File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 20/markSceme-HL-paper1html
File size: 350.08 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>Which statement is correct for a pair of enantiomers under the same conditions?</p>
<p>A. A racemic mixture of the enantiomers is optically active.</p>
<p>B. They have the same chemical properties in all their reactions.</p>
<p>C. They have the same melting and boiling points.</p>
<p>D. They rotate the plane of plane-polarized light by different angles.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which molecule has an enantiomer?</span></p>
<p><span class="fontstyle0">A. </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>CH</mi><mo>(</mo><mi>OH</mi><mo>)</mo><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math><span class="fontstyle0"><br></span></p>
<p><span class="fontstyle0">B. </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>2</mn></msub><mo>(</mo><mi>OH</mi><mo>)</mo><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>CH</mi><mo>=</mo><msub><mi>CH</mi><mn>2</mn></msub></math><span class="fontstyle0"><br></span></p>
<p><span class="fontstyle0">C. </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>CH</mi><mo>=</mo><mi>CHBr</mi></math><span class="fontstyle0"><br></span></p>
<p><span class="fontstyle0">D. </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CHBrCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub><mo> </mo></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The majority of candidates could correctly identify the molecule which has an enantiomer.</p>
</div>
<br><hr><br><div class="question">
<p>Which is correct for the conversion of propanal to propyl methanoate? </p>
<p><img src="" alt></p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">What will be the major product in the reaction between but-1-ene and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Hbr</mi></math>?</span></p>
<p><span class="fontstyle0">A. 2-bromobut-1-ene<br></span></p>
<p><span class="fontstyle0">B. 1-bromobut-1-ene<br></span></p>
<p><span class="fontstyle0">C. 2-bromobutane<br></span></p>
<p><span class="fontstyle0">D. 1-bromobutane</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The vast majority selected the correct product for the reaction of but-1-ene and HBr although quite a few selected the minor product of 1-bromobutane.</p>
</div>
<br><hr><br><div class="question">
<p>Which molecule is chiral?</p>
<p>A. 2-chlorobutane</p>
<p>B. 2,2-dichloropentane</p>
<p>C. Propan-2-amine</p>
<p>D. 4-hydroxybutanoic acid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is most likely to hydrolyse via a S<sub>N</sub>1 mechanism?</p>
<p>A. CH<sub>3</sub>CHBrCH<sub>2</sub>CH<sub>3</sub></p>
<p>B. (CH<sub>3</sub>)<sub>2</sub>CHBr</p>
<p>C. (CH<sub>3</sub>)<sub>3</sub>CBr</p>
<p>D. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound rotates the plane of plane-polarized light?</p>
<p>A. CH<sub>3</sub>C(CH<sub>3</sub>)ClCH<sub>3</sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CHClCH<sub>3</sub></p>
<p>C. CH<sub>3</sub>C(Cl)<sub>2</sub>CH<sub>3</sub></p>
<p>D. CH<sub>3</sub>CClBrCH<sub>3</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In which order should the reagents be used to convert benzene into phenylamine (aniline)?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound shows <em>cis-trans</em> isomerism?</p>
<p>A. CH<sub>3</sub>CH=CCl<sub>2</sub></p>
<p>B. CCl<sub>2</sub>=CH<sub>2</sub></p>
<p>C. <img src="" width="83" height="73"></p>
<p>D. <img src="" width="85" height="72"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the product of the reaction of benzene with a mixture of concentrated nitric and sulfuric acids?</p>
<p><img src="" width="461" height="388"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which reagents are needed to convert nitrobenzene to phenylamine in 2 steps?</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_10.20.08.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/37"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which molecule contains a chiral carbon?</p>
<p>A. CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>2</sub>CH<sub>3</sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>3</sub></p>
<p>C. CH<sub>2</sub>BrCH(CH<sub>3</sub>)CH<sub>2</sub>Br</p>
<p>D. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Propene is reacted first with hydrogen chloride to produce X which is then reacted with aqueous sodium hydroxide to give Y. Finally, Y is reacted with excess acidified potassium dichromate solution.</p>
