File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 6/SL-paper2html
File size: 699.62 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>The rate of the acid-catalysed iodination of propanone can be followed by measuring how the&nbsp;concentration of iodine changes with time.</p>
<p style="text-align: center;">I<sub>2</sub>(aq) + CH<sub>3</sub>COCH<sub>3</sub>(aq) → CH<sub>3</sub>COCH<sub>2</sub>I(aq) + H<sup>+</sup>(aq) + I<sup>−</sup>(aq)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the change of iodine concentration could be followed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student produced these results with [H<sup>+</sup>] = 0.15 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup>. Propanone and acid were in excess and iodine was the limiting reagent.</p>
<p>Determine the relative rate of reaction when [H<sup>+</sup>] = 0.15 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup>.</p>
<p><img src="images/Schermafbeelding_2017-09-22_om_15.59.41.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/01.a.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then carried out the experiment at other acid concentrations with all other conditions remaining unchanged.</p>
<p><img src=""></p>
<p>State and explain the relationship between the rate of reaction and the concentration of acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate of sulfur at room temperature.</p>
<p style="text-align: center;">Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq) + 2HCl (aq) → S (s) + SO<sub>2&nbsp;</sub>(g) + 2NaCl (aq) + X</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the formula and state symbol of X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the experiment should be carried out in a fume hood or in a well-ventilated laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.</p>
<p><img src="" alt></p>
<p>10.0 cm<sup>3</sup> of 2.00 mol dm<sup>-3</sup> hydrochloric acid was added to a 50.0 cm<sup>3</sup> solution of sodium thiosulfate at temperature, T1. Students measured the time taken for the mark to be no longer visible to the naked eye. The experiment was repeated at different concentrations of sodium thiosulfate.</p>
<p><img src="" alt></p>
<p>Show that the hydrochloric acid added to the flask in experiment 1 is in excess.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{\rm{t}}}">
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mrow>
        <mi mathvariant="normal">t</mi>
      </mrow>
    </mrow>
  </mfrac>
</math></span> against concentration of sodium thiosulfate on the axes provided.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student decided to carry out another experiment using 0.075 mol dm<sup>-3</sup> solution of sodium thiosulfate under the same conditions. Determine the time taken for the mark to be no longer visible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An additional experiment was carried out at a higher temperature, T<sub>2</sub>.</p>
<p>(i) On the same axes, sketch Maxwell–Boltzmann energy distribution curves at the two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2 </sub>&gt; T<sub>1</sub>.</p>
<p><img src="" alt></p>
<p>(ii) Explain why a higher temperature causes the rate of reaction to increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why the values of rates of reactions obtained at higher temperatures may be less accurate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>

<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>
<p><span style="background-color: #ffffff;">The x-axis and y-axis are shown with arbitrary units.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="704" height="342"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>
<p><span style="background-color: #ffffff;">Sketch, on the axes in question 2, the graph that you would expect.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment gave an error in the rate because the pressure gauge was inaccurate. Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="400" height="259"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium reacts with sulfuric acid:</p>
<p style="text-align: center;">Mg(s) + H<sub>2</sub>SO<sub>4</sub>(aq) → MgSO<sub>4</sub>(aq) + H<sub>2</sub>(g)</p>
<p>The graph shows the results of an experiment using excess magnesium ribbon and dilute&nbsp;sulfuric acid.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-25_om_09.45.43.png" alt="M17/4/CHEMI/SP2/ENG/TZ2/05.a.i"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the rate of the reaction decreases with time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the same graph, the expected results if the experiment were repeated using powdered magnesium, keeping its mass and all other variables unchanged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrogen dioxide and carbon monoxide react according to the following equation:</p>
<p>NO<sub>2</sub>(g) + CO(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> NO(g) + CO<sub>2</sub>(g)               Δ<em>H</em> = –226 kJ</p>
<p><img src=""></p>
<p>Calculate the activation energy for the reverse reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of NO<sub>2</sub> in the atmosphere to produce acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Graphing is an important tool in the study of rates of chemical reactions.</p>
</div>

<div class="specification">
<p>Excess hydrochloric acid is added to lumps of calcium carbonate. The graph shows&nbsp;the volume of carbon dioxide gas produced over time.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a Maxwell–Boltzmann distribution curve for a chemical reaction showing the activation energies with and without a catalyst.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a curve on the graph to show the volume of gas produced over time if the same mass of crushed calcium carbonate is used instead of lumps. All other conditions remain constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect on the rate of reaction if ethanoic acid of the same concentration is used in place of hydrochloric acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why pH is more widely used than [H<sup>+</sup>] for measuring relative acidity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why H<sub>3</sub>PO<sub>4</sub>/HPO<sub>4</sub><sup>2−</sup> is not a conjugate acid-base pair.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>1-chloropentane reacts with aqueous sodium hydroxide.</p>
</div>

<div class="specification">
<p>The reaction was repeated at a lower temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the role of the hydroxide ion in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with a reason, why 1-iodopentane reacts faster than 1-chloropentane under the same conditions. Use section 11 of the data booklet for consistency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch labelled Maxwell–Boltzmann energy distribution curves at the original temperature (T<sub>1</sub>) and the new lower temperature (T<sub>2</sub>).</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="449" height="297"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of lowering the temperature on the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbonate reacts with hydrochloric acid.</p>
<p style="text-align: center;">CaCO<sub>3</sub>(s) + 2HCl(aq) → CaCl<sub>2</sub>(aq) + H<sub>2</sub>O(l) + CO<sub>2</sub>(g)</p>
</div>

