File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 6/markSceme-SL-paper2html
File size: 2.06 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>The rate of the acid-catalysed iodination of propanone can be followed by measuring how the&nbsp;concentration of iodine changes with time.</p>
<p style="text-align: center;">I<sub>2</sub>(aq) + CH<sub>3</sub>COCH<sub>3</sub>(aq) → CH<sub>3</sub>COCH<sub>2</sub>I(aq) + H<sup>+</sup>(aq) + I<sup>−</sup>(aq)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the change of iodine concentration could be followed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student produced these results with [H<sup>+</sup>] = 0.15 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup>. Propanone and acid were in excess and iodine was the limiting reagent.</p>
<p>Determine the relative rate of reaction when [H<sup>+</sup>] = 0.15 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup>.</p>
<p><img src="images/Schermafbeelding_2017-09-22_om_15.59.41.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/01.a.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then carried out the experiment at other acid concentrations with all other conditions remaining unchanged.</p>
<p><img src=""></p>
<p>State and explain the relationship between the rate of reaction and the concentration of acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use a colorimeter/monitor the change in colour<br><em><strong>OR</strong></em><br>take samples <em><strong>AND</strong> </em>quench <em><strong>AND</strong> </em>titrate «with thiosulfate»</p>
<p> </p>
<p><em>Accept change in pH.</em><br><em>Accept change in conductivity.</em><br><em>Accept other suitable methods.</em><br><em>Method must imply “change”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-22_om_16.03.25.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/01.a.ii/M"></p>
<p>best fit line</p>
<p>relative rate of reaction = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - \Delta y}}{{\Delta x}} = \frac{{ - \left( {0.43 - 0.80} \right)}}{{50}}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mi mathvariant="normal">Δ</mi>
      <mi>y</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>x</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.43</mn>
          <mo>−</mo>
          <mn>0.80</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <mn>50</mn>
    </mrow>
  </mfrac>
</math></span> =» 0.0074/7.4 x 10<sup>−3</sup></p>
<p> </p>
<p><em>Best fit line required for M1.</em></p>
<p><em>M2 is independent of M1.<br></em></p>
<p><em>Accept range from 0.0070 to 0.0080.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Relationship:</em><br>rate of reaction is «directly» proportional to [H<sup>+</sup>]<br><em><strong>OR</strong></em><br>rate of reaction <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span> [H<sup>+</sup>] </p>
<p><em>Explanation:</em><br>more frequent collisions/more collisions per unit of time «at greater concentration»</p>
<p> </p>
<p><em>Accept "doubling the concentration doubles the rate".</em></p>
<p><em>Do <strong>not</strong> accept “rate increases as concentration increases”.</em></p>
<p><em>Do <strong>not</strong> accept collisions more likely.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate of sulfur at room temperature.</p>
<p style="text-align: center;">Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq) + 2HCl (aq) → S (s) + SO<sub>2&nbsp;</sub>(g) + 2NaCl (aq) + X</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the formula and state symbol of X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the experiment should be carried out in a fume hood or in a well-ventilated laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.</p>
<p><img src="" alt></p>
<p>10.0 cm<sup>3</sup> of 2.00 mol dm<sup>-3</sup> hydrochloric acid was added to a 50.0 cm<sup>3</sup> solution of sodium thiosulfate at temperature, T1. Students measured the time taken for the mark to be no longer visible to the naked eye. The experiment was repeated at different concentrations of sodium thiosulfate.</p>
<p><img src="" alt></p>
<p>Show that the hydrochloric acid added to the flask in experiment 1 is in excess.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\rm{t}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <mi mathvariant="normal">t</mi>
      </mrow>
    </mrow>
  </mfrac>
</math></span> against concentration of sodium thiosulfate on the axes provided.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student decided to carry out another experiment using 0.075 mol dm<sup>-3</sup> solution of sodium thiosulfate under the same conditions. Determine the time taken for the mark to be no longer visible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An additional experiment was carried out at a higher temperature, T<sub>2</sub>.</p>
<p>(i) On the same axes, sketch Maxwell–Boltzmann energy distribution curves at the two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2 </sub>&gt; T<sub>1</sub>.</p>
<p><img src="" alt></p>
<p>(ii) Explain why a higher temperature causes the rate of reaction to increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why the values of rates of reactions obtained at higher temperatures may be less accurate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O <em><strong>AND</strong></em> (l)<br><em>Do <strong>not</strong> accept H<sub>2</sub>O (aq).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>SO<sub>2</sub> (g) is an irritant/causes breathing problems<br><em><strong>OR<br></strong></em>SO<sub>2</sub> (g) is poisonous/toxic</p>
<p><em>Accept SO<sub>2</sub> (g) is acidic, but do not accept “causes acid rain”.<br>Accept SO<sub>2</sub> (g) is harmful.<br>Accept SO<sub>2</sub> (g) has a foul/pungent smell.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>n(HCl) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{10.0}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>10.0</mn>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span>dm<sup>3</sup> × 2.00 mol dm<sup>-3</sup> =» 0.0200 / 2.00 × 10<sup>-2</sup>«mol»<br><em><strong>AND</strong></em><br>n(Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{50}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>50</mn>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span>dm<sup>3</sup> × 0.150 mol × dm<sup>-3</sup> =» 0.00750 / 7.50 × 10<sup>-3</sup> «mol»</p>
<p>0.0200 «mol» &gt; 0.0150 «mol»<br><em><strong>OR</strong></em><br>2.00 × 10<sup>-2</sup>«mol» &gt; 2 × 7.50 × 10<sup>-3</sup> «mol»<br><em><strong>OR</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> × 2.00 × 10<sup>-2</sup> «mol» &gt; 7.50 × 10<sup>-3</sup> «mol»</p>
<p><em>Accept answers based on volume of solutions required for complete reaction.</em><br><em>Award <strong>[2]</strong> for second marking point.</em><br><em>Do <strong>not</strong> award M2 unless factor of 2 (or half) is used.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>five points plotted correctly<br>best fit line drawn with ruler, going through the origin</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>22.5 × 10<sup>-3</sup> «s<sup>-1</sup>»</p>
<p>«Time = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{22.5 \times {{10}^{ - 3}}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>22.5</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 44.4 «s»</p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em><br><em>Accept value based on candidate’s graph.</em><br><em>Award M2 as ECF from M1.</em><br><em>Award <strong>[1 max]</strong> for methods involving taking</em> mean of appropriate pairs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\rm{t}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <mi mathvariant="normal">t</mi>
      </mrow>
    </mrow>
  </mfrac>
</math></span><em> values.</em><br><em>Award <strong>[0]</strong> for taking mean of pairs of time values.</em><br><em>Award <strong>[2]</strong> for answers between 42.4 and 46.4 «s».</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)</p>
<p><img src="" alt></p>
<p>correctly labelled axes<br>peak of T<sub>2</sub> curve lower <em><strong>AND</strong></em> to the right of T<sub>1</sub> curve</p>
<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>
<p><em>Accept “kinetic E/KE/E<sub>K</sub>” but <strong>not</strong> just “Energy/E” on x-axis.</em></p>
<p> </p>
<p>(ii)</p>
<p>greater proportion of molecules have <em>E </em>≥ <em>E</em><sub>a</sub> or <em>E </em>&gt; <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>greater area under curve to the right of the <em>E</em><sub>a</sub></p>
<p>greater frequency of collisions «between molecules»<br><em><strong>OR</strong></em><br>more collisions per unit time/second</p>
<p><img src="" alt></p>
