File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 9/markSceme-SL-paper2html
File size: 203.97 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_Z^AX">
<msubsup>
<mrow>
</mrow>
<mi>Z</mi>
<mi>A</mi>
</msubsup>
<mi>X</mi>
</math></span>, for magnesium-26.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mass spectroscopic analysis of a sample of magnesium gave the following results:</p>
<p><img src="" alt></p>
<p>Calculate the relative atomic mass, <em>A</em><sub>r</sub>, of this sample of magnesium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium burns in air to form a white compound, magnesium oxide. Formulate an equation for the reaction of magnesium oxide with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the trend in acid-base properties of the oxides of period 3, sodium to chlorine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In addition to magnesium oxide, magnesium forms another compound when burned in air. Suggest the formula of this compound</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the structure and bonding in solid magnesium oxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922 K and 987 K respectively.</p>
<p>Anode (positive electrode):</p>
<p>Cathode (negative electrode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{12}^{26}{\rm{Mg}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>26</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">M</mi>
<mi mathvariant="normal">g</mi>
</mrow>
</mrow>
</math></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Ar =»<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}}{{100}}">
<mfrac>
<mrow>
<mn>24</mn>
<mo>×</mo>
<mn>78.60</mn>
<mo>+</mo>
<mn>25</mn>
<mo>×</mo>
<mn>10.11</mn>
<mo>+</mo>
<mn>26</mn>
<mo>×</mo>
<mn>11.29</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
</math></span></p>
<p>«= 24.3269 =» 24.33</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em><br><em>Do <strong>not</strong> accept data booklet value (24.31).</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>MgO(s) + H<sub>2</sub>O(l) → Mg(OH)<sub>2</sub>(s)</p>
<p><em><strong>OR</strong></em></p>
<p>MgO(s) + H<sub>2</sub>O(l) → Mg<sup><sub>2</sub>+</sup>(aq) + 2OH<sup>–</sup>(aq)</p>
<p><em>Accept</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span>.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from basic to acidic</p>
<p>through amphoteric</p>
<p><em>Accept “alkali/alkaline” for “basic”. <br>Accept “oxides of Na and Mg: basic <strong>AND</strong> oxide of Al: amphoteric” for M1. <br>Accept “oxides of non-metals/Si to Cl acidic” for M2. <br>Do <strong>not</strong> accept just “become more acidic”</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mg<sub>3</sub>N<sub>2</sub></p>
<p><em>Accept MgO<sub>2</sub>, Mg(OH)<sub>2</sub>, Mg(NOx)<sub>2</sub>, MgCO<sub>3</sub>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«3-D/giant» regularly repeating arrangement «of ions»<br><em><strong>OR <br></strong></em>lattice «of ions»<br><em>Accept “giant” for M1, unless “giant covalent” stated.</em></p>
<p>electrostatic attraction between oppositely charged ions<br><em><strong>OR<br></strong></em>electrostatic attraction between Mg<sup>2+</sup> and O<sup>2–</sup> ions<br><em>Do <strong>not</strong> accept “ionic” without description.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Anode (positive electrode):<br></em>2Cl<sup>–</sup> → Cl<sub>2</sub>(g) + 2e<sup>–</sup></p>
<p><em>Cathode (negative electrode):<br></em>Mg<sup>2+</sup> + 2e<sup>–</sup> → Mg(l)</p>
<p><em>Penalize missing/incorrect state symbols at Cl<sub>2</sub> and Mg once only.<br>Award <strong>[1 max]</strong> if equations are at wrong electrodes.<br>Accept Mg (g).</em></p>
<p> </p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math> </span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write the equation for the reaction of chloroethane with a dilute aqueous solution of sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the nucleophile for the reaction in d(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion. Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and their chemical shifts in the </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">H</mi><mprescripts></mprescripts><mn>1</mn></mmultiscripts><mo> </mo><mi>NMR</mi></math> <span class="fontstyle0">spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">p</mi><mn>6</mn></msup><mn>3</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>3</mn><msup><mi mathvariant="normal">p</mi><mn>5</mn></msup></math> ✔</p>
<p><em>Do <strong>not</strong> accept condensed electron configuration.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cl</mi><mo>-</mo></msup></math> <em><strong>AND</strong> </em>more «electron–electron» repulsion ✔</p>
