File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 20/markSceme-HL-paper2html
File size: 1.7 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>One structural isomer of C<sub>4</sub>H<sub>9</sub>Br is a chiral molecule.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the three-dimensional shape of each enantiomer of this isomer showing their spatial relationship to each other.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When one enantiomer undergoes substitution by alkaline hydrolysis approximately 75 % of the product molecules show inversion of configuration. Comment on the mechanisms that occur.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the rate of alkaline hydrolysis of an enantiomer of iodopropane is greater than that of an enantiomer of bromopropane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>correct isomer<br>mirror image shown clearly</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>S<sub>N</sub>2 would give inversion of configuration «almost 100%»<br><em><strong>OR <br></strong></em>S<sub>N</sub>1 would give «approximately» 50% of each</p>
<p>so mechanism is a mixture of both mechanisms</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C–I bond «longer, so» weaker «than C–Br bond»<br><em><strong>OR<br></strong></em>I<sup>–</sup> is a better leaving group than Br<sup>–</sup></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Propane and propene are members of different homologous series.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw diagrams to show how sigma (σ) and pi (π) bonds are formed between atoms.</p>
<p><img src="" alt></p>
<p> </p>
<p>(ii) State the number of sigma (σ) and pi (π) bonds in propane and propene.</p>
<p><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct the mechanism of the formation of 2-bromopropane from hydrogen bromide and propene using curly arrows to denote the movement of electrons.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src="" alt></p>
<p><img src="" alt></p>
<p> </p>
<p>ii</p>
<p><img src="" alt></p>
<p><em>Award<strong> [1]</strong> for two or three correct answers.</em><br><em>Award <strong>[2]</strong> for all four correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>curly arrow going from C=C to H of HBr <strong>and</strong> curly arrow showing Br leaving<br>representation of carbocation<br>curly arrow going from lone pair/negative charge on Br<sup>–</sup> to C<sup>+</sup></p>
<p><em>Award <strong>[2 max]</strong> for formation of 1-bromopropane.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Hybridization of hydrocarbons affects their reactivity.</p>
</div>

<div class="specification">
<p>Experiments were carried out to investigate the mechanism of reaction between 2-chloropentane and aqueous sodium hydroxide.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a sigma and pi bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the hybridization of carbon in ethane, ethene and ethyne.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if but-1-ene exhibits cis-trans isomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction which occurs between but-1-ene and hydrogen iodide at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between but-1-ene with hydrogen iodide, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if the product of this reaction exhibits stereoisomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the units of the rate constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial rate of reaction in experiment 4.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, with a reason, the mechanism of the reaction between 2-chloropentane and sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the reason benzene is more reactive with an electrophile than a nucleophile.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Sigma (σ) bond:</em></p>
<p>overlap «of atomic orbitals» along the axial / intermolecular axis / electron density is between nuclei<br><em><strong>OR</strong></em><br>head-on/end-to-end overlap «of atomic orbitals» ✔</p>
<p> </p>
<p><em>Pi (π) bond:</em></p>
<p>overlap «of p-orbitals» above and below the internuclear axis/electron density above and below internuclear axis<br><em><strong>OR</strong></em><br>sideways overlap «of p-orbitals» ✔</p>
<p> </p>
<p><em>Accept a suitable diagram.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="473" height="69"></p>
<p><em><br>All 3 required for mark.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no <em><strong>AND</strong> </em>2 groups on a carbon «in the double bond» are the same/hydrogen «atoms»</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>molecule produced by rearranging atoms bonded on a carbon «in the double bond» is the same as the original ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition ✔</p>
<p> </p>
<p><em>Do not allow nucleophilic addition.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from C=C to H of HI <em><strong>AND</strong> </em>curly arrow showing I leaving ✔</p>
<p>representation of carbocation ✔</p>
<p>curly arrow going from lone pair/negative charge on I<sup>–</sup> to C<sup>+</sup> ✔</p>
<p>2-iodobutane formed ✔</p>
<p> </p>
<p><em>Penalize incorrect bond, e.g. –CH–H<sub>3</sub>C or –CH<sub>3</sub>C once only.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes <em><strong>AND</strong> </em>has a carbon attached to four different groups<br><em><strong>OR</strong></em><br>yes <em><strong>AND</strong> </em>it contains a chiral carbon ✔</p>
<p><em><br>Accept yes <strong>AND</strong> mirror image of molecule different to original/non-superimposable on original.</em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«rate =» k[NaOH][C<sub>5</sub>H<sub>11</sub>Cl] ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mol<sup>–1 </sup>dm<sup>3 </sup>s<sup>–1</sup> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>ALTERNATIVE 1:</strong></p>
<p>«k = » 1.25 «mol<sup>–1 </sup>dm<sup>3 </sup>s<sup>–1</sup>» ✔</p>
<p> </p>
<p>«rate = 1.25 mol<sup>–1 </sup>dm<sup>3 </sup>s<sup>–1</sup> × 0.60 mol dm<sup>–3</sup> × 0.25 mol dm<sup>–3</sup>»</p>
<p>1.9 x 10<sup>–1</sup> «mol dm<sup>–3 </sup>s<sup>–1</sup>» ✔</p>
<p> </p>
<p><strong>ALTERNATIVE 2:</strong></p>
<p>«[NaOH] exp. 4 is 3 × exp. 1»</p>
<p>«[C<sub>5</sub>H<sub>11</sub>Cl] exp. 4 is 2.5 × exp. 1»</p>
<p>«exp. 4 will be » 7.5× faster ✔</p>
<p>1.9 x 10<sup>–1</sup> «mol dm<sup>–3 </sup>s<sup>–1</sup>» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>S<sub>N</sub>2 <em><strong>AND</strong> </em>rate depends on both OH<sup>–</sup> and 2-chloropentane ✔</p>
<p><em><br>Accept E2 <strong>AND</strong> rate depends on both OH<sup>–</sup> and 2-chloropentane.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>delocalized electrons/pi bonds «around the ring»<br><em><strong>OR</strong></em><br>molecule has a region of high electron density/negative charge ✔</p>
<p>electrophiles are attracted/positively charged <em><strong>AND</strong></em> nucleophiles repelled/negatively charged ✔</p>
<p> </p>
<p><em>Do not accept just “nucleophiles less attracted” for <strong>M2</strong>.</em></p>
<p><em>Accept “benzene <strong>AND</strong> nucleophiles are both electron rich” for “repels nucleophiles”.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>

<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>&nbsp;</mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>

<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>

<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math>&nbsp;</span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> <br>Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the mechanism of the reaction between chloroethane and aqueous sodium hydroxide, <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>NaOH</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math>, using curly arrows to represent the movement of electron pairs.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion.<br>Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and chemical shifts with splitting patterns in the <sup>1</sup>H NMR</span><span class="fontstyle0"> spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s produce chlorine radicals. Write two successive propagation steps to show how chlorine radicals catalyse the depletion of ozone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">p</mi><mn>6</mn></msup><mn>3</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>3</mn><msup><mi mathvariant="normal">p</mi><mn>5</mn></msup></math> ✔</p>
<p><em><br>Do <strong>not</strong> accept condensed electron configuration.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cl</mi><mo>-</mo></msup></math> <em><strong>AND</strong> </em>more «electron–electron» repulsion ✔</p>
<p><em><br>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo mathvariant="italic">-</mo></msup></math> <strong>AND</strong> has an extra electron.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> has a greater nuclear charge/number of protons/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">Z</mi><mi>eff</mi></msub></math> «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells<br><strong><em>OR</em></strong><br>same «outer» energy level<br><em><strong>OR</strong></em><br>similar shielding ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«two major» isotopes «of atomic mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>» ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«diatomic» molecule composed of «two» chlorine-37 atoms ✔</p>
<p>chlorine-37 is the least abundant «isotope»<br><em><strong>OR</strong></em><br>low probability of two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><mmultiscripts><mrow></mrow><mprescripts></mprescripts><mn>37</mn></mmultiscripts></mmultiscripts></math> «isotopes» occurring in a molecule ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>86</mn><mo>.</mo><mn>94</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">n</mi><mi>HCl</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>2000</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo> </mo></math>✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>400</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> is the limiting reactant ✔</p>
<p><em><br>Accept other valid methods of determining the limiting reactant in M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>4</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>»</mo></math></p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo>–</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>277</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo>«</mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo></math> ✔</p>
<p><em><br>Accept methods employing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></math></em>.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>4</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>2</mn></math> ✔</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxidizing agent <em><strong>AND</strong></em> oxidation state of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mn</mi></math> changes from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>2</mn></math>/decreases ✔</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially dissociates/ionizes «in water» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>ClO</mi><mo>-</mo></msup></math> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>[</mo><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo>]</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>61</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«free radical» substitution/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">S</mi><mi mathvariant="normal">R</mi></msub></math> ✔</p>
<p><em><br>Do not accept electrophilic or nucleophilic substitution.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloroethane <em><strong>AND</strong></em> C–Cl bond is weaker/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>324</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> than C–H bond/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>414</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math><br><em><strong>OR</strong></em><br>chloroethane <strong><em>AND</em> </strong>contains a polar bond ✔</p>
<p><em><br>Accept “chloroethane <strong>AND</strong> polar”.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="529" height="155"></p>
<p>curly arrow going from lone pair/negative charge on <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">O</mi></math> in <sup>−</sup>OH to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> ✔</p>
<p>curly arrow showing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> leaving ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p> </p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>O</mi><msup><mi>H</mi><mo mathvariant="italic">-</mo></msup></math> with or without the lone pair.</em></p>
<p><em>Do <strong>not</strong> accept curly arrows originating on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><msup><mi>H</mi><mo>-</mo></msup></math>.</em></p>
<p><em>Accept curly arrows in the transition state.</em></p>
<p><em>Do <strong>not</strong> penalize if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mi>O</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>l</mi></math> are not at 180°.</em></p>
<p><em>Do <strong>not</strong> award M3 if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>H</mi><mo>-</mo><mi>C</mi></math> bond is represented.</em> </p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> / <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>OCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math> ✔</p>
<p><em><br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">(</mo><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">2</mn></msub><msub><mo mathvariant="italic">)</mo><mn mathvariant="italic">2</mn></msub><mi>O</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 «signals» ✔</p>
<p>0.9−1.0 <em><strong>AND</strong> </em>triplet ✔</p>
<p>3.3−3.7<em><strong> AND</strong></em> quartet ✔</p>
<p><em>Accept any values in the ranges.</em></p>
<p><em>Award <strong>[1]</strong> for two correct chemical shifts or two correct splitting patterns.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>M</mi><mo>(</mo><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub><mo>)</mo><mo> </mo><mo>=</mo><mo>»</mo><mo> </mo><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>×</mo><mn>35</mn><mo>.</mo><mn>45</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>×</mo><mn>100</mn><mo>%</mo><mo>=</mo><mo>»</mo><mo> </mo><mn>58</mn><mo>.</mo><mn>64</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>research «collaboration» for alternative technologies «to replace <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s»<br><em><strong>OR</strong></em><br>technologies «developed»/data could be shared<br><em><strong>OR</strong></em><br>political pressure/Montreal Protocol/governments passing legislations ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “collaboration”.</em></p>
<p><em>Do <strong>not</strong> accept any reference to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math> as greenhouse gas or product of fossil fuel combustion.</em></p>
<p><em>Accept reference to specific measures, such as agreement on banning use/manufacture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math>s.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub><mo>+</mo><mi>Cl</mi><mo>·</mo><mo>→</mo><mi mathvariant="normal">O</mi><mn>2</mn><mo>+</mo><mi>ClO</mi><mo>·</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>ClO</mi><mo>·</mo><mo>+</mo><mi mathvariant="normal">O</mi><mo>·</mo><mo>→</mo><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo>+</mo><mi>Cl</mi><mo>·</mo></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>ClO</mi><mo>·</mo><mo>+</mo><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub><mo>→</mo><mi>Cl</mi><mo>·</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></math> ✔</p>
