File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 8/markSceme-SL-paper2html
File size: 1.04 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>Phosphoric acid, H<sub>3</sub>PO<sub>4</sub>, can undergo stepwise neutralization, forming amphiprotic species.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction of one mole of phosphoric acid with one mole of sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate <strong>two</strong> equations to show the amphiprotic nature of H<sub>2</sub>PO<sub>4</sub><sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of H<sub>3</sub>PO<sub>4</sub> if 25.00 cm<sup>3</sup> is completely neutralised by the addition of 28.40 cm<sup>3</sup> of 0.5000 mol dm<sup>−3</sup> NaOH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the reason that sodium hydroxide is considered a Brønsted–Lowry base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>H<sub>3</sub>PO<sub>4 </sub>(aq) + NaOH (aq) → NaH<sub>2</sub>PO<sub>4 </sub>(aq) + H<sub>2</sub>O (l) ✔</p>
<p><em><br>Accept net ionic equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) + H<sup>+</sup> (aq) → H<sub>3</sub>PO<sub>4</sub> (aq) ✔</p>
<p>H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) + OH<sup>−</sup> (aq) → HPO<sub>4</sub><sup>2−</sup> (aq) + H<sub>2</sub>O (l) ✔</p>
<p><em><br>Accept reactions of H<sub>2</sub>PO<sub>4</sub><sup>−</sup> with any acidic, basic or amphiprotic species, such as H<sub>3</sub>O<sup>+</sup>, NH<sub>3</sub> or H<sub>2</sub>O. </em></p>
<p><em>Accept H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) → HPO<sub>4</sub><sup>2−</sup> (aq) + H<sup>+</sup> (aq) for <strong>M2</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«NaOH <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>28</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>5000</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></math>»</p>
<p>«<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></mrow><mn>3</mn></mfrac><mo>=</mo></math>» 0.004733 «mol» ✔</p>
<p>«<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>004733</mn><mo> </mo><mi>mol</mi></mrow><mstyle displaystyle="true"><mfrac><mrow><mn>25</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac></mstyle></mfrac><mo>=</mo></math>» 0.1893 «mol dm<sup>−3</sup>» ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«OH<sup>−</sup> is a» proton acceptor ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>There are many oxides of silver with the formula Ag<sub>x</sub>O<sub>y</sub>. All of them decompose into their elements when heated strongly.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After heating 3.760 g of a silver oxide 3.275 g of silver remained. Determine the empirical formula of Ag<sub>x</sub>O<sub>y</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the final mass of solid obtained by heating 3.760 g of Ag<sub>x</sub>O<sub>y</sub> may be greater than 3.275 g giving one design improvement for your proposed suggestion. Ignore any possible errors in the weighing procedure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Naturally occurring silver is composed of two stable isotopes, <sup>107</sup>Ag and <sup>109</sup>Ag.</p>
<p>The relative atomic mass of silver is 107.87. Show that isotope <sup>107</sup>Ag is more abundant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some oxides of period 3, such as Na<sub>2</sub>O and P<sub>4</sub>O<sub>10</sub>, react with water. A spatula measure of each oxide was added to a separate 100 cm<sup>3</sup> flask containing distilled water and a few drops of bromothymol blue indicator.</p>
<p>The indicator is listed in section 22 of the data booklet.</p>
<p>Deduce the colour of the resulting solution and the chemical formula of the product formed after reaction with water for each oxide.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electrical conductivity of molten Na<sub>2</sub>O and P<sub>4</sub>O<sub>10</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the model of electron configuration deduced from the hydrogen line emission spectrum (Bohr’s model).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>n(Ag) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.275{\text{ g}}}}{{107.87{\text{ g}}\,{\text{mol}}}} = ">
<mfrac>
<mrow>
<mn>3.275</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>107.87</mn>
<mrow>
<mtext> g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 0.03036 «mol»</p>
<p><em><strong>AND</strong></em></p>
<p>n(O) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.760{\text{ g}} - 3.275{\text{ g}}}}{{16.00{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = \frac{{0.485}}{{16.00}} = ">
<mfrac>
<mrow>
<mn>3.760</mn>
<mrow>
<mtext> g</mtext>
</mrow>
<mo>−</mo>
<mn>3.275</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>16.00</mn>
<mrow>
<mtext> g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.485</mn>
</mrow>
<mrow>
<mn>16.00</mn>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 0.03031 «mol»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.03036}}{{0.03031}} \approx 1">
<mfrac>
<mrow>
<mn>0.03036</mn>
</mrow>
<mrow>
<mn>0.03031</mn>
</mrow>
</mfrac>
<mo>≈</mo>
<mn>1</mn>
</math></span> / ratio of Ag to O approximately 1 : 1, so»</p>
<p>AgO</p>
<p> </p>
<p><em>Accept other valid methods for M1.</em></p>
<p><em>Award <strong>[1 max]</strong> for correct empirical formula if method not shown.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>temperature too low<br><em><strong>OR</strong></em><br>heating time too short<br><em><strong>OR</strong></em><br>oxide not decomposed completely</p>
<p>heat sample to constant mass «for three or more trials»</p>
<p> </p>
<p><em>Accept “not heated strongly enough”.</em></p>
<p><em>If M1 as per markscheme, M2 can only be awarded for constant mass technique.</em></p>
<p><em>Accept "soot deposition" (M1) and any suitable way to reduce it (for M2).</em></p>
<p><em>Accept "absorbs moisture from atmosphere" (M1) and "cool in dessicator" (M2).</em></p>
<p><em>Award <strong>[1 max]</strong> for reference to impurity <strong>AND</strong> design improvement.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A<sub>r</sub> closer to 107/less than 108 «so more <sup>107</sup>Ag»<br><em><strong>OR</strong></em><br>A<sub>r</sub> less than the average of (107 + 109) «so more <sup>107</sup>Ag»</p>
<p> </p>
<p><em>Accept calculations that gives greater than 50% <sup>107</sup>Ag.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do not accept name for the products.</em></p>
<p><em>Accept “Na<sup>+</sup> + OH<sup>–</sup>” for NaOH.</em></p>
<p><em>Ignore coefficients in front of formula.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«molten» Na<sub>2</sub>O has mobile ions/charged particles <em><strong>AND</strong> </em>conducts electricity</p>
<p>«molten» P<sub>4</sub>O<sub>10</sub> does not have mobile ions/charged particles <em><strong>AND</strong> </em>does not conduct electricity/is poor conductor of electricity</p>
<p> </p>
<p><em>Do <strong>not</strong> award marks without concept of mobile charges being present.</em></p>
<p><em>Award <strong>[1 max]</strong> if type of bonding or electrical conductivity correctly identified in each compound.</em></p>
<p><em>Do <strong>not</strong> accept answers based on electrons.</em></p>
<p><em>Award <strong>[1 max]</strong> if reference made to solution.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons in discrete/specific/certain/different shells/energy levels</p>
<p>energy levels converge/get closer together at higher energies<br><em><strong>OR</strong></em><br>energy levels converge with distance from the nucleus</p>
<p> </p>
<p><em>Accept appropriate diagram for M1, M2 or both.</em></p>
<p><em>Do not give marks for answers that refer to the lines in the spectrum.</em></p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Soluble acids and bases ionize in water.</p>
</div>
<div class="specification">
<p>Sodium hypochlorite ionizes in water.</p>
<p style="text-align: center;">OCl<sup>–</sup>(aq) + H<sub>2</sub>O(l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> OH<sup>–</sup>(aq) + HOCl(aq)</p>
</div>
<div class="specification">
<p>A solution containing 0.510 g of an unknown monoprotic acid, HA, was titrated with 0.100 mol dm<sup>–3</sup> NaOH(aq). 25.0 cm<sup>3</sup> was required to reach the equivalence point.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the amphiprotic species.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify one conjugate acid-base pair in the reaction.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of NaOH(aq) used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the molar mass of the acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate [H<sup>+</sup>] in the NaOH solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>water/H<sub>2</sub>O</p>
<p><em>Accept “hydroxide ion/OH<sup>–</sup>”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«0.100 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>–3</sup> x 0.0250 dm<sup>3</sup>» = 0.00250 «mol»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>M</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.510{\text{ g}}}}{{0.00250{\text{ mol}}}}">
<mfrac>
<mrow>
<mn>0.510</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>0.00250</mn>
<mrow>
<mtext> mol</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> =» 204 «g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup>»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«1.00 x 10<sup>–14</sup> = [H<sup>+</sup>] x 0.100»</p>
<p>1.00 x 10<sup>–13</sup> «mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>–3</sup>»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two hydrides of nitrogen are ammonia and hydrazine, N<sub>2</sub>H<sub>4</sub>. One derivative of ammonia is methanamine whose molecular structure is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-22_om_18.03.06.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/04"></p>
</div>
<div class="specification">
<p>Hydrazine is used to remove oxygen from water used to generate steam or hot water.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(aq) + O<sub>2</sub>(aq) → N<sub>2</sub>(g) + 2H<sub>2</sub>O(l)</p>
<p>The concentration of dissolved oxygen in a sample of water is 8.0 × 10<sup>−3</sup> g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the H−N−H bond angle in methanamine using VSEPR theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia reacts reversibly with water.</p>
<p>NH<sub>3</sub>(g) + H<sub>2</sub>O(l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> NH<sub>4</sub><sup>+</sup>(aq) + OH<sup>−</sup>(aq)</p>
<p>Explain the effect of adding H<sup>+</sup>(aq) ions on the position of the equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine reacts with water in a similar way to ammonia. Deduce an equation for the reaction of hydrazine with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an ionic equation, what is observed when magnesium powder is added to a solution of ammonium chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine has been used as a rocket fuel. The propulsion reaction occurs in several stages but the overall reaction is:</p>
<p>N<sub>2</sub>H<sub>4</sub>(l) → N<sub>2</sub>(g) + 2H<sub>2</sub>(g)</p>
<p>Suggest why this fuel is suitable for use at high altitudes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change of reaction, Δ<em>H</em>, in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.</p>
<p>N<sub>2</sub>H<sub>4</sub>(g) → N<sub>2</sub>(g) + 2H<sub>2</sub>(g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy of formation of N<sub>2</sub>H<sub>4</sub>(l) is +50.6 kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>. Calculate the enthalpy of vaporization, Δ<em>H</em><sub>vap</sub>, of hydrazine in kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>.</p>
<p>N<sub>2</sub>H<sub>4</sub>(l) → N<sub>2</sub>H<sub>4</sub>(g)</p>
<p>(If you did not get an answer to (f), use −85 kJ but this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from 1000 dm<sup>3</sup> of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in dm<sup>3</sup>, of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = 24.8 dm<sup>3</sup> at SATP.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>107<sup>°</sup></p>
<p> </p>
<p><em>Accept 100° to < 109.5°.</em></p>
<p><em>Literature value = 105.8°</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>removes/reacts with OH<sup>−</sup></p>
<p>moves to the right/products «to replace OH<sup>−</sup> ions»</p>
<p> </p>
<p><em>Accept ionic equation for M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>N<sub>2</sub>H<sub>4</sub>(aq) + H<sub>2</sub>O(l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> N<sub>2</sub>H<sub>5</sub><sup>+</sup>(aq) + OH<sup>–</sup>(aq)</p>
<p> </p>
<p><em>Accept N<sub>2</sub>H<sub>4</sub>(aq) + 2H<sub>2</sub>O(l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> N<sub>2</sub>H<sub>6</sub><sup>2+</sup>(aq) + 2OH<sup>–</sup>(aq).</em></p>
<p><em>Equilibrium sign must be present.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bubbles<br><em><strong>OR</strong></em><br>gas<br><em><strong>OR</strong></em><br>magnesium disappears</p>
<p>2NH<sub>4</sub><sup>+</sup>(aq) + Mg(s) → Mg<sup>2+</sup>(aq) + 2NH<sub>3</sub>(aq) + H<sub>2</sub>(g)</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “hydrogen” without reference to observed changes.</em></p>
<p><em>Accept "smell of ammonia".</em></p>
<p><em>Accept 2H<sup>+</sup>(aq) + Mg(s) → Mg<sup>2+</sup>(aq) + H<sub>2</sub>(g)</em></p>
<p><em>Equation must be ionic.</em></p>
<p><strong><em>[2 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no oxygen required</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>bonds broken:</em><br>E(N–N) + 4E(N–H)<br><em><strong>OR</strong></em><br>158 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup>» + 4 x 391 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup>» / 1722 «kJ»</p>
