File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 6/markSceme-HL-paper2html
File size: 1.29 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>
<div class="specification">
<p>Now consider the second stage of the reaction.</p>
<p style="text-align: center;">CO (g) + 2H<sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l) Δ<em>H</em><sup>⦵</sup> = –129 kJ</p>
</div>
<div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>
<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>
<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> reason why you would expect the value of Δ<em>H</em> calculated from the <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mi>f</mi><mi mathvariant="normal">⦵</mi></msubsup></math> values, given in section 12 of data booklet, to differ from your answer to (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equilibrium constant, <em>K</em><sub>c</sub>, has a value of 1.01 at 298 K.</p>
<p>Calculate Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>–1</sup>, for this reaction. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for the entropy change, Δ<em>S</em><sup>⦵</sup>, in J K<sup>–1</sup> mol<sup>–1</sup> at 298 K. Use your answers to (e)(i) and section 1 of the data booklet.</p>
<p>If you did not get answers to (e)(i) use –1 kJ, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the sign of Δ<em>S</em> with reference to the equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how a change in temperature from 298 K to 273 K would affect the spontaneity of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="430" height="342"></p>
<p>curve higher <em><strong>AND</strong> </em>to left of T<sub>1</sub> ✔</p>
<p>new/catalysed <em>E</em><sub>a</sub> marked <em><strong>AND</strong> </em>to the left of E<sub>a</sub> of curve T<sub>1</sub> ✔</p>
<p><em><br>Do <strong>not</strong> penalize curve missing a label, not passing exactly through the origin, or crossing x-axis after E<sub>a</sub>.</em><br><em>Do <strong>not</strong> award M1 if curve drawn shows significantly more/less molecules/greater/smaller area under curve than curve 1.</em><br><em>Accept E<sub>a</sub> drawn to T<sub>1</sub> instead of curve drawn as long as to left of marked E<sub>a</sub>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>methanoic acid/HCOOH/CHOOH<br><em><strong>OR</strong></em><br>methanal/HCHO ✔</p>
<p><em>Accept “carbon dioxide/CO<sub>2</sub>”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>4</sub>(g) + H<sub>2</sub>O(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH(l) + H<sub>2</sub>(g) ✔</p>
<p><em><br>Accept arrow instead of equilibrium sign.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of methane = « <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>16</mn><mo>.</mo><mn>05</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math> = » 0.498 «mol» ✔</p>
<p>amount of hydrogen = amount of methane / 0.498 «mol» ✔</p>
<p>volume of hydrogen = «0.498 mol × 22.7 dm<sup>3 </sup>mol<sup>−1</sup> = » 11.3 «dm<sup>3</sup>» ✔</p>
<p><em><br>Award <strong>[3]</strong> for final correct answer.</em><br><em>Award <strong>[2 max]</strong> for 11.4 «dm<sup>3</sup> due to rounding of mass to 16/moles to 0.5. »</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Σbonds broken = 4 × 414 «kJ» + 2 × 463 «kJ» / 2582 «kJ» ✔</p>
<p>Σbonds formed = 1077 «kJ» + 3 × 436 «kJ» / 2385 «kJ» ✔</p>
<p>Δ<em>H</em> «= Σbonds broken − Σbonds formed =( 2582 kJ − 2385 kJ)» = «+»197«kJ» ✔</p>
<p><em><br>Award <strong>[3]</strong> for final correct answer.</em><br><em>Award <strong>[2 Max]</strong> for final answer of −197 «kJ»</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond energies are average values «not specific to the compound» ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="italic">c</mi></msub><mo>=</mo><mfrac><mrow><mfenced open="[" close="]"><mi>CO</mi></mfenced><msup><mfenced open="[" close="]"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow><mrow><mfenced open="[" close="]"><msub><mi>CH</mi><mn>4</mn></msub></mfenced><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></mfenced></mrow></mfrac></math> ✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K<sub>c</sub></em> increases <em><strong>AND</strong> </em>«forward» reaction endothermic ✔</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup> = − <em>RT lnK<sub>c</sub></em>»<br>Δ<em>G</em><sup>⦵</sup> = − 8.31 «J K<sup>−1</sup> mol<sup>−1</sup>» × 298 «K» × ln (1.01) / −24.6 «J mol<sup>−1</sup>» ✔</p>
<p>= −0.0246 «kJ mol<sup>–1</sup>» ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for +0.0246 «kJ mol<sup>–1</sup>».</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup> = Δ<em>H</em><sup>⦵ </sup>− <em>TΔS</em><sup>⦵</sup>»</p>
<p>Δ<em>G</em><sup>⦵</sup> = −129 «kJ mol<sup>–1</sup>» − (298 «K» × Δ<em>S</em>) = −0.0246 «kJ mol<sup>–1</sup>» ✔</p>
<p>Δ<em>S</em><sup>⦵</sup> = « <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>129</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>0246</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mrow><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math> = » −433 «J K<sup>–1</sup> mol<sup>–1</sup>» ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [1 max]</strong> for “−0.433 «kJ K<sup>–1 </sup>mol<sup>–1</sup>»”.</em></p>
<p><em>Award <strong>[1 max]</strong> for “433” or “+433” «J K<sup>–1</sup> mol<sup>–1</sup>».</em></p>
<p><em>Award<strong> [2]</strong> for −430 «J K<sup>–1</sup> mol<sup>–1</sup>» (result from given values).</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«negative as» product is liquid and reactants gases<br><em><strong>OR</strong></em><br>fewer moles of gas in product ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reaction «more» spontaneous/Δ<em>G</em> negative/less positive <em><strong>AND</strong> </em>effect of negative entropy decreases/TΔ<em>S</em> increases/is less negative/more positive<br><em><strong>OR</strong></em><br>reaction «more» spontaneous/Δ<em>G</em> negative/less positive <em><strong>AND</strong></em> reaction exothermic «so <em>K</em><sub>c</sub> increases » ✔</p>
<p><em>Award mark if correct calculation shown.</em></p>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>When dinitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:</p>
<p style="text-align: center;">N<sub>2</sub>O<sub>5 </sub>(g) → 2NO<sub>2 </sub>(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>O<sub>2 </sub>(g)</p>
</div>
<div class="specification">
<p>Data for the decomposition at constant temperature is given.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the extent of decomposition could be measured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the missing point on the graph and draw the best-fit line.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why increasing the concentration of N<sub>2</sub>O<sub>5</sub> increases the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant, <em>k</em>, giving its units.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use colorimeter<br><em><strong>OR</strong></em><br>change in colour<br><em><strong>OR</strong></em><br>change in volume<br><em><strong>OR</strong></em><br>change in pressure ✔</p>
<p><em>Accept suitable instruments, e.g. pressure probe/oxygen sensor.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>point correct ✔</p>
<p>straight line passing close to all points <em><strong>AND</strong> </em>through origin ✔</p>
<p><em><br>Accept free hand drawn line as long as attempt to be linear and meets criteria for M2.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>greater frequency of collisions «as concentration increases»<br><em><strong>OR</strong></em><br>more collisions per unit time «as concentration increases» ✔</p>
<p><em><br>Accept “rate/chance/probability/likelihood” instead of “frequency”.</em></p>
<p><em>Do <strong>not</strong> accept just “more collisions”.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate = <em>k</em>[N<sub>2</sub>O<sub>5</sub>] ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>k</em> = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mo>∆</mo><mi>rate</mi></mrow><mrow><mo>∆</mo><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">N</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>5</mn></msub></mrow></mfenced></mrow></mfrac></math> ✔</p>
<p>«<em>k</em> = <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>75</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mi>min</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>»</mo></mrow><mrow><mn>25</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></mrow></mfrac></math>= » 0.030 «min<sup>–1</sup>» ✔</p>
<p>min<sup>–1</sup> ✔</p>
<p><em><br>M1 can be awarded from correct M2 if not explicitly stated.</em></p>
<p><em>Accept k = gradient.</em></p>
<p><em>Accept values in the range 0.028–0.032.</em></p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>
<p><span style="background-color: #ffffff;">The <em>x</em>-axis and <em>y</em>-axis are shown with arbitrary units.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/2.PNG" alt width="564" height="283"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">This decomposition obeys the rate expression:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{d[{{\text{N}}_2}{\text{O]}}}}{{dt}}">
<mo>−<!-- − --></mo>
<mfrac>
<mrow>
<mi>d</mi>
<mo stretchy="false">[</mo>
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<mtext>O]</mtext>
</mrow>
</mrow>
<mrow>
<mi>d</mi>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> = <em>k</em>[N<sub>2</sub>O]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce how the rate of reaction at <em>t</em> = 2 would compare to the initial rate.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">It has been suggested that the reaction occurs as a two-step process:</span></p>
