <mrow> <mrow> <mtext>lim</mtext> </mrow> </mrow> <mrow> <mi>t</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo></mo> <mi>P</mi> </math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the solution of the differential equation, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = f\left( t \right)"> <mi>P</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the number of years it will take for the population to triple.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = \frac{m}{L}P\left( {L - P} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}"> <mi>m</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = \frac{m}{L}P\left( {L - P} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </math></span>, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = g\left( t \right)"> <mi>P</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[10]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the initial population is 1000, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = 10000"> <mi>L</mi> <mo>=</mo> <mn>10000</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 0.003"> <mi>m</mi> <mo>=</mo> <mn>0.003</mn> </math></span>, find the number of years it will take for the population to triple.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{P}} {\text{d}}P = \int {k{\text{d}}t} "> <mo>∫</mo> <mrow> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> <mo>=</mo> <mo>∫</mo> <mrow> <mi>k</mi> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> <em><strong> M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,P = kt + c"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>P</mi> <mo>=</mo> <mi>k</mi> <mi>t</mi> <mo>+</mo> <mi>c</mi> </math></span> <em><strong> A1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = {e^{kt + c}}"> <mi>P</mi> <mo>=</mo> <mrow> <msup> <mi>e</mi> <mrow> <mi>k</mi> <mi>t</mi> <mo>+</mo> <mi>c</mi> </mrow> </msup> </mrow> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = A{e^{kt}}"> <mi>P</mi> <mo>=</mo> <mi>A</mi> <mrow> <msup> <mi>e</mi> <mrow> <mi>k</mi> <mi>t</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = {e^c}"> <mi>A</mi> <mo>=</mo> <mrow> <msup> <mi>e</mi> <mi>c</mi> </msup> </mrow> </math></span> <em><strong> AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0{\text{,}}\,\,P = 1000"> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>P</mi> <mo>=</mo> <mn>1000</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow A = 1000"> <mo stretchy="false">⇒</mo> <mi>A</mi> <mo>=</mo> <mn>1000</mn> </math></span> <em><strong> A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {10} \right) = 1000{e^{0.003\left( {10} \right)}} = 1030"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1000</mn> <mrow> <msup> <mi>e</mi> <mrow> <mn>0.003</mn> <mrow> <mo>(</mo> <mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mrow> <mo>=</mo> <mn>1030</mn> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3000 = 1000{e^{0.003t}}"> <mn>3000</mn> <mo>=</mo> <mn>1000</mn> <mrow> <msup> <mi>e</mi> <mrow> <mn>0.003</mn> <mi>t</mi> </mrow> </msup> </mrow> </math></span> <em><strong> M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{{\text{ln}}\,3}}{{0.003}} = 366"> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> </mrow> <mrow> <mn>0.003</mn> </mrow> </mfrac> <mo>=</mo> <mn>366</mn> </math></span> years <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{t \to \infty } P = \infty "> <munder> <mrow> <mrow> <mtext>lim</mtext> </mrow> </mrow> <mrow> <mi>t</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo></mo> <mi>P</mi> <mo>=</mo> <mi mathvariant="normal">∞</mi> </math></span> <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{P}} {\text{d}}P = \int {\left( {0.003 + 0.002t} \right){\text{d}}t} "> <mo>∫</mo> <mrow> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> <mo>=</mo> <mo>∫</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>0.003</mn> <mo>+</mo> <mn>0.002</mn> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,P = 0.003t + 0.001{t^2} + c"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>P</mi> <mo>=</mo> <mn>0.003</mn> <mi>t</mi> <mo>+</mo> <mn>0.001</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>c</mi> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = {e^{0.003t + 0.001{t^2} + c}}"> <mi>P</mi> <mo>=</mo> <mrow> <msup> <mi>e</mi> <mrow> <mn>0.003</mn> <mi>t</mi> <mo>+</mo> <mn>0.001</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>c</mi> </mrow> </msup> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0{\text{,}}\,\,P = 1000"> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>P</mi> <mo>=</mo> <mn>1000</mn> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {e^c} = 