<p><em>bonds formed:</em><br>E(N≡N) + 2E(H–H)<br><em><strong>OR</strong></em><br>945 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup>» + 2 x 436 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup>» / 1817 «kJ»</p>
<p>«ΔH = bonds broken – bonds formed = 1722 – 1817 =» –95 «kJ»</p>
<p> </p>
<p><em>Award [3] for correct final answer.</em></p>
<p><em>Award [2 max] for +95 «kJ».</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><strong>OR</strong></em><br>Δ<em>H</em><sub>vap</sub>= −50.6 kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup> − (−95 kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>)</p>
<p>«Δ<em>H</em><sub>vap</sub> =» +44 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>»</p>
<p> </p>
<p><em>Award [2] for correct final answer.</em></p>
<p><em>Award [1 max] for −44 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>».</em></p>
<p><em>Award [2] for:</em><br><em>ΔH<sub>vap</sub> − = 50.6 kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1 </sup>−<sup> </sup>(−85 kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>) + = 34 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>».</em></p>
<p><em>A</em><em>ward [1 max] for −34 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>».</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total mass of oxygen «= 8.0 x 10<sup>–3</sup> g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>–3</sup> x 1000 dm<sup>3</sup>» = 8.0 «g»</p>
<p>n(O<sub>2</sub>) «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{8.0{\text{ g}}}}{{32.00{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = ">
<mo>=</mo>
<mfrac>
<mrow>
<mn>8.0</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>32.00</mn>
<mrow>
<mtext> g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 0.25 «mol»</p>
<p><em><strong>OR</strong></em><br>n(N<sub>2</sub>H<sub>4</sub>) = n(O<sub>2</sub>)<br>«mass of hydrazine = 0.25 mol x 32.06 g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup> =» 8.0 «g»</p>
<p> </p>
<p><em>Award [3] for correct final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«n(N<sub>2</sub>H<sub>4</sub>) = n(O<sub>2</sub>) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{8.0{\text{ g}}}}{{32.00{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = ">
<mo>=</mo>
<mfrac>
<mrow>
<mn>8.0</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>32.00</mn>
<mrow>
<mtext> g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 0.25 «mol»</p>
<p>«volume of nitrogen = 0.25 mol x 24.8 dm<sup>3</sup><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup>» = 6.2 «dm<sup>3</sup>»</p>
<p> </p>
<p><em>Award [1] for correct final answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Many reactions are in a state of equilibrium.</p>
</div>
<div class="specification">
<p>The equations for two acid-base reactions are given below.</p>
<p style="text-align: center;">HCO<sub>3</sub><sup>–</sup> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> H<sub>2</sub>CO<sub>3</sub> (aq) + OH<sup>–</sup> (aq)<br>HCO<sub>3</sub><sup>–</sup> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> CO<sub>3</sub><sup>2–</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following reaction was allowed to reach equilibrium at 761 K.</p>
<p>H<sub>2</sub> (g) + I<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> 2HI (g) Δ<em>H</em><sup>θ</sup> < 0</p>
<p>Outline the effect, if any, of each of the following changes on the position of equilibrium, giving a reason in each case.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify two different amphiprotic species in the above reactions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the term conjugate base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conjugate base of the hydroxide ion, OH<sup>–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student working in the laboratory classified HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub> and HClO<sub>4</sub> as acids based on their pH. He hypothesized that “all acids contain oxygen and hydrogen”.</p>
<p>Evaluate his hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Award <strong>[1 max]</strong> if both effects are correct.</em></p>
<p><em>Reason for increasing volume:</em></p>
<p><em>Accept “concentration of all reagents reduced by an equal amount so cancels out in K<sub>c</sub> expression”.</em></p>
<p><em>Accept “affects both forward and backward rates equally”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCO<sub>3</sub><sup>–</sup> AND H<sub>2</sub>O</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>species that has one less proton/H<sup>+</sup> ion «than its conjugate acid»</p>
<p><em><strong>OR</strong></em></p>
<p>species that forms its conjugate acid by accepting a proton</p>
<p><em><strong>OR</strong></em></p>
<p>species that is formed when an acid donates a proton</p>
<p><em>Do <strong>not</strong> accept “differs by one proton/H<sup>+</sup> from conjugate acid”.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxide ion/O<sup>2–</sup></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>insufficient data to make generalization</p>
<p><em><strong>OR</strong></em></p>
<p>need to consider a «much» larger number of acids</p>
<p><em><strong>OR</strong></em></p>
<p>hypothesis will continue to be tested with new acids to see if it can stand the test of time</p>
<p>«hypothesis is false as» other acids/HCl/HBr/HCN/transition metal ion/BF<sub>3</sub> do not contain oxygen</p>
<p><em><strong>OR</strong></em></p>
<p>other acids/HCl/HBr/HCN/transition metal ion/BF<sub>3</sub> falsify hypothesis</p>
<p>correct inductive reasoning «based on limited sample»</p>
<p>«hypothesis not valid as» it contradicts current/accepted theories/Brønsted-Lowry/Lewis theory</p>
<p><em><strong>[Max 2 Marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Sulfur trioxide is produced from sulfur dioxide.</p>
<p style="text-align: center;">2SO<sub>2 </sub>(g) + O<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2SO<sub>3 </sub>(g) Δ<em>H</em> = −196 kJ mol<sup>−1</sup></p>
</div>
<div class="specification">
<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>
</div>
<div class="specification">
<p>Nitric acid, HNO<sub>3</sub>, is another strong Brønsted–Lowry acid. Its conjugate base is the nitrate ion, NO<sub>3</sub><sup>−</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of a strong Brønsted–Lowry acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis structure of NO<sub>3</sub><sup>−</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electron domain geometry of NO<sub>3</sub><sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>increases rate <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✔</p>
<p>provides alternative pathway «with lower <em>E</em><sub>a</sub>»<br><em><strong>OR</strong></em><br>more/larger fraction of molecules have the «lower» <em>E</em><sub>a</sub> ✔</p>
<p> </p>
<p><em>Accept description of how catalyst lowers E<sub>a</sub> for M2 (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”, “helps favorable orientation of molecules”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>both axes correctly labelled ✔</p>
<p>peak of T<sub>2</sub> curve lower <em><strong>AND</strong> </em>to the right of T<sub>1</sub> curve ✔</p>
<p>lines begin at origin <em><strong>AND</strong> </em>correct shape of curves <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub> ✔</p>
<p> </p>
<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>
<p><em>Accept “kinetic E/KE/E<sub>k</sub>” but not just “Energy/E” on x-axis.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decrease <em><strong>AND</strong> </em>equilibrium shifts left / favours reverse reaction ✔</p>
<p>«forward reaction is» exothermic / ΔH is negative ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sulfuric acid/H<sub>2</sub>SO<sub>4</sub> ✔</p>
<p> </p>
<p><em>Accept “disulfuric acid/H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fully ionizes/dissociates ✔</p>
<p>proton/H<sup>+</sup> «donor » ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do <strong>not</strong> accept the delocalised structure.</em></p>
<p><em>Accept any combination of dots, crosses and lines.</em></p>
<p><em>Coordinate/dative bond may be represented by an arrow.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>three electron domains repel</p>
<p><em><strong>OR</strong></em></p>
<p>three electron domains as far away as possible ✔</p>
<p> </p>
<p>trigonal planar</p>
<p><em><strong>OR</strong></em></p>
<p>«all» angles are 120° ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A generally well-answered question. Most candidates explained the effect of a catalyst on a reaction correctly. A small proportion of candidates thought the catalyst increased the frequency of collisions. Some candidates focussed on the effect of the catalyst on an equilibrium since the equation above the question was that of a reversible reaction. These candidates usually still managed to gain at least the first marking point by stating that both forward and reverse reaction rates were increased due to the lower activation energy. Most candidates mentioned the alternative pathway for the second mark, and some gave a good discussion about the increase in the number of molecules or collisions with E≥E<sub>a</sub>. A few candidates lost one of the marks for not explicitly stating the effect of a catalyst (that it increases the rate of the reaction).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The average mark scored for the Maxwell-Boltzmann distribution curves sketch was 1.5 out of 3 marks and the question had a strong correlation with the candidates who did well overall. The majority of candidates were familiar with the shapes of the curves. The most commonly lost mark was missing or incorrect labels on the axes. Sometimes candidates added the labels but did not specify “kinetic” energy for the x-axis. As for the curves, some candidates reversed the labels T<sub>1</sub> and T<sub>2</sub>, some made the two curves meet at high energy or even cross, and some did not have the correct relationship between the peaks of T<sub>1</sub> and T<sub>2</sub>.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question that showed a strong correlation with the candidates who did well overall. The average mark was 1 out of 2 marks. Many candidates explained the effect of an increase in temperature on the yield of SO<sub>3</sub> correctly and thoroughly. One of the common mistakes was to miss the fact that it was an equilibrium and reason that yield would not change due to an increase in the rate of reaction. Unfortunately, a number of candidates also deduced that yield would increase due to the increase in rate. Other candidates recognized that it was an exothermic reaction but deduced the equilibrium would shift to the right giving a higher yield of SO<sub>3</sub>.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question. 70% of the candidates stated H2SO4 as the product from the reaction of SO<sub>3</sub> with water.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>While a straightforward question, many candidates only answered part of the question - either focussing on the “strong” or on the “Brønsted-Lowry acid”. The average mark on this question was 1.2 out of 2 marks.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 20% of the candidates scored the mark for the Lewis structure of NO<sub>3</sub><sup>-</sup>. Mistakes included: missing charge, missing lone pairs, 3 single bonds, 2 double bonds.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates deduced the correct electron domain geometry scoring the first mark including cases of ECF. Only a small number of candidates satisfied the requirements of the markscheme for the explanation.</p>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The concentration of a solution of a weak acid, such as ethanedioic acid, can be determined<br>by titration with a standard solution of sodium hydroxide, NaOH (aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a weak acid and a strong acid.</p>
<p>Weak acid:</p>
<p>Strong acid:</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is more convenient to express acidity using the pH scale instead of using the concentration of hydrogen ions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>5.00 g of an impure sample of hydrated ethanedioic acid, (COOH)<sub>2</sub>•2H<sub>2</sub>O, was dissolved in water to make 1.00 dm<sup>3</sup> of solution. 25.0 cm<sup>3</sup> samples of this solution were titrated against a 0.100 mol dm<sup>-3</sup> solution of sodium hydroxide using a suitable indicator.</p>
<p>(COOH)<sub>2</sub> (aq) + 2NaOH (aq) → (COONa)<sub>2</sub> (aq) + 2H<sub>2</sub>O (l)</p>
<p>The mean value of the titre was 14.0 cm<sup>3</sup>.</p>
<p>(i) Calculate the amount, in mol, of NaOH in 14.0 cm<sup>3</sup> of 0.100 mol dm<sup>-3</sup> solution.</p>
<p>(ii) Calculate the amount, in mol, of ethanedioic acid in each 25.0 cm<sup>3</sup> sample.</p>
<p>(iii) Determine the percentage purity of the hydrated ethanedioic acid sample.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Lewis (electron dot) structure of the ethanedioate ion is shown below.</p>
<p><img src="" alt></p>
<p>Outline why all the C–O bond lengths in the ethanedioate ion are the same length and suggest a value for them. Use section 10 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Weak acid:</em> partially dissociated/ionized «in solution/water»<br><em><strong>AND<br></strong>Strong acid:</em> «assumed to be almost» completely/100% dissociated/ionized «in solution/water»</p>