<p><span style="background-color: #ffffff;">Step 1: N<sub>2</sub>O (g) → N<sub>2</sub> (g) + O (g)</span></p>
<p><span style="background-color: #ffffff;">Step 2: N<sub>2</sub>O (g) + O (g) → N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">Explain how this could support the observed rate expression.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>
<p><span style="background-color: #ffffff;">Sketch, on the axes in question 2, the graph that you would expect.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment gave an error in the rate because the pressure gauge was inaccurate.</span></p>
<p><span style="background-color: #ffffff;">Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>
<p><img src="images/2f.PNG" alt width="637" height="309"></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the standard entropy change, in J K−1, for the decomposition of dinitrogen monoxide. </span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src="images/2gi.PNG" alt width="325" height="154"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide has a positive standard enthalpy of formation, Δ<em>H</em><sub>f</sub></span><sup>θ</sup><span style="background-color: #ffffff;">.</span></p>
<p><span style="background-color: #ffffff;">Deduce, giving reasons, whether altering the temperature would change the </span><span style="background-color: #ffffff;">spontaneity of the <strong>decomposition</strong> reaction.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">increase in the amount/number of moles/molecules «of gas» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">from 2 to 3/by 50 % <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«rate of reaction decreases»<br>concentration/number of molecules in a given volume decreases<br><em><strong>OR</strong></em><br>more space between molecules <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">collision rate/frequency decreases<br><em><strong>OR</strong></em><br>fewer collisions per unit time <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Do <strong>not</strong> accept just “larger space/volume” for M1.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">half «of the initial rate» <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><strong>Note: </strong><em>Accept “lower/slower «than initial rate»”.</em></span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1 slower than 2<br><em><strong>OR</strong></em><br>1 rate determinant step/RDS <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">1 is unimolecular/involves just one molecule so it must be first order<br><em><strong>OR</strong></em><br>if 1 faster/2 RDS, second order in N<sub>2</sub>O<br><em><strong>OR</strong></em><br>if 1 faster/2 RDS, first order in O <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="541" height="253"></p>
<p><span style="background-color: #ffffff;">smaller initial gradient <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">initial pressure is lower <em><strong>AND</strong> </em>final pressure of gas lower «by similar factor» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>it is a systematic error/not a random error</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>«a similar magnitude» error would occur every time <strong>[✔]</strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="635" height="419"></p>
<p><span style="background-color: #ffffff;">catalysed and uncatalysed E<sub>a</sub> marked on graph <em><strong>AND</strong> </em>with the catalysed being at lower energy <strong>[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«for catalysed reaction» greater proportion of/more molecules have E ≥ E<sub>a</sub> / E > E<sub>a</sub><br><em><strong>OR</strong></em><br>«for catalysed reaction» greater area under curve to the right of the E<sub>a</sub> <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “more molecules have the activation energy”.</span></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<span style="background-color: #ffffff;">S<sup>θ</sup> = 2(S<sup>θ</sup>(N<sub>2</sub>)) + S<sup>θ</sup>(O<sub>2</sub>) – 2(S<span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span>(N<sub>2</sub>O))<br></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em></span>Δ<span style="background-color: #ffffff;">S<span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2 × 193 «J mol<sup>-1</sup> K<sup>-1</sup>» + 205 «J mol<sup>-1</sup> K<sup>-1</sup>» – 2 × 220 «J mol<sup>-1</sup> K<sup>-1</sup>» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«ΔS<span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = +»151 «J K<sup>-1</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">exothermic decomposition<br><em><strong>OR</strong></em><br>Δ<em>H</em><sub>(decomposition)</sub> < 0 <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>TΔS</em><sup>θ</sup> > Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ<br></span></sup></span></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em></span><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> «= Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> – <em>TΔS</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span>» < 0 «at all temperatures» <strong>[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</span></span></p>
<p><span style="background-color: #ffffff;">reaction spontaneous at all temperatures <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</span></span></p>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Students were able in general to relate more moles of gas to increase in pressure.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few students were able to relate the effect of reduced pressure at constant volume with a decrease in concentration of gas molecules and mostly did not even refer to this, but rather concentrated on lower rate of reaction and frequency of collisions. Many candidates lost a mark by failing to explain rate as collisions per unit time, frequency, <em>etc</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Though the differential equation was considered to be misleading by teachers, most candidates attempted to answer this question, and more than half did so correctly, considering they had the graph to visualize the gradient.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students were able to identity step 1 as the RDS/slow but few mentioned unimolecularity or referred vaguely to NO<sub>2</sub> as the only reagent (which was obvious) and got only 1 mark.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students drew a lower initial gradient, but most did not reflect the effect of lower temperature on pressure at constant volume and started and finished the curve at the same pressure as the original one.</p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates identified the inaccurate pressure gauge as a systematic error, thus relating accuracy to this type of error.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The graph was generally well done, but in quite a few cases, candidates did not mention that increase of rate in the catalyzed reaction was due to <em>E</em> (particles) > <em>E</em><sub>a</sub> or did so too vaguely.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates were able to calculate the ΔS of the reaction, though in some cases they failed to multiply by the number of moles.</p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Though the question asked for decomposition (in bold), most candidates ignored this and worked on the basis of a the Δ<em>H</em> of formation. However, many did write a sound explanation for that situation. On the other hand, in quite a number of cases, they did not state the sign of the Δ<em>H</em> (probably taking it for granted) nor explicitly relate Δ<em>G</em> and spontaneity, which left the examiner with no possibility of evaluating their reasoning.</p>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The rate of the acid-catalysed iodination of propanone can be followed by measuring how the concentration of iodine changes with time.</p>
<p style="text-align: center;">I<sub>2</sub>(aq) + CH<sub>3</sub>COCH<sub>3</sub>(aq) → CH<sub>3</sub>COCH<sub>2</sub>I(aq) + H<sup>+</sup>(aq) + I<sup>−</sup>(aq)</p>
<p style="text-align: left;">The general form of the rate equation is:</p>
<p style="text-align: center;">Rate = [H<sub>3</sub>CCOCH<sub>3</sub>(aq)]<sup>m</sup> × [I<sub>2</sub>(aq)]<sup>n</sup> × [H<sup>+</sup>(aq)]<sup>p</sup></p>
<p style="text-align: left;">The reaction is first order with respect to propanone.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the change of iodine concentration could be followed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student produced these results with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[{{\text{H}}^ + }] = 0.15{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
<mo stretchy="false">[</mo>
<mrow>
<msup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>+</mo>
</msup>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mn>0.15</mn>
<mrow>
<mtext> mol</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>. Propanone and acid were in excess and iodine was the limiting reagent. Determine the relative rate of reaction when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[{{\text{H}}^ + }] = 0.15{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
<mo stretchy="false">[</mo>
<mrow>
<msup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>+</mo>
</msup>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mn>0.15</mn>
<mrow>
<mtext> mol</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2017-09-19_om_17.58.35.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/01.a.ii"></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then carried out the experiment at other acid concentrations with all other conditions remaining unchanged.</p>