1000"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>e</mi> <mi>c</mi> </msup> </mrow> <mo>=</mo> <mn>1000</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = 1000{e^{0.003t + 0.001{t^2}}}"> <mi>P</mi> <mo>=</mo> <mn>1000</mn> <mrow> <msup> <mi>e</mi> <mrow> <mn>0.003</mn> <mi>t</mi> <mo>+</mo> <mn>0.001</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> </msup> </mrow> </math></span></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3000 = 1000{e^{0.003t + 0.001{t^2}}}"> <mn>3000</mn> <mo>=</mo> <mn>1000</mn> <mrow> <msup> <mi>e</mi> <mrow> <mn>0.003</mn> <mi>t</mi> <mo>+</mo> <mn>0.001</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mrow> </msup> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,3 = 0.003t + 0.001{t^2}"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>3</mn> <mo>=</mo> <mn>0.003</mn> <mi>t</mi> <mo>+</mo> <mn>0.001</mn> <mrow> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>Use of quadratic formula or GDC graph or GDC polysmlt <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 31.7"> <mi>t</mi> <mo>=</mo> <mn>31.7</mn> </math></span> years <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = m\left( {1 - \frac{P}{L}} \right)"> <mi>k</mi> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mfrac> <mi>P</mi> <mi>L</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span> is the constant of proportionality <em><strong>A1</strong></em></p>
<p>So <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = m\left( {1 - \frac{P}{L}} \right)P"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mfrac> <mi>P</mi> <mi>L</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>P</mi> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = \frac{m}{L}P\left( {L - P} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {\frac{1}{{P\left( {L - P} \right)}}} {\text{d}}P = \int {\frac{m}{L}{\text{d}}t} "> <mo>∫</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> <mo>=</mo> <mo>∫</mo> <mrow> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{P\left( {L - P} \right)}} = \frac{A}{P} + \frac{B}{{L - P}}"> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>A</mi> <mi>P</mi> </mfrac> <mo>+</mo> <mfrac> <mi>B</mi> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \equiv A\left( {L - P} \right) + BP"> <mn>1</mn> <mo>≡</mo> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>B</mi> <mi>P</mi> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \frac{1}{L}{\text{,}}\,\,B = \frac{1}{L}"> <mi>A</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{L}\int {\left( {\frac{1}{P} + \frac{1}{{L - P}}} \right){\text{d}}P} = \int {\frac{m}{L}{\text{d}}t} "> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mo>∫</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mi>P</mi> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mo>=</mo> <mo>∫</mo> <mrow> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{L}\left( {{\text{ln}}\,P - {\text{ln}}\left( {L - P} \right)} \right) = \frac{m}{L}t + c"> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>P</mi> <mo>−</mo> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mi>t</mi> <mo>+</mo> <mi>c</mi> </math></span> <em><strong>A1</strong></em><em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {\frac{P}{{L - P}}} \right) = mt + d"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>P</mi> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>m</mi> <mi>t</mi> <mo>+</mo> <mi>d</mi> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d = cL"> <mi>d</mi> <mo>=</mo> <mi>c</mi> <mi>L</mi> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{P}{{L - P}} = C{e^{mt}}"> <mfrac> <mi>P</mi> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> </mfrac> <mo>=</mo> <mi>C</mi> <mrow> <msup> <mi>e</mi> <mrow> <mi>m</mi> <mi>t</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = {e^d}"> <mi>C</mi> <mo>=</mo> <mrow> <msup> <mi>e</mi> <mi>d</mi> </msup> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {1 + C{e^{mt}}} \right) = CL{e^{mt}}"> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>C</mi> <mrow> <msup> <mi>e</mi> <mrow> <mi>m</mi> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mi>L</mi> <mrow> <msup> <mi>e</mi> <mrow> <mi>m</mi> <mi>t</mi> </mrow> </msup> </mrow> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = \frac{{CL{e^{mt}}}}{{\left( {1 + C{e^{mt}}} \right)}}{\text{ }}\left( { = \frac{L}{{\left( {D{e^{ - mt}} + 1} \right)}}{\text{,}}\,\,{\text{where}}\;D = \frac{1}{C}} \right)"> <mi>P</mi> <mo>=</mo> <mfrac> <mrow> <mi>C</mi> <mi>L</mi> <mrow> <msup> <mi>e</mi> <mrow> <mi>m</mi> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>C</mi> <mrow> <msup> <mi>e</mi> <mrow> <mi>m</mi> <mi>t</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mtext> </mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mo>=</mo> <mfrac> <mi>L</mi> <mrow> <mrow> <mo>(</mo> <mrow> <mi>D</mi> <mrow> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>m</mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <mtext>where</mtext> </mrow> <mspace