<div class="specification">
<p>The results of a series of experiments in which the concentration of HCl was varied are&nbsp;shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-09_om_13.37.39.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/04.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>ways in which the progress of the reaction can be monitored. No practical details are required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why point D is so far out of line assuming human error is not the cause.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student titrated an ethanoic acid solution, CH<sub>3</sub>COOH (aq), against 50.0 cm<sup>3</sup> of&nbsp;0.995 mol dm<sup>–3</sup> sodium hydroxide, NaOH (aq), to determine its concentration.</p>
<p>The temperature of the reaction mixture was measured after each acid addition and plotted&nbsp;against the volume of acid.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Curves <strong>X</strong> and <strong>Y</strong> were obtained when a metal carbonate reacted with the same volume&nbsp;of ethanoic acid under two different conditions.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph, estimate the initial temperature of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum temperature reached in the experiment by analysing the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of ethanoic acid, CH<sub>3</sub>COOH, in mol dm<sup>–3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the heat change, <em>q</em>, in kJ, for the neutralization reaction between ethanoic acid and sodium hydroxide.</p>
<p>Assume the specific heat capacities of the solutions and their densities are those of water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, Δ<em>H</em>, in kJ mol<sup>–1</sup>, for the reaction between ethanoic acid and sodium hydroxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the shape of curve <strong>X</strong> in terms of the collision theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> possible reason for the differences between curves <strong>X</strong> and <strong>Y</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>When dinitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:</p>
<p style="text-align: center;">N<sub>2</sub>O<sub>5 </sub>(g) → 2NO<sub>2 </sub>(g) +&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>O<sub>2 </sub>(g)</p>
</div>

<div class="specification">
<p>Data for the decomposition at constant temperature is given.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the extent of decomposition could be measured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the missing point on the graph and draw the best-fit line.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the relationship between the concentration of N<sub>2</sub>O<sub>5</sub> and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why increasing the concentration of N<sub>2</sub>O<sub>5</sub> increases the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>Label the diagram with the species in the equation.</p>
<p><span class="fontstyle0"><img src=""></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>3.26 g of iron powder are added to 80.0 cm<sup>3</sup> of 0.200 mol dm<sup>−3</sup> copper(II) sulfate solution. The following reaction occurs:</p>
<p style="text-align: center;">Fe (s) + CuSO<sub>4</sub> (aq) → FeSO<sub>4</sub> (aq) + Cu (s)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the limiting reactant showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of copper obtained experimentally was 0.872 g. Calculate the percentage yield of copper.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5 °C.</p>
<p>Calculate the enthalpy change, Δ<em>H</em>, of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State another assumption you made in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The only significant uncertainty is in the temperature measurement.</p>
<p>Determine the absolute uncertainty in the calculated value of Δ<em>H</em> if the uncertainty in the temperature rise was ±0.2 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the concentration of iron(II) sulfate, FeSO<sub>4</sub>, against time as the reaction proceeds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be determined from the graph in part (c)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a reactive metal often found in alloys.</p>
</div>

<div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>

<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&nbsp;+ HO<sup>&ndash;</sup> &rarr; CH<sub>3</sub>OH + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>&ndash;</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium can be produced by the electrolysis of molten magnesium chloride.</p>
<p>Write the half-equation for the formation of magnesium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound A, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest force between the molecules of Compound B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>

<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>

<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="205" height="119"></p>
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The potential energy profile for a reaction is shown. Sketch a dotted line labelled “Catalysed” to indicate the effect of a catalyst.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="454" height="317"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a catalyst has such an effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2</sub> (aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in e(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to e(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about peroxides.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2H<sub>2</sub>O<sub>2</sub> (aq)&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\xrightarrow{{{\text{KI (aq)}}}}">
  <mover>
    <mo>→</mo>
    <mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
      <mrow>
        <mrow>
          <mtext>KI (aq)</mtext>
        </mrow>
      </mrow>
    </mpadded>
  </mover>
</math></span> O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="268" height="159"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The data for the first trial is given below.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="" width="260" height="143"></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Plot a graph on the axes below and from it determine the average rate of formation of oxygen gas in cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="" width="371" height="601"></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Average rate of reaction:</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2</sub> &gt; T<sub>1</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="393" height="257"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(ii), why an increased temperature causes the rate of reaction to increase.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">MnO<sub>2</sub> is another possible catalyst for the reaction. State the IUPAC name for MnO<sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on why peracetic acid, CH<sub>3</sub>COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">H<sub>2</sub>O<sub>2</sub> (aq) + CH<sub>3</sub>COOH (aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>COOOH (aq) + H<sub>2</sub>O (l)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sodium percarbonate, 2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><em>M</em><sub>r</sub> (2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>) = 314.04</span></p>
<p><span style="background-color: #ffffff;">Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Sulfur trioxide is produced from sulfur dioxide.</p>
<p style="text-align: center;">2SO<sub>2&thinsp;</sub>(g) + O<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2SO<sub>3&thinsp;</sub>(g)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &Delta;<em>H</em> = &minus;196&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="specification">
<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>
</div>

<div class="specification">
<p>Nitric acid, HNO<sub>3</sub>, is another strong Br&oslash;nsted&ndash;Lowry acid. Its conjugate base is the nitrate ion, NO<sub>3</sub><sup>&minus;</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> &gt; T<sub>1</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of a strong Brønsted–Lowry acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis structure of NO<sub>3</sub><sup>−</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electron domain geometry of NO<sub>3</sub><sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">An electrolysis cell was assembled using graphite electrodes and connected as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;">Electrolyte:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br>