<p><em>Penalize missing/incorrect radical dot (∙) once only.</em></p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Well answered question with 90% of candidates correctly identifying the complete electron&nbsp;configuration for chlorine.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could correctly explain the relative sizes of chlorine atom and chloride ion.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Fairly well answered though some candidates missed M2 for not recognizing the same number of&nbsp;shells affected.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than 80% could identify that the two peaks in the MS of chlorine are due to different isotopes.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not well answered. Some candidates were able to identify m/z 74 being due to the m/z of two Cl-37&nbsp;atoms, however fewer candidates were able to explain the relative abundance of the isotope.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Stoichiometric calculations were generally well done and over 90% could calculate mol from a given&nbsp;mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>90% of candidates earned full marks on this 2-mark question involving finding a limiting reactant.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, quite a number of candidates struggled with the quantity of excess reactant despite&nbsp;correctly identifying limiting reactant previously.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could find the volume of gas produced in a reaction under standard conditions.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than 90% could identify the oxidation number of manganese in both MnO<sub>2</sub> and MnCl<sub>2</sub>.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates stated that MnO<sub>2</sub> is an oxidizing agent in the reaction but many did not get the&nbsp;mark because there was no reference to oxidation states.</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another well answered 1-mark question where candidates correctly identified a weak acid as an acid&nbsp;which partially dissociates in water.&nbsp;</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Roughly ⅓ of the candidates failed to identify the conjugate base, perhaps distracted by the fact it&nbsp;was not contained in the equation given.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Vast majority of candidates could calculate the concentration of H<sup>+</sup> (aq) in a HClO (aq) solution with&nbsp;a pH =3.61.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many identified the reaction of chlorine with ethane as free-radical substitution, or just substitution,&nbsp;with some erroneously stating nucleophilic or electrophilic substitution.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The underlying reasons for the relative reactivity of ethane and chloroethane were not very well&nbsp;known with a few giving erroneous reasons and some stating ethane more reactive.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few earned full marks for the curly arrow mechanism of the reaction between sodium hydroxide&nbsp;and chloroethane. Mistakes being careless curly arrow drawing, inappropriate –OH notation, curly arrows&nbsp;from the hydrogen or from the carbon to the C–Cl bond, or a method that missed the transition state.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Approximately 60% could draw ethoxyethane however many demonstrated little knowledge of&nbsp;structure of an ether molecule.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A poorly answered question with some getting full marks on this 1HNMR spectrum of ethoxyethane&nbsp;question. Very few could identify all 3 of number of signals, chemical shift, and splitting pattern.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another good example of candidates being well rehearsed in calculations with 90% earning 2/2 on&nbsp;this question of calculation percentage by mass composition.&nbsp;</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Somewhat disappointing answers on this question about how international cooperation has&nbsp;contributed to the lowering of CFC emissions. Many gave vague answers and some referred to carbon&nbsp;emissions and global warming.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few could construct the propagation equations showing how CFCs affect ozone, and many lost marks by failing to identify ClO· as a radical.</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">is in equilibrium with compound </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="247" height="82"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict the electron domain and molecular geometries around the </span><span class="fontstyle2"><strong>oxygen</strong> </span><span class="fontstyle0">atom of molecule </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">using VSEPR</span></p>
<p><span class="fontstyle0"><img src="" width="734" height="185"></span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of hybridization shown by the central carbon atom in molecule </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the number of sigma (</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">σ</mi></math></span><span class="fontstyle0">) and pi (<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">π</mi></math></span><span class="fontstyle0">) bonds around the central carbon atom in molecule </span><strong><span class="fontstyle3">B</span></strong>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The IR spectrum of one of the compounds is shown:</span></p>
<p><img src="" width="687" height="247"></p>
<p style="text-align: center;"><em><span class="fontstyle0">COBLENTZ SOCIETY. Collection © 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.</span></em></p>
<p style="text-align: left;"><span class="fontstyle0">Deduce, giving a reason, the compound producing this spectrum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><strong><span class="fontstyle2">B </span></strong><span class="fontstyle0">are isomers. Draw two other structural isomers with the formula <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><mi mathvariant="normal">O</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The equilibrium constant, </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math><span class="fontstyle0">, for the conversion of </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle3">B </span></strong><span class="fontstyle0">is </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> <span class="fontstyle0">in water at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, which compound, </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">or </span><strong><span class="fontstyle3">B</span></strong><span class="fontstyle0">, is present in greater concentration when equilibrium is reached.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard Gibbs free energy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle5"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold">mol</mi><mrow><mo mathvariant="bold">–</mo><mn mathvariant="bold">1</mn></mrow></msup></math></span><span class="fontstyle0">, for the reaction (</span><strong><span class="fontstyle5">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle5">B</span></strong><span class="fontstyle0">) at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene. Suggest the synthetic route including all the necessary reactants and steps.<br> </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene.</span></p>
<p><span class="fontstyle0">Suggest why propanal is a minor product obtained from the synthetic route in (g)(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Electron domain geometry: </em>tetrahedral<em> ✔</em></p>
<p><em>Molecular geometry: </em>bent/V-shaped<em> ✔</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>sp</mi><mn>2</mn></msup></math> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">σ</mi></math>-bonds: <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math><br><em><strong>AND</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">π</mi></math>-bonds: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn></math> ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>B <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>=</mo><mi mathvariant="normal">O</mi></math> absorption/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1750</mn><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <br><em><strong>OR</strong></em> <br>B <em><strong>AND</strong></em> absence of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">O</mi><mo>–</mo><mi mathvariant="normal">H</mi><mo> </mo><mo>/</mo><mn>3200</mn><mo>−</mo><mn>3600</mn><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><mi>absorption</mi><mo>»</mo><mo> </mo></math>✔</p>
<p><em>Accept any value between <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn mathvariant="italic">1700</mn><mo mathvariant="italic">−</mo><mn mathvariant="italic">1750</mn><mo mathvariant="italic"> </mo><mi>c</mi><msup><mi>m</mi><mrow><mo mathvariant="italic">−</mo><mn mathvariant="italic">1</mn></mrow></msup></math></em>.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Accept any two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn>3</mn></msub><msub><mi>H</mi><mn>6</mn></msub><mi>O</mi></math> isomers except for propanone and propen-2-ol:</em></p>
<p><img src="">✔✔</p>
<p> </p>
<p><em>Penalize missing hydrogens in displayed structural formulas once only.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">B</mi></math> <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math> is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>/large ✔</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi mathvariant="normal">Δ</mi><msup><mi>G</mi><mi mathvariant="normal">Θ</mi></msup><mo>=</mo><mo>−</mo><mi>R</mi><mi>T</mi><mi>ln</mi><mi>K</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>00831</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><mo>(</mo><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi><mo>)</mo><mo> </mo><mo>(</mo><mi>ln</mi><mo> </mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>)</mo><mo>=</mo><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>−</mo><mn>46</mn><mo>«</mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="569" height="90"></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></math>/water «and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></math>» ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>CH</mi><mo>(</mo><mi>OH</mi><mo>)</mo><msub><mi>CH</mi><mn>3</mn></msub></math>/propan-2-ol ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">K</mi><mn>2</mn></msub><msub><mi>Cr</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>7</mn></msub></math>/«potassium» dichromate(VI) <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>KMnO</mi><mn>4</mn></msub></math>/«acidified potassium» manganate(VII) ✔</p>
<p><em>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><msup><mi>O</mi><mo mathvariant="italic">+</mo></msup></math>.</em></p>
<p> </p>
<p> </p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>primary carbocation «intermediate forms»<br><em><strong>OR</strong></em><br>minor product «of the water addition would be» propan-1-ol<br><em><strong>OR</strong></em><br>anti-Markovnikov addition of water ✔</p>
<p>primary alcohol/propan-1-ol oxidizes to an aldehyde/propanal ✔</p>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority of students got at least one of electron domain geometry or molecular geometry correct.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The vast majority of students could identify the hybridization around a central carbon atom.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The vast majority of students could identify BOTH sigma and pi bonds in a molecule.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates identified B having C = O and a peak at 1750.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A surprising number of candidates drew propanone here as an option, either failing to read the&nbsp;question or perhaps finding the structural formulae provided difficult to understand.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates identified B, the product, as being in greater concentration at equilibrium however&nbsp;some lost the mark because they did not include a reason.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could apply the formula for Gibbs free energy change, ΔG<sup>Θ</sup>, correctly however some&nbsp;did not get the units correct.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The mean mark was ⅔ for the required synthetic route. Some candidates failed to identify water as&nbsp;a reagent in the hydration reaction, or note that dichromate ion oxidation requires acidic conditions. This&nbsp;was also the question with most No Response.</p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question regarding the formation of a minor product was not well answered. Many candidates&nbsp;struggled to explain the formation of propan-1-ol and to then oxidize it to propanal.</p>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Benzene is an aromatic hydrocarbon.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the physical evidence for the structure of benzene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the typical reactions that benzene and cyclohexene undergo with bromine.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_16.35.41.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/07.b"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents used to convert benzene to nitrobenzene and the formula of the electrophile formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism for the nitration of benzene, using curly arrows to show the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents used in the two-stage conversion of nitrobenzene to aniline.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:<br></em>planar «X-ray»</p>
<p>C to C bond lengths all equal<br><strong><em>OR<br></em></strong>C to C bonds intermediate in length between C–C and C=C</p>
<p>all C–C–C bond angles equal</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>benzene: </em>«electrophilic» substitution/S<sub>E<br></sub><strong><em>AND<br></em></strong><em>cyclohexene: </em>«electrophilic» addition/A<sub>E</sub></p>
<p> </p>
<p><em>Accept correct equations.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«concentrated» nitric <em><strong>AND</strong> </em>sulfuric acids</p>
<p><sup>+</sup>NO<sub>2</sub></p>
<p> </p>
<p><em>Accept NO<sub>2</sub><sup>+</sup>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from benzene ring to N of <sup>+</sup>NO2/NO<sub>2</sub><sup>+</sup></p>
<p>carbocation with correct formula and positive charge on ring</p>
<p>curly arrow going from C–H bond to benzene ring of cation</p>
<p>formation of organic product <em><strong>AND</strong> </em>H<sup>+</sup></p>
<p> </p>
<p><em>Accept mechanism with corresponding Kekulé structures.</em></p>
<p><em>Do <strong>not</strong> accept a circle in M2 or M3.</em></p>
<p><em>Accept first arrow starting either inside the circle or on the circle.</em></p>
<p><em>M2 may be awarded from correct diagram for M3.</em></p>
<p><em>M4: Accept C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub> if HSO<sub>4</sub><sup>–</sup> used in M3.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Fe/Zn/Sn <em><strong>AND</strong> </em>HCl/H<sub>2</sub>SO<sub>4</sub>/CH<sub>3</sub>COOH</p>
<p>NaOH/KOH</p>
<p> </p>
<p><em>Accept other suitable metals and acids.</em></p>
<p><em>Accept other suitable bases.</em></p>
<p><em>Award [1 max] for single-step reducing </em><em>agents (such as H<sub>2</sub>/Pt, Na<sub>2</sub>S etc.).</em></p>
<p><em>Accept formulas or names.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The reactivity of organic compounds depends on the nature and positions of their functional&nbsp;groups.</p>
</div>

<div class="specification">
