File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 2/markSceme-SL-paper2html
File size: 903.04 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p><span style="background-color: #ffffff;">The equations show steps in the formation and decomposition of ozone in the stratosphere, some of which absorb ultraviolet light.</span></p>
<p><span style="background-color: #ffffff;"><br>Step 1&nbsp; &nbsp; O<sub>2</sub> → 2O•</span></p>
<p><span style="background-color: #ffffff;">Step 2&nbsp; &nbsp; O• + O<sub>2</sub> → O<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">Step 3&nbsp; &nbsp; O<sub>3</sub> → O• + O<sub>2</sub></span></p>
<p><span style="background-color: #ffffff;">Step 4&nbsp; &nbsp; O• + O<sub>3</sub> → 2O<sub>2</sub></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the Lewis structures of oxygen, O<sub>2</sub>, and ozone, O<sub>3</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why both bonds in the ozone molecule are the same length and predict the bond length in the ozone molecule. Refer to section 10 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">Reason: </span></p>
<p><span style="background-color: #ffffff;">Length:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish ultraviolet light from visible light in terms of wavelength and energy.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss how the different bond strengths between the oxygen atoms in O<sub>2</sub> and O<sub>3</sub> in the ozone layer affect radiation reaching the Earth’s surface.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>NOTES: Coordinate bond may be represented by an arrow.</em></p>
<p><em>Do <strong>not</strong> accept delocalized structure for ozone.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">resonance «structures»<br><em><strong>OR</strong></em><br>delocalization of «the double/pi bond» electrons ✔<br>121 «pm» &lt; length &lt; 148 «pm» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept any length between these two values.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«UV» shorter wavelength <em><strong>AND</strong> </em>higher energy «than visible» ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«bond» in O<sub>2</sub> stronger than in O<sub>3</sub> ✔</p>
<p><br>ozone absorbs lower frequency/energy «radiation than oxygen»<br><strong>OR</strong><br>ozone absorbs longer wavelength «radiation than oxygen» ✔</p>
<p> </p>
<p><em>NOTE: Accept ozone «layer» absorbs a range of frequencies.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Bromine can form the bromate(V) ion, BrO<sub>3</sub><sup>−</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of a bromine atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the orbital diagram of the <strong>valence shell</strong> of a bromine atom (ground state) on the energy axis provided. Use boxes to represent orbitals and arrows to represent electrons.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure for BrO<sub>3</sub><sup>−</sup> that obeys the octet rule.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, using the VSEPR theory, the geometry of the BrO<sub>3</sub><sup>−</sup> ion and the O−Br−O bond angles.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions act as oxidizing agents in acidic conditions to form bromide ions.</p>
<p>Deduce the half-equation for this reduction reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions oxidize iron(II) ions, Fe<sup>2+</sup>, to iron(III) ions, Fe<sup>3+</sup>.</p>
<p>Deduce the equation for this redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup></p>
<p><em><strong>OR</strong></em></p>
<p>[Ar] 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup> ✔</p>
<p> </p>
<p><em>Accept 3d before 4s.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept double-headed arrows.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Geometry:</em><br>trigonal/pyramidal ✔</p>
<p><em>Reason:</em><br>three bonds <em><strong>AND</strong> </em>one lone pair<br><em><strong>OR</strong></em><br>four electron domains ✔</p>
<p><em>O−Br−O angle:</em><br>107° ✔</p>
<p> </p>
<p><em>Accept “charge centres” for “electron domains”.</em></p>
<p><em>Accept answers in the range 104–109°.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6e<sup>−</sup> + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l)</p>
<p>correct reactants and products ✔</p>
<p>balanced equation ✔</p>
<p> </p>
<p><em>Accept reversible arrows.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6Fe<sup>2+</sup> (aq) + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l) + 6Fe<sup>3+</sup> (aq) ✔</p>
<p> </p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium is a transition metal.</p>
</div>

<div class="specification">
<p>TiCl<sub>4</sub> reacts with water and the resulting titanium(IV) oxide can be used as a smoke&nbsp;screen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src=""></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{22}^{48}{\text{Ti}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>22</mn>
    </mrow>
    <mrow>
      <mn>48</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
</math></span> atom.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{22}^{48}{\text{Ti}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>22</mn>
    </mrow>
    <mrow>
      <mn>48</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
</math></span><sup>2+</sup> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, TiCl<sub>4</sub>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong> </em>«a sea of» delocalized electrons</p>
<p> </p>
<p><em>Accept mobile electrons.</em></p>
<p><em>Do <strong>not</strong> accept “metal atoms/nuclei”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(46 \times 7.98) + (47 \times 7.32) + (48 \times 73.99) + (49 \times 5.46) + (50 \times 5.25)}}{{100}}">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>46</mn>
      <mo>×</mo>
      <mn>7.98</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mo stretchy="false">(</mo>
      <mn>47</mn>
      <mo>×</mo>
      <mn>7.32</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mo stretchy="false">(</mo>
      <mn>48</mn>
      <mo>×</mo>
      <mn>73.99</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mo stretchy="false">(</mo>
      <mn>49</mn>
      <mo>×</mo>
      <mn>5.46</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mo stretchy="false">(</mo>
      <mn>50</mn>
      <mo>×</mo>
      <mn>5.25</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>= 47.93</p>
<p> </p>
<p><em>Answer must have two decimal places with a value from 47.90 to 48.00.</em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><em>Award [0] for 47.87 (data booklet value).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons:</em> 22 <em><strong>AND</strong> Neutrons:</em> 26 <em><strong>AND</strong> Electrons:</em> 22</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>2</sup></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>titanium atoms/ions distort the regular arrangement of atoms/ions<br><strong>OR</strong><br>titanium atoms/ions are a different size to aluminium «atoms/ions» </p>
<p>prevent layers sliding over each other</p>
<p> </p>
<p><em>Accept diagram showing different sizes of atoms/ions.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ionic<br><em><strong>OR</strong></em><br>«electrostatic» attraction between oppositely charged ions</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«simple» molecular structure<br><em><strong>OR</strong></em><br>weak«er» intermolecular bonds<br><em><strong>OR</strong></em><br>weak«er» bonds between molecules</p>
<p> </p>
<p><em>Accept specific examples of weak bonds such as London/dispersion and van der Waals.</em></p>
<p><em>Do <strong>not</strong> accept “covalent”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>TiCl<sub>4</sub>(l) + 2H<sub>2</sub>O(l) → TiO<sub>2</sub>(s) + 4HCl(aq)</p>
<p>correct products</p>
<p>correct balancing</p>
<p> </p>
<p><em>Accept ionic equation.</em></p>
<p><em>Award M2 if products are HCl and a compound of Ti and O.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCl causes breathing/respiratory problems<br><em><strong>OR</strong></em><br>HCl is an irritant<br><em><strong>OR</strong></em><br>HCl is toxic<br><em><strong>OR</strong></em><br>HCl has acidic vapour<br><em><strong>OR</strong></em><br>HCl is corrosive</p>
<p> </p>
<p><em>Accept “TiO<sub>2</sub> causes breathing problems/is an irritant”.</em></p>
<p><em>Accept “harmful” for both HCl and TiO<sub>2</sub>.</em></p>
<p><em>Accept “smoke is asphyxiant”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Fast moving helium nuclei (<sup>4</sup>He<sup>2+</sup>) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><em>Figure from PPLATO / FLAP (Flexible Learning Approach To Physics), http://www.met.reading.ac.uk/pplato2/h-flap/</em><br><em>phys8_1.html#top 1996 The Open University and The University of Reading.</em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest what can be concluded about the gold atom from this experiment.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent experiments showed electrons existing in energy levels occupying various orbital shapes.</p>
<p>Sketch diagrams of 1s, 2s and 2p.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Most <sup>4</sup>He<sup>2+</sup> passing straight through:</em></p>
<p>most of the atom is empty space<br><em><strong>OR</strong></em><br>the space between nuclei is much larger than <sup>4</sup>He<sup>2+</sup> particles<br><em><strong>OR</strong></em><br>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>
<p> </p>
<p><em>Very few <sup>4</sup>He<sup>2+</sup> deviating largely from their path:</em></p>
<p>nucleus/centre is positive «and repels <sup>4</sup>He<sup>2+</sup> particles»<br><em><strong>OR</strong></em><br>nucleus/centre is «more» dense/heavy «than <sup>4</sup>He<sup>2+</sup> particles and deflects them»<br><em><strong>OR</strong></em><br>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept the same reason for both <strong>M1</strong> and <strong>M2</strong>.</em></p>
<p><em>Accept “most of the atom is an electron cloud” for <strong>M1</strong>.</em></p>
<p><em>Do not accept only “nucleus repels <sup>4</sup>He<sup>2+</sup> particles” for <strong>M2</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="372" height="174"></p>
<p>1s <em><strong>AND</strong> </em>2s as spheres ✔</p>
<p>one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (p<sub>x</sub>, p<sub>y</sub> p<sub>z</sub>) ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>10</sup></p>
<p><em><strong>OR</strong></em></p>
<p>[Ar] 4s<sup>1</sup>3d<sup>10</sup> ✔</p>
<p> </p>
<p><em>Accept configuration with 3d before 4s.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Electrons are arranged in energy levels around the nucleus of an atom.</p>
</div>

