File "markSceme-SL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 9/markSceme-SL-paper3html
File size: 188.05 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>In order to provide safe drinking water, a water supply is often treated with disinfectants, which aim to inactivate disease-causing bacteria in the water.</p>
<p>To compare the effectiveness of different disinfectants, a <strong>CT value</strong> is used as a measure of the dosage of disinfectant needed to achieve a certain level of inactivation of specific bacteria.</p>
<p style="text-align: center;">CT value (mg min dm<sup>−3</sup>) = C (mg dm<sup>−3</sup>) concentration of disinfectant × T (min) contact time with water</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The table below compares the CT values of different disinfectants necessary to achieve 99% inactivation of two types of bacteria, listed as <strong>A</strong> and <strong>B</strong>.</p>
<p><img src=""></p>
<p>(i) Deduce the oxidation state of chlorine in the following disinfectants.</p>
<p><img src=""></p>
<p>(ii) From the data on CT values, justify the statement that bacterium <strong>B</strong> is generally more resistant to disinfection than bacterium <strong>A</strong>.</p>
<p>(iii) CT values can be used to determine whether a particular treatment process is adequate. Calculate the CT value, in mg min dm<sup>−3</sup>, when 1.50 × 10<sup>−5</sup> g dm<sup>−3</sup> of chlorine dioxide is added to a water supply with a contact time of 9.82 minutes.</p>
<p>(iv) From your answer to (a) (iii) and the data in the table, comment on whether this treatment will be sufficient to inactivate 99% of bacterium <strong>A</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>CT values are influenced by temperature and by pH. The table below shows the CT values for chlorine needed to achieve 99% inactivation of a specific bacterium at stated values of pH and temperature.</p>
<p><img src=""></p>
<p>(i) With reference to the temperature data in the table, suggest why it may be more difficult to treat water effectively with chlorine in cold climates.</p>
<p>(ii) Sketch a graph on the axes below to show how the CT value (at any temperature) varies with pH.</p>
<p><img src=""></p>
<p>(iii) Comment on the relative CT values at pH 6.0 and pH 9.0 at each temperature.</p>
<p>(iv) Chlorine reacts with water as follows:</p>
<p>Cl<sub>2</sub> (g) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCl (aq) + HCl (aq)</p>
<p>HOCl (aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> OCl<sup>−</sup> (aq) + H<sup>+</sup> (aq)</p>
<p>Predict how the concentrations of each of the species HOCl (aq) and OCl<sup>−</sup> (aq) will change if the pH of the disinfected water increases.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Despite widespread improvements in the provision of safe drinking water, the sale of bottled water has increased dramatically in recent years. State one problem caused by this trend.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><em>HOCl:</em> +1<br><em><strong>AND <br></strong>ClO<sub>2</sub>:</em> +4</p>
<p><em>Accept “I” and “IV” but <strong>not</strong> “1+/1” and “4+/4” notations.</em></p>
<p> </p>
<p>ii</p>
<p>«most» CT values are higher for «bacterium» B<br><em><strong>OR<br></strong></em>«generally» higher dosage needed for «bacterium» B </p>
<p><em>Accept converse arguments. Accept “concentration” for “dosage”</em></p>
<p> </p>
<p>iii</p>
<p>«CT = 1.50 × 10<sup>–5</sup> × 10<sup>3</sup> mg dm<sup>–3</sup> × 9.82 min =» 1.47 × 10<sup>–1</sup> «mg min dm<sup>–3</sup>»</p>
<p> </p>
<p>iv</p>
<p>lower than CT value/minimum dosage/1.8 × 10<sup>–1</sup> «mg min dm<sup>–3</sup>»<br><em><strong>AND<br></strong></em>no/insufficient</p>
<p><em>Accept “concentration” for “dosage”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>higher CT value at lower temperature<br><em><strong>OR <br></strong></em>higher dosage «of chlorine» needed at low temperature</p>
<p><em>Accept “effectiveness decreases at lower temperature”. <br>Accept “concentration” for “dosage”.<br>Accept converse arguments.</em></p>
<p> </p>
<p>ii</p>
<p>labeled axes ( <em>y</em>: CT and <em>x</em>: pH)<br><em><strong>AND <br></strong></em>curve with increasing gradient </p>
<p><em>Do <strong>not</strong> accept axes the wrong way round.<br>Accept a linear sketch.</em></p>
<p> </p>
<p>iii</p>
<p>values at pH 9.0 approximately 3 times values at pH 6.0<br><em><strong>OR<br></strong></em>increase in CT values in same ratio </p>
<p><em>The exact ratio is 2.9 times<br></em><em>Do <strong>not</strong> accept just “increase in value”.</em></p>
<p> </p>
<p>iv</p>
<p>[HOCl] decreases <em><strong>AND</strong></em> [OCl<sup>−</sup>] increases</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>plastic disposal/pollution<br><em><strong>OR<br></strong></em>plastic bottles use up petroleum/non-renewable raw material<br><em><strong>OR<br></strong></em>chemicals in plastic bottle can contaminate water<br><em><strong>OR<br></strong></em>«prolonged» storage in plastic can cause contamination of water<br><em><strong>OR<br></strong></em>plastic water bottles sometimes reused without proper hygiene considerations</p>
<p><em>Accept other valid answers. <br>Accept economic considerations such as “greater production costs”, “greater transport costs” or “bottled water more expensive than tap water”</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">There has been significant growth in the use of carbon nanotubes, CNT.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain these properties of carbon nanotubes.</span></p>