<p>The structural formulas of two organic compounds are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which of the two compounds can show optical activity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw three-dimensional representations of the two enantiomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents used in the nitration of benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for the formation of NO<sub>2</sub><sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 2-bromo-2-methylpropane, (CH<sub>3</sub>)<sub>3</sub>CBr,&nbsp;and aqueous sodium hydroxide, NaOH (aq), using curly arrows to represent the&nbsp;movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>A <em><strong>AND</strong></em> it has a chiral centre/asymmetric carbon atom/carbon with 4 different substituents</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept structures without tapered bonds.</em></p>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>concentrated HNO<sub>3</sub> <em><strong>AND</strong></em> concentrated H<sub>2</sub>SO<sub>4</sub></p>
<p><em>“concentrated” must occur at least once&nbsp;(with either acid).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HNO<sub>3</sub>&nbsp;+ 2H<sub>2</sub>SO<sub>4</sub> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> H<sub>3</sub>O<sup>+</sup> + NO<sub>2</sub><sup>+&nbsp;</sup>+ 2HSO<sub>4</sub><sup>–</sup><br><br></p>
<p><em>Accept: HNO<sub>3</sub>&nbsp;+&nbsp;2H<sub>2</sub>SO<sub>4</sub>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="&nbsp;\rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span>&nbsp;NO<sub>2</sub><sup>+&nbsp;</sup>+ HSO<sub>4</sub><sup>–&nbsp;</sup>+ H<sub>2</sub>O.</em></p>
<p><em>Accept: HNO<sub>3</sub>&nbsp;+&nbsp;2H<sub>2</sub>SO<sub>4</sub>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="&nbsp;\rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span>&nbsp; H<sub>2</sub>NO<sub>3</sub><sup>+</sup> + HSO<sub>4</sub><sup>–</sup>.</em></p>
<p><em>Accept single arrow instead of&nbsp;equilibrium sign.</em></p>
<p><em>Accept equivalent two step reactions in&nbsp;which sulfuric acid first behaves as&nbsp;strong acid and protonates nitric acid,&nbsp;before behaving as dehydrating agent&nbsp;removing water from it.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow showing Br<sup>–</sup> leaving</p>
<p>representation of tertiary carbocation</p>
<p>curly arrow going from lone pair/negative charge on O in <sup>–</sup>OH to C<sup>+</sup></p>
<p>formation of (CH<sub>3</sub>)<sub>3</sub>COH <em><strong>AND</strong></em> Br<sup>–</sup></p>
<p><em>Do <strong>not</strong> accept curly arrow originating&nbsp;from C of C–Br bond.</em></p>
<p><em>Do <strong>not</strong> accept arrow originating on H in <sup>–</sup>OH.</em></p>
<p><em>Accept Br<sup>–</sup> anywhere on product side in&nbsp;the reaction scheme.</em></p>
<p><em>Award <strong>[2 max]</strong> for an S<sub>N</sub>2 type&nbsp;mechanism.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>
</div>

<div class="specification">
<p>Alternative synthetic routes exist to produce alcohols.</p>
</div>

<div class="specification">
<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of compound to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the molecular formula of the next member of the homologous series to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why ethene has only a single signal in its <sup>1</sup>H NMR spectrum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the chemical shift of this signal. Use section 27 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> possible products of the incomplete combustion of ethene that would not be formed by complete combustion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A white solid was formed when ethene was subjected to high pressure.</p>
<p>Deduce the type of reaction that occurred.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the mechanism for the reaction of propene with hydrogen bromide using curly arrows.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the major organic product is 2-bromopropane and not 1-bromopropane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the major organic product is 2-bromopropane and not&nbsp;1-bromopropane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2-bromopropane can be converted directly to propan-2-ol. Identify the reagent required.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Propan-2-ol can also be formed in one step from a compound containing a carbonyl group.</p>
<p>State the name of this compound and the type of reaction that occurs.</p>
<p><img src="" width="641" height="152"></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>alkene ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C<sub>3</sub>H<sub>6</sub> ✔</p>
<p><em>Accept structural formula.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen atoms/protons in same chemical environment ✔</p>
<p><em>Accept “all H atoms/protons are equivalent”.</em><br><em>Accept “symmetrical”</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4.5<strong> to</strong> 6.0 «ppm» ✔</p>
<p><em>Accept a single value within this range.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon monoxide/CO <em><strong>AND</strong> </em>carbon/C/soot ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«addition» polymerization ✔</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from C=C to H of HBr <em><strong>AND</strong> </em>curly arrow showing Br leaving ✔</p>
<p>representation of carbocation ✔</p>
<p>curly arrow going from lone pair/negative charge on Br<sup>−</sup> to C<sup>+</sup> ✔</p>
<p><em><br>Award <strong>[2 max]</strong> for mechanism producing 1-brompropane.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«2-bromopropane involves» formation of more stable «secondary» carbocation/carbonium ion/intermediate<br><em><strong>OR</strong></em><br>1-bromopropane involves formation of less stable «primary» carbocation/carbonium ion/intermediate ✔</p>
<p>«increased» positive inductive/electron-releasing effect of extra–R group/–CH<sub>3</sub>/methyl «increases stability of secondary carbocation» ✔</p>
<p><em>Award <strong>[1]</strong> for “more stable due to positive inductive effect”.</em></p>
<p><em>Do not award marks for quoting Markovnikov’s rule without any explanation. </em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«2-bromopropane involves» formation of more stable «secondary» carbocation/carbonium ion/intermediate<br><strong>OR</strong><br>1-bromopropane involves formation of less stable «primary» carbocation/carbonium ion/intermediate ✔</p>
<p>«increased» positive inductive/electron-releasing effect of extra–R group/–CH<sub>3</sub>/methyl «increases stability of secondary carbocation» ✔</p>
<p><em><br>Award <strong>[1]</strong> for “more stable due to positive inductive effect”.<br>Do <strong>not</strong> award marks for quoting Markovnikov’s rule without any explanation.<br></em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sodium hydroxide/NaOH/potassium hydroxide/KOH ✔</p>
<p><em>Accept «aqueous» hydroxide ions/OH<sup>−</sup></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Name of carbonyl compound:</em><br>propanone ✔</p>
<p><em>Type of reaction:</em><br>reduction ✔</p>
<p><em><br>Accept other valid alternatives, such as “2-propyl ethanoate” for M1 and “hydrolysis” for M2.</em></p>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>A compound with a molecular formula C<sub>7</sub>H<sub>14</sub>O produced the following high resolution&nbsp;<sup>1</sup>H NMR spectrum.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what information can be obtained from the <sup>1</sup>H NMR spectrum.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional group that shows stretching at 1710 cm<sup>–1</sup> in the infrared spectrum of this compound using section 26 of the data booklet and the <sup>1</sup>H NMR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the structural formula of this compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the main organic product when hex-1-ene reacts with hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents and the name of the mechanism for the nitration of benzene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the bonding present, why the reaction conditions of halogenation are different for alkanes and benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are two isomers, A and B, with the molecular formula C<sub>4</sub>H<sub>9</sub>Br.</p>
<p><img src=""></p>
<p>Explain the mechanism of the nucleophilic substitution reaction with NaOH(aq) for the isomer that reacts almost exclusively by an S<sub>N</sub>2 mechanism using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Number of hydrogen environments:</em> 3</p>
<p><em>Ratio of hydrogen environments:</em> 2:3:9</p>
<p><em>Splitting patterns:</em> «all» singlets</p>
<p> </p>
<p><em>Accept any equivalent ratios such as 9:3:2.</em></p>
<p><em>Accept “no splitting”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbonyl<br><em><strong>OR</strong></em><br>C=O</p>
<p> </p>
<p><em>Accept “ketone” but not “aldehyde”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept (CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub>COCH<sub>3</sub>.</em></p>
<p><em>Award <strong>[1]</strong> for any aldehyde or ketone with C<sub>7</sub>H<sub>14</sub>O structural formula.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hexane <em><strong>AND</strong> </em>hex-1-ene</p>
<p> </p>
<p><em>Accept “benzene <strong>AND</strong> hexane <strong>AND</strong> hex-1-ene”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHBrCH<sub>3</sub></p>
<p> </p>
<p><em>Accept displayed formula but <strong>not</strong> molecular formula.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Reagents:</em> «concentrated» sulfuric acid <em><strong>AND</strong></em> «concentrated» nitric acid</p>
<p><em>Name of mechanism:</em> electrophilic substitution</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>benzene has «delocalized» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> bonds «that are susceptible to electrophile attack» <em><strong>AND</strong></em> alkanes do not</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “benzene has single and double bonds”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from lone pair/negative charge on O in <sup>–</sup>OH to C</p>
<p>curly arrow showing Br leaving</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds</p>
<p> </p>
<p> </p>
<p><em>Accept OH<sup>–</sup> with or without the lone pair.</em></p>
<p><em>Do not allow curly arrows originating on H in OH<sup>–</sup>.</em></p>
<p><em>Accept curly arrows in the transition state.</em></p>
<p><em>Do not penalize if HO and Br are not at 180°.</em></p>
<p><em>Do not award M3 if OH–C bond is represented.</em></p>
<p><em>Award <strong>[2 max]</strong> if wrong isomer is used.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic chemistry can be used to synthesize a variety of products.</p>
</div>

<div class="specification">
<p>Combustion analysis of an unknown organic compound indicated that it contained only carbon, hydrogen and oxygen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Several compounds can be synthesized from but-2-ene. Draw the structure of the final product for each of the following chemical reactions.</p>
<p><img src="" width="651" height="241"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the change in enthalpy, Δ<em>H</em>, for the combustion of but-2-ene, using section 11 of the data booklet.&nbsp;</p>
<p style="text-align:center;">CH<sub>3</sub>CH=CHCH<sub>3 </sub>(g) + 6O<sub>2</sub> (g) → 4CO<sub>2 </sub>(g) + 4H<sub>2</sub>O (g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the carbon I and II atoms in but-2-ene.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw diagrams to show how sigma (σ) and pi (π) bonds are formed between atoms.</p>
<p><img src="" width="693" height="286"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the mechanism for the reaction of 2-methylbut-2-ene with hydrogen bromide using curly arrows.</p>
<p style="text-align:center;"><img src="" width="225" height="109"></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the major organic product is 2-bromo-2-methylbutane and not 2-bromo-3-methylbutane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce two features of this molecule that can be obtained from the mass spectrum. Use section 28 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="660" height="270"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.<br><br></p>
<p><img src="" width="764" height="248"></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bond responsible for the absorption at <strong>A</strong> in the infrared spectrum. Use section 26 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="692" height="321"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the identity of the unknown compound using the previous information, the <sup>1</sup>H NMR spectrum and section 27 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="387" height="329"></p>
<p style="text-align:center;">SDBS, National Institute of Advanced Industrial Science and Technology (AIST).<br><br></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the stereoisomers of butan-2-ol using wedge-dash type representations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how two enantiomers can be distinguished using a polarimeter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="197" height="194"></p>
<p><em>Penalize missing hydrogens in displayed structural formulas once only.</em></p>
<p><em>Accept condensed structural formulas: CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>3</sub> / CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or skeletal structures.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Bonds broken:</em><br>2(C–C) + 1(C=C) + 8(C–H) + 6O=O / 2(346) + 1(614) + 8(414) + 6(498) / 7606 «kJ» ✓</p>
<p><em><br>Bonds formed:</em><br>8(C=O) + 8(O–H) / 8(804) + 8(463) / 10 136 «kJ» ✓</p>
<p><em><br>Enthalpy change:</em><br>«Bonds broken – Bonds formed = 7606 kJ – 10 136 kJ =» –2530 «kJ» ✓</p>
<p>&nbsp;</p>
<p><em>Award<strong> [3]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [2 max]</strong> for «+» 2530 «kJ».</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="480" height="81"></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Sigma (σ):</em></p>
<p><em><img src="" width="513" height="49"></em></p>
<p><em>Accept any diagram showing end to end/direct overlap of atomic/hybridized orbitals and electron density concentrated between nuclei.</em></p>
<p>&nbsp;</p>
<p><em>Pi (π):</em></p>
<p><em><img src="" width="102" height="58"></em></p>
<p><em>Accept any diagram showing sideways overlap of unhybridized p/atomic orbitals and electron density above and below plane of bond axis.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1</strong></em></p>
<p><em><strong><img src="" width="512" height="97"></strong></em></p>
<p><em><br>Penalize incorrect bond e.g., -CH-H<sub>3</sub>C or –CH<sub>3</sub>C only once in the paper.</em></p>
<p><em><strong><br>Alternative 2</strong></em></p>
<p><em><strong><img src="" width="517" height="96"></strong></em></p>
<p> </p>
<p>curly arrow going from C=C to H of HBr <em><strong>AND</strong> </em>curly arrow showing Br leaving ✓</p>
<p>representation of carbocation ✓</p>
<p>curly arrow going from lone pair/negative charge on Br<sup>−</sup> to C<sup>+</sup> ✓</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«2-bromo-2-methylbutane involves» formation of more stable «tertiary» carbocation/intermediate<br><em><strong>OR</strong></em><br>«2-bromo-3-methylbutane involves» formation of less stable «secondary» carbocation/intermediate ✓</p>
<p>«intermediate» more stable due to «increased positive» inductive/electron-releasing effect of extra –R/alkyl group/–CH<sub>3</sub>/methyl ✓</p>
<p><em><br>Do <strong>not</strong> award marks for quoting Markovnikov’s rule without any explanation.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m/z 58:</em><br>molar/«relative» molecular mass/weight/Mr «is 58 g mol<sup>−1</sup>/58» ✓</p>
<p><em><br>m/z 43:</em><br>«loses» methyl/CH<sub>3</sub> «fragment»<br><em><strong>OR</strong></em><br>COCH<sub>3</sub><sup>+</sup> «fragment» ✓</p>