<div class="specification">
<p>The diagram represents possible electron energy levels in a hydrogen atom.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the first ionization energy of calcium is greater than that of potassium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>All models have limitations. Suggest <strong>two</strong> limitations to this model of the electron energy levels.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw an arrow, labelled <strong>X</strong>, to represent the electron transition for the ionization of a hydrogen atom in the ground state.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw an arrow, labelled <strong>Z</strong>, to represent the lowest energy electron transition in the visible spectrum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>increasing number of protons/nuclear charge/Z<sub>eff</sub> ✔</p>
<p><br>«atomic» radius/size decreases<br><strong><em>OR</em></strong><br>same number of energy levels<br><em><strong>OR</strong></em><br>similar shielding «by inner electrons» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>does not represent sub-levels/orbitals ✔</p>
<p>only applies to atoms with one electron/hydrogen ✔</p>
<p>does not explain why only certain energy levels are allowed ✔</p>
<p>the atom is considered to be isolated ✔</p>
<p>does not take into account the interactions between atoms/molecules/external fields ✔</p>
<p>does not consider the number of electrons the energy level can fit ✔</p>
<p>does not consider probability of finding electron at different positions/<em>OWTTE</em> ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “does not represent distance «from nucleus»”.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>upward arrow X <em><strong>AND</strong> </em>starting at n = 1 extending to n = ∞ ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>downward or upward arrow between n = 3 and n = 2 ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was surprising that this question that appears regularly in IB chemistry papers was not better answered. Many candidates only obtained one of the two marks for identifying one factor (often the larger nuclear charge of calcium or that the number of shells was the same for Ca and K). However, a few candidates did write thorough answers reflecting a good understanding of the factors affecting ionization energy. This question had a strong correlation between candidates who scored well and those who had a high score overall. Some candidates did not score any marks by focusing on trends in the Periodic Table without offering an explanation, or by discussing the number of electrons in Ca and K instead of the number of protons.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 30% of the candidates drew the correct arrow on the diagram representing the ionization of hydrogen. A few candidates missed the mark by having the arrow pointing downwards. The most common incorrect answer was a transition between n=1 and n=2.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from iron (II) sulfide, FeS.</p>
</div>

<div class="specification">
<p>Iron (II) sulfide, FeS, is ionically bonded.</p>
</div>

<div class="specification">
<p>The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why metals, like iron, can conduct electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why sulfur is classified as a non-metal by giving <strong>two</strong> of its chemical properties.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in this type of solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the sulfide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of their electronic structures, why the ionic radius of the sulfide ion is greater than that of the oxide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in the oxidation state of sulfur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why this process might raise environmental concerns.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the addition of small amounts of carbon to iron makes the metal harder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>mobile/delocalized «sea of» electrons</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>forms acidic oxides «rather than basic oxides» ✔</p>
<p>forms covalent/bonds compounds «with other non-metals» ✔</p>
<p>forms anions «rather than cations» ✔</p>
<p>behaves as an oxidizing agent «rather than a reducing agent» ✔</p>
<p><em><br>Award <strong>[1 max]</strong> for 2 correct non-chemical properties such as non-conductor, high ionisation energy, high electronegativity, low electron affinity if no marks for chemical properties are awarded.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between oppositely charged ions/between Fe<sup>2+</sup> and S<sup>2−</sup> ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> ✔</p>
<p><em><br>Do <strong>not</strong> accept “[Ne] 3s<sup>2</sup> 3p<sup>6</sup>”.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»✔</p>
<p><em><br>Accept 2,8 (for O<sup>2–</sup>) and 2,8,8 (for S<sup>2–</sup>)</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>allows them to explain the properties of different compounds/substances<br><em><strong>OR</strong></em><br>enables them to generalise about substances<br><em><strong>OR</strong></em><br>enables them to make predictions ✔</p>
<p><em><br>Accept other valid answers.</em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4FeS(s) + 7O<sub>2</sub>(g) → 2Fe<sub>2</sub>O<sub>3</sub>(s) + 4SO<sub>2</sub>(g) ✔</p>
<p><em><br>Accept any correct ratio.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>+6<br><em><strong>OR</strong></em><br>−2 to +4 ✔</p>
<p><em>Accept “6/VI”.</em><br><em>Accept “−II, 4//IV”.</em><br>Do <strong>not</strong> accept 2− to 4+.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sulfur dioxide/SO<sub>2</sub> causes acid rain ✔</p>
<p><em>Accept sulfur dioxide/SO<sub>2</sub>/dust causes respiratory problems</em><br><em>Do <strong>not</strong> accept just “causes respiratory problems” or “causes acid rain”.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>disrupts the regular arrangement «of iron atoms/ions»<br><em><strong>OR</strong></em><br>carbon different size «to iron atoms/ions» ✔</p>
<p>prevents layers/atoms sliding over each other ✔</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbide, CaC<sub>2</sub>, is an ionic solid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the nature of ionic bonding.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of the Ca<sup>2+</sup> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When calcium compounds are introduced into a gas flame a red colour is seen; sodium compounds give a yellow flame. Outline the source of the colours and why they are different.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>reasons why solid calcium has a greater density than solid potassium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why solid calcium is a good conductor of electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbide reacts with water to form ethyne and calcium hydroxide.</p>
<p>CaC<sub>2</sub>(s) + H<sub>2</sub>O(l) → C<sub>2</sub>H<sub>2</sub>(g) + Ca(OH)<sub>2</sub>(aq)</p>
<p>Estimate the pH of the resultant solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction <strong><em>AND </em></strong>oppositely charged ions</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup></p>
<p><strong><em>OR</em></strong></p>
<p>[Ar]</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>promoted<strong>» </strong>electrons fall back to lower energy level</p>
<p>energy difference between levels is different</p>
<p> </p>
<p><em>Accept “Na and Ca have different </em><em>nuclear charge” for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>stronger metallic bonding</p>
<p>smaller ionic/atomic radius</p>
<p> </p>
<p>two electrons per atom are delocalized</p>
<p><strong><em>OR</em></strong></p>
<p>greater ionic charge</p>
<p> </p>
<p>greater atomic mass</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept just “heavier” or “more </em><em>massive” without reference to atomic </em><em>mass</em><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>delocalized/mobile electrons <strong>«</strong>free to move<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pH &gt; 7</p>
<p> </p>
<p><em>Accept any specific pH value or range </em><em>of values above 7 and below 14.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>