<p><em>Accept answers relating to pH, conductivity, reactivity if solutions of equal concentrations stated.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«log scale» reduces a wide range of numbers to a small range<br><em><strong>OR<br></strong></em>simple/easy to use<br><em><strong>OR<br></strong></em>converts exponential expressions into linear scale/simple numbers</p>
<p><em>Do <strong>not</strong> accept “easy for calculations”</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>«n(NaOH) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{14.0}}{{1000}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>14.0</mn>
</mrow>
<mrow>
<mn>1000</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> dm<sup>-3</sup> x 0.100 mol dm<sup>-3</sup> =» 1.40 x 10<sup>-3</sup> «mol»</p>
<p> </p>
<p>ii</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2} \times 1.40 \times {10^{ - 3}} = ">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>×</mo>
<mn>1.40</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mo>=</mo>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7.00 \times {10^{ - 4}}">
<mn>7.00</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>4</mn>
</mrow>
</msup>
</mrow>
</math></span> «mol»</p>
<p> </p>
<p>iii<br><em><strong>ALTERNATIVE 1:</strong></em><br>«mass of pure hydrated ethanedioic acid in each titration = 7.00 × 10<sup>-4</sup> mol × 126.08 g mol<sup>-1</sup> =» 0.0883 / 8.83 × 10<sup>-2</sup> «g»</p>
<p>mass of sample in each titration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{25}}{{1000}}">
<mfrac>
<mrow>
<mn>25</mn>
</mrow>
<mrow>
<mn>1000</mn>
</mrow>
</mfrac>
</math></span>×5.00g=»0.125«g»</p>
<p>«% purity = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0883{\rm{g}}}}{{0.125{\rm{g}}}}">
<mfrac>
<mrow>
<mn>0.0883</mn>
<mrow>
<mrow>
<mi mathvariant="normal">g</mi>
</mrow>
</mrow>
</mrow>
<mrow>
<mn>0.125</mn>
<mrow>
<mrow>
<mi mathvariant="normal">g</mi>
</mrow>
</mrow>
</mrow>
</mfrac>
</math></span> × 100 =» 70.6 «%»</p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br>«mol of pure hydrated ethanedioic acid in 1 dm<sup>3</sup> solution = 7.00 × 10<sup>-4</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1000}}{{25}}">
<mfrac>
<mrow>
<mn>1000</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
</math></span> =» 2.80×10<sup>-2</sup> «mol» <br>«mass of pure hydrated ethanedioic acid in sample = 2.80 × 10<sup>-2</sup> mol × 126.08 g mol<sup>-1</sup> =» 3.53 «g»<br>«% purity = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.53{\rm{g}}}}{{5.00{\rm{g}}}}">
<mfrac>
<mrow>
<mn>3.53</mn>
<mrow>
<mrow>
<mi mathvariant="normal">g</mi>
</mrow>
</mrow>
</mrow>
<mrow>
<mn>5.00</mn>
<mrow>
<mrow>
<mi mathvariant="normal">g</mi>
</mrow>
</mrow>
</mrow>
</mfrac>
</math></span> × 100 =» 70.6 «%»</p>
<p><em><strong>ALTERNATIVE 3:</strong></em><br>mol of hydrated ethanedioic acid (assuming sample to be pure) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5.00{\rm{g}}}}{{126.08{\rm{gmo}}{{\rm{l}}^{ - 1}}}}">
<mfrac>
<mrow>
<mn>5.00</mn>
<mrow>
<mrow>
<mi mathvariant="normal">g</mi>
</mrow>
</mrow>
</mrow>
<mrow>
<mn>126.08</mn>
<mrow>
<mrow>
<mi mathvariant="normal">g</mi>
<mi mathvariant="normal">m</mi>
<mi mathvariant="normal">o</mi>
</mrow>
</mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mi mathvariant="normal">l</mi>
</mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = 0.03966 «mol»<br>actual amount of hydrated ethanedioic acid = «7.00 × 10<sup>-4</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1000}}{{25}}">
<mfrac>
<mrow>
<mn>1000</mn>
</mrow>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
</math></span> =» 2.80 × 10<sup>-2</sup> «mol»</p>
<p>«% purity = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.80 \times {{10}^{ - 2}}}}{{0.03966}}">
<mfrac>
<mrow>
<mn>2.80</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>0.03966</mn>
</mrow>
</mfrac>
</math></span> × 100 =» 70.6 «%»</p>
<p><em>Award suitable part marks for alternative methods.</em><br><em>Award <strong>[3]</strong> for correct final answer.</em><br><em>Award <strong>[2 max]</strong> for 50.4 % if anhydrous ethanedioic acid assumed.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons delocalized «across the O–C–O system»<br><em><strong>OR<br></strong></em>resonance occurs<br><em>Accept delocalized π-bond(s).</em></p>
<p>122 «pm» < C–O < 143 «pm»</p>
<p><em>Accept any answer in the range 123 «pm» to 142 «pm». Accept “bond intermediate between single and double bond” or “bond order 1.5”.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math> </span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write the equation for the reaction of chloroethane with a dilute aqueous solution of sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the nucleophile for the reaction in d(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion. Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and their chemical shifts in the </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">H</mi><mprescripts></mprescripts><mn>1</mn></mmultiscripts><mo> </mo><mi>NMR</mi></math> <span class="fontstyle0">spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">p</mi><mn>6</mn></msup><mn>3</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>3</mn><msup><mi mathvariant="normal">p</mi><mn>5</mn></msup></math> ✔</p>
<p><em>Do <strong>not</strong> accept condensed electron configuration.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cl</mi><mo>-</mo></msup></math> <em><strong>AND</strong> </em>more «electron–electron» repulsion ✔</p>
<p><em><br>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo mathvariant="italic">-</mo></msup></math> <strong>AND</strong> has an extra electron.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> has a greater nuclear charge/number of protons/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">Z</mi><mi>eff</mi></msub></math> «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells<br><strong><em>OR</em></strong><br>same «outer» energy level<br><em><strong>OR</strong></em><br>similar shielding ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«two major» isotopes «of atomic mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>» ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«diatomic» molecule composed of «two» chlorine-37 atoms ✔</p>
<p>chlorine-37 is the least abundant «isotope»<br><em><strong>OR</strong></em><br>low probability of two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><mn>37</mn></mmultiscripts></math> «isotopes» occurring in a molecule ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>86</mn><mo>.</mo><mn>94</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">n</mi><mi>HCl</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>2000</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo> </mo></math>✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>400</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> is the limiting reactant ✔</p>
<p><em>Accept other valid methods of determining the limiting reactant in M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>4</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>»</mo></math></p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo>–</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>277</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo>«</mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo></math> ✔</p>
<p><em><br>Accept methods employing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></math></em>.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>4</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>2</mn></math> ✔</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxidizing agent <em><strong>AND</strong></em> oxidation state of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mn</mi></math> changes from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>2</mn></math>/decreases ✔</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially dissociates/ionizes «in water» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>ClO</mi><mo>-</mo></msup></math> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>[</mo><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo>]</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>61</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«free radical» substitution/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">S</mi><mi mathvariant="normal">R</mi></msub></math> ✔</p>
<p><em><br>Do not accept electrophilic or nucleophilic substitution.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloroethane <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi>Cl</mi></math> bond is weaker/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>324</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi mathvariant="normal">H</mi></math> bond/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>414</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math><br><em><strong>OR</strong></em><br>chloroethane <strong><em>AND</em> </strong>contains a polar bond ✔</p>
<p><em><br>Accept “chloroethane <strong>AND</strong> polar”.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msup><mi>OH</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><msup><mi>Cl</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><mi>NaOH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>NaCl</mi><mo>(</mo><mi>aq</mi><mo>)</mo></math> ✔</p>
<p><em>Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>C</mi><mi>l</mi></math> and <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>O</mi><mi>H</mi><mi mathvariant="normal">/</mi><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">6</mn></msub><mi>O</mi></math> in the equation.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydroxide «ion»/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>OH</mi><mo>-</mo></msup></math> ✔</p>
<p><em><br>Do <strong>not</strong> accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mi>a</mi><mi>O</mi><mi>H</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> / <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>OCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">(</mo><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">2</mn></msub><msub><mo mathvariant="italic">)</mo><mn mathvariant="italic">2</mn></msub><mi>O</mi></math>.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> «signals» ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn><mo>–</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo></math> <em><strong>AND</strong> </em><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>3</mn><mo>–</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo><mo> </mo></math>✔</p>
<p><em><br>Accept any values in the ranges.</em></p>
<p><em>Award <strong>[1 max]</strong> for two incorrect chemical shifts.</em></p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>M</mi><mo>(</mo><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub><mo>)</mo><mo> </mo><mo>=</mo><mo>»</mo><mo> </mo><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>×</mo><mn>35</mn><mo>.</mo><mn>45</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>×</mo><mn>100</mn><mo>%</mo><mo>=</mo><mo>»</mo><mo> </mo><mn>58</mn><mo>.</mo><mn>64</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>research «collaboration» for alternative technologies «to replace <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s»<br><em><strong>OR</strong></em><br>technologies «developed»/data could be shared<br><em><strong>OR</strong></em><br>political pressure/Montreal Protocol/governments passing legislations ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “collaboration”.</em></p>
<p><em>Do <strong>not</strong> accept any reference to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math> as greenhouse gas or product of fossil fuel combustion.</em></p>