<p><em>Accept more molecules have energy greater than E<sub>a</sub>.</em><br><em>Do <strong>not</strong> accept just “particles have greater kinetic energy”.</em><br><em>Accept “rate/chance/probability/likelihood/” instead of “frequency”.</em><br><em>Accept suitably shaded/annotated diagram.</em><br><em>Do <strong>not</strong> accept just “more collisions”.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>shorter reaction time so larger «%» error in timing/seeing when mark disappears</p>
<p><em>Accept cooling of reaction mixture during course of reaction.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>

<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="430" height="342"></p>
<p>curve higher <em><strong>AND</strong> </em>to left of T<sub>1</sub> ✔</p>
<p>new/catalysed <em>E</em><sub>a</sub> marked <em><strong>AND</strong> </em>to the left of E<sub>a</sub> of curve T<sub>1</sub> ✔</p>
<p><em>Do <strong>not</strong> penalize curve missing a label, not passing exactly through the origin, or crossing x-axis after E<sub>a</sub>.</em><br><em>Do <strong>not</strong> award M1 if curve drawn shows significantly more/less molecules/greater/smaller area under curve than curve 1.</em><br><em>Accept E<sub>a</sub> drawn to T<sub>1</sub> instead of curve drawn as long as to left of marked E<sub>a</sub>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>methanoic acid/HCOOH/CHOOH<br><em><strong>OR</strong></em><br>methanal/HCHO ✔</p>
<p><em>Accept “carbon dioxide/CO<sub>2</sub>”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>4</sub>(g) + H<sub>2</sub>O(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH(l) + H<sub>2</sub>(g) ✔</p>
<p><em>Accept arrow instead of equilibrium sign.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of methane = « <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>16</mn><mo>.</mo><mn>05</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>&nbsp;= » 0.498 «mol» ✔</p>
<p>amount of hydrogen = amount of methane / 0.498 «mol» ✔</p>
<p>volume of hydrogen = «0.498 mol × 22.7 dm<sup>3 </sup>mol<sup>−1</sup> = » 11.3 «dm<sup>3</sup>» ✔</p>
<p><em><br>Award <strong>[3]</strong> for final correct answer.</em><br><em>Award <strong>[2 max]</strong> for 11.4 «dm<sup>3</sup> due to rounding of mass to 16/moles to 0.5. »</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Σbonds broken = 4 × 414 «kJ» + 2 × 463 «kJ» / 2582 «kJ» ✔</p>
<p>Σbonds formed = 1077 «kJ» + 3 × 436 «kJ» / 2385 «kJ» ✔</p>
<p>Δ<em>H</em> «= Σbonds broken − Σbonds formed =( 2582 kJ − 2385 kJ)» = «+»197«kJ» ✔</p>
<p><em><br>Award <strong>[3]</strong> for final correct answer.</em><br><em>Award <strong>[2 Max]</strong> for final answer of −197 «kJ»</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="italic">c</mi></msub><mo>=</mo><mfrac><mrow><mfenced open="[" close="]"><mi>CO</mi></mfenced><msup><mfenced open="[" close="]"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow><mrow><mfenced open="[" close="]"><msub><mi>CH</mi><mn>4</mn></msub></mfenced><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></mfenced></mrow></mfrac></math>&nbsp;✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K<sub>c</sub></em> increases <em><strong>AND</strong> </em>«forward» reaction endothermic ✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>
<p><span style="background-color: #ffffff;">The x-axis and y-axis are shown with arbitrary units.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="704" height="342"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>
<p><span style="background-color: #ffffff;">Sketch, on the axes in question 2, the graph that you would expect.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment gave an error in the rate because the pressure gauge was inaccurate. Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="400" height="259"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">increase in the amount/number of moles/molecules «of gas»  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">from 2 to 3/by 50 %  <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«rate of reaction decreases»<br>concentration/number of molecules in a given volume decreases<br><em><strong>OR</strong></em><br>more space between molecules  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">collision rate/frequency decreases<br><em><strong>OR</strong></em><br>fewer collisions per second/unit time  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Do <strong>not</strong> accept just “larger space/volume” for M1.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="538" height="253"></p>
<p><span style="background-color: #ffffff;">smaller initial gradient  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">initial pressure is lower <em><strong>AND</strong> </em>final pressure of gas lower «by similar factor»  <strong>[✔]</strong></span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>it is a systematic error/not a random error<br><em><strong>OR</strong></em><br>no <em><strong>AND</strong></em> «a similar magnitude» error would occur every time  <strong>[✔]</strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="426" height="278"></p>
<p><span style="background-color: #ffffff;">catalysed and uncatalysed Ea marked on graph AND with the catalysed being at lower energy  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«for catalysed reaction» greater proportion of/more molecules have E ≥ E<sub>a</sub> / E &gt; E<sub>a</sub><br><em><strong>OR</strong></em><br>«for catalysed reaction» greater area under curve to the right of the E<sub>a</sub>  <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “more molecules have the activation energy”.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>About a quarter of the candidates gave the full answer. Some only gained the first marking point (M1) by recognizing the increase in the number of moles of gas. Some candidates wrote vague answers that did not receive credit such as “pressure increases as more gaseous products form” without explicitly recognizing that the reactants have fewer moles of gas than the products. Some candidates mistook it for a system at equilibrium when the pressure stops changing (although a straight arrow is shown in the equation). A teacher commented that the wording of the question was rather vague “not clear if question is asking about stoichiometry (<em>i.e.</em> how 200 &amp; 300 connect to coefficients) or rates (<em>i.e.</em> explain graph shape)”. We did not see a discussion of the slope of the graph with time and most candidates understood the question as it was intended.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than half of the candidates obtained the mark allocated for “less frequent collisions” at lower pressure, but only strong candidates explained that this was due to the lower concentration or increased spacing between molecules. Some candidates talked about a decrease in kinetic energy and they did not show a good understanding of collision theory. Some candidates lost M1 for stating “fewer collisions” without reference to time or probability.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question. Candidates usually obtained only one of the two marks allocated for the answer. Most of them scored the mark for a lower initial slope at low temperature, while others scored a mark for sketching their curve below the original curve as all pressures (initial and final) will be lower at the lower temperature. A teacher commented that the wording was unclear “sketch on the axes in question 2”, and it would have been better to label the graph instead.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered by nearly 70 % of the candidates reflecting a good understanding of the impact of systematic errors. Some students did not gain the mark because of an incomplete answer. The question raised much debate among teachers. They worried if the error was clearly a systematic one. However, a high proportion of candidates had very clear and definite answers. In Spanish and French, the wording was a bit ambiguous which caused the markscheme in these languages to be more opened.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question discriminated very well between high-scoring and low-scoring candidates. About half of the candidates annotated the Maxwell-Boltzmann distribution to show the effect of the catalyst. Some left it blank and some sketched a new distribution that would be obtained at a higher temperature instead. The majority of candidates knew that the catalyst provided an alternative route with lower <em>E</em><sub>a</sub> but only stronger candidates related it to the annotation of the graph and used the accurate language needed to score M2. A common mistake was stating that molecules have higher kinetic energy when a catalyst is added.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium reacts with sulfuric acid:</p>