<p><em><br>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo mathvariant="italic">-</mo></msup></math> <strong>AND</strong> has an extra electron.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> has a greater nuclear charge/number of protons/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">Z</mi><mi>eff</mi></msub></math> «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells<br><strong><em>OR</em></strong><br>same «outer» energy level<br><em><strong>OR</strong></em><br>similar shielding ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«two major» isotopes «of atomic mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>» ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«diatomic» molecule composed of «two» chlorine-37 atoms ✔</p>
<p>chlorine-37 is the least abundant «isotope»<br><em><strong>OR</strong></em><br>low probability of two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><mn>37</mn></mmultiscripts></math> «isotopes» occurring in a molecule ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>86</mn><mo>.</mo><mn>94</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">n</mi><mi>HCl</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>2000</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo> </mo></math>✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>400</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> is the limiting reactant ✔</p>
<p><em>Accept other valid methods of determining the limiting reactant in M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>4</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>»</mo></math></p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo>–</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>277</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo>«</mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo></math> ✔</p>
<p><em><br>Accept methods employing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></math></em>.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>4</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>2</mn></math> ✔</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxidizing agent <em><strong>AND</strong></em> oxidation state of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mn</mi></math> changes from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>2</mn></math>/decreases ✔</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially dissociates/ionizes «in water» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>ClO</mi><mo>-</mo></msup></math> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>[</mo><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo>]</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>61</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«free radical» substitution/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">S</mi><mi mathvariant="normal">R</mi></msub></math> ✔</p>
<p><em><br>Do not accept electrophilic or nucleophilic substitution.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloroethane <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi>Cl</mi></math> bond is weaker/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>324</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi mathvariant="normal">H</mi></math> bond/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>414</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math><br><em><strong>OR</strong></em><br>chloroethane <strong><em>AND</em> </strong>contains a polar bond ✔</p>
<p><em><br>Accept “chloroethane <strong>AND</strong> polar”.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msup><mi>OH</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><msup><mi>Cl</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><mi>NaOH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>NaCl</mi><mo>(</mo><mi>aq</mi><mo>)</mo></math> ✔</p>
<p><em>Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>C</mi><mi>l</mi></math> and <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>O</mi><mi>H</mi><mi mathvariant="normal">/</mi><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">6</mn></msub><mi>O</mi></math> in the equation.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydroxide «ion»/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>OH</mi><mo>-</mo></msup></math> ✔</p>
<p><em><br>Do <strong>not</strong> accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mi>a</mi><mi>O</mi><mi>H</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> / <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>OCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">(</mo><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">2</mn></msub><msub><mo mathvariant="italic">)</mo><mn mathvariant="italic">2</mn></msub><mi>O</mi></math>.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> «signals» ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn><mo>–</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo></math> <em><strong>AND</strong> </em><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>3</mn><mo>–</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo><mo> </mo></math>✔</p>
<p><em><br>Accept any values in the ranges.</em></p>