<p><em>Accept reference to specific measures, such as agreement on banning use/manufacture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math>s.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates wrote the electron configuration of chlorine correctly.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only half of the candidates deduced that the chloride ion has a larger radius than the chlorine atom with a valid reason. Many candidates struggled with this question and decided that the extra electron in the chloride ion caused a greater attraction between the nucleus and the outer electrons.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only about a third of the candidates identified the extra proton in the chlorine nucleus as the cause of the smaller atomic radius when compared to the sulfur atom, and only the stronger candidates also compared the shielding or the number of shells in the two atoms. Many candidates had a poor understanding of factors affecting atomic radius and could not explain the difference.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 60% of the candidates recognized that the peaks at m/z 35 and 37 in the mass spectrum of chlorine are due to its isotopes. A few students wrote 'isomers' instead of 'isotopes'.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the lowest scoring question on the paper, that was also left blank by 10% of the candidates. About 20% of the candidates identified the peak at m/z = 74 to be due to a molecule made up of two 37Cl atoms. And only very few candidates commented that the low abundance of the peak was due to the low abundance of the 37Cl isotope. A common incorrect answer was that chlorine has an isotope of mass number 74.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to determine the number of moles of MnO<sub>2</sub> using the mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing that the majority of the candidates were able to determine the limiting reactant by using the stoichiometric ratio.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to determine the amount of excess reactant. Some candidates who determined the limiting reactant in the previous part correctly, forgot to use the stoichiometric ratio in this part, and ended up with incorrect answers.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates determined the volume of chlorine produced correctly. Some candidates made mistakes in the units when using PV = nRT and had a power of 10 error.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates were able to determine the oxidation states of Mn in the two compounds correctly.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Less than half of the candidates were awarded the mark. Some did identify MnO2 as the oxidizing agent but did not give the explanation in terms of oxidation state as required in the question. Other candidates did not have an understanding of oxidizing and reducing agents. </p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question - 80% of candidates understood what is meant by the term weak acid. Incorrect answers included 'acids that have high pH'.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates deduced the formula of the conjugate base of hypochlorous acid. Incorrect answers included H<sub>2</sub>O and HCl.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question. It was pleasing to see that 70% of the candidates were able to calculate [H<sup>+</sup>] from the given pH.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than half of the candidates identified the type of reaction between ethane and chlorine as a substitution reaction. A few candidates lost the marks for writing 'electrophilic substitution' or 'nucleophilic substitutions'.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question that was answered correctly by only 30% of the candidates. A variety of incorrect answers were seen such as 'chlorine is a halogen and hence it is reactive', and 'ethane is more reactive because it is an alkane'. For students who answered correctly, the polarity was the most frequently given reason.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates wrote the correct equation for the hydrolysis of chloroethane. Incorrect answers often included carbon dioxide and water as the products.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a highly discriminating question. Only 30% of the candidates were able to identify the hydroxide ion as the nucleophile in the hydrolysis of chloroethane. Incorrect answers included NaOH where the ion was not specified. 14% of the candidates left this question blank.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to give the structural formula of ethoxyethane. Incorrect answers included methoxymethane, ketones and esters.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly half of the candidates were able to identify the number of signals obtained in the 1H NMR spectrum of ethoxyethane, obtaining the first mark of this question. Many candidates were awarded the mark as 'error carried forward' from an incorrect structure of ethoxyethane. The second mark for this question required candidates to look up values of chemical shift from the data booklet. Nearly a third of the candidates were able to match the chemical environments of the hydrogen atoms in ethoxyethane to those listed in the data booklet successfully. </p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the highest scoring question in the paper. The majority of candidates were able to calculate the percentage by mass of chlorine in CCl<sub>2</sub>F<sub>2</sub>. Mistakes included incorrect rounding and arithmetic errors.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This nature of science question was well answered by half of the candidates. Some teachers commented that the wording was rather vague. Incorrect answers were mainly assuming that CFCs were related to the combustion of fuels and greenhouse gas emissions.</p>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Limescale, CaCO<sub>3</sub>(s), can be removed from water kettles by using vinegar, a dilute solution of ethanoic acid, CH<sub>3</sub>COOH(aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, a difference between the reactions of the same concentrations of hydrochloric acid and ethanoic acid with samples of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dissolved carbon dioxide causes unpolluted rain to have a pH of approximately 5, but other dissolved gases can result in a much lower pH. State one environmental effect of acid rain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>slower rate with ethanoic acid</p>
<p><strong><em>OR</em></strong></p>
<p>smaller temperature rise with ethanoic acid</p>
<p> </p>
<p>[H<sup>+</sup>] lower</p>
<p><strong><em>OR</em></strong></p>
<p>ethanoic acid is partially dissociated</p>
<p><strong><em>OR</em></strong></p>
<p>ethanoic acid is weak</p>
<p> </p>
<p><em>Accept experimental observations such </em><em>as “slower bubbling” or “feels less </em><em>warm”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>corrosion of materials/metals/carbonate materials</p>
<p>destruction of plant/aquatic life</p>
<p><strong>«</strong>indirect<strong>» </strong>effect on human health</p>
<p> </p>
<p><em>Accept “lowering pH of </em><em>oceans/lakes/waterways”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia, NH<sub>3</sub>, is industrially important for the manufacture of fertilizers, explosives and plastics.</p>
</div>
<div class="specification">
<p>Ammonia is produced by the Haber–Bosch process which involves the equilibrium:</p>
<p style="text-align: center;">N<sub>2 </sub>(g) + 3 H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2 NH<sub>3 </sub>(g)</p>
</div>
<div class="specification">
<p>The effect of temperature on the position of equilibrium depends on the enthalpy change of the reaction.</p>
</div>
<div class="specification">
<p>Ammonia is soluble in water and forms an alkaline solution:</p>
<p style="text-align: center;">NH<sub>3 </sub>(g) + H<sub>2</sub>O (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NH<sub>4</sub><sup>+ </sup>(aq) + HO<sup>– </sup>(aq)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of the ammonia molecule.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the expression for the equilibrium constant, <em>K</em><sub>c</sub>, for this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an increase in pressure shifts the position of equilibrium towards the products and how this affects the value of the equilibrium constant, <em>K</em><sub>c</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the use of a catalyst affects the position of the equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, Δ<em>H</em><sup>⦵</sup>, for the Haber–Bosch process, in kJ, using the following data.</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mrow><mo> </mo><mi mathvariant="normal">f</mi></mrow><mo>⦵</mo></msubsup><mfenced><msub><mi>NH</mi><mn>3</mn></msub></mfenced><mo>=</mo><mo>-</mo><mn>46</mn><mo>.</mo><mn>2</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the values obtained in (d)(i) and (d)(ii) differ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> in terms of the Brønsted–Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration, in mol dm<sup>–3</sup>, of the solution formed when 900.0 dm<sup>3</sup> of NH<sub>3 </sub>(g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm<sup>3</sup> of solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="444" height="226"></p>
<p> </p>
<p><em>Accept <strong>all</strong> 2p electrons pointing downwards.</em></p>
<p><em>Accept half arrows instead of full arrows.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Accept lines or dots or crosses for electrons, or a mixture of these</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi>c</mi></msub><mo>=</mo><mfrac><msup><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced><mn>2</mn></msup><mrow><mfenced open="[" close="]"><msub><mi>N</mi><mn>2</mn></msub></mfenced><msup><mfenced open="[" close="]"><msub><mi>H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow></mfrac></math> ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>shifts to the side with fewer moles «of gas»<br><em><strong>OR</strong></em><br>shifts to right as there is a reduction in volume✔</p>
<p>«value of » <em>K</em><sub>c</sub> unchanged ✔</p>
<p> </p>
<p><em>Accept “K<sub>c</sub> only affected by changes in temperature”.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same/unaffected/unchanged ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>bonds broken</em>: N≡N + 3(H–H) / «1 mol×»945 «kJ mol<sup>–1</sup>» + 3«mol»×436 «kJ mol<sup>–1</sup>» / 945 «kJ» + 1308 «kJ» / 2253 «kJ» ✔</p>
<p><em>bonds formed</em>: 6(N–H) / 6«mol»×391 «kJ mol<sup>–1</sup>» / 2346 «kJ» ✔</p>
<p>Δ<em>H</em> = «2253 kJ – 2346 kJ = » –93 «kJ» ✔</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> for (+)93 «kJ»</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–92.4 «kJ» ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«N-H» bond enthalpy is an average «and may not be the precise value in NH<sub>3</sub>» ✔</p>
<p><em><br>Accept it relies on average values not specific to NH<sub>3</sub></em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">conjugate</span> «acid and base» ✔</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of ammonia <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mrow><mi>P</mi><mo>.</mo><mi>V</mi></mrow><mrow><mi>R</mi><mo>.</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>100</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>k</mi><mi>P</mi><mi>a</mi><mo>×</mo><mn>900</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>d</mi><msup><mi>m</mi><mn>3</mn></msup></mrow><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi>J</mi><mo> </mo><msup><mi>K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi>m</mi><mi>o</mi><msup><mi>l</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>300</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>K</mi></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo> </mo><mo>=</mo><mo> </mo><mn>36</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p>concentration <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mi>n</mi><mi>V</mi></mfrac><mo>=</mo><mfrac><mrow><mn>36</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>00</mn></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>18</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[OH<sup>−</sup>] <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><msub><mi mathvariant="normal">K</mi><mi mathvariant="normal">W</mi></msub><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced></mfrac><mo>=</mo><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>3</mn></mrow></msup></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo> </mo><mo>×</mo><mo> </mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo> </mo><mo>⟨</mo><mo>⟨</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo></math> ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most students realised that the three p-orbitals were all singly filled.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even more candidates could draw the correct Lewis structure of ammonia, with omission of the lone pair being the most common error.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students could deduce the equilibrium constant expression from the equilibrium equation.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students realised that increasing pressure shifts an equilibrium to the side with the most moles of gas (though the "of gas" was frequently omitted!) but probably less than half realised that, even though the equilibrium position changes, the value of the equilibrium constant remains constant.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing to see that about a third of students gaining full marks and an equal number only lost a single mark because they failed to locate the correct bond enthalpy for molecular nitrogen.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few students could determine the enthalpy change from enthalpy of formation data, with many being baffled by the absence of values for the elemental reactants and more than half who overcame this obstacle failed to note that 2 moles of ammonia are produced.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About half the candidates recognised the species as a conjugate acid-base pair, though some lost the mark by confusing the acid and base, even though this information was not asked for.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 40% of candidates gained full marks for the calculation and a significant number of others gained the second mark to calculate the concentration as an ECF.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was very poorly answered with many candidates calculating the [H<sup>+</sup>] instead of [OH<sup>-</sup>].</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium reacts with sulfuric acid:</p>
<p style="text-align: center;">Mg(s) + H<sub>2</sub>SO<sub>4</sub>(aq) → MgSO<sub>4</sub>(aq) + H<sub>2</sub>(g)</p>
<p>The graph shows the results of an experiment using excess magnesium ribbon and dilute sulfuric acid.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-25_om_09.45.43.png" alt="M17/4/CHEMI/SP2/ENG/TZ2/05.a.i"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the rate of the reaction decreases with time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the same graph, the expected results if the experiment were repeated using powdered magnesium, keeping its mass and all other variables unchanged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrogen dioxide and carbon monoxide react according to the following equation:</p>
