File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 2/markSceme-SL-paper1html
File size: 197.33 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>Which represents a <em>p</em> orbital?</p>
<p><img src="" width="428" height="332"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is correct for the line emission spectrum for hydrogen?</p>
<p><img src="" alt></p>
<p>A. Line M has a higher energy than line N. <br>B. Line N has a lower frequency than line M. <br>C. Line M has a longer wavelength than line N. <br>D. Lines converge at lower energy.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the ground state electron configuration of an atom of chromium, Cr (Z = 24)?</span></p>
<p><span style="background-color: #ffffff;">A. [Ar]3d<sup>6</sup></span></p>
<p><span style="background-color: #ffffff;">B. [Ar]4s<sup>2</sup>3d<sup>4</sup></span></p>
<p><span style="background-color: #ffffff;">C. [Ar]4s<sup>1</sup>3d<sup>5</sup></span></p>
<p><span style="background-color: #ffffff;">D. [Ar]4s<sup>2</sup>4p<sup>4</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A large number of the candidates had ground state configuration of Cr as 4s<sup>2</sup> 3d<sup>4</sup> rather than 4s<sup>1</sup> 3d<sup>5</sup></p>
</div>
<br><hr><br><div class="question">
<p>Which electron transition emits radiation of the longest wavelength?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which represents the shape of an s atomic orbital?</span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which is correct for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{16}^{34}{{\text{S}}^{2 - }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
<mrow>
<mn>34</mn>
</mrow>
</msubsup>
<mrow>
<msup>
<mrow>
<mtext>S</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mo>−</mo>
</mrow>
</msup>
</mrow>
</math></span>?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="394" height="207"></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A well answered question. 88 % of the candidates deduced the correct numbers of protons, neutrons and electrons in the sulfide ion.</p>
</div>
<br><hr><br><div class="question">
<p>What is the condensed electron configuration of the Fe<sup>2+</sup> ion? </p>
<p>A. [Ar]3d<sup>6<br></sup>B. [Ar]3d<sup>4</sup>4s<sup>2<br></sup>C. [Ar]3d<sup>5</sup>4s<sup>1<br></sup>D. [Ar]3d<sup>6</sup>4s<sup>2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the number of protons and the number of neutrons in <sup>131</sup>I?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is represented by A in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{{\text{X}}^{2 - }}"><msubsup><mrow></mrow><mtext>Z</mtext><mtext>A</mtext></msubsup><msup><mtext>X</mtext><mrow><mn>2</mn><mo>−</mo></mrow></msup></math></span>?</span></p>
<p><span style="background-color: #ffffff;">A. Number of electrons<br></span></p>
<p><span style="background-color: #ffffff;">B. Number of neutrons<br></span></p>
<p><span style="background-color: #ffffff;">C. Number of nucleons<br></span></p>
<p><span style="background-color: #ffffff;">D. Number of protons</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Naturally occurring gallium consists of the isotopes <sup>71</sup>Ga and <sup>69</sup>Ga. What is the approximate percentage abundance of <sup>69</sup>Ga?</p>
<p><em>M</em><sub>r </sub>(Ga) = 69.72.</p>
<p><br>A. 40 %</p>
<p>B. 50 %</p>
<p>C. 60 %</p>
<p>D. 75 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which technique is used to detect the isotopes of an element?</span></p>
<p><span style="background-color: #ffffff;">A. Mass spectrometry<br></span></p>
<p><span style="background-color: #ffffff;">B. Infrared spectroscopy<br></span></p>
<p><span style="background-color: #ffffff;">C. Titration<br></span></p>