<p><em>Award <strong>[1 max]</strong> for two incorrect chemical shifts.</em></p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>M</mi><mo>(</mo><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub><mo>)</mo><mo> </mo><mo>=</mo><mo>»</mo><mo> </mo><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>×</mo><mn>35</mn><mo>.</mo><mn>45</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>×</mo><mn>100</mn><mo>%</mo><mo>=</mo><mo>»</mo><mo> </mo><mn>58</mn><mo>.</mo><mn>64</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>research «collaboration» for alternative technologies «to replace <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s»<br><em><strong>OR</strong></em><br>technologies «developed»/data could be shared<br><em><strong>OR</strong></em><br>political pressure/Montreal Protocol/governments passing legislations ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “collaboration”.</em></p>
<p><em>Do <strong>not</strong> accept any reference to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math> as greenhouse gas or product of fossil fuel combustion.</em></p>
<p><em>Accept reference to specific measures, such as agreement on banning use/manufacture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math>s.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates wrote the electron configuration of chlorine correctly.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only half of the candidates deduced that the chloride ion has a larger radius than the chlorine atom with a valid reason. Many candidates struggled with this question and decided that the extra electron in the chloride ion caused a greater attraction between the nucleus and the outer electrons.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only about a third of the candidates identified the extra proton in the chlorine nucleus as the cause of the smaller atomic radius when compared to the sulfur atom, and only the stronger candidates also compared the shielding or the number of shells in the two atoms. Many candidates had a poor understanding of factors affecting atomic radius and could not explain the difference.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 60% of the candidates recognized that the peaks at m/z 35 and 37 in the mass spectrum of chlorine are due to its isotopes. A few students wrote 'isomers' instead of 'isotopes'.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the lowest scoring question on the paper, that was also left blank by 10% of the candidates. About 20% of the candidates identified the peak at m/z = 74 to be due to a molecule made up of two 37Cl atoms. And only very few candidates commented that the low abundance of the peak was due to the low abundance of the 37Cl isotope. A common incorrect answer was that chlorine has an isotope of mass number 74.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to determine the number of moles of MnO<sub>2</sub> using the mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing that the majority of the candidates were able to determine the limiting reactant by using the stoichiometric ratio.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to determine the amount of excess reactant. Some candidates who determined the limiting reactant in the previous part correctly, forgot to use the stoichiometric ratio in this part, and ended up with incorrect answers.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates determined the volume of chlorine produced correctly. Some candidates made mistakes in the units when using PV = nRT and had a power of 10 error.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates were able to determine the oxidation states of Mn in the two compounds correctly.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Less than half of the candidates were awarded the mark. Some did identify MnO2 as the oxidizing agent but did not give the explanation in terms of oxidation state as required in the question. Other candidates did not have an understanding of oxidizing and reducing agents. </p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question - 80% of candidates understood what is meant by the term weak acid. Incorrect answers included 'acids that have high pH'.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates deduced the formula of the conjugate base of hypochlorous acid. Incorrect answers included H<sub>2</sub>O and HCl.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question. It was pleasing to see that 70% of the candidates were able to calculate [H<sup>+</sup>] from the given pH.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than half of the candidates identified the type of reaction between ethane and chlorine as a substitution reaction. A few candidates lost the marks for writing 'electrophilic substitution' or 'nucleophilic substitutions'.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question that was answered correctly by only 30% of the candidates. A variety of incorrect answers were seen such as 'chlorine is a halogen and hence it is reactive', and 'ethane is more reactive because it is an alkane'. For students who answered correctly, the polarity was the most frequently given reason.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates wrote the correct equation for the hydrolysis of chloroethane. Incorrect answers often included carbon dioxide and water as the products.