<p>NO<sub>2</sub>(g) + CO(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> NO(g) + CO<sub>2</sub>(g) Δ<em>H</em> = –226 kJ</p>
<p><img src=""></p>
<p>Calculate the activation energy for the reverse reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of NO<sub>2</sub> in the atmosphere to produce acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>concentration of acid decreases<br><em><strong>OR</strong></em><br>surface area of magnesium decreases</p>
<p> </p>
<p><em>Accept “less frequency/chance/rate/probability/likelihood of collisions”.</em></p>
<p><em>Do <strong>not</strong> accept just “less acid” or “less magnesium”.</em></p>
<p><em>Do <strong>not</strong> accept “concentrations of reagents decrease”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curve starting from origin with steeper gradient <em><strong>AND</strong> </em>reaching same maximum volume</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>E</em><sub>a(rev)</sub> = 226 + 132 =» 358 «kJ»</p>
<p><em>Do not accept –358.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2NO<sub>2</sub>(g) + H<sub>2</sub>O(l) → HNO<sub>3</sub>(aq) + HNO<sub>2</sub>(aq)<br><em><strong>OR</strong></em><br>2NO<sub>2</sub>(g) + 2H<sub>2</sub>O(l) + O<sub>2</sub>(g) → 4HNO<sub>3</sub>(aq)</p>
<p> </p>
<p><em>Accept ionised forms of the acids.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron (II) sulfide reacts with hydrochloric acid to form hydrogen sulfide, H<sub>2</sub>S.</p>
</div>
<div class="specification">
<p>In aqueous solution, hydrogen sulfide acts as an acid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of hydrogen sulfide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the shape of the hydrogen sulfide molecule.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the formula of its conjugate base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated aqueous hydrogen sulfide has a concentration of 0.10 mol dm<sup>−3</sup> and a pH of 4.0. Demonstrate whether it is a strong or weak acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the hydroxide ion concentration in saturated aqueous hydrogen sulfide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A gaseous sample of nitrogen, contaminated only with hydrogen sulfide, was reacted with excess sodium hydroxide solution at constant temperature. The volume of the gas changed from 550 cm<sup>3</sup> to 525 cm<sup>3</sup>.</p>
<p>Determine the mole percentage of hydrogen sulfide in the sample, stating one assumption you made.</p>
<p><img src="" width="705" height="303"></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="83" height="55"> <em><strong>OR <img src="" width="125" height="50">✔</strong></em></p>
<p><em>Accept any combination of lines, dots or crosses to represent electrons.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bent/non-linear/angular/v-shaped✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HS<sup>−</sup> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>weak <em><strong>AND</strong> </em>strong acid of this concentration/[H<sup>+</sup>] = 0.1 mol dm<sup>−3</sup> would have pH = 1<br><em><strong>OR</strong></em><br>weak <em><strong>AND</strong> </em>[H<sup>+</sup>] = 10<sup>−4</sup> < 0.1 «therefore only fraction of acid dissociated» ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>10<sup>−10</sup> «mol dm<sup>−3</sup>» ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Mole percentage H<sub>2</sub>S:</em><br>volume of H<sub>2</sub>S = «550 − 525 = » 25 «cm<sup>3</sup>» ✔<br>mol % H<sub>2</sub>S = «<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>25</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mrow><mn>550</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow></mfrac><mo>×</mo><mn>100</mn></math> = » 4.5 «%» ✔</p>
<p><em>Award [2] for correct final answer of 4.5 «%»</em></p>
<p> </p>
<p><em>Assumption:</em><br>«both» gases behave as ideal gases ✔<br><br><em>Accept “volume of gas <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">α</mi></math> mol of gas”.</em><br><em>Accept “reaction goes to completion”.</em><br><em>Accept “nitrogen is insoluble/does not </em><em>react with NaOH/only H<sub>2</sub>S reacts with </em><em>NaOH”.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>
<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>
<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="205" height="119"></p>
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The potential energy profile for a reaction is shown. Sketch a dotted line labelled “Catalysed” to indicate the effect of a catalyst.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="454" height="317"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a catalyst has such an effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2</sub> (aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in e(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to e(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>CaCO3</sub> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>555</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>11</mn><mo>.</mo><mn>09</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 5.55 «mol» ✓</p>
<p>«<em>V</em> = 5.55 mol × 22.7 dm<sup>3</sup> mol<sup>−1</sup> =» 126 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm<sup>3</sup>) or 101.3 kPa (125 dm<sup>3</sup>).</em></p>
<p><em>Do not penalize use of 22.4 dm<sup>3</sup> mol<sup>–1</sup> to obtain the volume (124 dm<sup>3</sup>).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ΔH</em> =» (−635 «kJ» – 393.5 «kJ») – (−1207 «kJ») ✓</p>
<p>«<em>ΔH</em> = + » 179 «kJ» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [1 max]</strong> for −179 kJ.</em></p>
<p><em>Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol<sup>−1</sup> x 5.55 mol = 993 kJ.</em></p>
<p><em>Award <strong>[2]</strong> for an answer in the range 990 - 993« kJ».</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>lower activation energy curve between same reactant and product levels ✓</p>
<p><em><br>Accept curve with or without an intermediate.</em></p>
<p><em>Accept a horizontal straight line below current line with the activation energy with catalyst/E<sub>cat</sub> clearly labelled.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative «reaction» pathway/mechanism ✓</p>
<p><em><br>Do <strong>not</strong> accept “lower activation energy” only.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Ca(OH)<sub>2</sub> (aq) + 2HCl (aq) → 2H<sub>2</sub>O (l) + CaCl<sub>2</sub> (aq) ✓</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>HCl</sub> = 0.0350 dm<sup>3</sup> × 0.025 mol dm<sup>−3</sup> =» 0.00088 «mol»<br><em><strong>OR</strong></em><br><em>n</em><sub>Ca(OH)2</sub> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em>n</em><sub>HCl</sub>/0.00044 «mol» ✓</p>
<p>«<em>V</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>00088</mn><mo> </mo><mi>mol</mi></mstyle><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> =» 0.029 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for 0.058 «dm<sup>3</sup>».</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1:</strong></em></p>
<p>[OH<sup>−</sup>] = « 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«[H<sup>+</sup>] = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>0466</mn></mrow></mfrac></math> = 2.15 × 10<sup>−13</sup> mol dm<sup>−3</sup>»<br>pH = « −log(2.15 × 10<sup>−13</sup>) =» 12.668 ✓</p>
<p> </p>
<p><em><strong>Alternative 2:</strong></em></p>
<p>[OH<sup>−</sup>] =« 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«pOH = −log (0.0466) = 1.332»</p>
<p>pH = «14.000 – pOH = 14.000 – 1.332 =» 12.668 ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for pH =12.367.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>Ca(OH)2</sub> = 2.41 dm<sup>3</sup> × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0562 «mol» <em><strong>AND</strong></em><br>«<em>n</em><sub>CO2</sub> =<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>750</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>=» 0.0330 «mol» ✓</p>
<p>«CO<sub>2</sub> is the limiting reactant»</p>
<p>«<em>m</em><sub>CaCO3</sub> = 0.0330 mol × 100.09 g mol<sup>−1</sup> =» 3.30 «g» ✓</p>
<p><em><br>Only award ECF for M2 if limiting reagent is used.</em></p>
<p><em>Accept answers in the range 3.30 - 3.35 «g».</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>85</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>30</mn></mrow></mfrac></math> × 100 =» 86.4 «%» ✓</p>
<p><em><br>Accept answers in the range 86.1-86.4 «%».</em></p>
<p><em>Accept “71.3 %” for using the incorrect given value of 4.00 g.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«add» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO <em><strong>AND</strong> </em>to «acidic» water/river/lake/soil<br><em><strong>OR</strong></em><br>«use» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO in scrubbers «to prevent release of acidic pollution» ✓</p>
<p><em><br>Accept any correct name for any of the calcium compounds listed.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Graphing is an important tool in the study of rates of chemical reactions.</p>
</div>
<div class="specification">
<p>Excess hydrochloric acid is added to lumps of calcium carbonate. The graph shows the volume of carbon dioxide gas produced over time.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a Maxwell–Boltzmann distribution curve for a chemical reaction showing the activation energies with and without a catalyst.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a curve on the graph to show the volume of gas produced over time if the same mass of crushed calcium carbonate is used instead of lumps. All other conditions remain constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect on the rate of reaction if ethanoic acid of the same concentration is used in place of hydrochloric acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why pH is more widely used than [H<sup>+</sup>] for measuring relative acidity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why H<sub>3</sub>PO<sub>4</sub>/HPO<sub>4</sub><sup>2−</sup> is not a conjugate acid-base pair.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_08.59.39.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/02.a/M"></p>
<p>both axes correctly labelled</p>
<p>correct shape of curve starting at origin</p>
<p><em>E</em><sub>a(catalyst)</sub> < <em>E</em><sub>a(without catalyst)</sub> on x-axis</p>
<p> </p>
<p><em>M1:</em></p>
<p><em>Accept “speed” for x-axis label.</em></p>
<p><em>Accept “number of particles”, “N”, </em><em>“frequency” or “probability </em><strong><em>«</em></strong><em>density</em><strong><em>»</em></strong><em>” for </em><em>y-axis label.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “potential energy” for </em><em>x-axis label.</em></p>
<p> </p>
<p><em>M2:</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept a curve that touches the </em><em>x-axis at high energy.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>award M2 if two curves are </em><em>drawn.</em></p>
<p> </p>
<p><em>M3:</em></p>
<p><em>Ignore any shading under the curve.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_09.03.30.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/02.b.i/M"></p>
<p>curve starting from origin with steeper gradient <strong><em>AND </em></strong>reaching same maximum volume</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate decreases</p>
<p><strong><em>OR</em></strong></p>
<p>slower reaction</p>
<p> </p>
<p><strong>«</strong>ethanoic acid<strong>» </strong>partially dissociated/ionized <strong>«</strong>in solution/water<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>lower [H<sup>+</sup>]</p>
<p> </p>
<p><em>Accept “weak acid” or “higher pH</em><em>”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>pH<strong>» </strong>converts <strong>«</strong>wide range of [H<sup>+</sup>]<strong>» </strong>into simple <strong>«</strong>log<strong>» </strong>scale/numbers</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>pH<strong>» </strong>avoids need for exponential/scientific notation</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>pH<strong>» </strong>converts small numbers into values <strong>«</strong>typically<strong>» </strong>between 0/1 and 14</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>pH<strong>» </strong>allows easy comparison of values of [H<sup>+</sup>]</p>
<p> </p>
<p><em>Accept “uses values between 0/1 and </em><em>14”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “easier to use”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “easier for calculations”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>species<strong>» </strong>do not differ by a <strong>«</strong>single<strong>» </strong>proton/H<sup>+</sup></p>
<p><strong><em>OR</em></strong></p>
<p>conjugate base of H<sub>3</sub>PO<sub>4</sub> is H<sub>2</sub>PO<sub>4</sub><sup>–</sup> <strong>«</strong>not HPO<sub>4</sub><sup>2–</sup><strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>conjugate acid of HPO<sub>4</sub><sup>2–</sup> is H<sub>2</sub>PO<sub>4</sub><sup>–</sup> <strong>«</strong>not H<sub>3</sub>PO<sub>4</sub><strong>»</strong></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “hydrogen/H” for </em><em>“H</em><sup><em>+</em></sup><em>/proton”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A molecule of citric acid, C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>, is shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="215" height="123"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The equation for the first dissociation of citric acid in water is</span></span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)</span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a conjugate acid–base pair in the equation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The value of the equilibrium constant for the first dissociation at 298 K is 5.01 × 10<sup>−4</sup>.</span></p>