<p style="text-align: center;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{C}}{{\text{H}}_{\text{3}}}{\text{CHC}}{{\text{H}}_{\text{2}}}\xrightarrow{{{\text{HCL}}}}{\text{X}}\xrightarrow{{{\text{NaOH(aq)}}}}{\text{Y}}\xrightarrow{{{{\text{H}}^ + }/{\text{C}}{{\text{r}}_2}{{\text{O}}_7}^{2 - }{\text{(aq)}}}}{\text{Z}}">
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>CHC</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mover>
<mo>→</mo>
<mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
<mrow>
<mrow>
<mtext>HCL</mtext>
</mrow>
</mrow>
</mpadded>
</mover>
<mrow>
<mtext>X</mtext>
</mrow>
<mover>
<mo>→</mo>
<mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
<mrow>
<mrow>
<mtext>NaOH(aq)</mtext>
</mrow>
</mrow>
</mpadded>
</mover>
<mrow>
<mtext>Y</mtext>
</mrow>
<mover>
<mo>→</mo>
<mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
<mrow>
<mrow>
<msup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>+</mo>
</msup>
</mrow>
<mrow>
<mo>/</mo>
</mrow>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>r</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<msup>
<mrow>
<msub>
<mrow>
<mtext>O</mtext>
</mrow>
<mn>7</mn>
</msub>
</mrow>
<mrow>
<mn>2</mn>
<mo>−</mo>
</mrow>
</msup>
<mrow>
<mtext>(aq)</mtext>
</mrow>
</mrow>
</mpadded>
</mover>
<mrow>
<mtext>Z</mtext>
</mrow>
</math></span></p>
<p>What is the major product, Z? </p>
<p>A. CH<sub>3</sub>CH(OH)CH<sub>3</sub></p>
<p>B. CH<sub>3</sub>COCH<sub>3</sub></p>
<p>C. CH<sub>3</sub>CH<sub>2</sub>CHO</p>
<p>D. CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>COOH</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement is correct about configurational isomers?</p>
<p><br>A. Configurational isomers can only be interconverted by breaking and reforming bonds.</p>
<p>B. Configurational isomers have different molecular formulas but the same structural formulas.</p>
<p>C. Configurational isomers are not distinct compounds.</p>
<p>D. Configurational isomers always have identical physical properties.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is the correct combination of substitution reaction mechanisms?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.33.47.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/35"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which product is formed when CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub> is reduced with sodium borohydride?</p>
<p><br>A. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO</p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH</p>
<p>C. CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>3</sub></p>
<p>D. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the major product of the reaction of HBr with but-1-ene?</p>
<p> </p>
<p>A. 1-bromobutane</p>
<p>B. 2-bromobutane</p>
<p>C. 1,2-dibromobutane</p>
<p>D. 2,2-dibromobutane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement about the reaction of a hydroxide ion with the organic reagent is correct?</p>
<p> </p>
<p>A. 1-bromopentane predominantly follows an S<sub>N</sub>1 mechanism.</p>
<p>B. 2-bromo-2-methylbutane predominantly follows an S<sub>N</sub>2 mechanism.</p>
<p>C. Reaction with 1-bromopentane occurs at a slower rate than with 1-chloropentane.</p>
<p>D. Reaction with 1-bromopentane occurs at a slower rate than with 2-bromo-2-methylbutane.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the product of the reaction of propanal with lithium aluminium hydride, LiAlH<sub>4</sub>?</p>
<p>A. Propanoic acid</p>
<p>B. Propanone</p>
<p>C. Propan-1-ol</p>
<p>D. Propan-2-ol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>69% of the candidates identified the product of the reaction of propanal with LiAlH<sub>4</sub>. The question had strong correlation with high-scoring candidates.</p>
</div>
<br><hr><br><div class="question">
<p>Which attacking species is matched with its mechanism of reaction?</p>
<p><br><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the E/Z designations of these stereoisomers?</p>
<p style="text-align:center;"><img src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Mediocre performance with a good number of students who showed a lack of understanding of the E/Z designation for the alkene isomers.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which is a major product of the electrophilic addition of hydrogen chloride to propene?</span></p>
