File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 20/markSceme-HL-paper3html
File size: 98.74 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><span style="background-color: #ffffff;">Liquid-crystal displays (LCDs) have many uses.</span></p>
<p><span style="background-color: #ffffff;">A molecule which acts as a chiral nematic thermotropic liquid-crystal is given.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="446" height="134"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Label with an asterisk, *, the chiral carbon atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the effects of very low and high temperatures on the liquid-crystal behaviour of this molecule.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Low temperature:</span></p>
<p><span style="background-color: #ffffff;">High temperature:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="441" height="131"> <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Low temperature:</em><br>intermolecular forces prevent molecules moving <em><strong>AND</strong> </em>solid/«normal» crystal formation <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>High temperature:</em><br>«above a critical temperature» disrupts alignment of molecules <em><strong>AND</strong> </em>behaves as fluid/liquid <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “weak intermolecular forces break AND behaves as fluid/liquid”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Identifying a chiral carbon atom was answered reasonably well.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Explaining effects of very low and very high temperatures on liquid-crystal behaviour proved difficult for most candidates. Responses lacked the required detail about intermolecular forces between molecules.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Vision is dependent on retinol (vitamin A) present in retina cells. Retinol is oxidized to the photosensitive chemical 11-<em>cis</em>-retinal and isomerizes to 11-<em>trans</em>-retinal on absorption of light.</p>
<p>Outline how the formation of 11-<em>trans</em>-retinal results in the generation of nerve signals to the brain.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>11-<em>trans</em> retinal no longer fits into the rhodopsin/protein<br><em><strong>OR</strong></em><br>11-<em>trans</em> retinal is ejected from the rhodopsin/protein</p>
<p>leads to conformational change in rhodopsin/protein «to opsin generating signals»</p>
<p><em><strong>[2 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Amino acids are the building blocks of proteins.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structures of the main form of glycine in buffer solutions of pH 1.0 and 6.0.</p>
<p>The p<em>K</em><sub>a</sub> of glycine is 2.34.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of a buffer system with a concentration of 1.25 × 10<sup>−3</sup> mol dm<sup>−3</sup> carbonic acid and 2.50 × 10<sup>−2</sup> mol dm<sup>−3</sup> sodium hydrogen carbonate. Use section 1 of the data booklet.</p>
<p>p<em>K</em><sub>a</sub> (carbonic acid) = 6.36</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the wedge and dash (3-D) representations of alanine enantiomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>UV-Vis spectroscopy can be used to determine the unknown concentration of a substance in a solution.</p>
<p>Calculate the concentration of an unknown sample of pepsin with an absorbance of 0.725 using section 1 of the data booklet.</p>
<p>Cell length = 1.00 cm</p>
<p>Molar absorptivity (extinction coefficient) of the sample = 49650 dm<sup>3</sup> cm<sup>−1</sup> mol<sup>−1</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A different series of pepsin samples is used to develop a calibration curve.</p>
<p> <img src=""></p>
<p>Estimate the concentration of an unknown sample of pepsin with an absorbance of 0.30 from the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-08_om_18.45.38.png" alt="M18/4/CHEMI/HP3/ENG/TZ2/08.c/M"></p>
<p> </p>
<p><em>Penalize charge on incorrect atom once </em><em>only.</em></p>
<p><em>Penalize missing hydrogens or incorrect </em><em>bond connectivities once only in Option </em><em>B.</em></p>
<p><em>Accept condensed structural formulas.</em></p>
<p><em>Accept skeletal structures.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><strong>«</strong>pH = 6.36 + log <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{2.50 \times {{10}^{ - 2}}}}{{1.25 \times {{10}^{ - 3}}}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>2.50</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> =<strong>»</strong></p>
<p>7.66</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><strong>«</strong><em>K</em><sub><em>a </em></sub>= 4.4 × 10<sup>–7</sup> = [H<sup>+</sup>] <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{2.50 \times {{10}^{ - 2}}}}{{1.25 \times {{10}^{ - 3}}}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>2.50</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.25</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, [H<sup>+</sup>] = 2.2 × 10<sup>–8</sup> mol dm<sup>–3</sup><strong>»</strong></p>
<p><strong>«</strong>pH =<strong>» </strong>7.66</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “</em><strong><em>«</em></strong><em>pH =</em><strong><em>» </em></strong><em>8”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Penalize missing hydrogens or incorrect bond connectivities once only in Option B.</em></p>
<p><em>Wedges <strong>AND</strong> dashes must be used.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.725}}{{49650{\text{ d}}{{\text{m}}^3}\;{\text{c}}{{\text{m}}^{ - 1}}\;{\text{mo}}{{\text{l}}^{ - 1}} \times 1.00\,{\text{cm}}}} = ">
<mfrac>
<mrow>
<mn>0.725</mn>
</mrow>
<mrow>
<mn>49650</mn>
<mrow>
<mtext> d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mspace width="thickmathspace"></mspace>
<mrow>
<mtext>c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mspace width="thickmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mn>1.00</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cm</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span><strong>»</strong> 1.46 × 10<sup>−5</sup> «mol dm<sup>−3</sup>»</p>
<p><em><strong>[1 mark]</strong></em></p>
<p> </p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.65 <strong>«</strong>μg cm<sup>–3</sup><strong>»</strong></p>
<p><em>Accept any value in the range 0.60–0.70 <strong>«</strong>μg cm<sup>–3</sup><strong>»</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Taxol is an anticancer drug.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State the feature of Taxol that is a major challenge in its synthesis. Use section 37 of the data booklet.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Describe how the challenge in (a) was resolved by pharmaceutical companies.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">numerous stereoisomers/chiral carbons/chiral centres/stereocentres/optical isomers ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept exact number of chiral carbons ie 11, but do <strong>not</strong> accept just “chiral”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">chiral auxiliaries/molecule binds to reactant blocking one reaction site «by steric hindrance»<br><em><strong>OR</strong></em><br>asymmetric synthesis / enantioselective catalysis «producing a specific enantiomer»<br><em><strong>OR</strong></em><br>biosynthesis / genetically modified bacteria/microorganisms ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “use of a chiral auxiliary leading to «the synthesis of» the desired enantiomer”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A polarimeter can be used to determine the optical rotation of an optically active substance.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what happens to plane-polarized light when it passes through a solution of an optically active compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A mixture of enantiomers shows optical rotation.</p>
<p>Suggest a conclusion you can draw from this data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>plane of polarization is rotated</p>
<p> </p>
<p><em>Award zero if answer refers to plane-polarized light being bent.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not a racemic mixture<br><em><strong>OR</strong></em><br>two enantiomers not equimolar<br><em><strong>OR</strong></em><br>mixture contains optically active impurity<br><em><strong>OR</strong></em><br>relative proportions of enantiomers in mixture can be determined</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>