<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>

<div class="specification">
<p>In acidic solution, hydrogen peroxide, H<sub>2</sub>O<sub>2</sub>, will oxidize Fe<sup>2+</sup>.</p>
<p style="text-align: center;">Fe<sup>2+</sup> (aq) → Fe<sup>3+</sup> (aq) + e<sup>−</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the half-equation for the reduction of hydrogen peroxide to water in acidic solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a balanced equation for the oxidation of Fe2+ by acidified hydrogen peroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1:2 ✔</p>
<p><em>Accept 2 Fe<sup>3+</sup>: 1 Fe<sup>2+</sup></em><br><em>Do <strong>not</strong> accept 2:1 only</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass «spectroscopy»/MS ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="515" height="88"></p>
<p><em>Award <strong>[1 max]</strong> for 4 correct values.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific heat capacity « = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mi>q</mi><mrow><mi>m</mi><mo>×</mo><mo>∆</mo><mi>T</mi></mrow></mfrac><mo>/</mo><mfrac><mrow><mn>1000</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow><mrow><mn>50</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>×</mo><mn>44</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math>» = 0.45 «J g<sup>−1 </sup>K<sup>−1</sup>» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O<sub>2</sub>(aq) + 2H<sup>+</sup>(aq) + 2e<sup>−</sup>→ 2H<sub>2</sub>O(l) ✔</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O<sub>2</sub>(aq) + 2H<sup>+</sup>(aq) + 2Fe<sup>2+</sup>(aq) → 2H<sub>2</sub>O(l) + 2Fe<sup>3+</sup>(aq) ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about iron.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>, for iron-54.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="190" height="136"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An iron nail and a copper nail are inserted into a lemon.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="312" height="204"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{26}}}^{{\text{54}}}{\text{Fe}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>26</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>54</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Fe</mtext>
  </mrow>
</math></span></span>  <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">r</sub> =» 54 × 0.0584 + 56 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.9168 + 57 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0217 + 58 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0031<br><em><strong>OR</strong></em><br>«<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">r</sub> =» 55.9111  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">A</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">r</sub> =» 55.91 <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;">Notes:</span></em></p>
<p><em><span style="background-color: #ffffff;">Award [2] for correct final answer.<br>Do not accept data booklet value (55.85).</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lemon juice is the electrolyte<br><em><strong>OR</strong></em><br>lemon juice allows flow of ions<br><em><strong>OR</strong></em><br>each nail/metal forms a half-cell with the lemon juice  <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “lemon juice acts as a salt bridge”.</span></em></p>
<p><span style="background-color: #ffffff;"><em>Any one of</em>:<br>iron is higher than copper in the activity series<br><em><strong>OR</strong></em><br>each half-cell/metal has a different redox/electrode potential  <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “iron is more reactive than copper”.</span></em></p>
<p><span style="background-color: #ffffff;">iron is oxidized<br><em><strong>OR</strong></em><br>Fe → Fe<sup>2+</sup> + 2e<sup>–</sup><br><em><strong>OR</strong></em><br>Fe → Fe<sup>3+</sup> + 3e<sup>−</sup><br><em><strong>OR</strong></em><br>iron is anode/negative electrode of cell  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">copper is cathode/positive electrode of cell<br><em><strong>OR</strong></em><br>reduction occurs at the cathode<br><em><strong>OR</strong></em><br>2H<sup>+</sup> + 2e<sup>−</sup> → H<sub>2</sub>  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">electrons flow from iron to copper  <strong>[✔]</strong></span></p>
<p><em><strong> </strong></em></p>
<p><em><span style="background-color: #ffffff;">Notes:<br>Accept “lemon juice acts as a salt bridge”.<br>Accept “iron is more reactive than copper”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The nuclear symbol notation was generally correct. However, some students swapped atomic and mass numbers and hence lost the mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Calculation of RAM was generally correctly calculated, but some candidates did not give their answer to two decimal places while they should use the provided periodic table.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few students gained the 2 marks available for explaining the potential generated in the lemon as they didn’t realise it was the lemon that acted as the electrolyte and allowed ions to flow. Some were able to gain a mark for explaining that electrons moved from iron to copper as iron is more reactive.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The properties of elements can be predicted from their position in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Si has a smaller atomic radius than Al.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the decrease in radius from Na to Na<sup>+</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the condensed electron configurations for Cr and Cr3<sup>+</sup>.</p>
<p><img src="" width="768" height="190"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe metallic bonding and how it contributes to electrical conductivity.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the Lewis (electron dot) structure and molecular geometry of sulfur dichloride, SCl<sub>2</sub>.</p>
<p><img src="" width="433" height="216"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving reasons, the relative volatilities of SCl<sub>2</sub> and H<sub>2</sub>O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the following equilibrium reaction:</p>
<p style="text-align:center;">2SO<sub>2 </sub>(g) + O<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2SO<sub>3 </sub>(g)</p>
<p>State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nuclear charge/number of protons/Z/Z<sub>eff</sub> increases «causing a stronger pull on the outer electrons» ✓</p>
<p>same number of shells/«outer» energy level/shielding ✓</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Na<sup>+</sup> has one less energy level/shell<br><em><strong>OR</strong></em><br>Na<sup>+</sup> has 2 energy levels/shells <em><strong>AND</strong> </em>Na has 3 ✓</p>
<p>less shielding «in Na<sup>+</sup> so valence electrons attracted more strongly to nucleus»<br><em><strong>OR</strong></em><br>effective nuclear charge/Z<sub>eff</sub> greater «in Na<sup>+</sup> so valence electrons attracted more strongly to nucleus» ✓</p>
<p><em><br>Accept “more protons than electrons «in Na<sup>+</sup>»” <strong>OR</strong> “less electron-electron repulsion «in Na<sup>+</sup>»” for M2.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Cr:</em><br>[Ar] 4s<sup>1</sup>3d<sup>5</sup> ✓</p>
<p><em><br>Cr<sup>3+</sup>:</em><br>[Ar] 3d<sup>3</sup> ✓</p>
<p><em><br>Accept “[Ar] 3d<sup>5</sup>4s<sup>1</sup>”.</em></p>
<p><em>Accept “[Ar] 3d<sup>3</sup>4s<sup>0</sup>”.</em></p>
<p><em>Award <strong>[1 max]</strong> for two correct full electron configurations “1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>3</sup>”.</em></p>
<p><em>Award<strong> [1 max]</strong> for 4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 3d<sup>3</sup>.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✓</p>
<p>between «a lattice of» cations/positive «metal» ions <em><strong>AND</strong> </em>«a sea of» delocalized electrons ✓</p>
<p><br>mobile electrons responsible for conductivity<br><em><strong>OR</strong></em><br>electrons move when a voltage/potential difference/electric field is applied ✓</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “nuclei” for “cations/positive ions” in M2.</em></p>
<p><em>Accept “mobile/free” for “delocalized” electrons in M2.</em></p>
<p><em>Accept “electrons move when connected to a cell/battery/power supply” <strong>OR</strong> “electrons move when connected in a circuit” for M3.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O forms hydrogen bonding «while SCl<sub>2</sub> does not» ✓</p>
<p>SCl<sub>2</sub> «much» stronger London/dispersion/«instantaneous» induced dipole-induced dipole forces ✓</p>
<p><em><strong><br>Alternative 1:</strong></em><br>H<sub>2</sub>O less volatile <em><strong>AND</strong> </em>hydrogen bonding stronger «than dipole–dipole and dispersion forces» ✓</p>
<p><em><strong><br>Alternative 2:</strong></em><br>SCl<sub>2</sub> less volatile <em><strong>AND</strong> </em>effect of dispersion forces «could be» greater than hydrogen bonding ✓\</p>
<p> </p>
<p><em>Ignore reference to Van der Waals.</em></p>
<p><em>Accept “SCl<sub>2</sub> has «much» larger molar mass/electron density” for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pressure decrease «due to larger volume» ✓</p>
<p>reactant side has more moles/molecules «of gas» ✓</p>
<p>reaction shifts left/towards reactants ✓</p>
<p><em><br>Award M3 only if M1 <strong>OR</strong> M2 is awarded.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_Z^AX">
  <msubsup>
    <mrow>