<p><em><br>Do <strong>not</strong> penalize missing charge on the fragments.</em></p>
<p><em>Accept molecular ion «peak»/ CH<sub>3</sub>COCH<sub>3</sub><sup>+</sup>/C<sub>3</sub>H<sub>6</sub>O<sup>+</sup>.</em></p>
<p><em>Accept any C<sub>2</sub>H<sub>3</sub>O<sup>+</sup> fragment/ CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>/C<sub>3</sub>H<sub>7</sub><sup>+</sup>.</em></p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C=O ✓</p>
<p><em><br>Accept carbonyl/C=C.</em></p>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Information deduced from <sup>1</sup>H NMR:</em></p>
<p>«one signal indicates» one hydrogen environment/symmetrical structure<br><em><strong>OR</strong></em><br>«chemical shift of 2.2 indicates» H on C next to carbonyl ✓</p>
<p><em><br>Compound:</em></p>
<p>propanone/CH<sub>3</sub>COCH<sub>3</sub> ✓</p>
<p>&nbsp;</p>
<p><em>Accept “one type of hydrogen”.</em></p>
<p><em>Accept&nbsp;<img src="" width="88" height="60">.</em></p>
<div class="question_part_label">g(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="383" height="115"></p>
<div class="question_part_label">h(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>enantiomers rotate «plane of» plane-polarized light ✓</p>
<p>equal degrees/angles/amounts <em><strong>AND</strong> </em>opposite directions/rotation ✓</p>
<p><em><br>Accept “optical isomers” for “enantiomers”.</em></p>
<div class="question_part_label">h(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the reactions of halogenoalkanes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the mechanisms by which 1-chlorobutane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl, and 2-chloro-2-methylpropane, (CH<sub>3</sub>)<sub>3</sub>CCl, react with aqueous sodium hydroxide, giving <strong>two </strong>similarities and <strong>one </strong>difference.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the rate of reaction of the similar bromo-compounds is faster.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the organic product of the reaction between 1-chlorobutane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl, and aqueous sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how this product could be synthesized in one step from butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the name of the class of compound formed when the product of (c)(i) reacts with butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two similarities:</em></p>
<p>heterolytic bond breaking</p>
<p><strong><em>OR</em></strong></p>
<p>chloride ions leave</p>
<p> </p>
<p>nucleophilic/OH<sup>–</sup> substitution</p>
<p>both first order with regard to [halogenoalkane]</p>
<p> </p>
<p><em>One difference:</em></p>
<p>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl is second order/bimolecular/S<sub>N</sub>2 <strong><em>AND </em></strong>(CH<sub>3</sub>)<sub>3</sub>CCl is first order/unimolecular/S<sub>N</sub>1</p>
<p><strong><em>OR</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl rate depends on [OH<sup>–</sup>] <strong><em>AND </em></strong>(CH<sub>3</sub>)<sub>3</sub>CCl does not</p>
<p><strong><em>OR</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl is one step <strong><em>AND </em></strong>(CH<sub>3</sub>)<sub>3</sub>CCl is two steps</p>
<p><strong><em>OR</em></strong></p>
<p>(CH<sub>3</sub>)<sub>3</sub>CCl involves an intermediate <strong><em>AND </em></strong>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl does not</p>
<p><strong><em>OR</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl has inversion of configuration <strong><em>AND </em></strong>(CH<sub>3</sub>)<sub>3</sub>CCl has c. 50 : 50 retention and inversion</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “produces alcohol” or </em><em>“produces NaCl”.</em></p>
<p><em>Accept “substitution in 1-chlorobutane </em><em>and </em><strong><em>«</em></strong><em>some</em><strong><em>» </em></strong><em>elimination in 2-chloro-2-</em><em>methylpropane”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C–Br bond weaker than C–Cl bond</p>
<p> </p>
<p><em>Accept “Br<sup>–</sup></em><em> </em><em>is a better leaving group”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept "bromine is more </em><em>reactive".</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “C–Br bond is longer </em><em>than C–Cl” alone.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>butan-1-ol/CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “butanol” for “butan-1-ol”.</em></p>
<p><em>Accept “1-butanol”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>penalize for name if correct </em><em>formula is drawn.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>reduction with<strong>» </strong>lithium aluminium hydride/LiAlH<sub>4</sub></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “sodium </em><em>borohydride/NaBH</em><sub><em>4</em></sub><em>”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ester</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>

<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&nbsp;+ HO<sup>&ndash;</sup>&nbsp;&rarr; CH<sub>3</sub>OH +&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>&ndash;</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math> (sigma) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> (pi) bonds in Compound A.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the hybridization of the central carbon atom in Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the isomer of Compound B that exists as optical isomers (enantiomers).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction produces more (CH<sub>3</sub>)<sub>3</sub>COH than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2-methylpropan-2-ol /2-methyl-2-propanol ✔</p>
<p> </p>
<p><em>Accept methylpropan-2-ol/ methyl-2-propanol.</em></p>
<p><em>Do <strong>not</strong> accept 2-methylpropanol.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>dipole-dipole ✔</p>
<p> </p>
<p><em>Do not accept van der Waals’ forces.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>: 9<br><em><strong>AND</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>: 1 ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sp<sup>2</sup> ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>butan-2-ol/CH<sub>3</sub>CH(OH)C<sub>2</sub>H<sub>5</sub> ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbocation formed from (CH<sub>3</sub>)<sub>3</sub>COH is more stable / (CH<sub>3</sub>)<sub>3</sub>C<sup>+</sup> is more stable than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub><sup>+</sup> ✔</p>
<p><br>«because carbocation has» greater number of alkyl groups/lower charge on the atom/higher e<sup>-</sup> density<br><em><strong>OR</strong></em><br>«greater number of alkyl groups» are more electron releasing<br><em><strong>OR</strong></em><br>«greater number of alkyl groups creates» greater inductive/+I effect ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> award any marks for simply quoting Markovnikov’s rule.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="213" height="183"></p>
<p><em>Do <strong>not</strong> penalize missing brackets or n.</em></p>
<p><em>Do <strong>not</strong> award mark if continuation bonds are not shown.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change «in colour/appearance/solution» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«nucleophilic» substitution<br><em><strong>OR</strong></em><br>SN2 ✔</p>
<p><em><br>Accept “hydrolysis”.</em></p>
<p><em>Accept SN1</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy/E ≥ activation energy/E<sub>a</sub> ✔</p>
<p>correct orientation «of reacting particles»<br><em><strong>OR</strong></em><br>correct geometry «of reacting particles» ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="551" height="106"></p>
<p>curly arrow going from lone pair/negative charge on O in <sup>-</sup>OH to C ✔</p>
<p>curly arrow showing I leaving ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p> </p>
<p><em>Accept OH<sup>-</sup> with or without the lone pair.</em></p>
<p><em>Do <strong>not</strong> allow curly arrows originating on H, rather than the -, in OH<sup>-</sup>.</em></p>
<p><em>Accept curly arrows in the transition state.</em></p>
<p><em>Do not penalize if HO and I are not at 180°.</em></p>
<p><em>Do not award M3 if OH–C bond is represented.</em></p>
<p><em>Award <strong>[2 max]</strong> if S<sub>N</sub>1 mechanism shown.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases/less polar <em><strong>AND</strong> </em>electronegativity «of the halogen» decreases ✔</p>
<p> </p>
<p><em>Accept “decreases” <strong>AND</strong> a correct comparison of the electronegativity of two halogens.</em></p>
<p><em>Accept “decreases” <strong>AND</strong> “attraction for valence electrons decreases”.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Naming the organic compound using IUPAC rules was generally done well.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance in stating the number of σ (sigma) and π (pi) bonds in propanone; the common answer was 3 σ and 1 π instead of 9 σ and 1 π, suggesting the three C-H σ bonds in each of the two methyl groups were ignored.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sp<sup>2</sup> hybridization of the central carbon atom in the ketone was very done well.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; some identified 2-methylpropan-1-ol or -2-ol, instead butan-2-ol/CH<sub>3</sub>CH(OH)C<sub>2</sub>H<sub>5</sub> as the isomer that exists as an optical isomer.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; some had a H and CH<sub>3</sub> group on each C atom across double bond instead of having two H atoms on one C and two CH<sub>3</sub> groups on the other.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poor performance, particularly in light of past feedback provided in similar questions since there was repeated reference simply to Markovnikov's rule, without any explanation.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; deducing structural formula of repeating unit of the polymer was challenging in which continuation bonds were sometimes missing, or structure included a double bond or one of the CH<sub>3</sub> group was missing.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; deducing whether the tertiary alcohol could be oxidized solicited mixed responses ranging from the correct one, namely no change (in colour, appearance or solution), to tertiary alcohol will be reduced, or oxidized, or colour will change will occur, and such.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Excellent performance on the type of reaction but with some incorrect answers such as alkane substitution, free radical substitution or electrophilic substitution.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance. For the requirements for a collision between reactants to yield products, some suggested necessary, sufficient or enough energy or even enough activation energy instead of energy/<em>E ≥ </em>activation energy/<em>E</em><sub>a</sub>.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mechanism for SN2 not done well. Often the negative charge on OH was missing, the curly arrow was not going from lone pair/negative charge on O in -OH to C, or the curly arrow showing I leaving placed incorrectly and specially the negative charge was missing in the transition state. Formation of a carbocation intermediate indicating SN1 mechanism could score a maximum of 2 marks.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance on how the polarity of C-X bond changes going down group 17.</p>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Nitric acid is usually produced by the oxidation of ammonia.</p>
</div>

<div class="specification">
<p>A mixture of nitric acid and sulfuric acid can be used to convert benzene to nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a Lewis (electron dot) structure of the nitric acid molecule, HNO<sub>3</sub>, that obeys the octet rule, showing any non-zero formal charges on the atoms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the relative lengths of the three bonds between N and O in nitric acid.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique used to determine the length of the bonds between N and O in solid HNO<sub>3</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation for the reaction between the acids to produce the electrophile, NO<sub>2</sub><sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the carbocation intermediate produced when this electrophile attacks benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of signals that you would expect in the <sup>1</sup>H NMR spectrum of nitrobenzene and the relative areas of these.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><br>Accept <strong>all</strong> 2p electrons pointing downwards.</em></p>
<p><em>Accept half arrows instead of full arrows.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="188" height="139"></p>
<p>bonds and non-bonding pairs correct ✔</p>
<p>formal charges correct ✔</p>
<p> </p>
<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>
<p><em>Do <strong>not</strong> accept resonance structures with delocalised bonds/electrons.</em></p>
<p><em>Accept + and – sign respectively.</em></p>
<p><em>Do not accept a bond between nitrogen and hydrogen.</em></p>
<p><em>For an incorrect Lewis structure, allow ECF for non-zero formal charges.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>two N-O same length/order ✔<br>delocalization/resonance ✔</p>
<p>N-OH longer «than N-O»<br><em><strong>OR</strong></em><br>N-OH bond order 1 <em><strong>AND</strong> </em>N-O bond order 1½ ✔</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> if bond strength, rather than bond length discussed.</em></p>
<p><em>Accept N-O between single and double bond <strong>AND</strong> N-OH single bond.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>X-ray crystallography ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HNO<sub>3</sub> + 2H<sub>2</sub>SO<sub>4</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>3</sub>O<sup>+</sup> + 2HSO<sub>4</sub><sup>-</sup> ✔</p>
<p> </p>
<p><em>Accept “HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>2</sub>O + HSO<sub>4</sub><sup>-</sup>”.</em></p>
<p><em>Accept “HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> H<sub>2</sub>NO<sub>3</sub><sup>+</sup> + HSO<sub>4</sub><sup>-</sup>” <strong>AND</strong> “H<sub>2</sub>NO<sub>3</sub><sup>+</sup> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>2</sub>O”.</em></p>
<p><em>Accept single arrows instead of equilibrium signs.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="243" height="200"></p>
<p> </p>
<p><em>Accept any of the five structures.</em></p>
<p><em>Do <strong>not</strong> accept structures missing the positive charge.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Number of signals</em>: three/3 ✔</p>