<p><img src=""></p>
<p>Determine the relationship between the rate of reaction and the concentration of acid and the order of reaction with respect to hydrogen ions.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the concentration of iodine is varied, while keeping the concentrations of acid and propanone constant, the following graphs are obtained.</p>
<p><img src=""></p>
<p>Deduce, giving your reason, the order of reaction with respect to iodine.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the reaction is carried out in the absence of acid the following graph is obtained.</p>
<p><img src=""></p>
<p>Discuss the shape of the graph between A and B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use a colorimeter/monitor the change in colour</p>
<p><strong><em>OR</em></strong></p>
<p>take samples <strong><em>AND </em></strong>quench <strong><em>AND </em></strong>titrate «with thiosulfate»</p>
<p> </p>
<p><em>Accept change in pH.</em></p>
<p><em>Accept change in conductivity.</em></p>
<p><em>Accept other suitable methods.</em></p>
<p><em>Method must imply “change”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-19_om_18.04.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/01.a.ii/M"></p>
<p>best fit line</p>
<p>relative rate of reaction <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \ll \frac{{ - \Delta y}}{{\Delta x}} = \frac{{ - (0.43 - 0.80)}}{{50}} = \gg {\text{ }}0.0074/7.4 \times {10^{ - 3}}">
<mo>=≪</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mi mathvariant="normal">Δ</mi>
<mi>y</mi>
</mrow>
<mrow>
<mi mathvariant="normal">Δ</mi>
<mi>x</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mo>−</mo>
<mo stretchy="false">(</mo>
<mn>0.43</mn>
<mo>−</mo>
<mn>0.80</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>50</mn>
</mrow>
</mfrac>
<mo>=≫</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0.0074</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>7.4</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p> </p>
<p><em>Best fit line required for M1.</em></p>
<p> </p>
<p><em>M2 is independent of M1.</em></p>
<p><em>Accept range from 0.0070 to 0.0080.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Relationship:</em><br>rate of reaction is «directly» proportional to [H<sup>+</sup>]<br><em><strong>OR</strong></em><br>rate of reaction <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> [H<sup>+</sup>] </p>
<p><em>Order of reaction with respect to [H<sup>+</sup>]:</em><br>first</p>
<p> </p>
<p><em>Accept "doubling the concentration doubles the rate".</em></p>
<p><em>Do <strong>not</strong> accept “rate increases as concentration increases”.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>zero order</p>
<p>rate of reaction is the same for all concentrations of iodine</p>
<p> </p>
<p><em>Accept “all graphs have same/similar gradient”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>slow rate of reaction which gradually increases</p>
<p>as H<sup>+</sup> ions are produced «to catalyse the reaction»<br><em><strong>OR</strong></em><br>reaction is autocatalytic</p>
<p> </p>
<p><em>M1 should mention “rate of reaction”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.</span></p>
<p><span class="fontstyle0"> The following experimental data was obtained.<br> </span></p>
<p><span class="fontstyle0"><img src="" width="463" height="150"></span></p>
<p><span class="fontstyle0"> Deduce the partial order of reaction with respect to nitrogen monoxide and oxygen.<br> </span></p>
<p><span class="fontstyle0"><img src="" width="583" height="148"></span></p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, whether the following mechanism is possible.</span></p>
<p><span class="fontstyle0"><img src="" width="477" height="67"></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mi>O</mi></math>: second ✔<br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>O</mi><mn>2</mn></msub></math>: first ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not possible <em><strong>AND</strong> </em>«proposed» mechanism does not match experimental rate law<br><em><strong>OR</strong></em><br>not possible <em><strong>AND</strong> </em>«proposed» mechanism shows zero/not first order with respect to oxygen ✔</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could correctly deduce the order of each reactant from rate experimental rate data.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of candidates could explain why the proposed reaction mechanism was inconsistent with the empirical data given.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p><span class="fontstyle0">Label the diagram with the species in the equation.</span></p>
<p><span class="fontstyle0"><img src="" width="576" height="239"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard cell potential, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">V</mi></math>, for the cell at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use section 24 of the data booklet</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard free energy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi mathvariant="normal">G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle4"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi></math></span><span class="fontstyle0">, for the cell using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(vi).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative pathway/mechanism <em><strong>AND</strong></em> lower <em>E</em><sub>a</sub> ✔</p>
<p><em>Accept description of how catalyst lowers E<sub>a</sub> (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>more/greater proportion of molecules with <em>E</em> <img src=""><em>E</em><sub>a </sub>✔</p>
<p>greater frequency/probability/chance of collisions «between the molecules»<br><em><strong>OR</strong></em><br>more collision per unit of time/second ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonding/bonds «and dipole–dipole and London/dispersion forces are present in» propan-2-ol ✔</p>
<p>dipole–dipole «and London/dispersion are present in» propanone ✔</p>
<p>propan-2-ol less volatile <em><strong>AND</strong></em> hydrogen bonding/bonds stronger «than dipole–dipole »<br><em><strong>OR</strong></em><br>propan-2-ol less volatile <em><strong>AND</strong></em> «sum of all» intermolecular forces stronger ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>13</mn><mo> </mo><mi mathvariant="normal">V</mi><mo>−</mo><mo>(</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>26</mn><mo> </mo><mi mathvariant="normal">V</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>13</mn><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msup><mi>ΔG</mi><mi mathvariant="normal">Θ</mi></msup><mo>=</mo><mo>−</mo><msup><mi>nFE</mi><mi mathvariant="normal">Θ</mi></msup><mo>=</mo><mo>−</mo><mn>2</mn><mo>×</mo><mn>96</mn><mo> </mo><mn>500</mn><mo>×</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow><mn>1000</mn></mfrac><mo>=</mo><mo>»</mo><mo>−</mo><mn>25</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">k</mi><mo> </mo><mi mathvariant="normal">J</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Bi</mi><mo>/</mo><mi>Cu</mi><mo>/</mo><mi>Ag</mi><mo>/</mo><mi>Pd</mi><mo>/</mo><mi>Hg</mi><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Au</mi><mo> </mo></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>b</mi></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong></em> «a sea of» delocalized electrons ✔</p>
<p><em>Accept “mobile/free electrons”.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>malleability/hardness<br><em><strong>OR</strong></em><br>«tensile» strength/ductility<br><em><strong>OR</strong></em><br>density<br><em><strong>OR</strong></em><br>thermal/electrical conductivity<br><em><strong>OR</strong></em><br>melting point<br><em><strong>OR</strong></em><br>thermal expansion ✔</p>
<p><em>Do not accept corrosion/reactivity or any chemical property.</em></p>
<p><em>Accept other specific physical properties.</em></p>
<div class="question_part_label">d(vi).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Although fairly well done some candidates did not mention that providing an alternate pathway to the reaction was how the activation energy was lowered and hence did not gain the mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates earned at least 1 mark for the effect of temperature on rate. Some missed increase in collision frequency, others the idea that more particles reached the required activation energy.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The average mark was 1.9/3. Almost all candidates could recognize hydrogen bonding in alcohol but many missed the dipole-dipole attraction in propanone. There was also some confusion on the term volatility, with some thinking stronger IMF meant higher volatility.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A surprising number of No Response for a question where candidates simply had to label a diagram with the species in the equation. Some candidates had the idea but did not use the species for electrolytic cell, e.g., Pb(SO<sub>4</sub>) instead of Pb<sup>2+</sup>(aq).</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% of candidates could correctly calculate a cell potential by using a reduction table and a balanced redox reaction. </p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was similar to 2f(ii) where many could apply the formula for Gibbs free energy change, ΔG<sup>ө</sup>, correctly however some did not get the units correct.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% could correctly pick a metal to reverse the electron flow, however some candidates thought a more reactive, rather than a less reactive metal than nickel would reverse the electron flow.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were aware that metallic bonding involved a "sea of electrons", but were unsure about surrounding what and could not identify that it was electrostatic attraction holding the metal together.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates could correctly identify a physical property of a metal which might be altered when alloying.</p>