    </mrow>
    <mi>Z</mi>
    <mi>A</mi>
  </msubsup>
  <mi>X</mi>
</math></span>, for magnesium-26.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mass spectroscopic analysis of a sample of magnesium gave the following results:</p>
<p><img src="" alt></p>
<p>Calculate the relative atomic mass, <em>A</em><sub>r</sub>, of this sample of magnesium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium burns in air to form a white compound, magnesium oxide. Formulate an equation for the reaction of magnesium oxide with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the trend in acid-base properties of the oxides of period 3, sodium to chlorine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In addition to magnesium oxide, magnesium forms another compound when burned in air. Suggest the formula of this compound</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the structure and bonding in solid magnesium oxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922 K and 987 K respectively.</p>
<p>Anode (positive electrode):</p>
<p>Cathode (negative electrode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{12}^{26}{\rm{Mg}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>12</mn>
    </mrow>
    <mrow>
      <mn>26</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mrow>
      <mi mathvariant="normal">M</mi>
      <mi mathvariant="normal">g</mi>
    </mrow>
  </mrow>
</math></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Ar =»<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}}{{100}}">
  <mfrac>
    <mrow>
      <mn>24</mn>
      <mo>×</mo>
      <mn>78.60</mn>
      <mo>+</mo>
      <mn>25</mn>
      <mo>×</mo>
      <mn>10.11</mn>
      <mo>+</mo>
      <mn>26</mn>
      <mo>×</mo>
      <mn>11.29</mn>
    </mrow>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>«= 24.3269 =» 24.33</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em><br><em>Do <strong>not</strong> accept data booklet value (24.31).</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>MgO(s) + H<sub>2</sub>O(l) → Mg(OH)<sub>2</sub>(s)</p>
<p><em><strong>OR</strong></em></p>
<p>MgO(s) + H<sub>2</sub>O(l) → Mg<sup><sub>2</sub>+</sup>(aq) + 2OH<sup>–</sup>(aq)</p>
<p><em>Accept</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span>.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from basic to acidic</p>
<p>through amphoteric</p>
<p><em>Accept “alkali/alkaline” for “basic”. <br>Accept “oxides of Na and Mg: basic <strong>AND</strong> oxide of Al: amphoteric” for M1. <br>Accept “oxides of non-metals/Si to Cl acidic” for M2. <br>Do <strong>not</strong> accept just “become more acidic”</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mg<sub>3</sub>N<sub>2</sub></p>
<p><em>Accept MgO<sub>2</sub>, Mg(OH)<sub>2</sub>, Mg(NOx)<sub>2</sub>, MgCO<sub>3</sub>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«3-D/giant» regularly repeating arrangement «of ions»<br><em><strong>OR <br></strong></em>lattice «of ions»<br><em>Accept “giant” for M1, unless “giant covalent” stated.</em></p>
<p>electrostatic attraction between oppositely charged ions<br><em><strong>OR<br></strong></em>electrostatic attraction between Mg<sup>2+</sup> and O<sup>2–</sup> ions<br><em>Do <strong>not</strong> accept “ionic” without description.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Anode (positive electrode):<br></em>2Cl<sup>–</sup> → Cl<sub>2</sub>(g) + 2e<sup>–</sup></p>
<p><em>Cathode (negative electrode):<br></em>Mg<sup>2+</sup> + 2e<sup>–</sup> → Mg(l)</p>
<p><em>Penalize missing/incorrect state symbols at Cl<sub>2</sub> and Mg once only.<br>Award <strong>[1 max]</strong> if equations are at wrong electrodes.<br>Accept Mg (g).</em></p>
<p> </p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>
</div>

<div class="specification">
<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>
<p style="text-align: right;">Mass of crucible and lid = 47.372 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and magnesium ribbon before heating = 53.726 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and product after heating = 56.941 &plusmn;0.001&thinsp;g</p>
<p style="text-align: left;">&nbsp;</p>
</div>

<div class="specification">
<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>
<p style="text-align: center;">3&thinsp;Mg&thinsp;(s) + N<sub>2&thinsp;</sub>(g) &rarr; Mg<sub>3</sub>N<sub>2&thinsp;</sub>(s)</p>
</div>

<div class="specification">
<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>
</div>

<div class="specification">
<p>Most nitride ions are <sup>14</sup>N<sup>3&ndash;</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write a balanced equation for the reaction that occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the block of the periodic table in which magnesium is located.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of magnesium, in mol, that was used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty of the mass of product after heating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate coefficients that balance the equation for the following reaction.</p>
<p style="text-align:center;">__ Mg<sub>3</sub>N<sub>2 </sub>(s) + __ H<sub>2</sub>O (l) → __ Mg(OH)<sub>2 </sub>(s) + __ NH<sub>3 </sub>(aq)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of subatomic particles in this ion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>
<p><img src="" width="644" height="367"></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2 Mg(s) + O<sub>2</sub>(g) → 2 MgO(s) ✔</p>
<p><em><br>Do not accept equilibrium arrows. Ignore state symbols</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>s ✔</p>
<p><em><br>Do not allow group 2</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>aluminium/Al ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mn>53</mn><mo>.</mo><mn>726</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>244</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>354</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo></math> «mol» ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass of product <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>=</mo><mn>56</mn><mo>.</mo><mn>941</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>»</mo><mo>=</mo><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mtext>⟨⟨100 × </mtext><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>001</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mtext>=0.0209⟩⟩ = 0.02 «%»</mtext></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer </em></p>
<p><em>Accept 0.021%</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo> </mo><mo>×</mo><mo> </mo><mo>(</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>16</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>40</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⟨</mo><mo>⟨</mo><mn>100</mn><mo>×</mo><mfrac><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mo>=</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>822</mn><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>91</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award «0.2614 mol x 40.31 g mol<sup>–1</sup>»</em></p>
<p><em>Accept alternative methods to arrive at the correct answer.</em></p>
<p><em>Accept final answers in the range 91-92%</em></p>
<p><em><strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes<br><em><strong>AND</strong></em><br>«each Mg combines with <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> N, so» mass increase would be 14x<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> which is less than expected increase of 16x<br><em><strong>OR</strong></em><br>3 mol Mg would form 101g of Mg<sub>3</sub>N<sub>2</sub> but would form 3 x MgO = 121 g of MgO<br><em><strong>OR</strong></em><br>0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg<sub>3</sub>N<sub>2</sub> ✔</p>
<p> </p>
<p><em>Accept Yes <strong>AND</strong> “the mass of N/N<sub>2</sub> that combines with each g/mole of Mg is lower than that of O/O<sub>2</sub>”</em></p>
<p><em>Accept YES<strong> AND</strong> “molar mass of nitrogen less than of oxygen”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>incomplete reaction<br><em><strong>OR</strong></em><br>Mg was partially oxidised already<br><em><strong>OR</strong></em><br>impurity present that evaporated/did not react ✔</p>
<p> </p>
<p><em>Accept “crucible weighed before fully cooled”.</em></p>
<p><em>Accept answers relating to a higher atomic mass impurity consuming less O/O<sub>2</sub>.</em></p>
<p><em>Accept “non-stoichiometric compounds formed”.</em></p>
<p><em>Do <strong>not</strong> accept "human error", "wrongly calibrated balance" or other non-chemical reasons.</em></p>
<p><em>If answer to (b)(iii) is &gt;100%, accept appropriate reasons, such as product absorbed moisture before being weighed.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«1» Mg<sub>3</sub>N<sub>2 </sub>(s) + <strong>6</strong> H<sub>2</sub>O (l) → <strong>3</strong> Mg(OH)<sub>2 </sub>(s) + <strong>2</strong> NH<sub>3 </sub>(aq)</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Mg<sub>3</sub>N<sub>2</sub>: -3</em><br><strong><em>AND</em></strong><br><em>NH<sub>3</sub>: -3 ✔</em></p>
<p><em><br>Do not accept 3 or 3-</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Acid–base:</em><br>yes <strong>AND</strong> N<sup>3-</sup> accepts H<sup>+</sup>/donates electron pair«s»<br><strong><em>OR</em></strong><br>yes <strong>AND</strong> H<sub>2</sub>O loses H<sup>+</sup> «to form OH<sup>-</sup>»/accepts electron pair«s» ✔</p>
<p><em>Redox:</em><br>no <strong>AND</strong> no oxidation states change ✔</p>
<p> </p>
<p><em>Accept “yes <strong>AND</strong> proton transfer takes place”</em></p>
<p><em>Accept reference to the oxidation state of specific elements not changing.</em></p>
<p><em>Accept “not redox as no electrons gained/lost”.</em></p>
<p><em>Award <strong>[1 max]</strong> for Acid–base: yes <strong>AND</strong> Redox: no without correct reasons, if no other mark has been awarded</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons</em>: 7 <em><strong>AND</strong> Neutrons</em>: 7 <em><strong>AND</strong> Electrons</em>: 10 ✔</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">isotope</span>«s» ✔</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nitride <em><strong>AND</strong> </em>smaller nuclear charge/number of protons/atomic number ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br><br>subatomic particles «discovered»<br><em><strong>OR</strong></em><br>particles smaller/with masses less than atoms «discovered»<br><em><strong>OR</strong></em><br>«existence of» isotopes «same number of protons, different number of neutrons» ✔</p>
<p><br>charged particles obtained from «neutral» atoms<br><em><strong>OR</strong></em><br>atoms can gain or lose electrons «and become charged» ✔</p>
<p><br>atom «discovered» to have structure ✔</p>
<p><br>fission<br><em><strong>OR</strong></em><br>atoms can be split ✔</p>
<p> </p>
<p><em>Accept atoms can undergo fusion «to produce heavier atoms»</em></p>
<p><em>Accept specific examples of particles.</em></p>
<p><em>Award <strong>[2]</strong> for “atom shown to have a nucleus with electrons around it” as both M1 and M3.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><br>Award <strong>[1]</strong> for all bonding types correct.</em></p>
<p><em>Award <strong>[1]</strong> for <strong>each</strong> correct description.</em></p>
<p><em>Apply ECF for M2 only once.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was not as well done as one might have expected with the most common errors being O instead of O<sub>2</sub> oxygen and MgO rather than MgO<sub>2</sub>.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students did not know what "block" meant, and often guessed group 2 etc.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students confused "period" and "group" and also many did not read metal, so aluminium was not chosen by the majority.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A number of students were not able to interpret the results and hence find the gain in mass and calculate the moles correctly.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only a handful could work out the correct answer. Most had no real idea and quite a lot of blank responses. There also seems to be significant confusion between "percent uncertainty" and "percent error".</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was not well answered, but definitely better than the previous question with quite a few gaining some credit for correctly determining the theoretical yield.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved to be a very difficult question to answer in the quantitative manner required, with hardly any correct responses.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Quite a few students realised that incomplete reaction would lead to this, but only 30% of students gave a correct answer rather than a non-specific guess, such as "misread balance" or "impurities".</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally very well done with almost all candidates being able to determine the correct coefficients.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 40% of students managed to correctly determine both the oxidation states, as -3, with errors being about equally divided between the two compounds.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Probably only about 10% could explain why this was an acid-base reaction. Rather more made valid deductions about redox, based on their answer to the previous question.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could answer the question about subatomic particles correctly.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Identification of isotopes was answered correctly by most students.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In spite of being given the meaning of "isoelectronic", many candidates talked about the differing number of electrons and only about 30% could correctly analyse the situation in terms of nuclear charge.</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The question was marked quite leniently so that the majority of candidates gained at least one of the marks by mentioning a subatomic particle. A significant number read "indivisible" as "invisible" however.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About a quarter of the students gained full marks and probably a similar number gained no marks. Metallic bonding was the type that seemed least easily recognised and least easily described. Another common error was to explain ionic bonding in terms of attraction of ions rather than describing electron transfer.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>