<p style="text-align: center;">Mg(s) + H<sub>2</sub>SO<sub>4</sub>(aq) → MgSO<sub>4</sub>(aq) + H<sub>2</sub>(g)</p>
<p>The graph shows the results of an experiment using excess magnesium ribbon and dilute&nbsp;sulfuric acid.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-25_om_09.45.43.png" alt="M17/4/CHEMI/SP2/ENG/TZ2/05.a.i"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the rate of the reaction decreases with time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the same graph, the expected results if the experiment were repeated using powdered magnesium, keeping its mass and all other variables unchanged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrogen dioxide and carbon monoxide react according to the following equation:</p>
<p>NO<sub>2</sub>(g) + CO(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> NO(g) + CO<sub>2</sub>(g)               Δ<em>H</em> = –226 kJ</p>
<p><img src=""></p>
<p>Calculate the activation energy for the reverse reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of NO<sub>2</sub> in the atmosphere to produce acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>concentration of acid decreases<br><em><strong>OR</strong></em><br>surface area of magnesium decreases</p>
<p> </p>
<p><em>Accept “less frequency/chance/rate/probability/likelihood of collisions”.</em></p>
<p><em>Do <strong>not</strong> accept just “less acid” or “less magnesium”.</em></p>
<p><em>Do <strong>not</strong> accept “concentrations of reagents decrease”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curve starting from origin with steeper gradient <em><strong>AND</strong> </em>reaching same maximum volume</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>E</em><sub>a(rev)</sub> = 226 + 132 =» 358 «kJ»</p>
<p><em>Do not accept –358.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2NO<sub>2</sub>(g) + H<sub>2</sub>O(l) → HNO<sub>3</sub>(aq) + HNO<sub>2</sub>(aq)<br><em><strong>OR</strong></em><br>2NO<sub>2</sub>(g) + 2H<sub>2</sub>O(l) + O<sub>2</sub>(g) → 4HNO<sub>3</sub>(aq)</p>
<p> </p>
<p><em>Accept ionised forms of the acids.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Graphing is an important tool in the study of rates of chemical reactions.</p>
</div>

<div class="specification">
<p>Excess hydrochloric acid is added to lumps of calcium carbonate. The graph shows&nbsp;the volume of carbon dioxide gas produced over time.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a Maxwell–Boltzmann distribution curve for a chemical reaction showing the activation energies with and without a catalyst.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a curve on the graph to show the volume of gas produced over time if the same mass of crushed calcium carbonate is used instead of lumps. All other conditions remain constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect on the rate of reaction if ethanoic acid of the same concentration is used in place of hydrochloric acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why pH is more widely used than [H<sup>+</sup>] for measuring relative acidity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why H<sub>3</sub>PO<sub>4</sub>/HPO<sub>4</sub><sup>2−</sup> is not a conjugate acid-base pair.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_08.59.39.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/02.a/M"></p>
<p>both axes correctly labelled</p>
<p>correct shape of curve starting at origin</p>
<p><em>E</em><sub>a(catalyst)</sub> &lt; <em>E</em><sub>a(without catalyst)</sub> on x-axis</p>
<p> </p>
<p><em>M1:</em></p>
<p><em>Accept “speed” for x-axis label.</em></p>
<p><em>Accept “number of particles”, “N”, </em><em>“frequency” or “probability </em><strong><em>«</em></strong><em>density</em><strong><em>»</em></strong><em>” for </em><em>y-axis label.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “potential energy” for </em><em>x-axis label.</em></p>
<p> </p>
<p><em>M2:</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept a curve that touches the </em><em>x-axis at high energy.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>award M2 if two curves are </em><em>drawn.</em></p>
<p> </p>
<p><em>M3:</em></p>
<p><em>Ignore any shading under the curve.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_09.03.30.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/02.b.i/M"></p>
<p>curve starting from origin with steeper gradient <strong><em>AND </em></strong>reaching same maximum volume</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate decreases</p>
<p><strong><em>OR</em></strong></p>
<p>slower reaction</p>
<p> </p>
<p><strong>«</strong>ethanoic acid<strong>» </strong>partially dissociated/ionized <strong>«</strong>in solution/water<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>lower [H<sup>+</sup>]</p>
<p> </p>
<p><em>Accept “weak acid” or “higher pH</em><em>”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>pH<strong>» </strong>converts <strong>«</strong>wide range of [H<sup>+</sup>]<strong>» </strong>into simple <strong>«</strong>log<strong>» </strong>scale/numbers</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>pH<strong>» </strong>avoids need for exponential/scientific notation</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>pH<strong>» </strong>converts small numbers into values <strong>«</strong>typically<strong>» </strong>between 0/1 and 14</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>pH<strong>» </strong>allows easy comparison of values of [H<sup>+</sup>]</p>
<p> </p>
<p><em>Accept “uses values between 0/1 and </em><em>14”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “easier to use”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “easier for calculations”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>species<strong>» </strong>do not differ by a <strong>«</strong>single<strong>» </strong>proton/H<sup>+</sup></p>
<p><strong><em>OR</em></strong></p>
<p>conjugate base of H<sub>3</sub>PO<sub>4</sub> is H<sub>2</sub>PO<sub>4</sub><sup>–</sup> <strong>«</strong>not HPO<sub>4</sub><sup>2–</sup><strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>conjugate acid of HPO<sub>4</sub><sup>2–</sup> is H<sub>2</sub>PO<sub>4</sub><sup>–</sup> <strong>«</strong>not H<sub>3</sub>PO<sub>4</sub><strong>»</strong></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “hydrogen/H” for </em><em>“H</em><sup><em>+</em></sup><em>/proton”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>1-chloropentane reacts with aqueous sodium hydroxide.</p>
</div>

<div class="specification">
<p>The reaction was repeated at a lower temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the role of the hydroxide ion in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with a reason, why 1-iodopentane reacts faster than 1-chloropentane under the same conditions. Use section 11 of the data booklet for consistency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch labelled Maxwell–Boltzmann energy distribution curves at the original temperature (T<sub>1</sub>) and the new lower temperature (T<sub>2</sub>).</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="449" height="297"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of lowering the temperature on the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«nucleophilic» substitution/S<sub>N</sub>2 ✔</p>
<p><em><br>Do not accept if “electrophilic” or “free radical” substitution is stated.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«acts as a» nucleophile/Lewis base<br><em><strong>OR</strong></em><br>donates/provides lone pair «of electrons»<br><em><strong>OR</strong></em><br>attacks the «partially» positive carbon ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond enthalpy C–I lower than C–Cl<br><em><strong>OR</strong></em><br>C–I bond weaker than C–Cl ✔</p>
<p><br>«weaker bond» broken more easily/with less energy<br><em><strong>OR</strong></em><br>lower Ea «for weaker bonds» ✔</p>
<p><em><br>Accept the bond enthalpy values for C–I and C–Cl for <strong>M1</strong>.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="437" height="284"></p>
<p>peak at T<sub>1</sub> to right of <em><strong>AND</strong> </em>lower than T<sub>2</sub> ✔</p>
<p>lines begin at origin <em><strong>AND</strong> </em>T<sub>1</sub> must finish above T<sub>2</sub> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«rate is» lower <em><strong>AND</strong> </em>«average» kinetic energy of molecules is lower<br><em><strong>OR</strong></em><br>«rate is» lower <em><strong>AND</strong> </em>less frequent collisions<br><em><strong>OR</strong></em><br>«rate is» lower <em><strong>AND</strong> </em>fewer collisions per unit time ✔</p>