<p><span style="background-color: #ffffff;">A. ClCH<sub>2</sub>CH=CH<sub>2</sub></span></p>
<p><span style="background-color: #ffffff;">B. CH<sub>3</sub>CH(Cl)CH<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">C. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Cl</span></p>
<p><span style="background-color: #ffffff;">D. CH<sub>3</sub>CH=CHCl</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Markovnikov addition was handled much better by higher scoring candidates.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which class of compound is formed when a ketone is reduced?</span></p>
<p><span style="background-color: #ffffff;">A. primary alcohol</span></p>
<p><span style="background-color: #ffffff;">B. secondary alcohol</span></p>
<p><span style="background-color: #ffffff;">C. ether</span></p>
<p><span style="background-color: #ffffff;">D. carboxylic acid</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>85 % of the candidates identified the secondary alcohol as the product of the reduction of a ketone. The other three distractors (primary alcohol, ether and carboxylic acid) were chosen almost equally by the remaining candidates.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which compound exists as two configurational isomers?</span></p>
<p><span style="background-color: #ffffff;">A. CBr<sub>2</sub>=CH<sub>2</sub></span></p>
<p><span style="background-color: #ffffff;">B. CH<sub>2</sub>=CHBr</span></p>
<p><span style="background-color: #ffffff;">C. CHBr<sub>2</sub>CH<sub>2</sub>Br</span></p>
<p><span style="background-color: #ffffff;">D. CHBr=CHBr</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>71 % of the candidates identified 1,2-dibromoethene as having two configurational isomers. The most commonly chosen distractor was C which was the only saturated halogenoalkane, indicating that these candidates may have confused the term with “conformational” isomers.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which can show optical activity?</span></p>
<p><span style="background-color: #ffffff;">A. CHBrCHCl<br></span></p>
<p><span style="background-color: #ffffff;">B. CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>2</sub>CH<sub>3</sub><br></span></p>
<p><span style="background-color: #ffffff;">C. (CH<sub>3</sub>)<sub>2</sub>CBrCl<br></span></p>
<p><span style="background-color: #ffffff;">D. CH<sub>3</sub>CH<sub>2</sub>CH(CH<sub>3</sub>)Br</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which pair of isomers always shows optical activity?</p>
<p>A. Cis-trans</p>
<p>B. Enantiomers</p>
<p>C. Conformational</p>
<p>D. E/Z</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which can be reduced to an aldehyde?</span></p>
<p><span style="background-color: #ffffff;">A. Butanone<br></span></p>
<p><span style="background-color: #ffffff;">B. Butan-1-ol<br></span></p>
<p><span style="background-color: #ffffff;">C. Butanoic acid<br></span></p>
<p><span style="background-color: #ffffff;">D. Butan-2-ol</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which isomers exist as non-superimposable mirror images?</p>
<p>A. cis-trans isomers</p>
<p>B. diastereomers</p>
<p>C. enantiomers</p>
<p>D. structural isomers</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is name of this compound applying IUPAC rules?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-07_om_10.15.14.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/X35"></p>
<p>A. E 1-bromo-1-chlorobut-1-ene</p>
<p>B. Z 1-bromo-1-chlorobut-1-ene</p>
<p>C. E 1-bromo-1-chloro-2-ethylethene</p>
<p>D. Z 1-bromo-1-chloro-2-ethylethene</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Propene reacts separately with H<sub>2</sub>O/H<sup>+</sup> and H<sub>2</sub>/Ni to give products <strong>X</strong> and <strong>Z</strong> respectively. </p>
<p><img src=""></p>
<p>What are the major products of the reactions?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the product of the reaction between pentan-2-one and sodium borohydride, NaBH<sub>4</sub>?</p>
<p>A. Pentan-1-ol</p>
<p>B. Pentan-2-ol</p>
<p>C. Pentanoic acid</p>
<p>D. Pentanal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which is the electrophile in the nitration of benzene?</span></p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>HNO</mi><mn>3</mn></msub></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><msub><mi>NO</mi><mn>2</mn></msub><mo>+</mo></msup></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><msub><mi>NO</mi><mn>2</mn></msub><mo>-</mo></msup></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><msub><mi>NH</mi><mn>4</mn></msub><mo>+</mo></msup></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The vast majority selected the nitronium ion as the electrophile in the nitration of benzene.</p>