<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>&nbsp;</mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>

<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>

<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math>&nbsp;</span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write the equation for the reaction of chloroethane with a dilute aqueous solution of sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the nucleophile for the reaction in d(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion. Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and their chemical shifts in the </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">H</mi><mprescripts></mprescripts><mn>1</mn></mmultiscripts><mo> </mo><mi>NMR</mi></math> <span class="fontstyle0">spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">p</mi><mn>6</mn></msup><mn>3</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>3</mn><msup><mi mathvariant="normal">p</mi><mn>5</mn></msup></math> ✔</p>
<p><em>Do <strong>not</strong> accept condensed electron configuration.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cl</mi><mo>-</mo></msup></math> <em><strong>AND</strong> </em>more «electron–electron» repulsion ✔</p>
<p><em><br>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo mathvariant="italic">-</mo></msup></math> <strong>AND</strong> has an extra electron.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> has a greater nuclear charge/number of protons/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">Z</mi><mi>eff</mi></msub></math> «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells<br><strong><em>OR</em></strong><br>same «outer» energy level<br><em><strong>OR</strong></em><br>similar shielding ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«two major» isotopes «of atomic mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>» ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«diatomic» molecule composed of «two» chlorine-37 atoms ✔</p>
<p>chlorine-37 is the least abundant «isotope»<br><em><strong>OR</strong></em><br>low probability of two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><mn>37</mn></mmultiscripts></math> «isotopes» occurring in a molecule ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>86</mn><mo>.</mo><mn>94</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">n</mi><mi>HCl</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>2000</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo> </mo></math>✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>400</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> is the limiting reactant ✔</p>
<p><em>Accept other valid methods of determining the limiting reactant in M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>4</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>»</mo></math></p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo>–</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>277</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo>«</mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo></math> ✔</p>
<p><em><br>Accept methods employing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></math></em>.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>4</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>2</mn></math> ✔</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxidizing agent <em><strong>AND</strong></em> oxidation state of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mn</mi></math> changes from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>2</mn></math>/decreases ✔</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially dissociates/ionizes «in water» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>ClO</mi><mo>-</mo></msup></math> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>[</mo><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo>]</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>61</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«free radical» substitution/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">S</mi><mi mathvariant="normal">R</mi></msub></math> ✔</p>
<p><em><br>Do not accept electrophilic or nucleophilic substitution.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloroethane <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi>Cl</mi></math> bond is weaker/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>324</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi mathvariant="normal">H</mi></math> bond/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>414</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math><br><em><strong>OR</strong></em><br>chloroethane <strong><em>AND</em> </strong>contains a polar bond ✔</p>
<p><em><br>Accept “chloroethane <strong>AND</strong> polar”.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msup><mi>OH</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><msup><mi>Cl</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><mi>NaOH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>NaCl</mi><mo>(</mo><mi>aq</mi><mo>)</mo></math> ✔</p>
<p><em>Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>C</mi><mi>l</mi></math> and <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>O</mi><mi>H</mi><mi mathvariant="normal">/</mi><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">6</mn></msub><mi>O</mi></math> in the equation.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydroxide «ion»/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>OH</mi><mo>-</mo></msup></math> ✔</p>
<p><em><br>Do <strong>not</strong> accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mi>a</mi><mi>O</mi><mi>H</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> / <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>OCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">(</mo><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">2</mn></msub><msub><mo mathvariant="italic">)</mo><mn mathvariant="italic">2</mn></msub><mi>O</mi></math>.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> «signals» ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn><mo>–</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo></math> <em><strong>AND</strong> </em><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>3</mn><mo>–</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo><mo> </mo></math>✔</p>
<p><em><br>Accept any values in the ranges.</em></p>
<p><em>Award <strong>[1 max]</strong> for two incorrect chemical shifts.</em></p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>M</mi><mo>(</mo><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub><mo>)</mo><mo> </mo><mo>=</mo><mo>»</mo><mo> </mo><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>×</mo><mn>35</mn><mo>.</mo><mn>45</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>×</mo><mn>100</mn><mo>%</mo><mo>=</mo><mo>»</mo><mo> </mo><mn>58</mn><mo>.</mo><mn>64</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>research «collaboration» for alternative technologies «to replace <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s»<br><em><strong>OR</strong></em><br>technologies «developed»/data could be shared<br><em><strong>OR</strong></em><br>political pressure/Montreal Protocol/governments passing legislations ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “collaboration”.</em></p>
<p><em>Do <strong>not</strong> accept any reference to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math> as greenhouse gas or product of fossil fuel combustion.</em></p>
<p><em>Accept reference to specific measures, such as agreement on banning use/manufacture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math>s.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates wrote the electron configuration of chlorine correctly.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only half of the candidates deduced that the chloride ion has a larger radius than the chlorine atom&nbsp;with a valid reason. Many candidates struggled with this question and decided that the extra electron in&nbsp;the chloride ion caused a greater attraction between the nucleus and the outer electrons.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only about a third of the candidates identified the extra proton in the chlorine nucleus as the cause&nbsp;of the smaller atomic radius when compared to the sulfur atom, and only the stronger candidates also&nbsp;compared the shielding or the number of shells in the two atoms. Many candidates had a poor&nbsp;understanding of factors affecting atomic radius and could not explain the difference.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 60% of the candidates recognized that the peaks at m/z 35 and 37 in the mass spectrum of chlorine are due to its isotopes. A few students wrote 'isomers' instead of 'isotopes'.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the lowest scoring question on the paper, that was also left blank by 10% of the candidates.&nbsp;About 20% of the candidates identified the peak at m/z = 74 to be due to a molecule made up of two 37Cl&nbsp;atoms. And only very few candidates commented that the low abundance of the peak was due to the low&nbsp;abundance of the 37Cl isotope. A common incorrect answer was that chlorine has an isotope of mass&nbsp;number 74.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to determine the number of moles of MnO<sub>2</sub> using the mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing that the majority of the candidates were able to determine the limiting reactant by&nbsp;using the stoichiometric ratio.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to determine the amount of excess reactant. Some candidates who&nbsp;determined the limiting reactant in the previous part correctly, forgot to use the stoichiometric ratio in&nbsp;this part, and ended up with incorrect answers.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates determined the volume of chlorine produced correctly. Some candidates&nbsp;made mistakes in the units when using PV = nRT and had a power of 10 error.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates were able to determine the oxidation states of Mn in the two compounds&nbsp;correctly.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Less than half of the candidates were awarded the mark. Some did identify MnO2 as the oxidizing&nbsp;agent but did not give the explanation in terms of oxidation state as required in the question. Other&nbsp;candidates did not have an understanding of oxidizing and reducing agents.&nbsp;</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question - 80% of candidates understood what is meant by the term weak acid. Incorrect answers included 'acids that have high pH'.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates deduced the formula of the conjugate base of hypochlorous acid. Incorrect&nbsp;answers included H<sub>2</sub>O and HCl.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question. It was pleasing to see that 70% of the candidates were able to calculate&nbsp;[H<sup>+</sup>] from the given pH.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than half of the candidates identified the type of reaction between ethane and chlorine as a substitution reaction. A few candidates lost the marks for writing 'electrophilic substitution' or 'nucleophilic substitutions'.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question that was answered correctly by only 30% of the candidates. A variety of incorrect answers were seen such as 'chlorine is a halogen and hence it is reactive', and 'ethane is more reactive because it is an alkane'. For students who answered correctly, the polarity was the most&nbsp;frequently given reason.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates wrote the correct equation for the hydrolysis of chloroethane. Incorrect&nbsp;answers often included carbon dioxide and water as the products.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a highly discriminating question. Only 30% of the candidates were able to identify the&nbsp;hydroxide ion as the nucleophile in the hydrolysis of chloroethane. Incorrect answers included NaOH&nbsp;where the ion was not specified. 14% of the candidates left this question blank.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to give the structural formula of ethoxyethane. Incorrect answers&nbsp;included methoxymethane, ketones and esters.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly half of the candidates were able to identify the number of signals obtained in the 1H NMR&nbsp;spectrum of ethoxyethane, obtaining the first mark of this question. Many candidates were awarded the mark as 'error carried forward' from an incorrect structure of ethoxyethane. The second mark for this&nbsp;question required candidates to look up values of chemical shift from the data booklet. Nearly a third of&nbsp;the candidates were able to match the chemical environments of the hydrogen atoms in ethoxyethane to&nbsp;those listed in the data booklet successfully.&nbsp;</p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the highest scoring question in the paper. The majority of candidates were able to calculate&nbsp;the percentage by mass of chlorine in CCl<sub>2</sub>F<sub>2</sub>. Mistakes included incorrect rounding and arithmetic errors.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This nature of science question was well answered by half of the candidates. Some teachers&nbsp;commented that the wording was rather vague. Incorrect answers were mainly assuming that CFCs were&nbsp;related to the combustion of fuels and greenhouse gas emissions.</p>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia, NH<sub>3</sub>, is industrially important for the manufacture of fertilizers, explosives and plastics.</p>
</div>

<div class="specification">
<p>Ammonia is produced by the Haber&ndash;Bosch process which involves the equilibrium:</p>
<p style="text-align: center;">N<sub>2&thinsp;</sub>(g) + 3&thinsp;H<sub>2&thinsp;</sub>(g)&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2&thinsp;NH<sub>3&thinsp;</sub>(g)</p>
</div>

<div class="specification">
<p>The effect of temperature on the position of equilibrium depends on the enthalpy change of the reaction.</p>
</div>