<p>«rate is» lower <em><strong>AND</strong> </em>fewer/smaller fraction of molecules/collisions have the E ≥ <em>E</em><sub>a</sub> ✔</p>
<p><em><br></em><em>Lower «rate» needs to be mentioned once only.</em></p>
<p><em>Do <strong>not</strong> accept “fewer collisions” without reference to time/frequency/probability for <strong>M1</strong>.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbonate reacts with hydrochloric acid.</p>
<p style="text-align: center;">CaCO<sub>3</sub>(s) + 2HCl(aq) → CaCl<sub>2</sub>(aq) + H<sub>2</sub>O(l) + CO<sub>2</sub>(g)</p>
</div>

<div class="specification">
<p>The results of a series of experiments in which the concentration of HCl was varied are&nbsp;shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-09_om_13.37.39.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/04.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>ways in which the progress of the reaction can be monitored. No practical details are required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why point D is so far out of line assuming human error is not the cause.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>loss of mass <strong>«</strong>of reaction mixture/CO<sub>2</sub><strong>»</strong></p>
<p><strong>«</strong>increase in<strong>» </strong>volume of gas produced</p>
<p>change of conductivity</p>
<p>change of pH</p>
<p>change in temperature</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “disappearance of </em><em>calcium carbonate”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “gas bubbles”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “colour change” or </em><em>“indicator”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reaction is fast at high concentration <strong><em>AND </em></strong>may be difficult to measure accurately</p>
<p><strong><em>OR</em></strong></p>
<p>so many bubbles of CO<sub>2</sub> produced that inhibit contact of HCl(aq) with CaCO<sub>3</sub>(s)</p>
<p><strong><em>OR</em></strong></p>
<p>insufficient change in conductivity/pH at high concentrations</p>
<p><strong><em>OR</em></strong></p>
<p>calcium carbonate has been used up/is limiting reagent/there is not enough calcium carbonate <strong>«</strong>to react with the high concentration of HCl<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>HCl is in excess</p>
<p><strong><em>OR</em></strong></p>
<p>so many bubbles of CO<sub>2</sub> produced that inhibit contact of HCl(aq) with CaCO<sub>3</sub>(s)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>directly<strong>»</strong> proportional</p>
<p> </p>
<p><em>Accept “first order” or “linear”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “rate increases as </em><em>concentration increases” or “positive </em><em>correlation”</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student titrated an ethanoic acid solution, CH<sub>3</sub>COOH (aq), against 50.0 cm<sup>3</sup> of&nbsp;0.995 mol dm<sup>–3</sup> sodium hydroxide, NaOH (aq), to determine its concentration.</p>
<p>The temperature of the reaction mixture was measured after each acid addition and plotted&nbsp;against the volume of acid.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Curves <strong>X</strong> and <strong>Y</strong> were obtained when a metal carbonate reacted with the same volume&nbsp;of ethanoic acid under two different conditions.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph, estimate the initial temperature of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum temperature reached in the experiment by analysing the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of ethanoic acid, CH<sub>3</sub>COOH, in mol dm<sup>–3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the heat change, <em>q</em>, in kJ, for the neutralization reaction between ethanoic acid and sodium hydroxide.</p>
<p>Assume the specific heat capacities of the solutions and their densities are those of water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, Δ<em>H</em>, in kJ mol<sup>–1</sup>, for the reaction between ethanoic acid and sodium hydroxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the shape of curve <strong>X</strong> in terms of the collision theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> possible reason for the differences between curves <strong>X</strong> and <strong>Y</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>21.4 °C</p>
<p><em>Accept values in the range of 21.2 to 21.6 °C.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>29.0 «°C»</p>
<p><em>Accept range 28.8 to 29.2 °C.</em></p>
<p><strong><em> </em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>«volume CH<sub>3</sub>COOH =» 26.0 «cm<sup>3</sup>»</p>
<p>«[CH<sub>3</sub>COOH] = 0.995 mol dm<sup>–3</sup> \( \times \frac{{50.0\,{\text{cm<sup>3</sup>}}}}{{26.0\,{\text{cm<sup>3</sup>}}}} = \)» 1.91 «mol dm<sup>−3</sup>»</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>«<em>n</em>(NaOH) =0.995 mol dm<sup>–3</sup> x 0.0500 dm<sup>3</sup> =» 0.04975 «mol»</p>
<p>«[CH<sub>3</sub>COOH] = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.04975}}{{0.0260}}">
  <mfrac>
    <mrow>
      <mn>0.04975</mn>
    </mrow>
    <mrow>
      <mn>0.0260</mn>
    </mrow>
  </mfrac>
</math></span> dm<sup>3</sup> =» 1.91 «mol dm<sup>–3</sup>»</p>
<p><em>Accept values of volume in range 25.5 to 26.5 cm<sup>3</sup>.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«total volume = 50.0 + 26.0 =» 76.0 cm<sup>3</sup> <em><strong>AND</strong></em> «temperature change 29.0 – 21.4 =» 7.6 «°C»</p>
<p>«<em>q</em> = 0.0760 kg x 4.18 kJ kg<sup>–1</sup> K<sup>–1</sup> x 7.6 K =» 2.4 «kJ»</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em>(NaOH) = 0.995 mol dm<sup>–3</sup> x 0.0500 dm<sup>3</sup> =» 0.04975 «mol»</p>
<p><em><strong>OR</strong></em></p>
<p>«<em>n</em>(CH<sub>3</sub>COOH) = 1.91 mol dm<sup>–3</sup> x 0.0260 dm<sup>3</sup> =» 0.04966 «mol»</p>
<p>«Δ<em>H</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{2.4\,{\text{kJ}}}}{{0.04975\,{\text{mol}}}} = ">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>2.4</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.04975</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» –48 / –49 «kJ mol<sup>–1</sup>»</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Negative sign is required for M2.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«initially steep because» greatest concentration/number of particles at start</p>
<p><em><strong>OR</strong></em></p>
<p>«slope decreases because» concentration/number of particles decreases</p>
<p>volume produced per unit of time depends on frequency of collisions</p>
<p><em><strong>OR</strong></em></p>
<p>rate depends on frequency of collisions</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass/amount/concentration of metal carbonate more in <strong>X</strong></p>
<p><em><strong>OR</strong></em></p>
<p>concentration/amount of CH<sub>3</sub>COOH more in <strong>X</strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>When dinitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:</p>
<p style="text-align: center;">N<sub>2</sub>O<sub>5 </sub>(g) → 2NO<sub>2 </sub>(g) +&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>O<sub>2 </sub>(g)</p>
</div>

<div class="specification">
<p>Data for the decomposition at constant temperature is given.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the extent of decomposition could be measured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the missing point on the graph and draw the best-fit line.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the relationship between the concentration of N<sub>2</sub>O<sub>5</sub> and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why increasing the concentration of N<sub>2</sub>O<sub>5</sub> increases the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use colorimeter<br><em><strong>OR</strong></em><br>change in colour<br><em><strong>OR</strong></em><br>change in volume<br><em><strong>OR</strong></em><br>change in pressure ✔</p>
<p><em>Accept suitable instruments, e.g. pressure probe/oxygen sensor.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>point correct ✔</p>
<p>straight line passing close to all points <em><strong>AND</strong> </em>through origin ✔</p>
<p><em><br>Accept free hand drawn line as long as attempt to be linear and meets criteria for M2.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>« rate of reaction is directly» proportional to/∝[N<sub>2</sub>O<sub>5</sub>]<br><em><strong>OR</strong></em><br>doubling concentration doubles rate ✔</p>
<p><em><br>Do <strong>not</strong> accept “rate increases as concentration increases”/ positive correlation</em></p>