<div class="question_part_label">d(vi).</div>
</div>
<br><hr><br><div class="specification">
<p>3.26 g of iron powder are added to 80.0 cm<sup>3</sup> of 0.200 mol dm<sup>−3</sup> copper(II) sulfate solution. The following reaction occurs:</p>
<p style="text-align: center;">Fe (s) + CuSO<sub>4</sub> (aq) → FeSO<sub>4</sub> (aq) + Cu (s)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the limiting reactant showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of copper obtained experimentally was 0.872 g. Calculate the percentage yield of copper.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5 °C.</p>
<p>Calculate the enthalpy change, Δ<em>H</em>, of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State another assumption you made in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The only significant uncertainty is in the temperature measurement.</p>
<p>Determine the absolute uncertainty in the calculated value of Δ<em>H</em> if the uncertainty in the temperature rise was ±0.2 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the concentration of iron(II) sulfate, FeSO<sub>4</sub>, against time as the reaction proceeds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be determined from the graph in part (c)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student electrolyzed aqueous iron(II) sulfate, FeSO<sub>4</sub> (aq), using platinum electrodes. State half-equations for the reactions at the electrodes, using section 24 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>n<sub>CuSO4</sub> <strong>«</strong>= 0.0800 dm<sup>3</sup> × 0.200 mol dm<sup>–3</sup><strong>»</strong> = 0.0160 mol <em><strong>AND</strong></em></p>
<p>n<sub>Fe</sub> <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.26\,{\text{g}}}}{{55.85\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
<mfrac>
<mrow>
<mn>3.26</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
<mrow>
<mn>55.85</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span><strong>»</strong> = 0.0584 mol ✔</p>
<p>CuSO<sub>4</sub> is the limiting reactant ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> award M2 if mole calculation is not shown.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em><br><strong>«</strong>0.0160 mol × 63.55 g mol<sup>–1</sup> =<strong>»</strong> 1.02 <strong>«</strong>g<strong>» ✔</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872\,{\text{g}}}}{{1.02\,{\text{g}}}} \times 100 = ">
<mfrac>
<mrow>
<mn>0.872</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
<mrow>
<mn>1.02</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mn>100</mn>
<mo>=</mo>
</math></span><strong>» </strong>85.5<strong> «</strong>%<strong>» ✔</strong></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872\,{\text{g}}}}{{63.55\,{\text{g}}\,{\text{mo}}{{\text{l}}^{--1}}}} = ">
<mfrac>
<mrow>
<mn>0.872</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
<mrow>
<mn>63.55</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span><strong>»</strong> 0.0137 <strong>«</strong>mol<strong>» ✔</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0137\,{\text{mol}}}}{{0.0160\,{\text{mol}}}} \times 100 = ">
<mfrac>
<mrow>
<mn>0.0137</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
</mrow>
<mrow>
<mn>0.0160</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mn>100</mn>
<mo>=</mo>
</math></span><strong>»</strong> 85.6 <strong>«</strong>%<strong>» ✔</strong></p>
<p> </p>
<p><em>Accept answers in the range 85–86 %.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>q = <strong>«</strong>80.0 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 7.5 K =<strong>»</strong> 2.5 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong>/2.5 <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p><strong>«</strong>per mol of CuSO<sub>4</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 2.5\,{\text{kJ}}}}{{0.0160\,{\text{mol}}}} = - 1.6 \times {10^2}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>2.5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>kJ</mtext>
</mrow>
</mrow>
<mrow>
<mn>0.0160</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>1.6</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>2</mn>
</msup>
</mrow>
</math></span> kJ mol<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>for the reaction<strong>»</strong> Δ<em>H</em> = –1.6 × 10<sup>2</sup> <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>q = <strong>«</strong>80.0 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 7.5 K =<strong>»</strong> 2.5 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong>/2.5 <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p><strong>«</strong>n<sub>Cu</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872}}{{63.55}}">
<mfrac>
<mrow>
<mn>0.872</mn>
</mrow>
<mrow>
<mn>63.55</mn>
</mrow>
</mfrac>
</math></span> = 0.0137 mol<strong>»</strong></p>
<p><strong>«</strong>per mol of CuSO<sub>4</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 2.5\,{\text{kJ}}}}{{0.0137\,{\text{mol}}}} = - 1.8 \times {10^2}">
<mfrac>
<mrow>
<mo>−</mo>
<mn>2.5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>kJ</mtext>
</mrow>
</mrow>
<mrow>
<mn>0.0137</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mo>−</mo>
<mn>1.8</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mn>2</mn>
</msup>
</mrow>
</math></span> kJ mol<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>for the reaction<strong>»</strong> Δ<em>H</em> = –1.8 × 10<sup>2</sup> <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p> </p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>density <strong>«</strong>of solution<strong>»</strong> is 1.00 g cm<sup>−3</sup></p>
<p><em><strong>OR</strong></em></p>
<p>specific heat capacity <strong>«</strong>of solution<strong>»</strong> is 4.18 J g<sup>−1</sup> K<sup>−1</sup>/that of <strong>«</strong>pure<strong>»</strong> water</p>
<p><em><strong>OR</strong></em></p>
<p>reaction goes to completion</p>
<p><em><strong>OR</strong></em></p>
<p>iron/CuSO<sub>4</sub> does not react with other substances ✔</p>
<p> </p>
<p><em>The mark for “reaction goes to completion” can only be awarded if 0.0160 mol was used in part (b)(i).</em></p>
<p><em>Do <strong>not</strong> accept “heat loss”.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2\,^\circ {\text{C}} \times \frac{{100}}{{7.5\,^\circ {\text{C}}}} = ">
<mn>0.2</mn>
<msup>
<mspace width="thinmathspace"></mspace>
<mo>∘</mo>
</msup>
<mrow>
<mtext>C</mtext>
</mrow>
<mo>×</mo>
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>7.5</mn>
<msup>
<mspace width="thinmathspace"></mspace>
<mo>∘</mo>
</msup>
<mrow>
<mtext>C</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span><strong>»</strong> 3 %/0.03 ✔</p>
<p><strong>«</strong>0.03 × 160 kJ<strong>»</strong> = <strong>«</strong>±<strong>»</strong> 5 <strong>«</strong>kJ<strong>» </strong>✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2\,^\circ {\text{C}} \times \frac{{100}}{{7.5\,^\circ {\text{C}}}} = ">
<mn>0.2</mn>
<msup>
<mspace width="thinmathspace"></mspace>
<mo>∘</mo>
</msup>
<mrow>
<mtext>C</mtext>
</mrow>
<mo>×</mo>
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>7.5</mn>
<msup>
<mspace width="thinmathspace"></mspace>
<mo>∘</mo>
</msup>
<mrow>
<mtext>C</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span><strong>»</strong> 3 %/0.03 ✔</p>
<p><strong>«</strong>0.03 × 180 kJ<strong>»</strong> = <strong>«</strong>±<strong>»</strong> 5 <strong>«</strong>kJ<strong>» </strong>✔</p>
<p> </p>
<p><em>Accept values in the range 4.1–5.5 «kJ».</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p> </p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p> <img src=""></p>
<p>initial concentration is zero <em><strong>AND</strong> </em>concentration increases with time ✔</p>
<p>decreasing gradient as reaction proceeds ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>draw a<strong>»</strong> tangent to the curve at time = 0 ✔</p>
<p><strong>«</strong>rate equals<strong>»</strong> gradient/slope <strong>«</strong>of the tangent<strong>»</strong> ✔</p>
<p> </p>
<p><em>Accept suitable diagram.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>piece has smaller surface area ✔</p>
<p> </p>
<p>lower frequency of collisions</p>
<p><em><strong>OR</strong></em></p>
<p>fewer collisions per second/unit time ✔</p>
<p> </p>
<p><em>Accept “chance/probability” instead of “frequency”.</em></p>
<p><em>Do <strong>not</strong> accept just “fewer collisions”.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Anode (positive electrode):</em></p>
<p>2H<sub>2</sub>O (l) → O<sub>2</sub> (g) + 4H<sup>+</sup> (aq) + 4e<sup>–</sup> ✔</p>
<p> </p>
<p><em>Cathode (negative electrode):</em></p>
<p>2H<sub>2</sub>O (l) + 2e<sup>–</sup> → H<sub>2</sub> (g) + 2OH<sup>–</sup> (aq)<br><em><strong>OR</strong></em><br>2H<sup>+</sup> (aq) + 2e<sup>–</sup> → H<sub>2</sub> (g) ✔</p>
<p> </p>
<p><em>Accept “4OH<sup>–</sup> (aq) → O<sub>2</sub> (g) + 2H<sub>2</sub>O (l) + 4e<sup>–</sup>” <strong>OR </strong>“Fe<sup>2+</sup> (aq) → Fe<sup>3+</sup> (aq) + e<sup>–</sup>” for M1.</em></p>
<p><em>Accept “Fe<sup>2+</sup> (aq) + 2e<sup>–</sup> → Fe (s)” <strong>OR</strong> “SO<sub>4</sub><sup>2-</sup> (aq) 4H<sup>+</sup> (aq) + 2e<sup>–</sup> → 2H<sub>2</sub>SO<sub>3</sub>(aq) + H<sub>2</sub>O (l)”</em><br><em>for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbonate reacts with hydrochloric acid.</p>
<p style="text-align: center;">CaCO<sub>3</sub>(s) + 2HCl(aq) → CaCl<sub>2</sub>(aq) + H<sub>2</sub>O(l) + CO<sub>2</sub>(g)</p>
</div>
<div class="specification">
