File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 6/markSceme-HL-paper1html
File size: 187.37 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p><span style="background-color: #ffffff;">Several reactions of calcium carbonate with dilute hydrochloric acid are carried out at the same temperature.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">CaCO<sub>3</sub> (s) + 2HCl (aq) → CaCl<sub>2</sub> (aq) + H<sub>2</sub>O (l) + CO<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">Which reaction has the greatest rate?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="611" height="216"></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>74 % of the candidates chose the correct combination to give the greatest rate of reaction. The most commonly chosen distractor was D where “smaller surface area of same mass of CaCO<sub>3</sub>(s)” was chosen. It seems these candidates confused “surface area” with “particle size”.</p>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which change does </span><strong><span class="fontstyle2">not </span></strong><span class="fontstyle0">increase the rate of this reaction?</span></p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>CuCO</mi><mn>3</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><msub><mi>SO</mi><mn>4</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CuSO</mi><mn>4</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>CO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo></math></p>
<p style="text-align: left;"><span class="fontstyle0">A.  Increasing the particle size of the </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CuCO</mi><mn>3</mn></msub></math><span class="fontstyle0"><br></span></p>
<p style="text-align: left;"><span class="fontstyle0">B.  Increasing the temperature<br></span></p>
<p style="text-align: left;"><span class="fontstyle0">C.  Increasing the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><msub><mi>SO</mi><mn>4</mn></msub><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"><br></span></p>
<p style="text-align: left;"><span class="fontstyle0">D.  Stirring the reaction mixture</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Perhaps asking which factor does not affect a rate threw some candidates. 80% did get this correct but it&nbsp;was not a very discriminating question with higher and lower scorers performing equally well/poor.</p>
</div>
<br><hr><br><div class="question">
<p>Which explains increasing rate of reaction with increasing temperature?</p>
<p><img src="" width="393" height="170"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statements are correct about the action of a catalyst in a chemical reaction?</p>
<p style="padding-left:60px;">I.   It increases the energy of each collision.<br>II.  It alters the mechanism of the reaction.<br>III. It remains unchanged at the end of the reaction.</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which properties can be monitored to determine the rate of the reaction?</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">Fe (s) + CuSO<sub>4</sub> (aq) → Cu (s) + FeSO<sub>4</sub> (aq)</span></p>
<p><span style="background-color: #ffffff;">    I. change in volume<br>    II. change in temperature<br>    III. change in colour</span></p>
<p><span style="background-color: #ffffff;">A. I and II only</span></p>
<p><span style="background-color: #ffffff;">B. I and III only</span></p>
<p><span style="background-color: #ffffff;">C. II and III only</span></p>
<p><span style="background-color: #ffffff;">D. I, II and III</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>One G2 form queried if visible spectroscopy is on the core syllabus and therefore should candidates be aware of monitoring a reaction via colour change. However, 6.1 clearly states that following change in colour is one method of following reactions.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which conditions are required for the reaction between two molecules?</span></p>
<p><span style="background-color: #ffffff;">    I. a collision<br>    II. <em>E ≥ E<sub>a</sub></em><br>    III. proper orientation</span></p>
<p><span style="background-color: #ffffff;">A. I and II only</span></p>
<p><span style="background-color: #ffffff;">B. I and III only</span></p>
<p><span style="background-color: #ffffff;">C. II and III only</span></p>
<p><span style="background-color: #ffffff;">D. I, II and III</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question on collision theory was one of the best answered in the exam.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the activation energy of the reverse reaction?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="599" height="320"></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>81&thinsp;% of the candidates identified the activation energy of the reverse reaction. The most commonly chosen distractor was B, the activation energy of the forward reaction.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The same amount of two gases,<strong> X</strong> and <strong>Y</strong>, are in two identical containers at the same temperature. What is the difference between the gases?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="447" height="319"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. <strong>X</strong> has the higher molar mass.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. <strong>Y</strong> has the higher molar mass.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. <strong>X</strong> has the higher average kinetic energy.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. <strong>Y</strong> has the higher average kinetic energy.</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question generated debate among teachers. It extended the concept that equal amounts of gases at the same temperature have the same distribution of kinetic energy curve, to the molecular speed distribution among particles. Candidates had to know that kinetic energy is calculated based on speed and mass of the molecule to deduce the answer.</p>
<p>Some teachers welcomed the question as a &ldquo;good challenge to students&rsquo; thinking&rdquo;, others thought it was difficult and a couple felt it was outside of the syllabus.</p>
<p>It was by far the most challenging question on the paper with only 21&thinsp;% of candidates obtaining the correct answer. The majority of candidates chose distractor D which did not take note of the fact that the gases were at the same temperature and hence had the same average kinetic energy.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">The dotted line represents the formation of oxygen, O<sub>2</sub> (g), from the uncatalysed complete decomposition of hydrogen peroxide, H<sub>2</sub>O<sub>2</sub> (aq).</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="358" height="260"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Which curve represents a catalysed reaction under the same conditions?</span></span></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Graphical representation of catalysis was also well answered.</p>
</div>
<br><hr><br>