width="thickmathspace"></mspace> <mi>D</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mi>C</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[10 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1000 = \frac{{10000}}{{D + 1}}"> <mn>1000</mn> <mo>=</mo> <mfrac> <mrow> <mn>10000</mn> </mrow> <mrow> <mi>D</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D = 9"> <mi>D</mi> <mo>=</mo> <mn>9</mn> </math></span> <em><strong>A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3000 = \frac{{10000}}{{9{e^{ - 0.003t}} + 1}}"> <mn>3000</mn> <mo>=</mo> <mfrac> <mrow> <mn>10000</mn> </mrow> <mrow> <mn>9</mn> <mrow> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mn>0.003</mn> <mi>t</mi> </mrow> </msup> </mrow> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 450"> <mi>t</mi> <mo>=</mo> <mn>450</mn> </math></span> years <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>In parts (b) and (c), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {abc \ldots } \right)_n}">
<mrow>
<msub>
<mrow>
<mo>(</mo>
<mrow>
<mi>a</mi>
<mi>b</mi>
<mi>c</mi>
<mo>…<!-- … --></mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msub>
</mrow>
</math></span> denotes the number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{abc \ldots }">
<mrow>
<mi>a</mi>
<mi>b</mi>
<mi>c</mi>
<mo>…<!-- … --></mo>
</mrow>
</math></span> written in base <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }">
<mi>n</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>. For example, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {359} \right)_n} = 3{n^2} + 5n + 9">
<mrow>
<msub>
<mrow>
<mo>(</mo>
<mrow>
<mn>359</mn>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>n</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mi>n</mi>
<mo>+</mo>
<mn>9</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Fermat’s little theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{15^{1207}}"> <mrow> <msup> <mn>15</mn> <mrow> <mn>1207</mn> </mrow> </msup> </mrow> </math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13"> <mn>13</mn> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Convert <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {7A2} \right)_{16}}"> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mi>A</mi> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>16</mn> </mrow> </msub> </mrow> </math></span> to base <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5"> <mn>5</mn> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( A \right)_{16}} = {\left( {10} \right)_{10}}"> <mrow> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> <mrow> <mn>16</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>10</mn> </mrow> </msub> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1251} \right)_n} + {\left( {30} \right)_n} = {\left( {504} \right)_n} + {\left( {504} \right)_n}"> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>1251</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>30</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>504</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>504</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> </math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a^p} \equiv a\left( {{\text{mod}}\,p} \right)"> <mrow> <msup> <mi>a</mi> <mi>p</mi> </msup> </mrow> <mo>≡</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>mod</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> is prime <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a^{p - 1}} \equiv 1\left( {{\text{mod}}\,p} \right)"> <mrow> <msup> <mi>a</mi> <mrow> <mi>p</mi> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>≡</mo> <mn>1</mn> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>mod</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> is prime and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> does not divide <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> (or equivalent statement) <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{15^{1207}} \equiv {2^{1207}}\left( {{\text{mod}}\,13} \right)"> <mrow> <msup> <mn>15</mn> <mrow> <mn>1207</mn> </mrow> </msup> </mrow> <mo>≡</mo> <mrow> <msup> <mn>2</mn> <mrow> <mn>1207</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>mod</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>13</mn> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^{12}} \equiv 