<p><em>Relative areas</em>: 2 : 2 : 1 ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Drawing arrows in the boxes to represent the electron configuration of a nitrogen atom was done extremely well.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Drawing the Lewis structure of HNO<sub>3</sub> was performed extremely poorly with structures that included H bonded to N, no double bond or a combination of single, double and even a triple bond or incorrect structures with dotted lines to reflect resonance. Many did not calculate non-zero formal charges.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly done; some explained relative bond strengths between N and O in HNO<sub>3</sub>, not relative lengths; others included generic answers such as triple bond is shortest, double bond is longer, single longest.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A majority could not state the technique to determine length of bonds; answers included NMR, IR, and such instead of X-ray crystallography.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many had difficulties writing the balanced equation(s) for the formation of the nitronium ion.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again, many had difficulty drawing the structural formula of the carbocation intermediate produced in the reaction.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Deducing the number of signals in the 1H NMR spectrum of nitrobenzene, which depend on the number of different hydrogen environments, was done poorly. Also, instead of relative areas, the common answer included chemical shift (ppm) values.</p>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH, is another derivative of benzene.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the wavenumber of one peak in the IR spectrum of benzoic acid, using section 26 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the spectroscopic technique that is used to measure the bond lengths in solid benzoic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> piece of physical evidence for the structure of the benzene ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the conjugate base of benzoic acid showing <strong>all</strong> the atoms and <strong>all</strong> the bonds.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why both C to O bonds in the conjugate base are the same length and suggest a value for them. Use section 10 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The pH of an aqueous solution of benzoic acid at 298 K is 2.95. Determine the concentration of hydroxide ions in the solution, using section 2 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate the equation for the complete combustion of benzoic acid in oxygen using only integer coefficients.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The combustion reaction in (f)(ii) can also be classed as redox. Identify the atom that is oxidized and the atom that is reduced.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest how benzoic acid, <em>M<sub>r</sub></em> = 122.13, forms an apparent dimer, <em>M<sub>r</sub></em> = 244.26, when dissolved in a non-polar solvent such as hexane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the reagent used to convert benzoic acid to phenylmethanol (benzyl alcohol), C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>OH.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Any wavenumber in the following ranges:<br>2500−3000 «cm<sup>−1</sup>» </span><strong>[✔]</strong><span style="background-color: #ffffff;"><br>1700−1750 «cm<sup>−1</sup>» </span><strong>[✔]</strong><span style="background-color: #ffffff;"><br>2850−3090 «cm<sup>−1</sup>» </span><strong>[✔]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">X-ray «crystallography/spectroscopy» <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em></span></p>
<p><span style="background-color: #ffffff;">«regular» hexagon</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">all «H–C–C/C-C-C» angles equal/120º <strong>[✔]</strong><br>all C–C bond lengths equal/intermediate between double and single</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">bond order 1.5 <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/2d.PNG" alt width="482" height="158">      <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p> </p>
<p><em><strong>Note: </strong><span style="background-color: #ffffff;">Accept Kekulé structures.<br>Negative sign must be shown in correct position.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">electrons delocalized «across the O–C–O system»</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">resonance occurs <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">122 «pm» &lt; C–O &lt; 143 «pm» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept “delocalized π-bond”.</em><br><em>Accept “bond intermediate between single and double bond” or “bond order 1.5” for M1.</em><br><em>Accept any answer in range 123 to 142 pm</em>.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1:</strong></em><br>[H<sup>+</sup>] «= 10<sup>−2.95</sup>» = 1.122 × 10<sup>−3</sup> «mol dm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br>«[OH<sup>−</sup>] = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}{\text{ mo}}{{\text{l}}^2}{\text{ d}}{{\text{m}}^{ - 6}}}}{{1.22 \times {{10}^{ - 3}}{\text{ mol d}}{{\text{m}}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.22</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> mol d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 8.91 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2:</strong></em><br>pOH = «14 − 2.95 =» 11.05 <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>«[OH<sup>−</sup>] = 10<sup>−11.05</sup> =» 8.91 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Award <strong>[2]</strong> for correct final answer.<br>Accept other methods.</span></em></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2C<sub>6</sub>H<sub>5</sub>COOH (s) + 15O<sub>2</sub> (g) → 14CO<sub>2</sub> (g) + 6H<sub>2</sub>O (l)<br>correct products    </span><strong>[✔]</strong><span style="background-color: #ffffff;"><br>correct balancing    </span><strong>[✔]</strong></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Oxidized</em>:</span></p>
<p><span style="background-color: #ffffff;">C/carbon «in C<sub>6</sub>H<sub>5</sub>COOH»</span></p>
<p><span style="background-color: #ffffff;"><em><strong>AND</strong></em></span></p>
<p><span style="background-color: #ffffff;"><em>Reduced</em>:</span></p>
<p><span style="background-color: #ffffff;">O/oxygen «in O<sub>2</sub>»      <strong>[✔]</strong></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«intermolecular» hydrogen bonding    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept diagram showing hydrogen bonding.</span></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lithium aluminium hydride/LiAlH<sub>4</sub>    <strong>[✔]</strong></span></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could identify a wavenumber or range of wavenumbers in the IR spectrum of benzoic acid.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Less than half the candidates identified x-ray crystallography as a technique used to measure bond lengths. There were many stating IR spectroscopy and quite a few random guesses.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again less than half the candidates could accurately give a physical piece of evidence for the structure of benzene. Many missed the mark by not being specific, stating ‘all bonds in benzene with same length’ rather than ‘all C-C bonds in benzene have the same length’.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very poorly answered with only 1 in 5 getting this question correct. Many did not show <strong>all</strong> the bonds and <strong>all</strong> the atoms or either forgot or misplaced the negative sign on the conjugate base.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was a challenge. Candidates were not able to explain the intermediate bond length and the majority suggested the value of either the bond length of C to O single bond or double bond.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done with a few calculating the pOH rather than the concentration of hydroxide ion asked for.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most earned at least one mark by correctly stating the products of the reaction.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question where not reading correctly was a concern. Instead of identifying the atom that is oxidized and the atom that is reduced, answers included formulas of molecules or the atoms were reversed for the redox processes.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The other question where only 10 % of the candidates earned a mark. Few identified hydrogen bonding as the reason for carboxylic acids forming dimers. There were many G2 forms stating that the use of the word “dimer” is not in the syllabus, however the candidates were given that a dimer has double the molar mass and the majority seemed to understand that the two molecules joined together somehow but could not identify hydrogen bonding as the cause.</p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates answered this part correctly and scored the mark. Common answers were H<sub>2</sub>SO<sub>4</sub>, HCl &amp; Sn, H<sub>2</sub>O<sub>2</sub>. In general, strongest candidates gained the mark.</p>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>6</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>, reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_15.22.26.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.a"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_14.32.42.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.bi"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the splitting patterns in the <sup>1</sup>H NMR spectrum of C<sub>2</sub>H<sub>5</sub>Cl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why tetramethylsilane (TMS) is often used as a reference standard in <sup>1</sup>H NMR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p>carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the product <strong>X</strong> is reacted with NaOH in a hot alcoholic solution, C<sub>2</sub>H<sub>3</sub>Cl is formed. State the role of the reactant NaOH other than as a nucleophile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{\text{Cl}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
</math></span>, can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>substitution <strong><em>AND </em></strong>«free-»radical</p>
<p><strong><em>OR</em></strong></p>
<p>substitution <strong><em>AND </em></strong>chain</p>
<p> </p>
<p><em>Award [1] for “</em><em>«</em><em>free-</em><em>»</em><em>radical substitution” </em><em>or “S</em><sub><em>R</em></sub><em>” written anywhere in the answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Two propagation steps:</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}} +  \bullet {\text{Cl}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet  + {\text{HCl}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>6</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>+</mo>
  <mo>∙</mo>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>∙</mo>
  <mo>+</mo>
  <mrow>
    <mtext>HCl</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet  + {\text{C}}{{\text{l}}_{\text{2}}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{Cl}} +  \bullet {\text{Cl}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>∙</mo>
  <mo>+</mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
  <mo>+</mo>
  <mo>∙</mo>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
</math></span></p>
<p><em>One termination step:</em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet  + {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet  \to {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>∙</mo>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>∙</mo>
  <mo stretchy="false">→</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mrow>
          <mtext>10</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet  +  \bullet {\text{Cl}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{Cl}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>∙</mo>
  <mo>+</mo>
  <mo>∙</mo>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet {\text{Cl}} +  \bullet {\text{Cl}} \to {\text{C}}{{\text{l}}_{\text{2}}}">
  <mo>∙</mo>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
  <mo>+</mo>
  <mo>∙</mo>
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span></p>
<p> </p>
<p><em>Accept radical without </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
  <mo>∙</mo>
</math></span><em> if consistent </em><em>throughout.</em></p>
<p><em>Allow ECF for incorrect radicals </em><em>produced in propagation step for M3.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>triplet <em><strong>AND</strong> </em>quartet</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chemical shift/signal outside range of common chemical shift/signal</p>
<p>strong signal/12/all H atoms in same environment<br><em><strong>OR</strong></em><br>singlet/no splitting of the signal</p>
<p>volatile/easily separated/easily removed<br><em><strong>OR</strong></em><br>inert/stabl</p>
<p>contains three common NMR nuclei/<sup>1</sup>H and <sup>13</sup>C and <sup>29</sup>Si</p>
<p> </p>
<p><em>Do <strong>not</strong> accept chemical shift = 0.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}} = \frac{{24.27}}{{12.01}} = 2.021">
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>24.27</mn>
    </mrow>
    <mrow>
      <mn>12.01</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>2.021</mn>
</math></span> <em><strong>AND</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{H}} = \frac{{4.08}}{{1.01}} = 4.04">
  <mrow>
    <mtext>H</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4.08</mn>
    </mrow>
    <mrow>
      <mn>1.01</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>4.04</mn>
</math></span> <em><strong>AND</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Cl}} = \frac{{71.65}}{{35.45}} = 2.021">
  <mrow>
    <mtext>Cl</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>71.65</mn>
    </mrow>
    <mrow>
      <mn>35.45</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>2.021</mn>
</math></span></p>
<p>«hence» CH<sub>2</sub>Cl</p>
<p> </p>
<p><em>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24.27}}{{12.01}}">
  <mfrac>
    <mrow>
      <mn>24.27</mn>
    </mrow>
    <mrow>
      <mn>12.01</mn>
    </mrow>
  </mfrac>
</math></span> : <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.08}}{{1.01}}">
  <mfrac>
    <mrow>
      <mn>4.08</mn>
    </mrow>
    <mrow>
      <mn>1.01</mn>
    </mrow>
  </mfrac>
</math></span> : <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{71.65}}{{35.45}}.">
  <mfrac>
    <mrow>
      <mn>71.65</mn>
    </mrow>
    <mrow>
      <mn>35.45</mn>
    </mrow>
  </mfrac>
  <mo>.</mo>
</math></span></em></p>
<p><em>Do <strong>not</strong> accept C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>. </em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>molecular ion peak(s) «about» <em>m/z</em> 100 <em><strong>AND</strong> </em>«so» C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> «isotopes of Cl»</p>
<p>two signals «in <sup>1</sup>H NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub><br><em><strong>OR</strong></em><br>«signals in» 3:1 ratio «in <sup>1</sup>H NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub><br><em><strong>OR</strong></em><br>one doublet and one quartet «in <sup>1</sup>H NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub></p>
<p>1,1-dichloroethane</p>
<p> </p>
<p><em>Accept “peaks” for “signals”.</em></p>
<p><em>Allow ECF for a correct name for M3 if an incorrect chlorohydrocarbon is identified.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>base<br><em><strong>OR</strong></em><br>proton acceptor</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-20_om_15.46.25.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.d/M"></p>
<p> </p>
<p><em>Continuation bonds must be shown.</em></p>
<p><em>Ignore square brackets and “n”.</em></p>
<p><em>Accept <img src="images/Schermafbeelding_2017-09-20_om_15.47.42.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.d_2/M"> .</em></p>
<p><em>Accept other versions of the polymer, </em><em>such as head to head and head to tail.</em></p>