<p>The results of a series of experiments in which the concentration of HCl was varied are shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-07_om_11.18.37.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/X04.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>ways in which the progress of the reaction can be monitored. No practical details are required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why point D is so far out of line assuming human error is not the cause.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line for the reaction excluding point D.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the rate constant of the reaction, stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict from your line of best fit the rate of reaction when the concentration of HCl is 1.00 mol dm<sup>−3</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the activation energy of this reaction could be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>loss of mass <strong>«</strong>of reaction mixture/CO<sub>2</sub><strong>»</strong></p>
<p><strong>«</strong>increase in<strong>» </strong>volume of gas produced</p>
<p>change of conductivity</p>
<p>change of pH</p>
<p>change in temperature</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “disappearance of </em><em>calcium carbonate”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “gas bubbles”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “colour change” or </em><em>“indicator”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reaction is fast at high concentration <strong><em>AND </em></strong>may be difficult to measure accurately</p>
<p><strong><em>OR</em></strong></p>
<p>so many bubbles of CO<sub>2</sub> produced that inhibit contact of HCl(aq) with CaCO<sub>3</sub>(s)</p>
<p><strong><em>OR</em></strong></p>
<p>insufficient change in conductivity/pH at high concentrations</p>
<p><strong><em>OR</em></strong></p>
<p>calcium carbonate has been used up/is limiting reagent/ there is not enough calcium carbonate <strong>«</strong>to react with the high concentration of HCl<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>HCl is in excess</p>
<p><strong><em>OR</em></strong></p>
<p>so many bubbles of CO<sub>2</sub> produced that inhibit contact of HCl(aq) with CaCO<sub>3</sub>(s)</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_14.39.56.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/04.b.ii/M"></p>
<p>straight line going through the origin <strong><em>AND </em></strong>as close to A, B, C as is reasonably possible</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>directly<strong>»</strong> proportional</p>
<p> </p>
<p><em>Accept “first order” or “linear”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “rate increases as </em><em>concentration increases” or “positive </em><em>correlation”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate = <em>k </em>[H<sup>+</sup>]</p>
<p> </p>
<p><em>Accept “rate =</em><em> </em><em>k [HCl]”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.02</p>
<p>s<sup>–1</sup></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>20.5 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> 10<sup>–3</sup> <strong>«</strong>mol dm<sup>–3</sup> s<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Accept any answer in the range </em><em>19.5–21.5.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1:</em></strong></p>
<p>carry out reaction at several temperatures</p>
<p>plot <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\text{T}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mtext>T</mtext>
</mrow>
</mfrac>
</math></span> against log rate constant</p>
<p><em>E</em><sub>a</sub> = – gradient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> R</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2:</em></strong></p>
<p>carry out reaction at two temperatures</p>
<p> </p>
<p>determine two rate constants</p>
<p><strong><em>OR</em></strong></p>
<p>determine the temperature coefficient of the rate</p>
<p> </p>
<p>use the formula <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ln \frac{{{k_1}}}{{{k_2}}} = \frac{{{E_{\text{a}}}}}{R}\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)">
<mi>ln</mi>
<mo></mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>k</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>k</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>a</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<p> </p>
<p> </p>
<p><em>Accept “gradient </em>= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - {E_{\text{a}}}}}{R}">
<mfrac>
<mrow>
<mo>−</mo>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>a</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
</math></span><em>” for M3.</em></p>
<p><em>Award both M2 and M3 for the formula </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\frac{{rat{e_1}}}{{rat{e_2}}} = \frac{{{E_{\text{a}}}}}{R}\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mfrac>
<mrow>
<mi>r</mi>
<mi>a</mi>
<mi>t</mi>
<mrow>
<msub>
<mi>e</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mi>r</mi>
<mi>a</mi>
<mi>t</mi>
<mrow>
<msub>
<mi>e</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>a</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p><em>Accept any variation of the formula, </em><em>such as </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{rat{e_1}}}{{rat{e_2}}} = {e^{ - \frac{{{E_{\text{a}}}}}{R}\left( {\frac{1}{{{T_1}}} - \frac{1}{{{T_2}}}} \right)}}">
<mfrac>
<mrow>
<mi>r</mi>
<mi>a</mi>
<mi>t</mi>
<mrow>
<msub>
<mi>e</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
<mrow>
<mi>r</mi>
<mi>a</mi>
<mi>t</mi>
<mrow>
<msub>
<mi>e</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mfrac>
<mrow>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>a</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mi>R</mi>
</mfrac>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>
<div class="specification">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>
<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the change in entropy, Δ<em>S</em>, in J K<sup>−1</sup>, for the decomposition of calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature, in K, at which the decomposition of calcium carbonate becomes spontaneous, using b(i), b(ii) and section 1 of the data booklet.</p>
<p>(If you do not have answers for b(i) and b(ii), use Δ<em>H</em> = 190 kJ and Δ<em>S</em> = 180 J K<sup>−1</sup>, but these are not the correct answers.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch an energy profile for the decomposition of calcium carbonate based on your answer to b(i), labelling the axes and activation energy, <em>E</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how adding a catalyst to the reaction would impact the enthalpy change of reaction, Δ<em>H</em>, and the activation energy, <em>E</em><sub>a</sub>.</p>
<p><img src="" width="679" height="174"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2 </sub>(aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in d(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>CaCO3</sub> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>555</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>11</mn><mo>.</mo><mn>09</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 5.55 «mol» ✓</p>
<p>«<em>V</em> = 5.55 mol × 22.7 dm<sup>3</sup> mol<sup>−1</sup> =» 126 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm<sup>3</sup>) or 101.3 kPa (125 dm<sup>3</sup>).</em></p>
<p><em>Do not penalize use of 22.4 dm<sup>3</sup> mol<sup>–1</sup> to obtain the volume (124 dm<sup>3</sup>).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ΔH</em> =» (−635 «kJ» – 393.5 «kJ») – (−1207 «kJ») ✓</p>
<p>«<em>ΔH</em> = + » 179 «kJ» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [1 max]</strong> for −179 kJ.</em></p>
<p><em>Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol<sup>-1</sup> x 5.55 mol = 993 kJ.</em></p>
<p><em>Award <strong>[2]</strong> for an answer in the range 990 - 993« kJ».</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>S</em> = (40 J K<sup>−1</sup> + 214 J K<sup>−1</sup>) − (93 J K<sup>−1</sup>) =» 161 «J K<sup>−1</sup>» ✓</p>
<p><em><br>Ignore an extra step to determine total entropy change in JK<sup>–1</sup>: 161 J mol<sup>–1</sup>K<sup>–1</sup> x 5.55 mol = 894 «J mol<sup>–1</sup>K<sup>–1</sup>»</em></p>
<p><em>Award <strong>[1]</strong> for 894 «J mol<sup>–1</sup>K<sup>–1</sup>».</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«spontaneous» if Δ<em>G</em> = Δ<em>H</em> − <em>T</em>Δ<em>S</em> < 0<br><em><strong>OR</strong></em><br>Δ<em>H</em> < <em>T</em>Δ<em>S</em> ✓</p>
<p>«<em>T</em> ><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>179</mn><mo> </mo><mi>kJ</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 1112 «K» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept “1056 K” if both of the incorrect values are used to solve the problem.</em></p>
<p><em>Do <strong>not</strong> award M2 for any negative T value.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>endothermic sketch ✓</p>
<p>x-axis labelled “extent of reaction/progress of reaction/reaction coordinate/reaction pathway” <em><strong>AND</strong> </em>y-axis labelled “potential energy/energy/enthalpy✓</p>
<p>activation energy/<em>E</em><sub>a</sub> ✓</p>
<p><img src=""></p>
<p><em><br>Do <strong>not</strong> accept “time” for x-axis.</em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em> same <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✓</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Ca(OH)<sub>2 </sub>(aq) + 2HCl (aq) → 2H<sub>2</sub>O (l) + CaCl<sub>2 </sub>(aq) ✓</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>HCl</sub> = 0.0350 dm<sup>3</sup> × 0.025 mol dm<sup>−3</sup> =» 0.00088 «mol»</p>
<p><em><strong>OR</strong></em><br><em>n</em><sub>Ca(OH)2</sub> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em>n</em><sub>HCl</sub>/0.00044 «mol» ✓</p>