1\left( {{\text{mod}}\,13} \right)"> <mrow> <msup> <mn>2</mn> <mrow> <mn>12</mn> </mrow> </msup> </mrow> <mo>≡</mo> <mn>1</mn> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>mod</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>13</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)(A1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^{1207}} = {\left( {{2^{12}}} \right)^{100}}{2^7}"> <mrow> <msup> <mn>2</mn> <mrow> <mn>1207</mn> </mrow> </msup> </mrow> <mo>=</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mrow> <mn>12</mn> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mn>100</mn> </mrow> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mn>7</mn> </msup> </mrow> </math></span> <em><strong>(M1)</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^{1207}}\left( { \equiv {2^7}} \right) \equiv 11\left( {{\text{mod}}\,13} \right)"> <mrow> <msup> <mn>2</mn> <mrow> <mn>1207</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mrow> <mo>≡</mo> <mrow> <msup> <mn>2</mn> <mn>7</mn> </msup> </mrow> </mrow> <mo>)</mo> </mrow> <mo>≡</mo> <mn>11</mn> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>mod</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>13</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>(M1)A1</strong></em></p>
<p>the remainder is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="11"> <mn>11</mn> </math></span></p>
<p><strong>Note:</strong> Award as above for using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15"> <mn>15</mn> </math></span> instead of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2"> <mn>2</mn> </math></span>.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {7A2} \right)_{16}} = 7 \times {16^2} + 10 \times 16 + 2"> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mi>A</mi> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>16</mn> </mrow> </msub> </mrow> <mo>=</mo> <mn>7</mn> <mo>×</mo> <mrow> <msup> <mn>16</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>10</mn> <mo>×</mo> <mn>16</mn> <mo>+</mo> <mn>2</mn> </math></span> <em><strong>M1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 1954"> <mo>=</mo> <mn>1954</mn> </math></span> <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5\left| \!{\underline {\, {1954} \,}} \right. "> <mn>5</mn> <mrow> <mo>|</mo> <mspace width="negativethinmathspace"></mspace> <mrow> <munder> <mrow> <mspace width="thinmathspace"></mspace> <mrow> <mn>1954</mn> </mrow> <mspace width="thinmathspace"></mspace> </mrow> <mo>_</mo> </munder> </mrow> <mo stretchy="true" symmetric="true" fence="true"></mo> </mrow> </math></span></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="390\,r\,4"> <mn>390</mn> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mn>4</mn> </math></span></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="78\,r\,0"> <mn>78</mn> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mn>0</mn> </math></span></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15\,r\,3"> <mn>15</mn> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mn>3</mn> </math></span> <em><strong>M1</strong></em></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3\,r\,0"> <mn>3</mn> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mn>0</mn> </math></span></p>
<p> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0\,r\,3"> <mn>0</mn> <mspace width="thinmathspace"></mspace> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mn>3</mn> </math></span></p>
<p><strong>OR</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1954 = 3 \times {5^4} + 0 \times {5^3} + 3 \times {5^2} + 0 \times {5^1} + 4"> <mn>1954</mn> <mo>=</mo> <mn>3</mn> <mo>×</mo> <mrow> <msup> <mn>5</mn> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mn>0</mn> <mo>×</mo> <mrow> <msup> <mn>5</mn> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mo>×</mo> <mrow> <msup> <mn>5</mn> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>0</mn> <mo>×</mo> <mrow> <msup> <mn>5</mn> <mn>1</mn> </msup> </mrow> <mo>+</mo> <mn>4</mn> </math></span> <em><strong>M1</strong></em></p>
<p><strong>THEN</strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {7A2} \right)_{16}} = {\left( {30304} \right)_5}"> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mi>A</mi> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>16</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>30304</mn> </mrow> <mo>)</mo> </mrow> <mn>5</mn> </msub> </mrow> </math></span> <em><strong>A1</strong></em></p>