<p><em>Accept condensed structure provided all </em><em>C to C bonds are shown (as single).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Xylene is a derivative of benzene. One isomer is 1,4-dimethylbenzene.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/1.PNG" alt></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Xylene, like benzene, can be nitrated.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Bromine reacts with alkanes.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of <sup>1</sup>H NMR signals for this isomer of xylene and the ratio in which they appear.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of one other isomer of xylene which retains the benzene ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the equation for the production of the active nitrating agent from concentrated sulfuric and nitric acids.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the mechanism for the nitration of benzene, using curly arrows to indicate the movement of electron pairs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the initiation step of the reaction and its conditions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">1,4-dimethylbenzene reacts as a substituted alkane. Draw the structures of the two products of the overall reaction when one molecule of bromine reacts with one molecule of 1,4-dimethylbenzene.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The organic product is not optically active. Discuss whether or not the organic product is a racemic mixture.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Number of signals</em>: 2     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><em>Ratio</em>:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">3 : 2 </span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">OR </span></span></em></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">6 : 4     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong>   </span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><strong>Note</strong>: Accept any correct integer or fractional ratio. Accept ratios in reverse order.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/1a_m.PNG" alt width="527" height="223">      <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> ⇌ NO<sub>2</sub><sup>+</sup> + 2HSO<sub>4</sub></span><span style="background-color: #ffffff;"><sup>−</sup> + H<sub>3</sub>O<sup>+       </sup></span><strong>[</strong>✔<strong>]</strong></p>
<p><em><strong>Note</strong>: <span style="background-color: #ffffff;">Accept a single arrow instead of an equilibrium sign.<br>Accept “H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> ⇌ NO<sub>2</sub><sup>+</sup> + HSO<sub>4</sub><sup>−</sup> + H<sub>2</sub>O”.<br>Accept “H<sub>2</sub>SO<sub>4</sub> + HNO<sub>3</sub> ⇌ H<sub>2</sub>NO<sub>3</sub><sup>+</sup> + HSO<sub>4</sub><sup>−</sup>”.<br>Accept equivalent two step reactions in which sulfuric acid first behaves as a strong acid and protonates the nitric acid, before behaving as a dehydrating agent removing water from it.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/1cii.PNG" alt width="469" height="285"></p>
<p><span style="background-color: #ffffff;">curly arrow going from benzene ring to N «of <sup>+</sup>NO<sub>2</sub>/NO<sub>2</sub><sup>+</sup>» <strong>[</strong>✔<strong>]</strong><br>carbocation with correct formula and positive charge on ring <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong>✔<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong><br>curly arrow going from C–H bond to benzene ring of cation <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong>✔<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong><br>formation of organic product nitrobenzene <em><strong>AND</strong> </em>H<sup>+ </sup><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong>✔<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept mechanism with corresponding Kekulé structures.<br>Do <strong>not</strong> accept a circle in M2 or M3.<br>Accept first arrow starting either inside the circle or on the circle.<br>If Kekulé structure used, first arrow must start on the double bond.<br>M2 may be awarded from correct diagram for M3.<br>M4: Accept “C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub>” if HSO<sub>4</sub><sup>−</sup> used in M3.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Br<sub>2</sub> 2Br• <strong>[</strong>✔<strong>]</strong><br></span></p>
<p><span style="background-color: #ffffff;">«sun»light/UV/<em>hv</em><br><em><strong>OR</strong></em><br>high temperature <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong>✔<strong>]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Do not penalize missing radical symbol on Br.<br>Accept “homolytic fission of bromine” for M1.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/1dii_m.PNG" alt width="302" height="111"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔</span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</strong></p>
<p><span style="background-color: #ffffff;">HBr <strong>[</strong>✔<strong>]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept condensed formulae, such as CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Br.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>there is no chiral carbon</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>there is no carbon with four different substituents/groups <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “no <strong>AND</strong> no asymmetric carbon<br>atom”.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many identified two correct peaks but quite a few less the correct ratio.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done, although some candidates repeated the formula of the 1,4-isomer structure or drew the wrong bond, <em>e.g.</em> benzene ring to H rather than C on CH<sub>3</sub>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The production of NO<sub>3</sub><sup>−</sup> was a common answer.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Performance was fairly good by schools covering the topic while others had no idea. There were many careless steps, such as omission or misplacement of + sign.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very well done, with a few making reference to a catalyst.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates lost one mark for the bond originated from H in CH<sub>3</sub> instead of C. Some teachers thought the use of the word “substituted alkane” made the question more difficult than it should have been.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One of the most poorly answered questions on the exam with only 10 % of candidates earning this mark. Some candidates just answered ‘yes’ or ‘no’ on whether the organic product is a racemic mix and very few mentioned the absence of a chiral carbon. One teacher though the use of benzene in this question made it unnecessarily tough, stating “the optical activity of benzene has not been covered due to the limited chemistry of benzene included in the specification. An aliphatic compound here would test the understanding of enantiomers without the confusion of adding benzene”. Candidates should recognize that carbon in benzene cannot be the centre of optical activity and look for chiral carbons in the substitution chains.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbon forms many compounds.</p>
</div>

<div class="specification">
<p>C<sub>60</sub> and diamond are allotropes of carbon.</p>
</div>

<div class="specification">
<p>Chlorine reacts with methane.</p>
<p style="text-align: center;">CH<sub>4</sub>&thinsp;(g) + Cl<sub>2&thinsp;</sub>(g) &rarr; CH<sub>3</sub>Cl&thinsp;(g) + HCl&thinsp;(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> differences between the bonding of carbon atoms in C<sub>60</sub> and diamond.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why C<sub>60</sub> and diamond sublime at different temperatures and pressures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State two features showing that propane and butane are members of the same homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formula of (Z)-but-2-ene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction between but-2-ene and hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> differences in the <sup>1</sup>H NMR of but-2-ene and the organic product from (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, the major product of reaction between but-1-ene and steam.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 1-bromopropane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br, and aqueous sodium hydroxide, NaOH (aq), using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the splitting pattern in the <sup>1</sup>H NMR spectrum for 1-bromopropane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of the reaction, Δ<em>H</em>, using section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw and label an enthalpy level diagram for this reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Any <strong>two</strong> of:</p>
<p>C<sub>60</sub> fullerene: bonded to 3 C <em><strong>AND</strong> </em>diamond: bonded to 4 C ✔</p>
<p>C<sub>60</sub> fullerene: delocalized/resonance <em><strong>AND</strong> </em>diamond: not delocalized / no resonance ✔</p>
<p>C<sub>60</sub> fullerene: <em>sp<sup>2</sup> <strong>AND</strong> </em>diamond: <em>sp<sup>3 </sup></em>✔</p>
<p>C<sub>60</sub> fullerene: bond angles between 109–120° <em><strong>AND</strong> </em>diamond: 109° ✔</p>
<p> </p>
<p><em>Accept "bonds in fullerene are shorter/stronger/have higher bond order <strong>OR</strong> bonds in diamond longer/weaker/have lower bond order".</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>diamond giant/network covalent <em><strong>AND</strong></em> sublimes at higher temperature ✔</p>
<p>C<sub>60</sub> molecular/London/dispersion/intermolecular «forces» ✔</p>
<p> </p>
<p><em>Accept “diamond has strong covalent bonds <strong>AND</strong> require more energy to break «than intermolecular forces»” for M1.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same general formula / C<sub>n</sub>H<sub>2n+2</sub> ✔</p>
<p>differ by CH<sub>2</sub>/common structural unit ✔</p>
<p> </p>
<p><em>Accept "similar chemical properties".</em></p>
<p><em>Accept “gradation/gradual change in physical properties”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>ALTERNATIVE 1:</strong></p>
<p><em>Test:</em></p>
<p>add bromine «water»/Br<sub>2</sub> (aq) ✔</p>
<p><em>Result:</em></p>
<p>«orange/brown/yellow» to colourless/decolourised ✔</p>
<p><em><br>Do not accept “clear” for M2.</em></p>
<p><strong><br>ALTERNATIVE 2:</strong></p>
<p><em>Test:</em></p>
<p>add «acidified» KMnO<sub>4</sub> ✔</p>
<p><em>Result:</em></p>
<p>«purple» to colourless/decolourised/brown ✔</p>
<p><em><br>Accept “colour change” for M2.</em></p>
<p><strong><br>ALTERNATIVE 3:</strong></p>
<p><em>Test:</em></p>
<p>add iodine /<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> ✔</p>
<p><em>Result:</em></p>
<p>«brown» to colourless/decolourised ✔<br><br></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Accept</em></p>
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH=CHCH<sub>3</sub> + HBr (g) → CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>3</sub></p>
<p>Correct reactants ✔</p>
<p>Correct products  ✔</p>
<p> </p>
<p><em>Accept molecular formulas for both reactants and product</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition/EA ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept nucleophilic or free radical addition.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong> Any two of:</em></p>
<p>but-2-ene: 2 signals <em><strong>AND</strong> </em>product: 4 signals ✔</p>
<p>but-2-ene: «area ratio» 3:1/6:2 <em><strong>AND</strong> </em>product: «area ratio» 3:3:2:1 ✔</p>
<p>product: «has signal at» 3.5-4.4 ppm «and but-2-ene: does not» ✔</p>
<p>but-2-ene: «has signal at» 4.5-6.0 ppm «and product: does not» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>but-2-ene: doublet <em><strong>AND</strong> </em>quartet/multiplet/4 ✔</p>
<p>product: doublet <em><strong>AND</strong> </em>triplet <em><strong>AND</strong> </em>quintet/5/multiplet <em><strong>AND</strong> </em>sextet/6/multiplet ✔</p>
<p> </p>
<p><em>Accept “product «has signal at» 1.3–1.4 ppm «and but-2-ene: does not»”.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub> ✔</p>
<p>«secondary» carbocation/CH<sub>3</sub>CH<sub>2</sub>CH<sup>+</sup>CH<sub>3</sub> more stable ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “Markovnikov’s rule” without reference to carbocation stability.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from lone pair/negative charge on O in HO<sup>–</sup> to C ✔</p>
<p>curly arrow showing Br breaking ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p>formation of organic product CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH <em><strong>AND</strong> </em>Br– ✔</p>
<p> </p>
<p><em>Do not allow curly arrow originating on H in HO<sup>–</sup>.</em></p>
<p><em>Accept curly arrow either going from bond between C and Br to Br in 1-bromopropane or in the transition</em><br><em>state.</em></p>
<p><em>Do <strong>not</strong> penalize if HO and Br are not at 180° to each other. </em></p>
<p><em>Award <strong>[3 max]</strong> for S<sub>N</sub>1 mechanism.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>triplet/3 <em><strong>AND</strong> </em>multiplet/6 <em><strong>AND</strong> </em>triplet/3 ✔</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond breaking: C–H + Cl–Cl / 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>»/656 «kJ»<br><em><strong>OR</strong></em><br>bond breaking: 4C–H + Cl–Cl / 4 × 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>» / 1898 «kJ» ✔</p>
<p> </p>
<p>bond forming: «C–Cl + H–Cl / 324 kJ mol<sup>–1</sup> + 431 kJ mol<sup>–1</sup>» / 755 «kJ»<br><em><strong>OR</strong></em><br>bond forming: «3C–H + C–Cl + H–Cl / 3 × 414 «kJ mol<sup>–1</sup>» + 324 «kJ mol<sup>–1</sup>» + 431 kJ mol<sup>–1</sup>» / 1997 «kJ» ✔</p>
<p> </p>
<p>«ΔH = bond breaking – bond forming = 656 kJ – 755 kJ» = –99 «kJ» ✔</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[2 max]</strong> for 99 «kJ».</em></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>reactants at higher enthalpy than products ✔</p>
<p><br>ΔH/-99 «kJ» labelled on arrow from reactants to products<br><em><strong>OR</strong></em><br>activation energy/<em>E</em><sub>a</sub> labelled on arrow from reactant to top of energy profile ✔</p>
<p> </p>
<p><em>Accept a double headed arrow between reactants and products labelled as ΔH for M2.</em></p>
<div class="question_part_label">f(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A challenging question, requiring accurate knowledge of the bonding in these allotropes (some referred to graphite, clearly the most familiar allotrope). The most frequent (correct) answer was the difference in number of bonded C atoms and hybridisation in second place. However, only 30% got a mark.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again, this was a struggle between intermolecular forces and covalent bonds and this proved to be even harder than (a)(i) with only 25% of candidates getting full marks. The distinction between giant covalent/covalent network in diamond and molecular in C60 and hence resultant sublimation points, was rarely explained. There were many general and vague answers given, as well as commonly (incorrectly) stating that intermolecular forces are present in diamond. As another example of insufficient attention to the question itself, many candidates failed to say which would sublime at a higher temperature and so missed even one mark.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This easy question was quite well answered; same/similar physical properties and empirical formula were common errors.</p>