</div>
<br><hr><br><div class="question">
<p>What is molecule Z that is formed in step 1 of this synthetic route?</p>
<p style="text-align:center;"><img src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Higher scoring candidates did better at identifying the molecule that is formed in the synthesis of aminobenzene from nitrobenzene.</p>
</div>
<br><hr><br><div class="question">
<p>What is the product of the reduction of 2-methylbutanal?</p>
<p>A. 2-methylbutan-1-ol</p>
<p>B. 2-methylbutan-2-ol</p>
<p>C. 3-methylbutan-2-one</p>
<p>D. 2-methylbutanoic acid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which solvent is aprotic?</span></p>
<p><span style="background-color: #ffffff;">A. H<sub>2</sub>O</span></p>
<p><span style="background-color: #ffffff;">B. C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">C. CH<sub>3</sub>OH</span></p>
<p><span style="background-color: #ffffff;">D. CH<sub>3</sub>NH<sub>2</sub></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Identifying protic from aprotic solvents was poorly done my most candidates.</p>
</div>
<br><hr><br><div class="question">
<p>What is the number of optical isomers of isoleucine?</p>
<p><img src=""></p>
<p>A. 0</p>
<p>B. 2</p>
<p>C. 4</p>
<p>D. 8</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How many chiral centres are there in the following molecule?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="327" height="180"></p>
<p>A. 2</p>
<p>B. 3</p>
<p>C. 4</p>
<p>D. 6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which sequence of reagents converts propene to propanone?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>66% of the candidates were able to identify the reagents needed to convert propene to propanone in three steps. This question discriminated well between high-scoring and low-scoring candidates.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which compound can exist as cis- and trans-isomers?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="176" height="282"></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><em>Cis</em> and <em>trans</em> isomerism on cyclic alkanes was poorly answered. This had the lowest discriminatory index on the test and all incorrect answers were fairly evenly distributed.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">In which compound is the halogen substituted the most rapidly by aqueous hydroxide ions?</span></p>
<p><span style="background-color: #ffffff;">A. (CH<sub>3</sub>)<sub>3</sub>CCl<br></span></p>
<p><span style="background-color: #ffffff;">B. (CH<sub>3</sub>)<sub>3</sub>CI<br></span></p>
<p><span style="background-color: #ffffff;">C. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl<br></span></p>
<p><span style="background-color: #ffffff;">D. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>I</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How many chiral carbon atoms are present in one molecule of (CH<sub>3</sub>)<sub>2</sub>CHCHClCHBrCH<sub>3</sub>?</p>
<p> </p>
<p>A. 0</p>
<p>B. 1</p>
<p>C. 2</p>
<p>D. 3</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which statement is <strong>not</strong> correct regarding benzene?</span></p>
<p><span style="background-color: #ffffff;">A. It is planar.</span></p>
<p><span style="background-color: #ffffff;">B. The ring contains delocalized electrons.</span></p>
<p><span style="background-color: #ffffff;">C. It always reacts in the same way as alkenes.</span></p>
<p><span style="background-color: #ffffff;">D. The carbon–carbon bond has a bond order of 1.5.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>73 % of candidates knew that benzene did not react the same way as alkenes.</p>
</div>
<br><hr><br><div class="question">
<p>What are the type of reaction and role of the nitronium ion, NO<sub>2</sub><sup>+</sup>, in the following reaction?</p>
<p style="text-align:center;">C<sub>6</sub>H<sub>6</sub> + NO<sub>2</sub><sup>+</sup> → C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> + H<sup>+</sup></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Good performance on a discriminating question in the type of reaction and role of the nitronium ion, NO<sub>2</sub><sup>+</sup>, in the nitration of benzene.</p>
</div>
<br><hr><br>