<p><br>«<em>V</em> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>00088</mn><mo> </mo><mi>mol</mi></mstyle><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> =» 0.029 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for 0.058 «dm<sup>3</sup>».</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1:</strong></em></p>
<p>[OH<sup>−</sup>] = « 2 × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«[H<sup>+</sup>] = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>0466</mn></mrow></mfrac></math> = 2.15 × 10<sup>−13 </sup>mol dm<sup>−3</sup>»</p>
<p>pH = « −log (2.15 × 10−13) =» 12.668 ✓</p>
<p> </p>
<p><em><strong>Alternative 2:</strong></em></p>
<p>[OH<sup>−</sup>] =« 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«pOH = −log (0.0466) = 1.332»</p>
<p>pH = «14.000 – pOH = 14.000 – 1.332 =» 12.668 ✓</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for pH =12.367.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>Ca(OH)2</sub> = 2.41 dm<sup>3</sup> × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0562 «mol» <em><strong>AND</strong></em></p>
<p>«<em>n</em><sub>CO2</sub> =<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>750</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>=» 0.0330 «mol» ✓</p>
<p>«CO<sub>2</sub> is the limiting reactant»</p>
<p>«<em>m</em><sub>CaCO3</sub> = 0.0330 mol × 100.09 g mol<sup>−1</sup> =» 3.30 «g» ✓</p>
<p> </p>
<p><em>Only award ECF for M2 if limiting reagent is used.</em></p>
<p><em>Accept answers in the range 3.30 - 3.35 «g».</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>85</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>30</mn></mrow></mfrac></math> × 100 =» 86.4 «%» ✓</p>
<p> </p>
<p><em>Accept answers in the range 86.1-86.4 «%».</em></p>
<p><em>Accept “71.3 %” for using the incorrect given value of 4.00 g.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«add» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO <em><strong>AND</strong> </em>to «acidic» water/river/lake/soil<br><em><strong>OR</strong></em><br>«use» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO in scrubbers «to prevent release of acidic pollution» ✓</p>
<p> </p>
<p><em>Accept any correct name for any of the calcium compounds listed.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen and iodine react to form hydrogen iodide.</p>
<p style="text-align: center;">H<sub>2</sub> (g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> (g)</p>
</div>
<div class="specification">
<p>The following experimental data was obtained.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>Consider the reaction of hydrogen with solid iodine.</p>
<p style="text-align: center;">H<sub>2</sub> (g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub> (s) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> (g) Δ<em>H</em><sup>⦵</sup> = +53.0 kJ mol<sup>−1</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the order of reaction with respect to hydrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> conditions necessary for a successful collision between reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change of reaction, Δ<em>S</em><sup>⦵</sup>, in J K<sup>−1</sup> mol<sup>−1</sup>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how the value of the ΔS<sup>⦵</sup><sub>reaction</sub> would be affected if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> (g) were used as a reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>−1</sup>, for the reaction at 298 K. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the equilibrium constant, <em>K</em><sub>c</sub>, for this reaction at 298 K. Use your answer to (d)(iii) and sections 1 and 2 of the data booklet.</p>
<p>(If you did not obtain an answer to (d)(iii) use a value of 2.0 kJ mol<sup>−1</sup>, although this is not the correct answer).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>first order ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rate=<em>k</em> [H<sub>2</sub>] [<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>]</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>20</mn></math> ✔</p>
<p>mol<sup>–1</sup> dm<sup>3</sup> s<sup>–1</sup> ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em> ≥ <em>E</em><sub>a</sub> <em><strong>AND</strong> </em>appropriate «collision» geometry/correct orientation ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub><mo>=</mo><mfrac><msup><mfenced open="[" close="]"><mi>HI</mi></mfenced><mn>2</mn></msup><mrow><mfenced open="[" close="]"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub></mfenced><mfenced open="[" close="]"><msub><mi mathvariant="normal">I</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> = 2 × 206.6 – (130.6 + 116.1) =» 166.5 «J K<sup>–1</sup> mol<sup>–1</sup>» ✔</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> lower/less positive <em><strong>AND</strong> </em>same number of moles of gas</p>
<p><em><strong>OR</strong></em></p>
<p>Δ<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> lower/less positive <em><strong>AND</strong> </em>a solid has less entropy than a gas ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup> = 53.0 kJ mol<sup>–1</sup> – (298K × 0.1665 kJ K<sup>–1</sup> mol<sup>–1</sup>) =» 3.4 «kJ mol<sup>–1</sup>» ✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«ln <em>K</em><sub>c</sub>= – (3.4 × 10<sup>3</sup> J mol<sup>–1</sup> /8.31 J K<sup>–1</sup> mol<sup>–1</sup> × 298 K)» = –1.37 ✔</p>
<p>«<em>K</em><sub>c</sub> =» 0.25 ✔</p>
<p><em>Award <strong>[2]</strong> for “0.45” for the use of 2.0 kJ mol<sup>–1</sup> for ΔG</em><sup>⦵</sup><em>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>4(a)(i)-(iii): Deduction of rate orders and rate expression were very well done overall, with occasional errors in the units of the rate constant, but clearly among the best answered questions.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well answered by all but very weak candidates. Some teachers thought this should be a 2-mark question but actually the marks were generally missed when students mentioned both required conditions but failed to refer the necessary energy to <em>E<sub>a</sub></em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One of the best answered questions.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ΔS was well calculated in general except for some inverted calculations or failure to consider the ratios of the reactants.<br><br></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates confused the entropy change in this situation with absolute entropy of a solid and gas, or having realised that entropy would decrease lacked clarity in their explanations and lost the mark.</p>
<p>4(d)(ii)-(d)(iv): marks were lost due to inconsistency of units throughout, i.e., not because answers were given in different units to those required, but because candidates failed to convert all data to the same unit for calculations.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>
<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> + HO<sup>–</sup> → CH<sub>3</sub>OH + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>–</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math> (sigma) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> (pi) bonds in Compound A.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the hybridization of the central carbon atom in Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the isomer of Compound B that exists as optical isomers (enantiomers).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction produces more (CH<sub>3</sub>)<sub>3</sub>COH than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2-methylpropan-2-ol /2-methyl-2-propanol ✔</p>
<p> </p>
<p><em>Accept methylpropan-2-ol/ methyl-2-propanol.</em></p>
<p><em>Do <strong>not</strong> accept 2-methylpropanol.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>dipole-dipole ✔</p>
<p> </p>
<p><em>Do not accept van der Waals’ forces.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>: 9<br><em><strong>AND</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>: 1 ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sp<sup>2</sup> ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>butan-2-ol/CH<sub>3</sub>CH(OH)C<sub>2</sub>H<sub>5</sub> ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbocation formed from (CH<sub>3</sub>)<sub>3</sub>COH is more stable / (CH<sub>3</sub>)<sub>3</sub>C<sup>+</sup> is more stable than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub><sup>+</sup> ✔</p>
<p><br>«because carbocation has» greater number of alkyl groups/lower charge on the atom/higher e<sup>-</sup> density<br><em><strong>OR</strong></em><br>«greater number of alkyl groups» are more electron releasing<br><em><strong>OR</strong></em><br>«greater number of alkyl groups creates» greater inductive/+I effect ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> award any marks for simply quoting Markovnikov’s rule.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="213" height="183"></p>
<p><em>Do <strong>not</strong> penalize missing brackets or n.</em></p>
<p><em>Do <strong>not</strong> award mark if continuation bonds are not shown.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change «in colour/appearance/solution» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«nucleophilic» substitution<br><em><strong>OR</strong></em><br>SN2 ✔</p>
<p><em><br>Accept “hydrolysis”.</em></p>
<p><em>Accept SN1</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy/E ≥ activation energy/E<sub>a</sub> ✔</p>
<p>correct orientation «of reacting particles»<br><em><strong>OR</strong></em><br>correct geometry «of reacting particles» ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="551" height="106"></p>