<p>Candidates misinterpreted the question and mentioned CH3<sup>+</sup>, i.e., the lost fragment; the other very common error was -COOH which shows a complete lack of understanding of MS considering the question is about butane so O should never appear.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered by most, but some basic chemistry was missing when reporting results, perhaps as a result of little practical work due to COVID. A significant number suggested IR spectrometry, very likely because the question followed one on H NMR spectroscopy, thus revealing a failure to read the question properly (which asks for a test). Some teachers felt that adding "chemical" would have avoided some confusion.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most were able to draw this isomer correctly, though a noticeable number of students included the Z as an atom in the structural formula, showing they were completely unfamiliar with E/Z notation.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well done in general and most candidates wrote correct reagents, eventually losing a mark when considering H<sub>2</sub> to be a product alongside 2-bromobutane.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very well answered, some mentioned halogenation which is a different reaction.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A considerable number of students (40%) got at least 1 mark here, but marks were low (average mark 0.9/2). Common errors were predicting 3 peaks, rather than 4 for 2 -bromobutane and vague / unspecific answers, such as ‘different shifts’ or ‘different intensities’. It is surprising that more did not use H NMR data from the booklet; they were not directed to the section as is generally done in this type of question to allow for more general answers regarding all information that can be obtained from an H NMR spectrum.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Product was correctly predicted by many, but most used Markovnikov's Rule to justify this, failing to mention the stability of the secondary carbocation, i.e., the chemistry behind the rule.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>As usual, good to excellent candidates (47.5%) were able to get 3/4 marks for this mechanism, while most lost marks for carelessness in drawing arrows and bond connectivity, issues with the lone pair or negative charge on the nucleophile, no negative charge on transition state, or incorrect haloalkane. The average mark was thus 1.9/4.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another of the very poorly answered questions where most candidates (90%) failed to predict 3 peaks and when they did, considered there would be a quartet instead of multiplet/sextet; other candidates seemed to have no idea at all. This is strange because the compound is relatively simple and while some teachers considered that predicting a sextet may be beyond the current curriculum or just too difficult, they could refer to a multiplet; a quartet is clearly incorrect.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only the very weak candidates were unable to calculate the enthalpy change correctly, eventually missing 1 mark for inverted calculations.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates drew correct energy profiles, consistent with the sign of the energy change calculated in the previous question. And again, only very weak candidate failed to get at least 1 mark for correct profiles.</p>
<div class="question_part_label">f(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Halogenoalkanes undergo nucleophilic substitution reactions with sodium hydroxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why most halogenoalkanes are more reactive than alkanes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Classify 1-bromopropane as a primary, secondary or tertiary halogenoalkane, giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 1-bromopropane with aqueous sodium hydroxide using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving your reason, whether the hydroxide ion acts as a Lewis acid, a Lewis base, or neither in the nucleophilic substitution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> advantages of understanding organic reaction mechanisms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>polarity/polar «molecule/bond»<br><em><strong>OR</strong></em><br>carbon–halogen bond is weaker than C–H bond ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>primary <em><strong>AND</strong> </em>Br/bromine is attached to a carbon bonded to two hydrogens<br><em><strong>OR</strong></em><br>primary <em><strong>AND</strong></em> Br/bromine is attached to a carbon bonded to one C/R/alkyl «group» ✔</p>
<p> </p>
<p><em>Accept “primary <strong>AND</strong> Br/bromine is attached to the first carbon in the chain”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from lone pair/negative charge on O in HO<sup>–</sup> to C ✔</p>
<p>curly arrow showing Br leaving ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p>formation of organic product CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH <em><strong>AND</strong> </em>Br<sup>–</sup> ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> allow curly arrow originating on H in HO<sup>–</sup>.</em></p>
<p><em>Accept curly arrow either going from bond between C and Br to Br in 1-bromopropane or in the transition state.</em></p>
<p><em>Do <strong>not</strong> penalize if HO and Br are not at 180° to each other.</em></p>
<p><em>Do <strong>not</strong> award <strong>M3</strong> if OH–C bond is represented.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Lewis» base <em><strong>AND</strong></em> donates a pair of electrons ✔</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>choose «most» appropriate reaction «for preparing the target compound» ✔<br>design/discover new reactions/reagents ✔<br>apply this knowledge to other areas of chemistry/science ✔<br>«retro-»synthesis «more effective» ✔<br>control/predict «desired» products ✔<br>control rate of reaction «more effectively» ✔<br>satisfy intellectual curiosity ✔<br>predicting how changing reagents/conditions might affect reaction ✔<br>suggesting intermediates/transition states ✔</p>
<p> </p>
<p><em>Accept other reasonable answers.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Propene is an important starting material for many products. The following shows some compounds which can be made from propene, C<sub>3</sub>H<sub>6</sub>.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><br>Propene (C<sub>3</sub>H<sub>6</sub>) → C<sub>3</sub>H<sub>7</sub>Cl → C<sub>3</sub>H<sub>8</sub>O → C<sub>3</sub>H<sub>6</sub>O</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Consider the conversion of propene to C<sub>3</sub>H<sub>7</sub>Cl.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">An experiment was carried out to determine the order of reaction between one of the isomers of C<sub>3</sub>H<sub>7</sub>Cl and aqueous sodium hydroxide. The following results were obtained.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="367" height="138"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the IUPAC name of the major product.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why it is the major product.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the reaction of the major product with aqueous sodium hydroxide to produce a C<sub>3</sub>H<sub>8</sub>O compound, showing structural formulas.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the rate expression from the results, explaining your method.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the type of mechanism for the reaction of this isomer of C<sub>3</sub>H<sub>7</sub>Cl with aqueous sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sketch the mechanism using curly arrows to represent the movement of electrons.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the complete combustion of the compound C<sub>3</sub>H<sub>8</sub>O formed in (a)(iv).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of combustion of this compound, in kJ mol<sup>−1</sup>, using data from section 11 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the reagents for the conversion of the compound C<sub>3</sub>H<sub>8</sub>O formed in (a)(iv) into C<sub>3</sub>H<sub>6</sub>O.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the compound C<sub>3</sub>H<sub>8</sub>O, produced in (a)(iv), has a higher boiling point than compound C<sub>3</sub>H<sub>6</sub>O, produced in d(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the <sup>1</sup>H NMR spectrum of C<sub>3</sub>H<sub>6</sub>O, produced in (d)(i), shows only one signal.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Propene is often polymerized. Draw a section of the resulting polymer, showing two repeating units.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrophilic» addition ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Do <strong>not</strong> accept “nucleophilic addition” or “free radical addition”.<br>Do <strong>not</strong> accept “halogenation”.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2-chloropropane ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">secondary carbocation/carbonium «ion» is more stable<br><em><strong>OR</strong></em><br>carbocation/carbonium «ion» stabilized by two/more alkyl groups ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">CH<sub>3</sub>CHClCH<sub>3</sub> (l) + OH<sup>−</sup> (aq) → CH<sub>3</sub>CH(OH)CH<sub>3</sub> (aq) + Cl<sup>−</sup> (aq)<br><em><strong>OR</strong></em><br>CH<sub>3</sub>CHClCH<sub>3</sub> (l) + NaOH (aq) → CH<sub>3</sub>CH(OH)CH<sub>3</sub> (aq) + NaCl (aq) ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Rate = <em>k</em> [C<sub>3</sub>H<sub>7</sub>Cl] [OH<sup>−</sup>] ✔<br></span></p>
<p><span style="background-color: #ffffff;">«[OH<sup>−</sup>] held constant and» [C<sub>3</sub>H<sub>7</sub>Cl] triples <em><strong>AND</strong> </em>rate triples «so first order wrt C<sub>3</sub>H<sub>7</sub>Cl» ✔<br></span></p>
<p><span style="background-color: #ffffff;">[C<sub>3</sub>H<sub>7</sub>Cl] doubles <em><strong>AND</strong> </em>[OH<sup>−</sup>] doubles <em><strong>AND</strong> </em>rate quadruples «so first order wrt OH<sup>−</sup>» ✔</span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">SN2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept ‘bimolecular nucleophilic substitution.’</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="628" height="118"></p>
<p><span style="background-color: #ffffff;">curly arrow going from lone pair on O/negative charge on OH<sup>–</sup> to C ✔<br></span></p>
<p><span style="background-color: #ffffff;">curly arrow showing C–Cl bond breaking ✔<br></span></p>
<p><span style="background-color: #ffffff;">representation of transition state showing negative charge, square brackets and partial bonds ✔<br></span></p>
<p><span style="background-color: #ffffff;">formation of CH<sub>3</sub>CH(OH)CH<sub>3</sub> <em><strong>AND</strong> </em>Cl<sup>–</sup> ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Do <strong>not</strong> allow arrow originating on H in OH<sup>–</sup>.</span></em></p>
<p><em><span style="background-color: #ffffff;">Allow curly arrow going from bond between C and Cl to Cl in either reactant or transition state. </span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> award M3 if OH–C bond is represented.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept formation of NaCl instead of Cl<sup>–</sup>.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2C<sub>3</sub>H<sub>8</sub>O (l) + 9O<sub>2</sub> (g) → 6CO<sub>2</sub> (g) + 8H<sub>2</sub>O (g)<br><em><strong>OR</strong></em><br>C<sub>3</sub>H<sub>8</sub>O (l) + 4.5O<sub>2</sub> (g) → 3CO<sub>2</sub> (g) + 4H<sub>2</sub>O (g) ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>bonds broken:</em><br>7(C–H) + C–O + O–H + 2(C–C) + 4.5(O=O)<br><em><strong>OR</strong></em><br>7(414 «kJ mol<sup>−1</sup>») + 358 «kJ mol<sup>−1</sup>» + 463 «kJ mol<sup>−1</sup>» + 2(346 «kJ mol<sup>−1</sup>») + 4.5(498 «kJ mol<sup>−1</sup>») / 6652 «kJ» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>bonds formed</em>:<br>6(C=O) + 8(O–H)<br><em><strong>OR</strong></em><br>6(804 «kJ mol<sup>−1</sup>») + 8(463 «kJ mol<sup>−1</sup>») / 8528 «kJ» ✔</span></p>
<p><span style="background-color: #ffffff;"><br>«Δ<em>H</em> = bonds broken − bonds formed = 6652 – 8528 =» −1876 «kJ mol<sup>−1</sup>» ✔</span></p>
<p> </p>
<p><em>NOTE: <span style="background-color: #ffffff;">Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup>/«potassium» dichromate «(VI)» <em><strong>AND</strong> </em>acidified/H<sup>+</sup><br><em><strong>OR</strong></em><br>«acidified potassium» manganate(VII) / «H<sup>+</sup> and» KMnO<sub>4</sub> / «H<sup>+</sup> and» MnO<sub>4</sub>– ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “H<sub>2</sub>SO<sub>4</sub>” or “H<sub>3</sub>PO<sub>4</sub>” for “H<sup>+</sup>”.<br>Do <strong>not</strong> accept HCl.<br>Accept “permanganate” for “manganate(VII)”.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>3</sub>H<sub>8</sub>O/propan-2-ol: hydrogen-bonding <em><strong>AND</strong> </em>C<sub>3</sub>H<sub>6</sub>O/propanone: no hydrogen bonding/«only» dipole–dipole/dispersion forces ✔<br></span></p>
<p><span style="background-color: #ffffff;">hydrogen bonding stronger «than dipole–dipole» ✔</span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">only one hydrogen environment<br><em><strong>OR</strong></em><br>methyl groups symmetrical «around carbonyl group» ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “all hydrogens belong to methyl groups «which are in identical positions»”.</span></em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><img src="">✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Continuation bonds must be shown. </span></em></p>
<p><em><span style="background-color: #ffffff;">Methyl groups may be drawn on opposite sides of the chain or head to tail. </span></em></p>
<p><em><span style="background-color: #ffffff;">Ignore square brackets and “n”.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Phenylethene can be polymerized to form polyphenylethene (polystyrene, PS).</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6.PNG" alt width="187" height="190"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The major product of the reaction with hydrogen bromide is C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub> and the minor product is C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the repeating unit of polyphenylethene.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Phenylethene is manufactured from benzene and ethene in a two-stage process. The overall reaction can be represented as follows with ΔG<sup>θ</sup> = +10.0 kJ mol<sup>−1</sup> at 298 K.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6b.PNG" alt width="593" height="174"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the equilibrium constant for the overall conversion at 298 K, using section 1 of the data booklet.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The benzene ring of phenylethene reacts with the nitronium ion, NO<sub>2</sub><sup>+</sup>, and the C=C double bond reacts with hydrogen bromide, HBr.</span></p>
<p><span style="background-color: #ffffff;">Compare and contrast these two reactions in terms of their reaction mechanisms.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Similarity: </span></p>
<p><span style="background-color: #ffffff;">Difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why the major product, C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub>, can exist in two forms and state the relationship between these forms.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Two forms: </span></p>
<p><span style="background-color: #ffffff;">Relationship:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can exist in different conformational forms (isomers).</span></p>
<p><span style="background-color: #ffffff;">Outline what this means.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can be directly converted to an intermediate compound, <strong>X</strong>, which can then be directly converted to the acid C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br → <strong>X</strong> → C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH</span></p>
<p><span style="background-color: #ffffff;">Identify <strong>X</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="286" height="187">       <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<p> </p>
<p><em><strong><span style="background-color: #ffffff;">Note: </span></strong><span style="background-color: #ffffff;">Do <strong>not</strong> penalize the use of brackets and “n”. </span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> award the mark if the continuation bonds are missing.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ln<em> k</em> «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{10000}}{{8.31 \times 298}}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mn>10000</mn>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mo>×</mo>