<p><span style="background-color: #ffffff;">State, giving a reason, the strength of citric acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H<sup>+</sup>], and on the equilibrium constant, of increasing the temperature.</span></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one </strong>laboratory methods of distinguishing between solutions of citric acid and hydrochloric acid of equal concentration, stating the expected observations.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> <em><strong>AND</strong> </em>C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup><br><em><strong>OR</strong></em><br>H<sub>2</sub>O <em><strong>AND</strong> </em>H<sub>3</sub>O<sup>+</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">weak acid <em><strong>AND</strong> </em>partially dissociated<br><em><strong>OR</strong></em><br>weak acid <em><strong>AND</strong> </em>equilibrium lies to left<br><em><strong>OR</strong></em><br>weak acid <em><strong>AND</strong> K</em><sub>c</sub>/<em>K</em><sub>a</sub><1 ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>«electrical» conductivity <em><strong>AND</strong> </em>HCl greater ✔<br>pH <em><strong>AND</strong> </em>citric acid higher ✔<br>titrate with strong base <em><strong>AND</strong> </em>pH at equivalence higher for citric acid ✔<br>add reactive metal/carbonate/hydrogen carbonate <em><strong>AND</strong> </em>stronger effervescence/faster reaction with HCl ✔<br>titration <em><strong>AND</strong> </em>volume of alkali for complete neutralisation greater for citric acid ✔<br>titrate with strong base <em><strong>AND</strong> </em>more than one equivalence point for complete neutralisation of citric acid ✔<br></span><span style="background-color: #ffffff;">titrate with strong base <em><strong>AND</strong> </em>buffer zone with citric acid ✔<br></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “add universal indicator </span></em><span style="background-color: #ffffff;"><strong>AND</strong></span> <em><span style="background-color: #ffffff;">HCl more red/pink” for M2. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept any acid reaction </span></em><span style="background-color: #ffffff;"><strong>AND</strong></span> <em><span style="background-color: #ffffff;">HCl greater rise in temperature. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept specific examples throughout. </span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “smell” or “taste”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH, is another derivative of benzene.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the conjugate base of benzoic acid showing <strong>all</strong> the atoms and <strong>all</strong> the bonds.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The pH of an aqueous solution of benzoic acid at 298 K is 2.95. Determine the concentration of hydroxide ions in the solution, using section 2 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate the equation for the complete combustion of benzoic acid in oxygen using only integer coefficients.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest how benzoic acid, <em>M<sub>r</sub></em> = 122.13, forms an apparent dimer, <em>M<sub>r</sub></em> = 244.26, when dissolved in a non-polar solvent such as hexane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p> </p>
<p><em><strong>Note:</strong> <span style="background-color: #ffffff;">Accept Kekulé structures.</span></em></p>
<p><em><span style="background-color: #ffffff;">Negative sign must be shown in correct position- on the O or delocalised over the carboxylate.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1:</strong></em><br>[H<sup>+</sup>] «= 10<sup>−2.95</sup>» = 1.122 × 10<sup>−3</sup> «mol dm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«[OH<sup>−</sup>] = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}{\text{ mo}}{{\text{l}}^2}{\text{ d}}{{\text{m}}^{ - 6}}}}{{1.22 \times {{10}^{ - 3}}{\text{ mol d}}{{\text{m}}^{ - 3}}}}">
<mfrac>
<mrow>
<mn>1.00</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>14</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext> d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.22</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> mol d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =» 8.91 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2:</strong></em><br>pOH = «14 − 2.95 =» 11.05 <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«[OH<sup>−</sup>] = 10<sup>−11.05</sup> =» 8.91 × 10<sup>−12</sup> «moldm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept other methods.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2C<sub>6</sub>H<sub>5</sub>COOH(s) + 15O<sub>2</sub> (g) → 14CO<sub>2</sub> (g) + 6H<sub>2</sub>O(l)</span></p>
<p><span style="background-color: #ffffff;">correct products <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">correct balancing <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«intermolecular» hydrogen bonding <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept diagram showing hydrogen bonding.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most failed to score a mark for the conjugate base of benzoic acid as either they didn’t show all bonds and atoms in the ring and/or they did not put the minus sign in the correct place. Some didn't read the question carefully so gave the structure of the acid form.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students could correctly calculate the hydroxide concentration, but some weaker students calculated hydrogen ion concentration only.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students earned at least one mark for writing the correct products of the combustion of benzoic acid but the balancing appeared to be difficult for some.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few students answered this question correctly, thinking benzoic would bond with the hexane even though it was a non-polar solvent. It was very rare for a student to realize there was intermolecular hydrogen bonding.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>
</div>
<div class="specification">
<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>
<p style="text-align: right;">Mass of crucible and lid = 47.372 ±0.001 g</p>
<p style="text-align: right;">Mass of crucible, lid and magnesium ribbon before heating = 53.726 ±0.001 g</p>
<p style="text-align: right;">Mass of crucible, lid and product after heating = 56.941 ±0.001 g</p>
<p style="text-align: left;"> </p>
</div>
<div class="specification">
<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>
<p style="text-align: center;">3 Mg (s) + N<sub>2 </sub>(g) → Mg<sub>3</sub>N<sub>2 </sub>(s)</p>
</div>
<div class="specification">
<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>
</div>
<div class="specification">
<p>Most nitride ions are <sup>14</sup>N<sup>3–</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write a balanced equation for the reaction that occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the block of the periodic table in which magnesium is located.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of magnesium, in mol, that was used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty of the mass of product after heating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate coefficients that balance the equation for the following reaction.</p>
<p style="text-align:center;">__ Mg<sub>3</sub>N<sub>2 </sub>(s) + __ H<sub>2</sub>O (l) → __ Mg(OH)<sub>2 </sub>(s) + __ NH<sub>3 </sub>(aq)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of subatomic particles in this ion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>
<p><img src="" width="644" height="367"></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2 Mg(s) + O<sub>2</sub>(g) → 2 MgO(s) ✔</p>
<p><em><br>Do not accept equilibrium arrows. Ignore state symbols</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>s ✔</p>
<p><em><br>Do not allow group 2</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>aluminium/Al ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mn>53</mn><mo>.</mo><mn>726</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>244</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>354</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo></math> «mol» ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass of product <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>=</mo><mn>56</mn><mo>.</mo><mn>941</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>»</mo><mo>=</mo><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mtext>⟨⟨100 × </mtext><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>001</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mtext>=0.0209⟩⟩ = 0.02 «%»</mtext></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer </em></p>
<p><em>Accept 0.021%</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo> </mo><mo>×</mo><mo> </mo><mo>(</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>16</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>40</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⟨</mo><mo>⟨</mo><mn>100</mn><mo>×</mo><mfrac><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mo>=</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>822</mn><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>91</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award «0.2614 mol x 40.31 g mol<sup>–1</sup>»</em></p>
<p><em>Accept alternative methods to arrive at the correct answer.</em></p>
<p><em>Accept final answers in the range 91-92%</em></p>
<p><em><strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes<br><em><strong>AND</strong></em><br>«each Mg combines with <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> N, so» mass increase would be 14x<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> which is less than expected increase of 16x<br><em><strong>OR</strong></em><br>3 mol Mg would form 101g of Mg<sub>3</sub>N<sub>2</sub> but would form 3 x MgO = 121 g of MgO<br><em><strong>OR</strong></em><br>0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg<sub>3</sub>N<sub>2</sub> ✔</p>
<p> </p>
<p><em>Accept Yes <strong>AND</strong> “the mass of N/N<sub>2</sub> that combines with each g/mole of Mg is lower than that of O/O<sub>2</sub>”</em></p>
<p><em>Accept YES<strong> AND</strong> “molar mass of nitrogen less than of oxygen”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>incomplete reaction<br><em><strong>OR</strong></em><br>Mg was partially oxidised already<br><em><strong>OR</strong></em><br>impurity present that evaporated/did not react ✔</p>
<p> </p>
<p><em>Accept “crucible weighed before fully cooled”.</em></p>
<p><em>Accept answers relating to a higher atomic mass impurity consuming less O/O<sub>2</sub>.</em></p>
<p><em>Accept “non-stoichiometric compounds formed”.</em></p>
<p><em>Do <strong>not</strong> accept "human error", "wrongly calibrated balance" or other non-chemical reasons.</em></p>
<p><em>If answer to (b)(iii) is >100%, accept appropriate reasons, such as product absorbed moisture before being weighed.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«1» Mg<sub>3</sub>N<sub>2 </sub>(s) + <strong>6</strong> H<sub>2</sub>O (l) → <strong>3</strong> Mg(OH)<sub>2 </sub>(s) + <strong>2</strong> NH<sub>3 </sub>(aq)</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Mg<sub>3</sub>N<sub>2</sub>: -3</em><br><strong><em>AND</em></strong><br><em>NH<sub>3</sub>: -3 ✔</em></p>
<p><em><br>Do not accept 3 or 3-</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Acid–base:</em><br>yes <strong>AND</strong> N<sup>3-</sup> accepts H<sup>+</sup>/donates electron pair«s»<br><strong><em>OR</em></strong><br>yes <strong>AND</strong> H<sub>2</sub>O loses H<sup>+</sup> «to form OH<sup>-</sup>»/accepts electron pair«s» ✔</p>
<p><em>Redox:</em><br>no <strong>AND</strong> no oxidation states change ✔</p>
<p> </p>
<p><em>Accept “yes <strong>AND</strong> proton transfer takes place”</em></p>
<p><em>Accept reference to the oxidation state of specific elements not changing.</em></p>
<p><em>Accept “not redox as no electrons gained/lost”.</em></p>
<p><em>Award <strong>[1 max]</strong> for Acid–base: yes <strong>AND</strong> Redox: no without correct reasons, if no other mark has been awarded</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons</em>: 7 <em><strong>AND</strong> Neutrons</em>: 7 <em><strong>AND</strong> Electrons</em>: 10 ✔</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">isotope</span>«s» ✔</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nitride <em><strong>AND</strong> </em>smaller nuclear charge/number of protons/atomic number ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br><br>subatomic particles «discovered»<br><em><strong>OR</strong></em><br>particles smaller/with masses less than atoms «discovered»<br><em><strong>OR</strong></em><br>«existence of» isotopes «same number of protons, different number of neutrons» ✔</p>
<p><br>charged particles obtained from «neutral» atoms<br><em><strong>OR</strong></em><br>atoms can gain or lose electrons «and become charged» ✔</p>
<p><br>atom «discovered» to have structure ✔</p>
<p><br>fission<br><em><strong>OR</strong></em><br>atoms can be split ✔</p>
<p> </p>
<p><em>Accept atoms can undergo fusion «to produce heavier atoms»</em></p>
<p><em>Accept specific examples of particles.</em></p>