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a highly discriminating question. Only 30% of the candidates were able to identify the hydroxide ion as the nucleophile in the hydrolysis of chloroethane. Incorrect answers included NaOH where the ion was not specified. 14% of the candidates left this question blank.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to give the structural formula of ethoxyethane. Incorrect answers included methoxymethane, ketones and esters.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly half of the candidates were able to identify the number of signals obtained in the 1H NMR spectrum of ethoxyethane, obtaining the first mark of this question. Many candidates were awarded the mark as 'error carried forward' from an incorrect structure of ethoxyethane. The second mark for this question required candidates to look up values of chemical shift from the data booklet. Nearly a third of the candidates were able to match the chemical environments of the hydrogen atoms in ethoxyethane to those listed in the data booklet successfully. </p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the highest scoring question in the paper. The majority of candidates were able to calculate the percentage by mass of chlorine in CCl<sub>2</sub>F<sub>2</sub>. Mistakes included incorrect rounding and arithmetic errors.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This nature of science question was well answered by half of the candidates. Some teachers commented that the wording was rather vague. Incorrect answers were mainly assuming that CFCs were related to the combustion of fuels and greenhouse gas emissions.</p>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>Label the diagram with the species in the equation.</p>
<p><span class="fontstyle0"><img src=""></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative pathway/mechanism <em><strong>AND</strong></em> lower <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> ✔</p>
<p><em>Accept description of how catalyst lowers <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>more/greater proportion of molecules with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>≥</mo><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> ✔</p>
<p>greater frequency/probability/chance of collisions «between the molecules»<br><em><strong>OR</strong></em><br>more collision per unit of time/second ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonding/bonds «and dipole–dipole and London/dispersion forces are present in» propan-2-ol ✔</p>
<p>dipole–dipole «and London/dispersion are present in» propanone ✔</p>
<p>propan-2-ol less volatile <em><strong>AND</strong></em> hydrogen bonding/bonds stronger «than dipole–dipole »<br><em><strong>OR</strong></em><br>propan-2-ol less volatile <em><strong>AND</strong></em> «sum of all» intermolecular forces stronger ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>Bi</mi><mo>/</mo><mi>Cu</mi><mo>/</mo><mi>Ag</mi><mo>/</mo><mi>Pd</mi><mo>/</mo><mi>Hg</mi><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Au</mi><mo> </mo></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>b</mi></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi></math>.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong></em> «a sea of» delocalized electrons ✔</p>
<p><em><br>Accept “mobile/free electrons”.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>malleability/hardness<br><em><strong>OR</strong></em><br>«tensile» strength/ductility<br><em><strong>OR</strong></em><br>density<br><em><strong>OR</strong></em><br>thermal/electrical conductivity<br><em><strong>OR</strong></em><br>melting point<br><em><strong>OR</strong></em><br>thermal expansion ✔</p>
<p><em><br>Do not accept corrosion/reactivity or any chemical property.</em></p>
<p><em>Accept other specific physical properties.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A straight-forward question, however, half of the candidates only mentioned the lower activation energy and did not mention that this is through an alternative mechanism, so did not score the mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates gained the mark about the increased frequency of collision. Fewer candidates also clarified that a larger proportion of molecules have the activation energy.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates had the correct structure in their answers identifying the type of intermolecular forces in each compound and then comparing the strength of the two and reaching a conclusion. Some candidates did not know what was meant by volatile. Some candidates stated London dispersion forces in propanone instead of dipole-dipole.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates obtained the mark. Some candidates labelled the electrodes as ions indicating they do not understand the structure of a voltaic cell.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>70% of the candidates answered correctly. The common mistake was to select a more reactive metal instead.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The mean mark on the question was 1.0 out of 2 marks. Mistakes included not mentioning the 'electrostatic attraction' and talking about 'nuclei attracting the delocalised electrons'. The weakest candidates discussed aspects of ionic and/or covalent bonding.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% obtained the mark. Many candidates wrote more than one property, which should be discouraged. Incorrect answers included chemical properties such as reactivity.</p>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be formed according to the following reaction.</p>