<div class="specification">
<p>Ammonia is soluble in water and forms an alkaline solution:</p>
<p style="text-align: center;">NH<sub>3&thinsp;</sub>(g) + H<sub>2</sub>O&thinsp;(l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> NH<sub>4</sub><sup>+&thinsp;</sup>(aq) + HO<sup>&ndash;&thinsp;</sup>(aq)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of the ammonia molecule.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the expression for the equilibrium constant, <em>K</em><sub>c</sub>, for this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an increase in pressure shifts the position of equilibrium towards the products and how this affects the value of the equilibrium constant, <em>K</em><sub>c</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the use of a catalyst affects the position of the equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, Δ<em>H</em><sup>⦵</sup>, for the Haber–Bosch process, in kJ, using the following data.</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mrow><mo> </mo><mi mathvariant="normal">f</mi></mrow><mo>⦵</mo></msubsup><mfenced><msub><mi>NH</mi><mn>3</mn></msub></mfenced><mo>=</mo><mo>-</mo><mn>46</mn><mo>.</mo><mn>2</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the values obtained in (d)(i) and (d)(ii) differ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> in terms of the Brønsted–Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration, in mol dm<sup>–3</sup>, of the solution formed when 900.0 dm<sup>3</sup> of NH<sub>3 </sub>(g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm<sup>3</sup> of solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="444" height="226"></p>
<p> </p>
<p><em>Accept <strong>all</strong> 2p electrons pointing downwards.</em></p>
<p><em>Accept half arrows instead of full arrows.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Accept lines or dots or crosses for electrons, or a mixture of these</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi>c</mi></msub><mo>=</mo><mfrac><msup><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced><mn>2</mn></msup><mrow><mfenced open="[" close="]"><msub><mi>N</mi><mn>2</mn></msub></mfenced><msup><mfenced open="[" close="]"><msub><mi>H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow></mfrac></math> ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>shifts to the side with fewer moles «of gas»<br><em><strong>OR</strong></em><br>shifts to right as there is a reduction in volume✔</p>
<p>«value of » <em>K</em><sub>c</sub> unchanged ✔</p>
<p> </p>
<p><em>Accept “K<sub>c</sub> only affected by changes in temperature”.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same/unaffected/unchanged ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>bonds broken</em>: N≡N + 3(H–H) / «1 mol×»945 «kJ mol<sup>–1</sup>» + 3«mol»×436 «kJ mol<sup>–1</sup>» / 945 «kJ» + 1308 «kJ» / 2253 «kJ» ✔</p>
<p><em>bonds formed</em>: 6(N–H) / 6«mol»×391 «kJ mol<sup>–1</sup>» / 2346 «kJ» ✔</p>
<p>Δ<em>H</em> = «2253 kJ – 2346 kJ = » –93 «kJ» ✔</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> for (+)93 «kJ»</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–92.4 «kJ» ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«N-H» bond enthalpy is an average «and may not be the precise value in NH<sub>3</sub>» ✔</p>
<p><em><br>Accept it relies on average values not specific to NH<sub>3</sub></em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">conjugate</span> «acid and base» ✔</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of ammonia <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mrow><mi>P</mi><mo>.</mo><mi>V</mi></mrow><mrow><mi>R</mi><mo>.</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>100</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>k</mi><mi>P</mi><mi>a</mi><mo>×</mo><mn>900</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>d</mi><msup><mi>m</mi><mn>3</mn></msup></mrow><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi>J</mi><mo> </mo><msup><mi>K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi>m</mi><mi>o</mi><msup><mi>l</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>300</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>K</mi></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo> </mo><mo>=</mo><mo> </mo><mn>36</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p>concentration <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mi>n</mi><mi>V</mi></mfrac><mo>=</mo><mfrac><mrow><mn>36</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>00</mn></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>18</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[OH<sup>−</sup>] <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><msub><mi mathvariant="normal">K</mi><mi mathvariant="normal">W</mi></msub><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced></mfrac><mo>=</mo><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>3</mn></mrow></msup></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo> </mo><mo>×</mo><mo> </mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo> </mo><mo>⟨</mo><mo>⟨</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo></math> ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most students realised that the three p-orbitals were all singly filled.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even more candidates could draw the correct Lewis structure of ammonia, with omission of the lone pair being the most common error.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students could deduce the equilibrium constant expression from the equilibrium equation.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students realised that increasing pressure shifts an equilibrium to the side with the most moles of gas (though the "of gas" was frequently omitted!) but probably less than half realised that, even though the equilibrium position changes, the value of the equilibrium constant remains constant.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing to see that about a third of students gaining full marks and an equal number only lost a single mark because they failed to locate the correct bond enthalpy for molecular nitrogen.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few students could determine the enthalpy change from enthalpy of formation data, with many being baffled by the absence of values for the elemental reactants and more than half who overcame this obstacle failed to note that 2 moles of ammonia are produced.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About half the candidates recognised the species as a conjugate acid-base pair, though some lost the mark by confusing the acid and base, even though this information was not asked for.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 40% of candidates gained full marks for the calculation and a significant number of others gained the second mark to calculate the concentration as an ECF.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was very poorly answered with many candidates calculating the [H<sup>+</sup>] instead of [OH<sup>-</sup>].</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide, N<sub>2</sub>O, causes depletion of ozone in the stratosphere.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Different sources of N<sub>2</sub>O have different ratios of <sup>14</sup>N:<sup>15</sup>N.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why ozone in the stratosphere is important.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State one analytical technique that could be used to determine the ratio of <sup>14</sup>N:<sup>15</sup>N.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A sample of gas was enriched to contain 2 % by mass of <sup>15</sup>N with the remainder being <sup>14</sup>N.</span></p>
<p><span style="background-color: #ffffff;">Calculate the relative molecular mass of the resulting N<sub>2</sub>O.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving <strong>two</strong> reasons, how the first ionization energy of <sup>15</sup>N compares with that of <sup>14</sup>N.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why it is surprising that dinitrogen monoxide dissolves in water to give a neutral solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">absorbs <span style="text-decoration: underline;">UV/ultraviolet</span> light «of longer wavelength than absorbed by O<sub>2</sub>»  <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass spectrometry/MS  <strong>[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(98 \times 14) + (2 \times 15)}}{{100}} = ">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>98</mn>
      <mo>×</mo>
      <mn>14</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mo stretchy="false">(</mo>
      <mn>2</mn>
      <mo>×</mo>
      <mn>15</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 14.02  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«<em>M<sub>r</sub></em> = (14.02 × 2) + 16.00 =» 44.04  <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two</em>:<br>same <em><strong>AND</strong> </em>have same nuclear charge/number of protons/Z<sub>eff</sub>  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>neutrons do not affect attraction/ionization energy/Z<sub>eff</sub><br><em><strong>OR</strong></em><br>same <em><strong>AND</strong> </em>neutrons have no charge <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>same attraction for «outer» electrons <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>have same electronic configuration/shielding <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> Note:</strong> Accept “almost the same”.<br>“same” only needs to be stated once.</span></em></span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">oxides of nitrogen/non-metals are «usually» acidic  <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>60 % of the candidates were aware that ozone in the atmosphere absorbs UV light. Some candidates did not gain the mark for not specifying the type of radiation absorbed.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered. More than half of the candidates stated mass spectrometry is used to determine the ratio of the isotopes.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates successfully calculated the relative atomic mass of nitrogen in the sample. M2 was awarded independently of M1, so candidates who calculated the relative molecular mass using the <em>A</em><sub>r</sub> of nitrogen in the data booklet (14.01) were awarded M2. Many candidates scored both marks.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question for many candidates, while stronger candidates often showed clarity of thinking and were able to conclude that the ionization energies of the two isotopes must be the same and to provide two different reasons for this. Some candidates did realize that the ionization energies are similar but did not give the best reasons to support their answer. Many candidates thought the ionization energies would be different because the size of the nucleus was different. Some teachers commented that the question was difficult while others liked it because it made students apply their knowledge in an unfamiliar situation. The question had a good discrimination index.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only a quarter of the candidates answered correctly. Some simply stated that N<sub>2</sub>O forms HNO<sub>3</sub> with water which did not gain the mark.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="specification">