<p> </p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the equation can be written as</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{n^3} + 2{n^2} + 5n + 1 + 3n = 2\left( {5{n^2} + 4} \right)"> <mrow> <msup> <mi>n</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mn>2</mn> <mrow> <msup> <mi>n</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>5</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mn>5</mn> <mrow> <msup> <mi>n</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>4</mn> </mrow> <mo>)</mo> </mrow> </math></span> <em><strong>M1A1</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \Rightarrow {n^3} - 8{n^2} + 8n - 7 = 0"> <mo stretchy="false">⇒</mo> <mrow> <msup> <mi>n</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>8</mn> <mrow> <msup> <mi>n</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>8</mn> <mi>n</mi> <mo>−</mo> <mn>7</mn> <mo>=</mo> <mn>0</mn> </math></span> <em><strong>(</strong><strong>M1)</strong></em></p>
<p><strong>Note:</strong> The <em><strong>(M1)</strong></em> is for an attempt to solve the original equation.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = 7"> <mi>n</mi> <mo>=</mo> <mn>7</mn> </math></span> <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the remainder when <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>2022</mn></msup></math> is divided by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Fermat’s little theorem to find the remainder when <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>2022</mn></msup></math> is divided by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that a number in base <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> if, and only if, the sum of its digits is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The base <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> number <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mi>y</mi><mn>93</mn><mi>y</mi><mn>25</mn></math> is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>. Find the possible values of the digit <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the remainder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>16</mn></msup><mo>≡</mo><mn>1</mn><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>17</mn></mrow></mfenced></math> (from Fermat’s little theorem) <em><strong>(A1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>2022</mn></msup><mo>=</mo><msup><mn>14</mn><mrow><mn>16</mn><mo>×</mo><mn>126</mn><mo>+</mo><mn>6</mn></mrow></msup></math> <em><strong>(M1)</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for a <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>RHS</mtext></math> exponent consistent with the correct use of Fermat’s little theorem.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>2022</mn></msup><mo>≡</mo><msup><mn>14</mn><mn>6</mn></msup><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>17</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mo>≡</mo><mn>15</mn><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>17</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p>the remainder is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> <em><strong>A1</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><msub><mi>a</mi><mi>n</mi></msub><msup><mn>13</mn><mi>n</mi></msup><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><msup><mn>13</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mn>13</mn><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub></math> <em><strong>M1</strong></em></p>
<p><br><strong>Note:</strong> The above <em><strong>M1</strong></em> is independent of the <em><strong>A</strong></em> marks below.</p>
<p><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>≡</mo><mn>1</mn><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>EITHER</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>13</mn><mi>x</mi></msup><mo>≡</mo><mn>1</mn><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced></math> (for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></math>) <em><strong>A1</strong></em></p>
<p><br><strong>OR</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>≡</mo><msub><mi>a</mi><mi>n</mi></msub><msup><mn>1</mn><mi>n</mi></msup><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><msup><mn>1</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mn>1</mn><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub><mo> </mo><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced><mo> </mo><mo> </mo><mfenced><mrow><mi>N</mi><mo>≡</mo><msub><mi>a</mi><mi>n</mi></msub><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub><mo> </mo><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced></mrow></mfenced></math> <em><strong>A1</strong></em></p>