<p><em>Award <strong>[2]</strong> for “atom shown to have a nucleus with electrons around it” as both M1 and M3.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><br>Award <strong>[1]</strong> for all bonding types correct.</em></p>
<p><em>Award <strong>[1]</strong> for <strong>each</strong> correct description.</em></p>
<p><em>Apply ECF for M2 only once.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was not as well done as one might have expected with the most common errors being O instead of O<sub>2</sub> oxygen and MgO rather than MgO<sub>2</sub>.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students did not know what "block" meant, and often guessed group 2 etc.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students confused "period" and "group" and also many did not read metal, so aluminium was not chosen by the majority.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A number of students were not able to interpret the results and hence find the gain in mass and calculate the moles correctly.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only a handful could work out the correct answer. Most had no real idea and quite a lot of blank responses. There also seems to be significant confusion between "percent uncertainty" and "percent error".</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was not well answered, but definitely better than the previous question with quite a few gaining some credit for correctly determining the theoretical yield.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved to be a very difficult question to answer in the quantitative manner required, with hardly any correct responses.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Quite a few students realised that incomplete reaction would lead to this, but only 30% of students gave a correct answer rather than a non-specific guess, such as "misread balance" or "impurities".</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally very well done with almost all candidates being able to determine the correct coefficients.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 40% of students managed to correctly determine both the oxidation states, as -3, with errors being about equally divided between the two compounds.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Probably only about 10% could explain why this was an acid-base reaction. Rather more made valid deductions about redox, based on their answer to the previous question.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could answer the question about subatomic particles correctly.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Identification of isotopes was answered correctly by most students.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In spite of being given the meaning of "isoelectronic", many candidates talked about the differing number of electrons and only about 30% could correctly analyse the situation in terms of nuclear charge.</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The question was marked quite leniently so that the majority of candidates gained at least one of the marks by mentioning a subatomic particle. A significant number read "indivisible" as "invisible" however.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About a quarter of the students gained full marks and probably a similar number gained no marks. Metallic bonding was the type that seemed least easily recognised and least easily described. Another common error was to explain ionic bonding in terms of attraction of ions rather than describing electron transfer.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Carbonated water is produced when carbon dioxide is dissolved in water under pressure.</span></p>
<p><span style="background-color: #ffffff;">The following equilibria are established.</span></p>
<p><img src="" width="517" height="87"></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Carbon dioxide acts as a weak acid.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Soda water has sodium hydrogencarbonate, NaHCO<sub>3</sub>, dissolved in the carbonated water.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish between a weak and strong acid.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Weak acid: </span></p>
<p><span style="background-color: #ffffff;">Strong acid:</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The hydrogencarbonate ion, produced in Equilibrium (2), can also act as an acid.</span></p>
<p><span style="background-color: #ffffff;">State the formula of its conjugate base.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When a bottle of carbonated water is opened, these equilibria are disturbed.</span></p>
<p><span style="background-color: #ffffff;">State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">100.0 cm<sup>3</sup> of soda water contains 3.0 × 10<sup>−2</sup> g NaHCO<sub>3</sub>.</span></p>
<p><span style="background-color: #ffffff;">Calculate the concentration of NaHCO<sub>3</sub> in mol dm<sup>−3</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of bonding in sodium hydrogencarbonate.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Between sodium and hydrogencarbonate:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Between hydrogen and oxygen in hydrogencarbonate:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Weak acid</em>: partially dissociated/ionized «in solution/water»<br><em><strong>AND</strong></em><br><em>Strong acid</em>: «assumed to be almost» completely/100 % dissociated/ionized «in solution/water» <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">CO<sub>3</sub><sup>2–</sup> <strong>[✔]</strong></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">shifts to left/reactants <em><strong>AND</strong> </em>to increase amount/number of moles/molecules of gas/CO<sub>2</sub> (g) <strong>[✔]</strong></span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«additional HCO<sub>3</sub><sup>–</sup>» shifts position of equilibrium to left <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">pH increases <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong></span></em><span style="background-color: #ffffff;"><strong> <em> </em></strong><em>Do <strong>not</strong> award M2 without any justification in terms of equilibrium shift in M1.</em></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«molar mass of NaHCO<sub>3</sub> =» 84.01 «g mol<sup>–1</sup>» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«concentration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.0 \times {{10}^{ - 2}}{\text{ g}}}}{{84.01{\text{ g mo}}{{\text{l}}^{ - 1}}}} \times \frac{1}{{0.100{\text{ d}}{{\text{m}}^3}}} = ">
<mfrac>
<mrow>
<mn>3.0</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>84.01</mn>
<mrow>
<mtext> g mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.100</mn>
<mrow>
<mtext> d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 3.6 × 10<sup>–3</sup> «mol dm<sup>–3</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Between sodium and hydrogencarbonate:</em><br>ionic <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Between hydrogen and oxygen in hydrogencarbonate:</em><br>«polar» covalent <strong>[✔]</strong></span></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was rather disappointing that less than 70 % of the candidates could distinguish between weak and strong acids. Many candidates referred to pH differences.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A poorly answered question, though it discriminated very well between high-scoring and low-scoring candidates. Less than 40 % of the candidates were able to deduce the formula of the conjugate base of HCO<sub>3</sub><sup>-</sup>. Wrong answers included water, the hydroxide ion and carbon dioxide.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a relatively challenging question. Only about a quarter of the candidates explained how a decrease in pressure affected the equilibrium. Some candidates stated there was no shift in the equilibrium as the number of moles is the same on both sides of the equation, not acknowledging that only gaseous substances need to be considered when deciding the direction of shift in equilibrium due to a change in pressure. Some candidates wrote that the equilibrium shifts right because the gas escapes.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was one of the most challenging questions on the paper that required application of Le Chatelier’s Principle in an unfamiliar situation. Most candidates did not refer to equilibrium (2), as directed by the question, and hence could not gain any marks. Some candidates stated that NaHCO<sub>3</sub> was an acid and decreased pH. Some answers had contradictions that showed poor understanding of the pH concept.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very well answered. Most candidates calculated the molar concentration correctly.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates identified the bonding between sodium and hydrogencarbonate as ionic. A much smaller proportion of candidates identified the bonding between hydrogen and oxygen in hydrogencarbonate as covalent. The most common mistake was “hydrogen bonding”.</p>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate of sulfur at room temperature.</p>
<p style="text-align: center;">Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq) + 2HCl (aq) → S (s) + SO<sub>2 </sub>(g) + 2NaCl (aq) + X</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the formula and state symbol of X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the experiment should be carried out in a fume hood or in a well-ventilated laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.</p>
<p><img src="" alt></p>
<p>10.0 cm<sup>3</sup> of 2.00 mol dm<sup>-3</sup> hydrochloric acid was added to a 50.0 cm<sup>3</sup> solution of sodium thiosulfate at temperature, T1. Students measured the time taken for the mark to be no longer visible to the naked eye. The experiment was repeated at different concentrations of sodium thiosulfate.</p>
<p><img src="" alt></p>
<p>Show that the hydrochloric acid added to the flask in experiment 1 is in excess.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\rm{t}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mi mathvariant="normal">t</mi>
</mrow>
</mrow>
</mfrac>
</math></span> against concentration of sodium thiosulfate on the axes provided.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student decided to carry out another experiment using 0.075 mol dm<sup>-3</sup> solution of sodium thiosulfate under the same conditions. Determine the time taken for the mark to be no longer visible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An additional experiment was carried out at a higher temperature, T<sub>2</sub>.</p>
<p>(i) On the same axes, sketch Maxwell–Boltzmann energy distribution curves at the two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2 </sub>> T<sub>1</sub>.</p>
<p><img src="" alt></p>
<p>(ii) Explain why a higher temperature causes the rate of reaction to increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why the values of rates of reactions obtained at higher temperatures may be less accurate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O <em><strong>AND</strong></em> (l)<br><em>Do <strong>not</strong> accept H<sub>2</sub>O (aq).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>SO<sub>2</sub> (g) is an irritant/causes breathing problems<br><em><strong>OR<br></strong></em>SO<sub>2</sub> (g) is poisonous/toxic</p>
<p><em>Accept SO<sub>2</sub> (g) is acidic, but do not accept “causes acid rain”.<br>Accept SO<sub>2</sub> (g) is harmful.<br>Accept SO<sub>2</sub> (g) has a foul/pungent smell.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>n(HCl) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10.0}}{{1000}}">
<mfrac>
<mrow>
<mn>10.0</mn>
</mrow>
<mrow>
<mn>1000</mn>
</mrow>
</mfrac>
</math></span>dm<sup>3</sup> × 2.00 mol dm<sup>-3</sup> =» 0.0200 / 2.00 × 10<sup>-2</sup>«mol»<br><em><strong>AND</strong></em><br>n(Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{50}}{{1000}}">
<mfrac>
<mrow>
<mn>50</mn>
</mrow>
<mrow>
<mn>1000</mn>
</mrow>
</mfrac>
</math></span>dm<sup>3</sup> × 0.150 mol × dm<sup>-3</sup> =» 0.00750 / 7.50 × 10<sup>-3</sup> «mol»</p>
<p>0.0200 «mol» > 0.0150 «mol»<br><em><strong>OR</strong></em><br>2.00 × 10<sup>-2</sup>«mol» > 2 × 7.50 × 10<sup>-3</sup> «mol»<br><em><strong>OR</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span> × 2.00 × 10<sup>-2</sup> «mol» > 7.50 × 10<sup>-3</sup> «mol»</p>
<p><em>Accept answers based on volume of solutions required for complete reaction.</em><br><em>Award <strong>[2]</strong> for second marking point.</em><br><em>Do <strong>not</strong> award M2 unless factor of 2 (or half) is used.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>five points plotted correctly<br>best fit line drawn with ruler, going through the origin</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>22.5 × 10<sup>-3</sup> «s<sup>-1</sup>»</p>
<p>«Time = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{22.5 \times {{10}^{ - 3}}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>22.5</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =» 44.4 «s»</p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em><br><em>Accept value based on candidate’s graph.</em><br><em>Award M2 as ECF from M1.</em><br><em>Award <strong>[1 max]</strong> for methods involving taking</em> mean of appropriate pairs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\rm{t}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<mi mathvariant="normal">t</mi>
</mrow>
</mrow>
</mfrac>