<p>curly arrow going from lone pair/negative charge on O in <sup>-</sup>OH to C ✔</p>
<p>curly arrow showing I leaving ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p> </p>
<p><em>Accept OH<sup>-</sup> with or without the lone pair.</em></p>
<p><em>Do <strong>not</strong> allow curly arrows originating on H, rather than the -, in OH<sup>-</sup>.</em></p>
<p><em>Accept curly arrows in the transition state.</em></p>
<p><em>Do not penalize if HO and I are not at 180°.</em></p>
<p><em>Do not award M3 if OH–C bond is represented.</em></p>
<p><em>Award <strong>[2 max]</strong> if S<sub>N</sub>1 mechanism shown.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases/less polar <em><strong>AND</strong> </em>electronegativity «of the halogen» decreases ✔</p>
<p> </p>
<p><em>Accept “decreases” <strong>AND</strong> a correct comparison of the electronegativity of two halogens.</em></p>
<p><em>Accept “decreases” <strong>AND</strong> “attraction for valence electrons decreases”.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Naming the organic compound using IUPAC rules was generally done well.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance in stating the number of σ (sigma) and π (pi) bonds in propanone; the common answer was 3 σ and 1 π instead of 9 σ and 1 π, suggesting the three C-H σ bonds in each of the two methyl groups were ignored.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sp<sup>2</sup> hybridization of the central carbon atom in the ketone was very done well.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; some identified 2-methylpropan-1-ol or -2-ol, instead butan-2-ol/CH<sub>3</sub>CH(OH)C<sub>2</sub>H<sub>5</sub> as the isomer that exists as an optical isomer.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; some had a H and CH<sub>3</sub> group on each C atom across double bond instead of having two H atoms on one C and two CH<sub>3</sub> groups on the other.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poor performance, particularly in light of past feedback provided in similar questions since there was repeated reference simply to Markovnikov's rule, without any explanation.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; deducing structural formula of repeating unit of the polymer was challenging in which continuation bonds were sometimes missing, or structure included a double bond or one of the CH<sub>3</sub> group was missing.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; deducing whether the tertiary alcohol could be oxidized solicited mixed responses ranging from the correct one, namely no change (in colour, appearance or solution), to tertiary alcohol will be reduced, or oxidized, or colour will change will occur, and such.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Excellent performance on the type of reaction but with some incorrect answers such as alkane substitution, free radical substitution or electrophilic substitution.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance. For the requirements for a collision between reactants to yield products, some suggested necessary, sufficient or enough energy or even enough activation energy instead of energy/<em>E ≥ </em>activation energy/<em>E</em><sub>a</sub>.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mechanism for SN2 not done well. Often the negative charge on OH was missing, the curly arrow was not going from lone pair/negative charge on O in -OH to C, or the curly arrow showing I leaving placed incorrectly and specially the negative charge was missing in the transition state. Formation of a carbocation intermediate indicating SN1 mechanism could score a maximum of 2 marks.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance on how the polarity of C-X bond changes going down group 17.</p>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Sulfur trioxide is produced from sulfur dioxide.</p>
<p style="text-align: center;">2SO<sub>2 </sub>(g) + O<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2SO<sub>3 </sub>(g) Δ<em>H</em> = −196 kJ mol<sup>−1</sup></p>
</div>
<div class="specification">
<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis structure of SO<sub>3</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electron domain geometry of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of a strong Brønsted–Lowry acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>increases rate <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✔</p>
<p>provides alternative pathway «with lower <em>E</em><sub>a</sub>»<br><em><strong>OR</strong></em><br>more/larger fraction of molecules have the «lower» <em>E</em><sub>a</sub> ✔</p>
<p> </p>
<p><em>Accept description of how catalyst lowers E<sub>a</sub> for M2 (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”, “helps favorable orientation of molecules”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="344" height="243"></p>
<p>both axes correctly labelled ✔</p>
<p>peak of T<sub>2</sub> curve lower <em><strong>AND</strong> </em>to the right of T<sub>1</sub> curve ✔</p>
<p>lines begin at origin <em><strong>AND</strong> </em>correct shape of curves <em><strong>AND</strong> </em>T<sub>2</sub> must finish above T<sub>1</sub> ✔</p>
<p> </p>
<p><em>Accept “probability «density» / number of particles / N / fraction” on y-axis.</em></p>
<p><em>Accept “kinetic E/KE/E<sub>k</sub>” but not just “Energy/E” on x-axis.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decrease <em><strong>AND</strong> </em>equilibrium shifts left / favours reverse reaction ✔</p>
<p>«forward reaction is» exothermic / ΔH is negative ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="133" height="112">✔</p>
<p> </p>
<p><em>Note:</em></p>
<p><img src="" width="489" height="244"></p>
<p><em>Accept any of the above structures as formal charge is not being assessed.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>three electron domains «attached to the central atom» ✔</p>
<p>repel/as far away as possible /120° «apart» ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sulfuric acid/H<sub>2</sub>SO<sub>4</sub> ✔</p>
<p><em><br>Accept “disulfuric acid/H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>”.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fully ionizes/dissociates ✔</p>
<p>proton/H<sup>+</sup> «donor »✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Overall well answered though some answers were directed to explain the specific example rather than the simple and standard definition of the effect of a catalyst.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few got the 3 marks for this standard question (average mark 1.7), the most common error being incomplete/incorrect labelling of axes, curves beginning above 0 on y-axis or inverted curves.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates got one mark at least, sometimes failing to state the effect on the production of SO<sub>3</sub> though they knew this quite obviously. This failure to read the question properly also resulted in an incorrect prediction based exclusively on kinetics instead of using the information provided to guide their answers.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Drawing the Lewis structure of SO<sub>3</sub> proved to be challenging, with lots of incorrect shapes, lone pair on S, etc.; accepting all resonant structures allowed many candidates to get the mark which was fair considering no formal charge estimation was required.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most were focussed on the shape itself instead of explaining what led them to suggest that shape; number of electron domains allowed most candidates to get one mark and eventually a mention of bond angles resulted in only 35% getting both marks. In general, students were not able to provide clear explanations for the shape (not a language issue) but rather were happy to state the molecular geometry which they knew, but wasn't what was actually required for the mark.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6(d)(i)-(ii): These simple questions could be expected to be answered by all HL candidates. However 20% of the candidates suggested hydroxides or hydrogen as products of an aqueous dissolution of sulphur oxide. In the case of the definition of a strong Brønsted-Lowry acid, only 50% got both marks, often failing to define "strong" but in other cases defining them as bases even.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about the decomposition of hydrogen peroxide.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><br>2H<sub>2</sub>O<sub>2</sub> (aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\xrightarrow{{{\text{KI (aq)}}}}">
<mover>
<mo>→</mo>
<mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
<mrow>
<mrow>
<mtext>KI (aq)</mtext>
</mrow>
</mrow>
</mpadded>
</mover>
</math></span> O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/4bi_1.PNG" alt width="427" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The data for the first trial is given below.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="images/4bi_2.PNG" alt width="398" height="220"></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Plot a graph on the axes below and from it determine the average rate of<br>formation of oxygen gas in cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="images/4bi_3.PNG" alt width="388" height="614"></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Average rate of reaction:</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Two more trials (2 and 3) were carried out. The results are given below.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Determine the rate equation for the reaction and its overall order, using your answer from (b)(i).</span></span></p>
<p>Rate equation: </p>
<p>Overall order: </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2</sub> > T<sub>1</sub>.</span></p>