<p><em>Accept linear</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>greater frequency of collisions «as concentration increases»<br><em><strong>OR</strong></em><br>more collisions per unit time «as concentration increases» ✔</p>
<p><em><br>Accept “rate/chance/probability/likelihood” instead of “frequency”.</em></p>
<p><em>Do <strong>not</strong> accept just “more collisions”.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>Label the diagram with the species in the equation.</p>
<p><span class="fontstyle0"><img src=""></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative pathway/mechanism <em><strong>AND</strong></em> lower <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> ✔</p>
<p><em>Accept description of how catalyst lowers <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>more/greater proportion of molecules with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>≥</mo><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> ✔</p>
<p>greater frequency/probability/chance of collisions «between the molecules»<br><em><strong>OR</strong></em><br>more collision per unit of time/second ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonding/bonds «and dipole–dipole and London/dispersion forces are present in» propan-2-ol ✔</p>
<p>dipole–dipole «and London/dispersion are present in» propanone ✔</p>
<p>propan-2-ol less volatile <em><strong>AND</strong></em> hydrogen bonding/bonds stronger «than dipole–dipole »<br><em><strong>OR</strong></em><br>propan-2-ol less volatile <em><strong>AND</strong></em> «sum of all» intermolecular forces stronger ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>Bi</mi><mo>/</mo><mi>Cu</mi><mo>/</mo><mi>Ag</mi><mo>/</mo><mi>Pd</mi><mo>/</mo><mi>Hg</mi><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Au</mi><mo> </mo></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>b</mi></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi></math>.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong></em> «a sea of» delocalized electrons ✔</p>
<p><em><br>Accept “mobile/free electrons”.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>malleability/hardness<br><em><strong>OR</strong></em><br>«tensile» strength/ductility<br><em><strong>OR</strong></em><br>density<br><em><strong>OR</strong></em><br>thermal/electrical conductivity<br><em><strong>OR</strong></em><br>melting point<br><em><strong>OR</strong></em><br>thermal expansion ✔</p>
<p><em><br>Do not accept corrosion/reactivity or any chemical property.</em></p>
<p><em>Accept other specific physical properties.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A straight-forward question, however, half of the candidates only mentioned the lower activation&nbsp;energy and did not mention that this is through an alternative mechanism, so did not score the mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates gained the mark about the increased frequency of collision. Fewer candidates&nbsp;also clarified that a larger proportion of molecules have the activation energy.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates had the correct structure in their answers identifying the type of intermolecular forces&nbsp;in each compound and then comparing the strength of the two and reaching a conclusion. Some&nbsp;candidates did not know what was meant by volatile. Some candidates stated London dispersion forces&nbsp;in propanone instead of dipole-dipole.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates obtained the mark. Some candidates labelled the electrodes as ions indicating&nbsp;they do not understand the structure of a voltaic cell.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>70% of the candidates answered correctly. The common mistake was to select a more reactive metal&nbsp;instead.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The mean mark on the question was 1.0 out of 2 marks. Mistakes included not mentioning the 'electrostatic attraction' and talking about 'nuclei attracting the delocalised electrons'. The weakest&nbsp;candidates discussed aspects of ionic and/or covalent bonding.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% obtained the mark. Many candidates wrote more than one property, which should be&nbsp;discouraged. Incorrect answers included chemical properties such as reactivity.</p>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>3.26 g of iron powder are added to 80.0 cm<sup>3</sup> of 0.200 mol dm<sup>−3</sup> copper(II) sulfate solution. The following reaction occurs:</p>
<p style="text-align: center;">Fe (s) + CuSO<sub>4</sub> (aq) → FeSO<sub>4</sub> (aq) + Cu (s)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the limiting reactant showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of copper obtained experimentally was 0.872 g. Calculate the percentage yield of copper.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5 °C.</p>
<p>Calculate the enthalpy change, Δ<em>H</em>, of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State another assumption you made in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The only significant uncertainty is in the temperature measurement.</p>
<p>Determine the absolute uncertainty in the calculated value of Δ<em>H</em> if the uncertainty in the temperature rise was ±0.2 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the concentration of iron(II) sulfate, FeSO<sub>4</sub>, against time as the reaction proceeds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be determined from the graph in part (c)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>n<sub>CuSO4</sub> <strong>«</strong>= 0.0800 dm<sup>3</sup> × 0.200 mol dm<sup>–3</sup><strong>»</strong> = 0.0160 mol <em><strong>AND</strong></em></p>
<p>n<sub>Fe</sub> <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.26\,{\text{g}}}}{{55.85\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>3.26</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>55.85</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> = 0.0584 mol ✔</p>
<p>CuSO<sub>4</sub> is the limiting reactant ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> award M2 if mole calculation is not shown.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em><br><strong>«</strong>0.0160 mol × 63.55 g mol<sup>–1</sup> =<strong>»</strong> 1.02 <strong>«</strong>g<strong>»  ✔</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872\,{\text{g}}}}{{1.02\,{\text{g}}}} \times 100 = ">
  <mfrac>
    <mrow>
      <mn>0.872</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.02</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span><strong>» </strong>85.5<strong> «</strong>%<strong>»  ✔</strong></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872\,{\text{g}}}}{{63.55\,{\text{g}}\,{\text{mo}}{{\text{l}}^{--1}}}} = ">
  <mfrac>
    <mrow>
      <mn>0.872</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>63.55</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 0.0137 <strong>«</strong>mol<strong>»  ✔</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0137\,{\text{mol}}}}{{0.0160\,{\text{mol}}}} \times 100 = ">
  <mfrac>
    <mrow>
      <mn>0.0137</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.0160</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span><strong>»</strong> 85.6 <strong>«</strong>%<strong>»  ✔</strong></p>
<p> </p>
<p><em>Accept answers in the range 85–86 %.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>q = <strong>«</strong>80.0 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 7.5 K =<strong>»</strong> 2.5 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong>/2.5 <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p><strong>«</strong>per mol of CuSO<sub>4</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 2.5\,{\text{kJ}}}}{{0.0160\,{\text{mol}}}} =  - 1.6 \times {10^2}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>2.5</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.0160</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.6</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> kJ mol<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>for the reaction<strong>»</strong> Δ<em>H</em> = –1.6 × 10<sup>2</sup> <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>q = <strong>«</strong>80.0 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 7.5 K =<strong>»</strong> 2.5 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong>/2.5 <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p><strong>«</strong>n<sub>Cu</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872}}{{63.55}}">
  <mfrac>
    <mrow>
      <mn>0.872</mn>
    </mrow>
    <mrow>
      <mn>63.55</mn>
    </mrow>
  </mfrac>
</math></span> = 0.0137 mol<strong>»</strong></p>