<p>Elements show trends in their physical properties across the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the first four energy levels of a hydrogen atom on the axis, labelling n = 1, 2, 3 and 4.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the lines, on your diagram, that represent the electron transitions to n = 2 in the emission spectrum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why atomic radius decreases across period 3, sodium to chlorine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ionic radius of K<sup>+</sup> is smaller than that of Cl<sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copper is widely used as an electrical conductor.</p>
<p>Draw arrows in the boxes to represent the electronic configuration of copper in the 4s and 3d orbitals.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Impure copper can be purified by electrolysis. In the electrolytic cell, impure copper is the anode (positive electrode), pure copper is the cathode (negative electrode) and the electrolyte is copper(II) sulfate solution.</p>
<p>Formulate the half-equation at each electrode.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline where and in which direction the electrons flow during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_09.17.43.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/03.a.i/M"></p>
<p>4 levels showing convergence at higher energy</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_09.19.58.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/03.a.ii/M"></p>
<p>arrows (pointing down) from n = 3 to n = 2 <strong><em>AND </em></strong>n = 4 to n = 2</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same number of shells/<strong>«</strong>outer<strong>» </strong>energy level/shielding <strong><em>AND </em></strong>nuclear charge/number of protons/Z<sub>eff</sub> increases <strong>«</strong>causing a stronger pull on the outer electrons<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>K<sup>+</sup> 19 protons <strong><em>AND </em></strong>Cl<sup>–</sup> 17 protons</p>
<p><strong><em>OR</em></strong></p>
<p>K<sup>+</sup> has <strong>«</strong>two<strong>» </strong>more protons</p>
<p>same number of electrons/isoelectronic <strong>«</strong>thus pulled closer together<strong>»</strong></p>
<p><strong><em>[2 marks]</em><br></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_09.27.32.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/03.c.i/M"></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Anode (positive electrode):</em></p>
<p>Cu(s) → Cu<sup>2+</sup>(aq) + 2e<sup>–</sup></p>
<p><em>Cathode (negative electrode):</em></p>
<p>Cu<sup>2+</sup>(aq) + 2e<sup>–</sup> → Cu(s)</p>
<p> </p>
<p><em>Accept Cu(s) – 2e<sup>–</sup></em><em> →</em><em> </em><em>Cu</em><sup><em>2+</em></sup><em>(aq).</em></p>
<p><em>Accept</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> <em>for →</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>if the equations are at </em><em>the wrong electrodes.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>external<strong>» </strong>circuit/wire <strong><em>AND </em></strong>from positive/anode to negative/cathode electrode</p>
<p> </p>
<p><em>Accept “through power supply/battery” </em><em>instead of “circuit”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">An electrolysis cell was assembled using graphite electrodes and connected as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;">Electrolyte:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br>«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires:</em><br>«delocalized» electrons «flow» ✔</span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>There are many oxides of silver with the formula Ag<sub>x</sub>O<sub>y</sub>. All of them decompose into their&nbsp;elements when heated strongly.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After heating 3.760 g of a silver oxide 3.275 g of silver remained. Determine the empirical formula of Ag<sub>x</sub>O<sub>y</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the final mass of solid obtained by heating 3.760 g of Ag<sub>x</sub>O<sub>y</sub> may be greater than 3.275 g giving one design improvement for your proposed suggestion. Ignore any possible errors in the weighing procedure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Naturally occurring silver is composed of two stable isotopes, <sup>107</sup>Ag and <sup>109</sup>Ag.</p>
<p>The relative atomic mass of silver is 107.87. Show that isotope <sup>107</sup>Ag is more abundant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some oxides of period 3, such as Na<sub>2</sub>O and P<sub>4</sub>O<sub>10</sub>, react with water. A spatula measure of each oxide was added to a separate 100 cm<sup>3</sup> flask containing distilled water and a few drops of bromothymol blue indicator.</p>
<p>The indicator is listed in section 22 of the data booklet.</p>
<p>Deduce the colour of the resulting solution and the chemical formula of the product formed after reaction with water for each oxide.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electrical conductivity of molten Na<sub>2</sub>O and P<sub>4</sub>O<sub>10</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the model of electron configuration deduced from the hydrogen line emission spectrum (Bohr’s model).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>n(Ag) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.275{\text{ g}}}}{{107.87{\text{ g}}\,{\text{mol}}}} = ">
  <mfrac>
    <mrow>
      <mn>3.275</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>107.87</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 0.03036 «mol»</p>
<p><em><strong>AND</strong></em></p>
<p>n(O) = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.760{\text{ g}} - 3.275{\text{ g}}}}{{16.00{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = \frac{{0.485}}{{16.00}} = ">
  <mfrac>
    <mrow>
      <mn>3.760</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
      <mo>−</mo>
      <mn>3.275</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>16.00</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.485</mn>
    </mrow>
    <mrow>
      <mn>16.00</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 0.03031 «mol»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.03036}}{{0.03031}} \approx 1">
  <mfrac>
    <mrow>
      <mn>0.03036</mn>
    </mrow>
    <mrow>
      <mn>0.03031</mn>
    </mrow>
  </mfrac>
  <mo>≈</mo>
  <mn>1</mn>
</math></span> / ratio of Ag to O approximately 1 : 1, so»</p>
<p>AgO</p>
<p> </p>
<p><em>Accept other valid methods for M1.</em></p>
<p><em>Award <strong>[1 max]</strong> for correct empirical formula if method not shown.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>temperature too low<br><em><strong>OR</strong></em><br>heating time too short<br><em><strong>OR</strong></em><br>oxide not decomposed completely</p>
<p>heat sample to constant mass «for three or more trials»</p>
<p> </p>
<p><em>Accept “not heated strongly enough”.</em></p>
<p><em>If M1 as per markscheme, M2 can only be awarded for constant mass technique.</em></p>
<p><em>Accept "soot deposition" (M1) and any suitable way to reduce it (for M2).</em></p>
<p><em>Accept "absorbs moisture from atmosphere" (M1) and "cool in dessicator" (M2).</em></p>
<p><em>Award <strong>[1 max]</strong> for reference to impurity <strong>AND</strong> design improvement.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A<sub>r</sub> closer to 107/less than 108 «so more <sup>107</sup>Ag»<br><em><strong>OR</strong></em><br>A<sub>r</sub> less than the average of (107 + 109) «so more <sup>107</sup>Ag»</p>
<p> </p>
<p><em>Accept calculations that gives greater than 50% <sup>107</sup>Ag.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do not accept name for the products.</em></p>
<p><em>Accept “Na<sup>+</sup> + OH<sup>–</sup>” for NaOH.</em></p>
<p><em>Ignore coefficients in front of formula.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«molten» Na<sub>2</sub>O has mobile ions/charged particles <em><strong>AND</strong> </em>conducts electricity</p>
<p>«molten» P<sub>4</sub>O<sub>10</sub> does not have mobile ions/charged particles <em><strong>AND</strong> </em>does not conduct electricity/is poor conductor of electricity</p>
<p> </p>
<p><em>Do <strong>not</strong> award marks without concept of mobile charges being present.</em></p>
<p><em>Award <strong>[1 max]</strong> if type of bonding or electrical conductivity correctly identified in each compound.</em></p>
<p><em>Do <strong>not</strong> accept answers based on electrons.</em></p>
<p><em>Award <strong>[1 max]</strong> if reference made to solution.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons in discrete/specific/certain/different shells/energy levels</p>
<p>energy levels converge/get closer together at higher energies<br><em><strong>OR</strong></em><br>energy levels converge with distance from the nucleus</p>
<p> </p>
<p><em>Accept appropriate diagram for M1, M2 or both.</em></p>
<p><em>Do not give marks for answers that refer to the lines in the spectrum.</em></p>
<p><em><strong>[2 marks]</strong></em> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>