<p><br><strong>THEN</strong></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>≡</mo><mn>0</mn><mo> </mo><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>a</mi><mi>n</mi></msub><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub><mo>≡</mo><mn>0</mn><mo> </mo><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced></math> <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><menclose notation="left"><mi>N</mi></menclose></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><menclose notation="left"><mfenced><mrow><msub><mi>a</mi><mi>n</mi></msub><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub></mrow></mfenced></menclose></math> <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><msub><mi>a</mi><mi>n</mi></msub><msup><mn>13</mn><mi>n</mi></msup><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><msup><mn>13</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mn>13</mn><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub></math> <em><strong>(</strong><strong>M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfenced><mrow><msub><mi>a</mi><mi>n</mi></msub><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>13</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msub><mi>a</mi><mi>n</mi></msub><mfenced><mrow><msup><mn>13</mn><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msup><mn>13</mn><mn>0</mn></msup></mrow></mfenced><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mfenced><mrow><msup><mn>13</mn><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msup><mn>13</mn><mn>0</mn></msup></mrow></mfenced><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><msup><mn>13</mn><mn>0</mn></msup></mrow></mfenced></math> <em><strong>M1A1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempting to express <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfenced><mrow><msub><mi>a</mi><mi>n</mi></msub><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub></mrow></mfenced><mo>+</mo><mfenced><mrow><mn>13</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mi>M</mi></math>.</p>
<p><br>as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><menclose notation="left"><mfenced><mrow><mn>13</mn><mo>-</mo><mn>1</mn></mrow></mfenced><mi>M</mi></menclose></math> <em><strong>R1</strong></em></p>
<p>so <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><menclose notation="left"><mi>N</mi></menclose></math> if and only if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo> </mo><menclose notation="left"><mfenced><mrow><msub><mi>a</mi><mi>n</mi></msub><mo>+</mo><msub><mi>a</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>0</mn></msub></mrow></mfenced></menclose></math> <em><strong>AG</strong></em></p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>the sum of the digits is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>+</mo><mn>20</mn></math> <em><strong>(A</strong><strong>1)</strong></em></p>
<p>uses <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>y</mi><mo>+</mo><mn>20</mn><mo>=</mo><mn>6</mn><mi>k</mi></math> (or equivalent) to attempt to find a valid value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> <em><strong>(M</strong><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>8</mn><mo>,</mo><mo> </mo><mn>11</mn><mfenced><mi>B</mi></mfenced></math> <em><strong>A</strong><strong>1</strong></em><em><strong>A</strong><strong>1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>8</mn></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>11</mn><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mfenced><mrow><mn>1</mn><mi>y</mi><mn>93</mn><mi>y</mi><mn>25</mn></mrow></mfenced><mn>13</mn></msub><mo>=</mo><mn>1</mn><mo>×</mo><msup><mn>13</mn><mn>6</mn></msup><mo>+</mo><mi>y</mi><mo>×</mo><msup><mn>13</mn><mn>5</mn></msup><mo>+</mo><mn>9</mn><mo>×</mo><msup><mn>13</mn><mn>4</mn></msup><mo>+</mo><mn>3</mn><mo>×</mo><msup><mn>13</mn><mn>3</mn></msup><mo>+</mo><mi>y</mi><mo>×</mo><msup><mn>13</mn><mn>2</mn></msup><mo>+</mo><mn>2</mn><mo>×</mo><msup><mn>13</mn><mn>1</mn></msup><mo>+</mo><mn>5</mn><mo>×</mo><msup><mn>13</mn><mn>0</mn></msup></math> <em><strong>(A</strong><strong>1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>371462</mn><mi>y</mi><mo>+</mo><mn>5090480</mn></math></p>
<p>attempts to find a valid value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> such that</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>371462</mn><mi>y</mi><mo>+</mo><mn>5090480</mn><mo>≡</mo><mn>0</mn><mfenced><mrow><mtext>mod</mtext><mo> </mo><mn>6</mn></mrow></mfenced></math> <em><strong>(</strong><strong>M1)</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>8</mn><mo>,</mo><mo> </mo><mn>11</mn><mfenced><mi>B</mi></mfenced></math> <em><strong>A</strong><strong>1</strong></em><em><strong>A</strong><strong>1</strong></em></p>
<p><br><strong>Note:</strong> Award <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>5</mn><mo>,</mo><mo> </mo><mn>8</mn></math> and <em><strong>A1</strong></em> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>11</mn><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
<p><em><strong><br>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br>