<p><strong>«</strong>per mol of CuSO<sub>4</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 2.5\,{\text{kJ}}}}{{0.0137\,{\text{mol}}}} =  - 1.8 \times {10^2}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>2.5</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.0137</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.8</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> kJ mol<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>for the reaction<strong>»</strong> Δ<em>H</em> = –1.8 × 10<sup>2</sup> <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p> </p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>density <strong>«</strong>of solution<strong>»</strong> is 1.00 g cm<sup>−3</sup></p>
<p><em><strong>OR</strong></em></p>
<p>specific heat capacity <strong>«</strong>of solution<strong>»</strong> is 4.18 J g<sup>−1</sup> K<sup>−1</sup>/that of <strong>«</strong>pure<strong>»</strong> water</p>
<p><em><strong>OR</strong></em></p>
<p>reaction goes to completion</p>
<p><em><strong>OR</strong></em></p>
<p>iron/CuSO<sub>4</sub> does not react with other substances ✔</p>
<p> </p>
<p><em>The mark for “reaction goes to completion” can only be awarded if 0.0160 mol was used in part (b)(i).</em></p>
<p><em>Do <strong>not</strong> accept “heat loss”.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2\,^\circ {\text{C}} \times \frac{{100}}{{7.5\,^\circ {\text{C}}}} = ">
  <mn>0.2</mn>
  <msup>
    <mspace width="thinmathspace"></mspace>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>7.5</mn>
      <msup>
        <mspace width="thinmathspace"></mspace>
        <mo>∘</mo>
      </msup>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 3 %/0.03 ✔</p>
<p><strong>«</strong>0.03 × 160 kJ<strong>»</strong> = <strong>«</strong>±<strong>»</strong> 5 <strong>«</strong>kJ<strong>» </strong>✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2\,^\circ {\text{C}} \times \frac{{100}}{{7.5\,^\circ {\text{C}}}} = ">
  <mn>0.2</mn>
  <msup>
    <mspace width="thinmathspace"></mspace>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>7.5</mn>
      <msup>
        <mspace width="thinmathspace"></mspace>
        <mo>∘</mo>
      </msup>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 3 %/0.03 ✔</p>
<p><strong>«</strong>0.03 × 180 kJ<strong>»</strong> = <strong>«</strong>±<strong>»</strong> 5 <strong>«</strong>kJ<strong>» </strong>✔</p>
<p> </p>
<p><em>Accept values in the range 4.1–5.5 «kJ».</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p> </p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p> <img src=""></p>
<p>initial concentration is zero <em><strong>AND</strong> </em>concentration increases with time ✔</p>
<p>decreasing gradient as reaction proceeds ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>draw a<strong>»</strong> tangent to the curve at time = 0 ✔</p>
<p><strong>«</strong>rate equals<strong>»</strong> gradient/slope <strong>«</strong>of the tangent<strong>»</strong> ✔</p>
<p> </p>
<p><em>Accept suitable diagram.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>piece has smaller surface area ✔</p>
<p> </p>
<p>lower frequency of collisions</p>
<p><em><strong>OR</strong></em></p>
<p>fewer collisions per second/unit time ✔</p>
<p> </p>
<p><em>Accept “chance/probability” instead of “frequency”.</em></p>
<p><em>Do <strong>not</strong> accept just “fewer collisions”.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a reactive metal often found in alloys.</p>
</div>

<div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>

<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&nbsp;+ HO<sup>&ndash;</sup> &rarr; CH<sub>3</sub>OH + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>&ndash;</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium can be produced by the electrolysis of molten magnesium chloride.</p>
<p>Write the half-equation for the formation of magnesium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound A, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest force between the molecules of Compound B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Mg<sup>2+</sup> + 2 e<sup>-</sup> → Mg ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> penalize missing charge on electron.</em></p>
<p><em>Accept equation with equilibrium arrows.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1</strong></em></p>
<p>put Mg in Zn<sup>2+</sup>(aq) ✔</p>
<p>Zn/«black» layer forms «on surface of Mg» ✔</p>
<p><em><br>Award <strong>[1 max]</strong> for “no reaction when Zn placed in Mg<sup>2+</sup>(aq)”.</em></p>
<p> </p>
<p><em><strong>Alternative 2</strong></em></p>
<p>place both metals in acid ✔</p>
<p>bubbles evolve more rapidly from Mg<br><em><strong>OR</strong></em><br>Mg dissolves faster ✔</p>
<p> </p>
<p><em><strong>Alternative 3</strong></em></p>
<p>construct a cell with Mg and Zn electrodes ✔</p>
<p>bulb lights up<br><em><strong>OR</strong></em><br>shows (+) voltage<br><em><strong>OR</strong></em><br>size/mass of Mg(s) decreases «over time»<br><em><strong>OR</strong></em><br>size/mass of Zn increases «over time»</p>
<p><em><br></em><em>Accept “electrons flow from Mg to Zn”. </em></p>
<p><em>Accept Mg is negative electrode/anode </em><br><em><strong>OR</strong> </em><br><em>Zn is positive electrode/cathode</em></p>
<p><em><br>Accept other correct methods.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>propanone ✔</p>
<p><em><br>Accept 2-propanone and propan-2-one.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonds ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do <strong>not</strong> penalize missing brackets or n.</em></p>
<p><em>Do <strong>not</strong> award mark if continuation bonds are not shown.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change «in colour/appearance/solution» ✔</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«nucleophilic» substitution<br><em><strong>OR</strong></em><br>SN2 ✔</p>
<p><em><br>Accept “hydrolysis”.</em></p>
<p><em>Accept SN1</em></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy/E ≥ activation energy/E<sub>a</sub> ✔</p>
<p>correct orientation «of reacting particles»<br><em><strong>OR</strong></em><br>correct geometry «of reacting particles» ✔</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases/less polar <em><strong>AND</strong> </em>electronegativity «of the halogen» decreases ✔</p>
<p> </p>
<p><em>Accept “decreases” <strong>AND</strong> a correct comparison of the electronegativity of two halogens.</em></p>
<p><em>Accept “decreases” <strong>AND</strong> “attraction for valence electrons decreases”.</em></p>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Unfortunately, only 40% of the students could write this quite straightforward half equation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates gained some credit by suggesting voltaic cell or a displacement reaction, but most could not gain the second mark and the reason was often a failure to be able to differentiate between "what occurs" and "what is observed".</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even though superfluous numbers (2-propanone, propan-2-one) were overlooked, only about half of the students could correctly name this simple molecule.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Probably just over half the students correctly identified hydrogen bonding, with dipole-dipole being the most common wrong answer, though a significant number identified an intramolecular bond.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few candidates could correctly eliminate water to deduce the identity of the required reactant.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Correct answers to this were very scarce and even when candidates had an incorrect alkene for the previous part, they were unable to score an ECF mark, by deducing the formula of the polymer it would produce.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some students deduced that, as it was a tertiary alcohol, there would be no reaction, but almost all were lucky that this was accepted as well as the correct <em>observation</em> - "it would remain orange".</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About a quarter of the students identified this as a substitution reaction, though quite a number then lost the mark by incorrectly stating it was either "free radical" or "electrophilic". A very common wrong answer was "displacement" or "single displacement" and this makes one wonder whether this terminology is being taught instead of substitution</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done with the vast majority of students correctly citing "correct orientation" and many only failed to gain the second mark through failing to equate the energy required to the activation energy.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question that was not well answered with probably only a quarter of candidates stating that the polarity would decrease because of decreasing electronegativity down the group.</p>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>