<p>2CO (g) + 3H<sub>2 </sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (g)</p>
<p>(i) Deduce the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<p> </p>
<p>(ii) State how increasing the pressure of the reaction mixture at constant temperature will affect the position of equilibrium and the value of <em>K</em><sub>c</sub>.</p>
<p>Position of equilibrium:</p>
<p><em>K</em><sub>c</sub>:</p>
<p> </p>
<p>(iii) Calculate the enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction using section 11 of the data booklet. The bond enthalpy of the carbon–oxygen bond in CO (g) is 1077kJmol<sup>-1</sup>.</p>
<p> </p>
<p>(iv) The enthalpy change, ΔH<sup>θ</sup>, for the following similar reaction is –233.8 kJ.</p>
<p>2CO(g) + 3H<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>Deduce why this value differs from your answer to (a)(iii).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average oxidation state of carbon in ethene and in ethane-1,2-diol.</p>
<p>Ethene:</p>
<p>Ethane-1,2-diol:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the boiling point of ethane-1,2-diol is significantly greater than that of ethene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be oxidized first to ethanedioic acid, (COOH)<sub>2</sub>, and then to carbon dioxide and water. Suggest the reagents to oxidize ethane-1,2-diol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll {K_{\text{C}}} = \gg \frac{{\left[ {{\text{HOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}} \right]}}{{{{\left[ {{\text{CO}}} \right]}^{\text{2}}} \times {{\left[ {{{\text{H}}_{\text{2}}}} \right]}^{\text{3}}}}}">
<mo>≪</mo>
<mrow>
<msub>
<mi>K</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mo>=≫</mo>
<mfrac>
<mrow>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mtext>HOC</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>OH</mtext>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mtext>CO</mtext>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> </p>
<p> </p>
<p>(ii)<br><em>Position of equilibrium:</em> moves to right <em><strong>OR</strong></em> favours product<br><em>K</em><sub>c</sub>: no change <em><strong>OR</strong></em> is a constant at constant temperature</p>
<p> </p>
<p>(iii)<br><em>Bonds broken:</em> 2C≡O + 3(H-H) / 2(1077kJmol<sup>-1</sup>) + 3(436kJmol<sup>-1</sup>) / 3462 «kJ»</p>
<p><em>Bonds formed:</em> 2(C-O) + 2(O-H) + 4(C-H) + (C-C) / 2(358kJmol<sup>-1</sup>) + 2(463kJmol<sup>-1</sup>) + 4(414kJmol<sup>-1</sup>) + 346kJmol<sup>-1</sup> / 3644 «kJ»</p>
<p>«Enthalpy change = bonds broken - bonds formed = 3462 kJ - 3644 kJ =» -182 «kJ»</p>
<p><em>Award<strong> [3]</strong> for correct final answer.</em><br><em>Award <strong>[2 max]</strong> for «+»182 «kJ».</em></p>
<p><br>(iv)<br>in (a)(iii) gas is formed and in (a)(iv) liquid is formed<br><em><strong>OR</strong></em><br>products are in different states<br><em><strong>OR</strong></em><br>conversion of gas to liquid is exothermic<br><em><strong>OR</strong></em><br>conversion of liquid to gas is endothermic<br><em><strong>OR</strong></em><br>enthalpy of vapourisation needs to be taken into account</p>
<p><em>Accept product is «now» a liquid.</em><br><em>Accept answers referring to bond enthalpies being means/averages.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Ethene:</em> –2</p>
<p><em>Ethane-1,2-diol:</em> –1</p>
<p><em>Do <strong>not</strong> accept 2–, 1– respectively.</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethane-1,2-diol can hydrogen bond to other molecules «and ethene cannot»</p>
<p><em><strong>OR</strong></em></p>
<p>ethane-1,2-diol has «significantly» greater van der Waals forces</p>
<p><em>Accept converse arguments.<br>Award <strong>[0]</strong> if answer implies covalent bonds are broken</em></p>
<p>hydrogen bonding is «significantly» stronger than other intermolecular forces</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>acidified «potassium» dichromate«(VI)»/H<sup>+</sup> <strong><em>AND</em> </strong>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sup>+</sup> <em><strong>AND </strong></em>Cr<sub>2</sub>O<sub>7</sub><sup>2- </sup></p>
<p><em><strong>OR </strong></em></p>
<p>«acidified potassium» manganate(VII)/ «H<sup>+</sup>» KMnO<sub>4</sub> /«H<sup>+</sup>» MnO<sub>4</sub><sup>-</sup></p>
<p><em>Accept Accept H<sub>2</sub>SO<sub>4</sub> or H<sub>3</sub>PO<sub>4</sub> for H<sup>+</sup>.</em><br><em>Accept “permanganate” for “manganate(VII)”.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br>