      <mn>298</mn>
    </mrow>
  </mfrac>
</math></span> » = –4.04     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>k</em> = 0.0176   <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong>    </span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Award<strong> [2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Similarity: </em><br>«both» involve an electrophile<br><em><strong>OR</strong></em><br>«both» electrophilic      <strong>[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Difference</em>:<br>first/reaction of ring/with NO<sub>2</sub><sup>+</sup> is substitution/S<sub>«E»</sub> <em><strong>AND</strong> </em>second/reaction of C=C/with HBr is addition/A<sub>«E»</sub> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Answer must state which is substitution and which is addition for M2.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Two forms:</em><br>chiral/asymmetric carbon<br><em><strong>OR</strong></em><br>carbon atom attached to 4 different groups      <strong>[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Relationship</em>:<br>mirror images<br><em><strong>OR</strong></em><br>enantiomers/optical isomers      <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept appropriate diagrams for either or both marking points.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">benzene ring «of the C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>» and the bromine «on the CH<sub>2</sub>–Br» can take up different relative positions by rotating about the «C–C, <em>σ</em>–»bond      <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “different parts of the molecule can rotate relative to each other”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “rotation around σ<span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">–</span>bond”.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>OH     <strong>[✔]</strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to draw the monomer correctly. Some candidates made careless mistakes writing C<sub>6</sub>H<sub>6</sub>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another calculation which most candidates were able to work out, though some failed to convert Δ<em>G</em> given value in kJ mol<sup>-1</sup> to J mol<sup>-1</sup> or forgot the negative sign. Some used an inappropriate expression of <em>R</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The strong candidates were generally able to see the similarity between the two reactions but unexpectedly some could not identify “electrophilic” as a similarity even if they referred to the differences as electrophilic substitution/addition, so probably were unable to understand what was being asked.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates were given the products of the addition reaction and asked about the major product. Perhaps they were put off by the term “forms” and thus failed to “see” the chiral C that allowed the existence of enantiomers. There was some confusion with the type of isomerism and some even suggested cis/trans isomers.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>If candidates seemed rather confused in the previous question, they seemed more so in this one. Most simply referred to isomers in general, not seeming to be slightly aware of what conformational isomerism is, even if it is in the curriculum.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Quite well answered though some candidates suggested an aldehyde rather than the alcohol, or forgot that C has two hydrogens apart from the -OH. In other cases, they left a Br there.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic compounds often have isomers.</p>
<p>A straight chain molecule of formula C<sub>5</sub>H<sub>10</sub>O contains a carbonyl group. The compound&nbsp;cannot be oxidized by acidified potassium dichromate(VI) solution.</p>
</div>

<div class="specification">
<p>A tertiary halogenoalkane with three different alkyl groups, (R<sub>1</sub>R<sub>2</sub>R<sub>3</sub>)C−X, undergoes a&nbsp;S<sub>N</sub>1 reaction and forms two isomers.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formulas of the two possible isomers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mass spectra <strong>A </strong>and <strong>B </strong>of the two isomers are given.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_16.37.09.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.a.ii_01"></p>
<p>Explain which spectrum is produced by each compound using section 28 of the data booklet.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bond fission that takes place in a S<sub>N</sub>1 reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of solvent most suitable for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structure of the intermediate formed stating its shape.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, the percentage of each isomer from the S<sub>N</sub>1 reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>, can be converted to phenylamine via a two-stage reaction.</p>
<p>In the first stage, nitrobenzene is reduced with tin in an acidic solution to form an intermediate ion and tin(II) ions. In the second stage, the intermediate ion is converted to phenylamine in the presence of hydroxide ions.</p>
<p>Formulate the equation for each stage of the reaction.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-08_om_16.55.28.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.a.i/M"></p>
<p> </p>
<p><em>Accept condensed formulas.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>A:</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub> <strong><em>AND </em></strong><strong>«</strong>peak at<strong>» </strong>29 due to</p>
<p>(CH<sub>3</sub>CH<sub>2</sub>)<sup>+</sup>/(C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>/(M – CH<sub>3</sub>CH<sub>2</sub>CO)<sup>+</sup></p>
<p><strong><em>OR</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub> <strong><em>AND </em></strong><strong>«</strong>peak at<strong>» </strong>57 due to</p>
<p>(CH<sub>3</sub>CH<sub>2</sub>CO)<sup>+</sup>/(M – CH<sub>3</sub>CH<sub>2</sub>)<sup>+</sup>/(M – C<sub>2</sub>H<sub>5</sub>)<sup>+</sup></p>
<p> </p>
<p><strong><em>B:</em></strong></p>
<p>CH<sub>3</sub>COCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> <strong><em>AND </em></strong><strong>«</strong>peak at<strong>» </strong>43 due to</p>
<p>(CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>)<sup>+</sup>/(CH<sub>3</sub>CO)<sup>+</sup>/(C<sub>2</sub>H<sub>3</sub>O)<sup>+</sup>/(M – CH<sub>3</sub>CO)<sup>+</sup></p>
<p> </p>
<p><em>Penalize missing “</em><em>+</em><em>” sign once only.</em></p>
<p><em>Accept “CH</em><sub><em>3</em></sub><em>COCH</em><sub><em>2</em></sub><em>CH</em><sub><em>2</em></sub><em>CH</em><sub><em>3 </em></sub><em>by </em><em>elimination since fragment CH</em><sub><em>3</em></sub><em>CO is not </em><em>listed” for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>heterolytic/heterolysis</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>polar protic</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-08_om_16.52.34.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.b.ii/M"></p>
<p><em>Shape:</em> triangular/trigonal planar</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>around<strong>» </strong>50% <strong>«</strong>each<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>similar/equal percentages</p>
<p> </p>
<p>nucleophile can attack from either side <strong>«</strong>of the planar carbocation<strong>»</strong></p>
<p> </p>
<p><em>Accept “racemic mixture/racemate” for </em><em>M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Stage one:</em></p>
<p>C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>(l) + 3Sn(s) + 7H<sup>+</sup>(aq) → C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup>(aq) + 3Sn<sup>2+</sup>(aq) + 2H<sub>2</sub>O(l)</p>
<p> </p>
<p><em>Stage two:</em></p>
<p>C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup>(aq) + OH<sup>–</sup>(aq) → C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>(l) + H<sub>2</sub>O(l)</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Butanoic acid, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH, is a weak acid and ethylamine, CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>, is a weak base.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of each substance with water.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram showing the delocalization of electrons in the conjugate base of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the average oxidation state of carbon in butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A 0.250 mol dm<sup>−3</sup> aqueous solution of butanoic acid has a concentration of hydrogen ions, [H<sup>+</sup>], of 0.00192 mol dm<sup>−3</sup>. Calculate the concentration of hydroxide ions, [OH<sup>−</sup>], in the solution at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of a 0.250 mol dm<sup>−3</sup> aqueous solution of ethylamine at 298 K, using section 21 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the pH curve for the titration of 25.0 cm<sup>3</sup> of ethylamine aqueous solution with 50.0 cm<sup>3</sup> of butanoic acid aqueous solution of equal concentration. No calculations are required.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why butanoic acid is a liquid at room temperature while ethylamine is a gas at room temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable reagent for the reduction of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the product of the complete reduction reaction in (e)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Butanoic acid:</em><br>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COO<sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq) ✔</p>
<p> </p>
<p><em>Ethylamine:</em><br>CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+ </sup>(aq) + OH<sup>−</sup> (aq) ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Diagram showing:</em><br>dotted line along O–C–O <em><strong>AND</strong> </em>negative charge</p>
<p> </p>
<p><em>Accept correct diagrams with pi clouds.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–1 ✔</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}\,{\text{mo}}{{\text{l}}^2}\,{\text{d}}{{\text{m}}^{ - 6}}}}{{0.00192\,{\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.00192</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 5.21 × 10<sup>–12</sup> «mol dm<sup>–3</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«p<em>K</em><sub>b</sub> = 3.35, <em>K</em><sub>b</sub> = 10<sup>–3.35</sup> = 4.5 × 10<sup>–4</sup>»</p>
<p>«C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub> + H<sub>2</sub>O <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> C<sub>2</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup> + OH<sup>–</sup>»</p>
<p> </p>
<p><em>K</em><sub>b</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left[ {{\text{O}}{{\text{H}}^--}} \right]\left[ {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{3}}}^{\text{ + }}} \right]}}{{\left[ {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{2}}}} \right]}}">
  <mfrac>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mo>−</mo>
            </msup>
            <mo>−</mo>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>3</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <msup>
            <mrow>
              <msub>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mrow>
                  <mtext>3</mtext>
                </mrow>
              </msub>
            </mrow>
            <mrow>
              <mtext> + </mtext>
            </mrow>
          </msup>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>3</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>OR</strong></p>
<p>«<em>K</em><sub>b</sub> =» 4.5 × 10<sup>–4</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left[ {{\text{O}}{{\text{H}}^-}} \right]\left[ {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{3}}}^{\text{ + }}} \right]}}{{0.250}}">
  <mfrac>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mo>−</mo>
            </msup>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>3</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <msup>
            <mrow>
              <msub>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mrow>
                  <mtext>3</mtext>
                </mrow>
              </msub>
            </mrow>
            <mrow>
              <mtext> + </mtext>
            </mrow>
          </msup>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.250</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p>«<em>K</em><sub>b</sub> =» 4.5 × 10<sup>–4</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{x^2}}}{{0.250}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.250</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p><br>« x = [OH<sup>–</sup>] =» 0.011 «mol dm<sup>–3</sup>» ✔</p>
<p> </p>
<p>«pH = –log<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}}}{{0.011}} = ">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.011</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 12.04</p>
<p><em><strong>OR</strong></em></p>
<p>«pH = 14.00 – (–log 0.011)=» 12.04 ✔</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>decreasing pH curve ✔</p>
<p>pH close to 7 (6–8) at volume of 25 cm<sup>3</sup> butanoic acid ✔</p>
<p>weak acid/base shape with no flat «strong acid/base» parts on the curve ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>butanoic acid forms more/stronger hydrogen bonds ✔<br>butanoic acid forms stronger London/dispersion forces ✔<br>butanoic acid forms stronger dipole–dipole interaction/force ✔</p>
<p> </p>
<p><em>Accept “butanoic acid forms dimers”</em></p>
<p><em>Accept “butanoic acid has larger M<sub>r</sub>/hydrocarbon chain/number of electrons” for M2.</em></p>
<p><em>Accept “butanoic acid has larger «permanent» dipole/more polar” for M3.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lithium aluminium hydride/LiAlH<sub>4</sub> ✔</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>butan-1-ol/1-butanol/CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH ✔</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbon dioxide contributes significantly to global warming. It can be used as a raw material with methyloxirane to form polymers.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the three-membered ring in methyloxirane is unstable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw <strong>two</strong> structural isomers of methyloxirane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, whether methyloxirane can form<em> cis-trans</em> isomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the chemical shift and splitting pattern of the signal produced by the hydrogen atoms labelled <strong>X</strong> in the <sup>1</sup>H NMR spectrum of the polymer. Use section 27 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>angle between bonds is 60°/strained/smaller than 109.5° ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>CH<sub>3</sub>COCH<sub>3</sub> ✔</p>
<p>CH<sub>3</sub>CH<sub>2</sub>CHO ✔</p>
<p>CH<sub>2</sub>=CHCH<sub>2</sub>OH ✔</p>
<p>CH<sub>3</sub>OCH=CH<sub>2</sub> ✔</p>
<p><img src=""></p>
<p> </p>
<p><em>Accept displayed or condensed structural formulas or skeletal formulas.</em></p>
<p><em>Accept CH(OH)=CHCH<sub>3</sub> and CH<sub>2</sub>=C(OH)CH<sub>3</sub>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no <em><strong>AND</strong> </em>only one «axial/methyl/CH<sub>3</sub>» substituent «at the ring»</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>two «axial» substituents required «for cis/trans-isomers» ✔</p>
<p> </p>
<p>Accept “no <em><strong>AND</strong> </em>«O in the ring and» one carbon has two H atoms”.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Chemical shift:</em><br>3.7–4.8 «ppm» ✔</p>
<p><em>Splitting pattern:</em><br>doublet ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>