</math></span><em> values.</em><br><em>Award <strong>[0]</strong> for taking mean of pairs of time values.</em><br><em>Award <strong>[2]</strong> for answers between 42.4 and 46.4 «s».</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)</p>
<p><img src="" alt></p>
<p>correctly labelled axes<br>peak of T<sub>2</sub> curve lower <em><strong>AND</strong></em> to the right of T<sub>1</sub> curve</p>
<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>
<p><em>Accept “kinetic E/KE/E<sub>K</sub>” but <strong>not</strong> just “Energy/E” on x-axis.</em></p>
<p> </p>
<p>(ii)</p>
<p>greater proportion of molecules have <em>E </em>≥ <em>E</em><sub>a</sub> or <em>E </em>> <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>greater area under curve to the right of the <em>E</em><sub>a</sub></p>
<p>greater frequency of collisions «between molecules»<br><em><strong>OR</strong></em><br>more collisions per unit time/second</p>
<p><img src="" alt></p>
<p><em>Accept more molecules have energy greater than E<sub>a</sub>.</em><br><em>Do <strong>not</strong> accept just “particles have greater kinetic energy”.</em><br><em>Accept “rate/chance/probability/likelihood/” instead of “frequency”.</em><br><em>Accept suitably shaded/annotated diagram.</em><br><em>Do <strong>not</strong> accept just “more collisions”.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>shorter reaction time so larger «%» error in timing/seeing when mark disappears</p>
<p><em>Accept cooling of reaction mixture during course of reaction.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Butanoic acid, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH, is a weak acid and ethylamine, CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>, is a weak base.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of each substance with water.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why butanoic acid is a liquid at room temperature while ethylamine is a gas at room temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the formula of the salt formed when butanoic acid reacts with ethylamine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Butanoic acid:</em><br>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COO<sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq) ✔</p>
<p> </p>
<p><em>Ethylamine:</em><br>CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+ </sup>(aq) + OH<sup>−</sup> (aq) ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>butanoic acid forms more/stronger hydrogen bonds ✔<br>butanoic acid forms stronger London/dispersion forces ✔<br>butanoic acid forms stronger dipole–dipole interaction/force ✔</p>
<p> </p>
<p><em>Accept “butanoic acid forms dimers”</em></p>
<p><em>Accept “butanoic acid has larger M<sub>r</sub>/hydrocarbon chain/number of electrons” for M2.</em></p>
<p><em>Accept “butanoic acid has larger «permanent» dipole/more polar” for M3.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>+ CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COO<sup>−</sup><br><strong><em>OR</em></strong><br>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COO<sup>−</sup> CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup><br><em><strong>OR</strong></em><br>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COO<sup>−</sup> H<sub>3</sub>N<sup>+</sup>CH<sub>2</sub>CH<sub>3</sub> ✔</p>
<p> </p>
<p><em>The charges are not necessary for the mark.</em></p>
<p> </p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium is a transition metal.</p>
</div>
<div class="specification">
<p>TiCl<sub>4</sub> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src=""></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{22}^{48}{\text{Ti}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>22</mn>
</mrow>
<mrow>
<mn>48</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ti</mtext>
</mrow>
</math></span> atom.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{22}^{48}{\text{Ti}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>22</mn>
</mrow>
<mrow>
<mn>48</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Ti</mtext>
</mrow>
</math></span><sup>2+</sup> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, TiCl<sub>4</sub>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong> </em>«a sea of» delocalized electrons</p>
<p> </p>
<p><em>Accept mobile electrons.</em></p>
<p><em>Do <strong>not</strong> accept “metal atoms/nuclei”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(46 \times 7.98) + (47 \times 7.32) + (48 \times 73.99) + (49 \times 5.46) + (50 \times 5.25)}}{{100}}">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>46</mn>
<mo>×</mo>
<mn>7.98</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mn>47</mn>
<mo>×</mo>
<mn>7.32</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mn>48</mn>
<mo>×</mo>
<mn>73.99</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mn>49</mn>
<mo>×</mo>
<mn>5.46</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mn>50</mn>
<mo>×</mo>
<mn>5.25</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
</math></span></p>
<p>= 47.93</p>
<p> </p>
<p><em>Answer must have two decimal places with a value from 47.90 to 48.00.</em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><em>Award [0] for 47.87 (data booklet value).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons:</em> 22 <em><strong>AND</strong> Neutrons:</em> 26 <em><strong>AND</strong> Electrons:</em> 22</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>2</sup></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>titanium atoms/ions distort the regular arrangement of atoms/ions<br><strong>OR</strong><br>titanium atoms/ions are a different size to aluminium «atoms/ions» </p>
<p>prevent layers sliding over each other</p>
<p> </p>
<p><em>Accept diagram showing different sizes of atoms/ions.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ionic<br><em><strong>OR</strong></em><br>«electrostatic» attraction between oppositely charged ions</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«simple» molecular structure<br><em><strong>OR</strong></em><br>weak«er» intermolecular bonds<br><em><strong>OR</strong></em><br>weak«er» bonds between molecules</p>
<p> </p>
<p><em>Accept specific examples of weak bonds such as London/dispersion and van der Waals.</em></p>
<p><em>Do <strong>not</strong> accept “covalent”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>TiCl<sub>4</sub>(l) + 2H<sub>2</sub>O(l) → TiO<sub>2</sub>(s) + 4HCl(aq)</p>
<p>correct products</p>
<p>correct balancing</p>
<p> </p>
<p><em>Accept ionic equation.</em></p>
<p><em>Award M2 if products are HCl and a compound of Ti and O.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCl causes breathing/respiratory problems<br><em><strong>OR</strong></em><br>HCl is an irritant<br><em><strong>OR</strong></em><br>HCl is toxic<br><em><strong>OR</strong></em><br>HCl has acidic vapour<br><em><strong>OR</strong></em><br>HCl is corrosive</p>
<p> </p>
<p><em>Accept “TiO<sub>2</sub> causes breathing problems/is an irritant”.</em></p>
<p><em>Accept “harmful” for both HCl and TiO<sub>2</sub>.</em></p>
<p><em>Accept “smoke is asphyxiant”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from iron (II) sulfide, FeS.</p>
</div>
<div class="specification">
<p>Iron (II) sulfide, FeS, is ionically bonded.</p>
</div>
<div class="specification">
<p>The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why metals, like iron, can conduct electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why sulfur is classified as a non-metal by giving <strong>two</strong> of its chemical properties.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in this type of solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the sulfide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of their electronic structures, why the ionic radius of the sulfide ion is greater than that of the oxide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in the oxidation state of sulfur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why this process might raise environmental concerns.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the addition of small amounts of carbon to iron makes the metal harder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>mobile/delocalized «sea of» electrons</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>forms acidic oxides «rather than basic oxides» ✔</p>
<p>forms covalent/bonds compounds «with other non-metals» ✔</p>
<p>forms anions «rather than cations» ✔</p>
<p>behaves as an oxidizing agent «rather than a reducing agent» ✔</p>
<p><em><br>Award <strong>[1 max]</strong> for 2 correct non-chemical properties such as non-conductor, high ionisation energy, high electronegativity, low electron affinity if no marks for chemical properties are awarded.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between oppositely charged ions/between Fe<sup>2+</sup> and S<sup>2−</sup> ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> ✔</p>
<p><em><br>Do <strong>not</strong> accept “[Ne] 3s<sup>2</sup> 3p<sup>6</sup>”.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»✔</p>
<p><em><br>Accept 2,8 (for O<sup>2–</sup>) and 2,8,8 (for S<sup>2–</sup>)</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>allows them to explain the properties of different compounds/substances<br><em><strong>OR</strong></em><br>enables them to generalise about substances<br><em><strong>OR</strong></em><br>enables them to make predictions ✔</p>
<p><em><br>Accept other valid answers.</em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4FeS(s) + 7O<sub>2</sub>(g) → 2Fe<sub>2</sub>O<sub>3</sub>(s) + 4SO<sub>2</sub>(g) ✔</p>
<p><em><br>Accept any correct ratio.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>+6<br><em><strong>OR</strong></em><br>−2 to +4 ✔</p>
<p><em>Accept “6/VI”.</em><br><em>Accept “−II, 4//IV”.</em><br>Do <strong>not</strong> accept 2− to 4+.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sulfur dioxide/SO<sub>2</sub> causes acid rain ✔</p>
<p><em>Accept sulfur dioxide/SO<sub>2</sub>/dust causes respiratory problems</em><br><em>Do <strong>not</strong> accept just “causes respiratory problems” or “causes acid rain”.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>disrupts the regular arrangement «of iron atoms/ions»<br><em><strong>OR</strong></em><br>carbon different size «to iron atoms/ions» ✔</p>
<p>prevents layers/atoms sliding over each other ✔</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Both vinegar (a dilute aqueous solution of ethanoic acid) and bleach are used as cleaning agents.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Bleach reacts with ammonia, also used as a cleaning agent, to produce the poisonous compound chloramine, NH<sub>2</sub>Cl.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why ethanoic acid is classified as a weak acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.</span></p>
<p><span style="background-color: #ffffff;">Cl2 (g) + 2NaOH (aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> NaOCl (aq) + NaCl (aq) + H<sub>2</sub>O (l)</span></p>
<p><span style="background-color: #ffffff;">Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a Lewis (electron dot) structure of chloramine.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the molecular geometry of chloramine and estimate its H–N–H bond angle. </span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Molecular geometry:</span></p>
<p><span style="background-color: #ffffff;">H–N–H bond angle:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">partial dissociation «in aqueous solution» <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ethanoic acid/vinegar reacts with NaOH <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">moves equilibrium to left/reactant side <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">releases Cl<sub>2</sub> (g)/chlorine gas<br><em><strong>OR</strong></em><br>Cl<sub>2</sub> (g)/chlorine <span style="text-decoration: underline;">gas</span> is toxic <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “ethanoic acid produces H<sup>+</sup> ions”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “ethanoic acid/vinegar reacts with NaOCl”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “2CH<sub>3</sub>COOH + NaOCl + NaCl → 2CH<sub>3</sub>COONa + Cl<sub>2</sub> + H<sub>2</sub>O” as it </span></em><em><span style="background-color: #ffffff;">does not refer to equilibrium.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept suitable molecular or ionic equations for M1 and M3.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p> </p>
<p><em><strong>Note:</strong> <span style="background-color: #ffffff;">Accept any combination of dots/crosses or lines to represent electron pairs.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Molecular geometry:</em><br>«trigonal» pyramidal <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>H–N–H bond angle:</em><br>107° <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept angles in the range of 100–109.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The definition of a weak acid was generally correct.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Explaining why it was dangerous to mix chlorine with vinegar was not well answered but most students gained at least one mark for stating that “chlorine gas will be produced”, but couldn’t link it to equilibrium ideas.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The Lewis structure of chloramine was correct for strong candidates, but many made the mistake of omitting electron pairs on N and Cl.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The molecular geometry and bond angles often did not correspond to each other with quite a few candidates stating trigonal planar and then 107 for the angle.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br>