<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>

<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="205" height="119"></p>
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The potential energy profile for a reaction is shown. Sketch a dotted line labelled “Catalysed” to indicate the effect of a catalyst.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="454" height="317"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a catalyst has such an effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2</sub> (aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in e(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to e(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>CaCO3</sub> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>555</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>11</mn><mo>.</mo><mn>09</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 5.55 «mol» ✓</p>
<p>«<em>V</em> = 5.55 mol × 22.7 dm<sup>3</sup> mol<sup>−1</sup> =» 126 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm<sup>3</sup>) or 101.3 kPa (125 dm<sup>3</sup>).</em></p>
<p><em>Do not penalize use of 22.4 dm<sup>3</sup> mol<sup>–1</sup> to obtain the volume (124 dm<sup>3</sup>).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ΔH</em> =» (−635 «kJ» – 393.5 «kJ») – (−1207 «kJ») ✓</p>
<p>«<em>ΔH</em> = + » 179 «kJ» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [1 max]</strong> for −179 kJ.</em></p>
<p><em>Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol<sup>−1</sup> x 5.55 mol = 993 kJ.</em></p>
<p><em>Award <strong>[2]</strong> for an answer in the range 990 - 993« kJ».</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>lower activation energy curve between same reactant and product levels ✓</p>
<p><em><br>Accept curve with or without an intermediate.</em></p>
<p><em>Accept a horizontal straight line below current line with the activation energy with catalyst/E<sub>cat</sub> clearly labelled.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative «reaction» pathway/mechanism ✓</p>
<p><em><br>Do <strong>not</strong> accept “lower activation energy” only.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Ca(OH)<sub>2</sub> (aq) + 2HCl (aq) → 2H<sub>2</sub>O (l) + CaCl<sub>2</sub> (aq) ✓</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>HCl</sub> = 0.0350 dm<sup>3</sup> × 0.025 mol dm<sup>−3</sup> =» 0.00088 «mol»<br><em><strong>OR</strong></em><br><em>n</em><sub>Ca(OH)2</sub> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>&nbsp;<em>n</em><sub>HCl</sub>/0.00044 «mol» ✓</p>
<p>«<em>V</em> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>00088</mn><mo> </mo><mi>mol</mi></mstyle><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> =» 0.029 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for 0.058 «dm<sup>3</sup>».</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1:</strong></em></p>
<p>[OH<sup>−</sup>] = « 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«[H<sup>+</sup>] =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>0466</mn></mrow></mfrac></math> = 2.15 × 10<sup>−13</sup> mol dm<sup>−3</sup>»<br>pH = « −log(2.15 × 10<sup>−13</sup>) =» 12.668 ✓</p>
<p>&nbsp;</p>
<p><em><strong>Alternative 2:</strong></em></p>
<p>[OH<sup>−</sup>] =« 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«pOH = −log (0.0466) = 1.332»</p>
<p>pH = «14.000 – pOH = 14.000 – 1.332 =» 12.668 ✓</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for pH =12.367.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>Ca(OH)2</sub> = 2.41 dm<sup>3</sup> × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0562 «mol» <em><strong>AND</strong></em><br>«<em>n</em><sub>CO2</sub> =<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>750</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>=» 0.0330 «mol» ✓</p>
<p>«CO<sub>2</sub> is the limiting reactant»</p>
<p>«<em>m</em><sub>CaCO3</sub> = 0.0330 mol × 100.09 g mol<sup>−1</sup> =» 3.30 «g» ✓</p>
<p><em><br>Only award ECF for M2 if limiting reagent is used.</em></p>
<p><em>Accept answers in the range 3.30 - 3.35 «g».</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>85</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>30</mn></mrow></mfrac></math> ×&nbsp;100 =» 86.4 «%» ✓</p>
<p><em><br>Accept answers in the range 86.1-86.4 «%».</em></p>
<p><em>Accept “71.3 %” for using the incorrect given value of 4.00 g.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«add» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO <em><strong>AND</strong> </em>to «acidic» water/river/lake/soil<br><em><strong>OR</strong></em><br>«use» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO in scrubbers «to prevent release of acidic pollution» ✓</p>
<p><em><br>Accept any correct name for any of the calcium compounds listed.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about peroxides.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2H<sub>2</sub>O<sub>2</sub> (aq)&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\xrightarrow{{{\text{KI (aq)}}}}">
  <mover>
    <mo>→</mo>
    <mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
      <mrow>
        <mrow>
          <mtext>KI (aq)</mtext>
        </mrow>
      </mrow>
    </mpadded>
  </mover>
</math></span> O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="268" height="159"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The data for the first trial is given below.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="" width="260" height="143"></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Plot a graph on the axes below and from it determine the average rate of formation of oxygen gas in cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="" width="371" height="601"></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Average rate of reaction:</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2</sub> &gt; T<sub>1</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="393" height="257"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(ii), why an increased temperature causes the rate of reaction to increase.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">MnO<sub>2</sub> is another possible catalyst for the reaction. State the IUPAC name for MnO<sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on why peracetic acid, CH<sub>3</sub>COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">H<sub>2</sub>O<sub>2</sub> (aq) + CH<sub>3</sub>COOH (aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>COOOH (aq) + H<sub>2</sub>O (l)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sodium percarbonate, 2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><em>M</em><sub>r</sub> (2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>) = 314.04</span></p>
<p><span style="background-color: #ffffff;">Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">decomposes in light  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “sensitive to light”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="381" height="612"></p>
<p><span style="background-color: #ffffff;">points correctly plotted  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">best fit line <em><strong>AND</strong> </em>extended through (to) the origin  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Average rate of reaction:</em><br>«slope (gradient) of line =» 0.022 «cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>»  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept range 0.020–0.024cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="394" height="247"></p>
<p><span style="background-color: #ffffff;">peak of T<sub>2</sub> to right of <em><strong>AND</strong> </em>lower than T<sub>1</sub>  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">lines begin at origin <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub>  <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E<sub>a</sub></em> marked on graph  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">explanation in terms of more “particles” with <em>E ≥ E<sub>a</sub></em><br><em><strong>OR</strong></em><br>greater area under curve to the right of <em>E<sub>a</sub></em> in T<sub>2</sub>  <strong>[✔]</strong></span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">manganese(IV) oxide<br><em><strong>OR</strong></em><br>manganese dioxide  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “manganese(IV) dioxide”.</span></em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">move «position of» equilibrium to right/products  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “reactants are always present as the reaction is in equilibrium”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">M (H<sub>2</sub>O<sub>2</sub>) «= 2 × 1.01 + 2 × 16.00» = 34.02 «g»  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«% H<sub>2</sub>O<sub>2</sub> = 3 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34.02}}{{314.04}}">