<p><img src="images/4biii.PNG" alt width="583" height="382"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(iii), why an increased temperature causes the rate of reaction to increase.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">MnO<sub>2</sub> is another possible catalyst for the reaction. State the IUPAC name for MnO<sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">H<sub>2</sub>O<sub>2</sub> (aq) + CH<sub>3</sub>COOH (aq) ⇌ CH<sub>3</sub>COOOH (aq) + H<sub>2</sub>O (l)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sodium percarbonate, 2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">M<sub>r</sub> (2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>) = 314.04</span></p>
<p><span style="background-color: #ffffff;">Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">decomposes in light <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “sensitive to light”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/4bi_m.PNG" alt width="407" height="659"></p>
<p><span style="background-color: #ffffff;">points correctly plotted <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">best fit line <em><strong>AND</strong> </em>extended through (to) the origin <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"><em>Average rate of reaction:</em><br>«slope (gradient) of line =» 0.022 «cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept range 0.020–0.024cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Rate equation</em>:<br>Rate = <em>k</em>[H<sub>2</sub>O<sub>2</sub>] × [KI] <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br></span></p>
<p><span style="background-color: #ffffff;"><em>Overall order</em>:<br>2 <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Rate constant must be included.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><img src="images/4biii_m.PNG" alt width="507" height="333"></span></p>
<p><span style="background-color: #ffffff;">peak of T<sub>2</sub> to right of <em><strong>AND</strong></em> lower than T<sub>1</sub> <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">lines begin at origin <em><strong>AND</strong></em> T<sub>2</sub> must finish above T<sub>1</sub> <strong>[✔]</strong></span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">E<sub>a</sub> marked on graph <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">explanation in terms of more “particles” with E ≥ E<sub>a</sub></span></p>
<p><em><strong><span style="background-color: #ffffff;">OR</span></strong></em></p>
<p><span style="background-color: #ffffff;">greater area under curve to the right of E<sub>a</sub> in T<sub>2</sub> <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">manganese(IV) oxide</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">manganese dioxide <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “manganese(IV) dioxide”.</span></em></p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">moves «position of» equilibrium to right/products <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “reactants are always present as the reaction is in equilibrium”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">M( H<sub>2</sub>O<sub>2</sub>) «= 2 × 1.01 + 2 × 16.00» = 34.02 «g» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«% H<sub>2</sub>O<sub>2</sub> = 3 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{34.02}}{{314.04}}">
<mfrac>
<mrow>
<mn>34.02</mn>
</mrow>
<mrow>
<mn>314.04</mn>
</mrow>
</mfrac>
</math></span> × 100 =» 32.50 «%» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There were a couple of comments claiming that this NOS question on “why to store hydrogen peroxide in brown bottles” is not the syllabus. Most candidates were quite capable of reasoning this out.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could plot a best fit line and find the slope to calculate an average rate of reaction.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance but with answers that either typically included only [H<sub>2</sub>O<sub>2</sub>] with first or second order equation or even suggesting zero order rate equation.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Fair performance; errors including not starting the two curves at the origin, drawing peak for T2 above T1, T2 finishing below T1 or curves crossing the x-axis.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates earned at least one mark, many both marks. Errors included not annotating the graph with <em>E</em><sub>a</sub> and referring to increase of kinetic energy as reason for higher rate at T2.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question. Very few candidates had problem with nomenclature.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One teacher suggested that “stored” would have been better than “sold” for this question. There were a lot of irrelevant answers with many believing the back reaction was an acid dissociation.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It is recommended that candidates use the relative atomic masses given in the periodic table.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p> </p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔ </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br></span></p>
<p><span style="background-color: #ffffff;">«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires</em>:<br>«delocalized» electrons «flow» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math alttext="\frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrode» 3 <em><strong>AND</strong> </em>oxygen/O<sub>2</sub> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept chlorine/Cl<sub>2</sub>.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>O (l) → 4H<sup>+</sup> (aq) + O<sub>2</sub> (g) + 4e<sup>–</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept 2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup>.<br>Accept 4OH<sup>−</sup> → 2H<sub>2</sub>O + O<sub>2</sub> + 4e<sup>−</sup></span></em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enthalpy of solution = lattice enthalpy + enthalpies of hydration «of Cu<sup>2+</sup> and Cl<sup>−</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;">«+2824 kJ mol<sup>–1</sup> − 2161 kJ mol<sup>–1</sup> − 2(359 kJ mol<sup>–1</sup>) =» −55 «kJ mol<sup>–1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept enthalpy cycle. <br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E</em><sup>θ</sup> = «+0.52 – 0.15 = +» 0.37 «V» ✔</span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">spontaneous <em><strong>AND</strong> E</em><sup>θ</sup> positive ✔</span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><sup>θ</sup> = «−<em>nFE</em> = −1 mol × 96 500 C Mol<sup>–1</sup> × 0.37 V=» −36 000 J/−36 kJ ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “−18 kJ mol<sup>–1</sup> «per mole of Cu<sup>+</sup>»”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept values of n other than 1.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Apply SF in this question.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept J/kJ or J mol<sup>−1</sup>/kJ mol<sup>−1</sup> for units.</span></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2 mol (aq) → 1 mol (aq) <em><strong>AND</strong> </em>decreases ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “solid formed from aqueous solution <strong>AND</strong> decreases”.<br>Do <strong>not</strong> accept 2 mol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> 1 mol without (aq).</span></em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> </span><span style="background-color: #ffffff;">< 0</span><span style="background-color: #ffffff;"> <strong>AND</strong> </span><span style="background-color: #ffffff;">Δ</span><span style="background-color: #ffffff;"><em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> < 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span></span><span style="background-color: #ffffff;"> < 0</span><em><span style="background-color: #ffffff;"><br><strong>OR</strong><br></span></em><span style="background-color: #ffffff;">Δ<em>G</em></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> + <em>T</em>Δ<em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> < 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> < 0 ✔</span></p>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>T</em>Δ<em>S</em> more negative «reducing spontaneity» <em><strong>AND</strong> </em>stability increases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept calculation showing non-spontaneity at 433 K.</span></em></p>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ligands cause» d-orbitals «to» split ✔</span></p>
<p><span style="background-color: #ffffff;">light absorbed as electrons transit to higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light absorbed as electrons promoted ✔</span></p>
<p><span style="background-color: #ffffff;">energy gap corresponds to «orange» light in visible region of spectrum ✔</span></p>
<p><span style="background-color: #ffffff;">colour observed is complementary ✔</span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">full «3»d sub-level/orbitals<br><em><strong>OR</strong></em><br>no d–d transition possible «and therefore no colour» ✔</span></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">octahedral <em><strong>AND</strong> </em>90° «180° for axial» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept square-based bi-pyramid.</span></em></p>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any <strong>two </strong>of:</em><br>ligand/chloride ion Lewis base <em><strong>AND</strong> </em>donates e-pair ✔<br>not Brønsted–Lowry base <em><strong>AND</strong> </em>does not accept proton/H<sup>+</sup> ✔<br>Lewis definition extends/broader than Brønsted–Lowry definition ✔</span></p>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br>