<div class="specification">
<p>The Activity series lists the metal in order of reactivity.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the general increasing trend in the first ionization energies of the period 3 elements, Na to Ar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for the reaction of phosphorus (V) oxide, P<sub>4</sub>O<sub>10</sub> (s), with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the emission spectrum of hydrogen.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest reducing agent in the given list.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is made up of a Mn<sup>2+</sup>/Mn half-cell and a Ni<sup>2+</sup>/Ni half-cell.</p>
<p>Deduce the equation for the cell reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The voltaic cell stated in part (ii) is partially shown below.</p>
<p>Draw and label the connections needed to show the direction of electron movement and ion flow between the two half-cells.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>increasing number of protons</p>
<p><em><strong>OR</strong></em></p>
<p>increasing nuclear charge</p>
<p>«atomic» radius/size decreases</p>
<p><em><strong>OR</strong></em></p>
<p>same number of shells</p>
<p><em><strong>OR</strong></em></p>
<p>similar shielding «by inner electrons»</p>
<p>«greater energy needed to overcome increased attraction between nucleus and electrons»</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>atomic/ionic radius increases</p>
<p>smaller charge density</p>
<p><em><strong>OR</strong></em></p>
<p>force of attraction between metal ions and delocalised electrons decreases</p>
<p><em>Do <strong>not</strong> accept discussion of attraction between valence electrons and</em><br><em>nucleus for M2.</em></p>
<p><em>Accept “weaker metallic bonds” for M2.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P<sub>4</sub>O<sub>10</sub> (s) + 6H<sub>2</sub>O (l) → 4H<sub>3</sub>PO<sub>4</sub> (aq)</p>
<p><em>Accept “P<sub>4</sub>O<sub>10</sub> (s) + 2H<sub>2</sub>O (l) → 4HPO<sub>3 </sub>(aq)” (initial reaction).</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«series of» lines</p>
<p><em><strong>OR</strong></em></p>
<p>only certain frequencies/wavelengths</p>
<p>convergence at high«er» frequency/energy/short«er» wavelength</p>
<p><em>M1 and/or M2 may be shown on a diagram.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mn</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mn (s) + Ni<sup>2+ </sup>(aq) → Ni (s) + Mn<sup>2+ </sup>(aq)</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wire between electrodes AND labelled salt bridge in contact with both electrolytes</p>
<p>anions to right (salt bridge)<br><em><strong>OR</strong></em><br>cations to left (salt bridge)<br><em><strong>OR</strong></em><br>arrow from Mn to Ni (on wire or next to it)</p>
<p><img src=""></p>
<p><em>Electrodes can be connected directly or through voltmeter/ammeter/light bulb, but <strong>not</strong> a battery/power supply.</em></p>
<p><em>Accept ions or a specific salt as the label of the salt bridge.</em></p>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br>