<p><span class="fontstyle0"><img src="" width="671" height="222"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Alloying metals changes their properties. Suggest </span><span class="fontstyle2"><strong>one</strong> </span><span class="fontstyle0">property of magnesium that could be improved by making a magnesium–CNT alloy.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Pure magnesium needed for making alloys can be obtained by electrolysis of molten magnesium chloride.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"> © International Baccalaureate Organization 2020.<br> </span></p>
<p><span class="fontstyle0">Write the half-equations for the reactions occurring in this electrolysis.</span></p>
<p><span class="fontstyle0"><img src="" width="661" height="225"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the theoretical mass of magnesium obtained if a current of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">A</mi></math> is used for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>0</mn></math> hours. Use charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>c</mi><mi>u</mi><mi>r</mi><mi>r</mi><mi>e</mi><mi>n</mi><mi>t</mi><mo>(</mo><mi>I</mi><mo> </mo><mo>)</mo><mo>×</mo><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo>(</mo><mi>t</mi><mo> </mo><mo>)</mo></math></span><span class="fontstyle0"> and section 2 of the data booklet</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a gas which should be continuously passed over the molten magnesium in the electrolytic cell.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Zeolites can be used as catalysts in the manufacture of CNT. Explain, with reference to their structure, the high selectivity of zeolites.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Experiments have been done to explore the nematic liquid crystal behaviour of CNT. Justify how CNT molecules could be classified as </span><strong><span class="fontstyle2">nematic</span></strong><span class="fontstyle0">.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Excellent strength: defect-free <em><strong>AND</strong> </em>rigid/regular 2D/3D ✔</p>
<p>Excellent conductivity: delocalized electrons ✔</p>
<p><br><em>Accept “carbons/atoms are all covalently bonded to each other” for M1.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em><br>ductility ✔<br>strength/resistance to deformation ✔<br>malleability ✔<br>hardness ✔<br>resistance to corrosion/chemical resistance ✔<br>range of working temperatures ✔<br>density ✔</p>
<p><br><em>Do not accept “conductivity”.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Anode: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><msup><mi>Cl</mi><mo>−</mo></msup><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msup><mi mathvariant="normal">e</mi><mo>−</mo></msup></math> ✔</p>
<p>Cathode: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>+</mo><mn>2</mn><msup><mi mathvariant="normal">e</mi><mo>−</mo></msup><mo>→</mo><mi>Mg</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo></math> ✔</p>
<p><em><br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo>−</mo></msup><mo>→</mo><mi>C</mi><msub><mi>l</mi><mn>2</mn></msub><mo>(</mo><mi>g</mi><mo>)</mo><mo>+</mo><msup><mi>e</mi><mo>–</mo></msup></math></em>.</p>
<p><em>Award <strong>[1 max]</strong> for correct equations at incorrect electrodes.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>Q</mi><mo>=</mo><mi>I</mi><mo>×</mo><mi>t</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>00</mn><mo>×</mo><mn>10</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>3600</mn><mo>=</mo><mo>»</mo><mn>108</mn><mo> </mo><mn>000</mn><mo> </mo><mi mathvariant="normal">C</mi></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mi>Q</mi><mi>F</mi></mfrac><mo>=</mo><mfrac><mrow><mn>108</mn><mo> </mo><mn>000</mn><mo> </mo><mi>C</mi></mrow><mrow><mn>96</mn><mo> </mo><mn>500</mn><mo> </mo><mi>C</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>12</mn><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi mathvariant="normal">e</mi><mo>−</mo></msup><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>12</mn><mo> </mo><mi>mol</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>560</mn><mo> </mo><mi>mol</mi><mo> </mo><mi>Mg</mi><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi>m</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>560</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>13</mn><mo>.</mo><mn>6</mn><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><br><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>argon/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Ar</mi></math>/helium/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>He</mi></math> ✔</p>
<p><br><em>Accept any identified noble/inert gas.</em><br><em>Accept name <strong>OR</strong> formula.</em></p>
<p><em>Do not accept “nitrogen/<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>2</mn></msub></math>“.</em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pores/cavities/channels/holes/cage-like structures ✔</p>
<p>«only» reactants with appropriate/specific size/geometry/structure fit inside/go through/are activated/can react ✔</p>
<p><em><br>Accept “molecules/ions” for “reactants” in M2.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rod-shaped molecules<br><em><strong>OR</strong></em><br>«randomly distributed but» generally align<br><em><strong>OR</strong></em><br>no positional order <em><strong>AND</strong> </em>have «some» directional order/pattern ✔</p>
<p><br><em>Accept “linear” for “rod-shaped”.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a very popular option with approximately 34% of candidates attempting Option B. Many students appeared well prepared for this option. Some candidates continue to provide answers with a heavy Biology bias that often make them lose valuable points.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>