  <mfrac>
    <mrow>
      <mn>34.02</mn>
    </mrow>
    <mrow>
      <mn>314.04</mn>
    </mrow>
  </mfrac>
</math></span> × 100 =» 32.50 «%»  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The explanation that the brown bottle prevented light causing a decomposition of the chemical was well answered but some incorrectly suggested it helped to stop mixing up of chemicals <em>e.g.</em> acid/water/peroxide.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The graphing was disappointing with a surprising number of students missing at least one mark for failing to draw a straight line or for failing to draw the line passing through the origin. Also some were unable to calculate the gradient.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The drawing of the two curves at T1 and T2 was generally poorly done.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Explaining why temperature increase caused an increase in reaction rate was generally incorrectly answered with most students failing to mention “activation energy” in their answer or failing to annotate the graph.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many could correctly name manganese(IV)oxide, but there were answers of magnesium(IV) oxide or manganese(II) oxide.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Suggesting why peractic acid was sold in solution was very poorly answered and only a few students mentioned equilibrium and, if they did, they thought it would move to the left to restore equilibrium.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Calculating the % by mass was generally well answered although some candidates started by using rounded values of atomic masses which made their final answer unprecise.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Sulfur trioxide is produced from sulfur dioxide.</p>
<p style="text-align: center;">2SO<sub>2&thinsp;</sub>(g) + O<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2SO<sub>3&thinsp;</sub>(g)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &Delta;<em>H</em> = &minus;196&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="specification">
<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>
</div>

<div class="specification">
<p>Nitric acid, HNO<sub>3</sub>, is another strong Br&oslash;nsted&ndash;Lowry acid. Its conjugate base is the nitrate ion, NO<sub>3</sub><sup>&minus;</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> &gt; T<sub>1</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of a strong Brønsted–Lowry acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis structure of NO<sub>3</sub><sup>−</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electron domain geometry of NO<sub>3</sub><sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>increases rate <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✔</p>
<p>provides alternative pathway «with lower <em>E</em><sub>a</sub>»<br><em><strong>OR</strong></em><br>more/larger fraction of molecules have the «lower» <em>E</em><sub>a</sub> ✔</p>
<p> </p>
<p><em>Accept description of how catalyst lowers E<sub>a</sub> for M2 (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”, “helps favorable orientation of molecules”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>both axes correctly labelled ✔</p>
<p>peak of T<sub>2</sub> curve lower <em><strong>AND</strong> </em>to the right of T<sub>1</sub> curve ✔</p>
<p>lines begin at origin <em><strong>AND</strong> </em>correct shape of curves <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub> ✔</p>
<p> </p>
<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>
<p><em>Accept “kinetic E/KE/E<sub>k</sub>” but not just “Energy/E” on x-axis.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decrease <em><strong>AND</strong> </em>equilibrium shifts left / favours reverse reaction ✔</p>
<p>«forward reaction is» exothermic / ΔH is negative ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sulfuric acid/H<sub>2</sub>SO<sub>4</sub> ✔</p>
<p> </p>
<p><em>Accept “disulfuric acid/H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fully ionizes/dissociates ✔</p>
<p>proton/H<sup>+</sup> «donor » ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do <strong>not</strong> accept the delocalised structure.</em></p>
<p><em>Accept any combination of dots, crosses and lines.</em></p>
<p><em>Coordinate/dative bond may be represented by an arrow.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>three electron domains repel</p>
<p><em><strong>OR</strong></em></p>
<p>three electron domains as far away as possible ✔</p>
<p> </p>
<p>trigonal planar</p>
<p><em><strong>OR</strong></em></p>
<p>«all» angles are 120° ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A generally well-answered question. Most candidates explained the effect of a catalyst on a reaction correctly. A small proportion of candidates thought the catalyst increased the frequency of collisions. Some candidates focussed on the effect of the catalyst on an equilibrium since the equation above the question was that of a reversible reaction. These candidates usually still managed to gain at least the first marking point by stating that both forward and reverse reaction rates were increased due to the lower activation energy. Most candidates mentioned the alternative pathway for the second mark, and some gave a good discussion about the increase in the number of molecules or collisions with E≥E<sub>a</sub>. A few candidates lost one of the marks for not explicitly stating the effect of a catalyst (that it increases the rate of the reaction).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The average mark scored for the Maxwell-Boltzmann distribution curves sketch was 1.5 out of 3 marks and the question had a strong correlation with the candidates who did well overall. The majority of candidates were familiar with the shapes of the curves. The most commonly lost mark was missing or incorrect labels on the axes. Sometimes candidates added the labels but did not specify “kinetic” energy for the x-axis. As for the curves, some candidates reversed the labels T<sub>1</sub> and T<sub>2</sub>, some made the two curves meet at high energy or even cross, and some did not have the correct relationship between the peaks of T<sub>1</sub> and T<sub>2</sub>.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question that showed a strong correlation with the candidates who did well overall. The average mark was 1 out of 2 marks. Many candidates explained the effect of an increase in temperature on the yield of SO<sub>3</sub> correctly and thoroughly. One of the common mistakes was to miss the fact that it was an equilibrium and reason that yield would not change due to an increase in the rate of reaction. Unfortunately, a number of candidates also deduced that yield would increase due to the increase in rate. Other candidates recognized that it was an exothermic reaction but deduced the equilibrium would shift to the right giving a higher yield of SO<sub>3</sub>.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question. 70% of the candidates stated H2SO4 as the product from the reaction of SO<sub>3</sub> with water.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>While a straightforward question, many candidates only answered part of the question - either focussing on the “strong” or on the “Brønsted-Lowry acid”. The average mark on this question was 1.2 out of 2 marks.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 20% of the candidates scored the mark for the Lewis structure of NO<sub>3</sub><sup>-</sup>. Mistakes included: missing charge, missing lone pairs, 3 single bonds, 2 double bonds.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates deduced the correct electron domain geometry scoring the first mark including cases of ECF. Only a small number of candidates satisfied the requirements of the markscheme for the explanation.</p>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">An electrolysis cell was assembled using graphite electrodes and connected as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;">Electrolyte:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br>«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires:</em><br>«delocalized» electrons «flow» ✔</span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br>