<p><span style="background-color: #ffffff;">D. Recrystallization</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the relative molecular mass of bromine, according to the following mass spectrum?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="622" height="293"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.</p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>158</mn><mo>×</mo><mn>52</mn><mo>+</mo><mn>160</mn><mo>×</mo><mn>100</mn><mo>+</mo><mn>162</mn><mo>×</mo><mn>48</mn></mrow><mrow><mn>52</mn><mo>+</mo><mn>100</mn><mo>+</mo><mn>48</mn></mrow></mfrac></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>158</mn><mo>×</mo><mn>52</mn><mo>+</mo><mn>160</mn><mo>×</mo><mn>100</mn><mo>+</mo><mn>162</mn><mo>×</mo><mn>48</mn></mrow><mrow><mn>158</mn><mo>+</mo><mn>160</mn><mo>+</mo><mn>162</mn></mrow></mfrac></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>79</mn><mo>×</mo><mn>11</mn><mo>+</mo><mn>81</mn><mo>×</mo><mn>11</mn><mo>+</mo><mn>158</mn><mo>×</mo><mn>52</mn><mo>+</mo><mn>160</mn><mo>×</mo><mn>100</mn><mo>+</mo><mn>162</mn><mo>×</mo><mn>48</mn></mrow><mrow><mn>11</mn><mo>+</mo><mn>11</mn><mo>+</mo><mn>52</mn><mo>+</mo><mn>100</mn><mo>+</mo><mn>48</mn></mrow></mfrac></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>79</mn><mo>×</mo><mn>11</mn><mo>+</mo><mn>81</mn><mo>×</mo><mn>11</mn></mrow><mrow><mn>11</mn><mo>+</mo><mn>11</mn></mrow></mfrac></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is the electron configuration of a chromium atom in the ground state?</p>
<p>A. [Ne]3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>4</sup></p>
<p>B. [Ar]3d<sup>3</sup></p>
<p>C. 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>2</sup>3d<sup>4</sup></p>
<p>D. [Ar]4s<sup>1</sup>3d<sup>5</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">What is the maximum number of electrons that can occupy the 4th main energy level in an atom?</span></p>
<p><span class="fontstyle0">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math><br></span></p>
<p><span class="fontstyle0">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn></math><br></span></p>
<p><span class="fontstyle0">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math><br></span></p>
<p><span class="fontstyle0">D. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Poorly answered questions from candidates in general. Only 38% of candidates could state the maximum number of electrons in the 4th principal energy level is 32, with the most common incorrect answer being 18.</p>
</div>
<br><hr><br><div class="question">
<p>Which statements are correct for the emission spectrum of hydrogen?</p>
<p style="padding-left:60px;">I. The lines converge at higher frequencies.</p>
<p style="padding-left:60px;">II. Electron transitions to n = 2 are responsible for lines in the visible region.</p>
<p style="padding-left:60px;">III. Lines are produced when electrons move from lower to higher energy levels.</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In which set do all the species contain more electrons than neutrons?</p>
<p>A. <sup>14</sup>N, <sup>16</sup>O, <sup>11</sup>C</p>
<p>B. <sup>14</sup>N, <sup>16</sup>O, <sup>11</sup>C<sup>4–</sup></p>
<p>C. <sup>14</sup>N<sup>3–</sup>, <sup>16</sup>O<sup>2–</sup>, <sup>11</sup>C</p>
<p>D. <sup>14</sup>N<sup>3–</sup>, <sup>16</sup>O<sup>2–</sup>, <sup>11</sup>C<sup>4+</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">What is the relative atomic mass, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mi mathvariant="normal">r</mi></msub></math><span class="fontstyle0">, of an element with this mass spectrum?</span></p>
<p style="text-align: center;"><img src="" width="284" height="270"></p>
<p style="text-align: left;"><span class="fontstyle0">A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>0</mn></math><br></span></p>
<p style="text-align: left;"><span class="fontstyle0">B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>3</mn></math><br></span></p>
<p style="text-align: left;"><span class="fontstyle0">C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo>.</mo><mn>9</mn></math><br></span></p>
<p style="text-align: left;"><span class="fontstyle0">D. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>.</mo><mn>0</mn></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Well answered question with more than 70% of candidates able to find the RAM of an element from isotope relative abundances.</p>
</div>
<br><hr><br><div class="question">
<p>Which are correct statements about the emission spectrum of hydrogen in the visible region?</p>
<p>I. The red line has a lower energy than the blue line.</p>
<p>II. The lines converge at longer wavelength.</p>
<p>III. The frequency of the blue line is greater than the frequency of the red line.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is the electron configuration of a metallic element?</p>
<p>A. [Ne] 3s<sup>2</sup> 3p<sup>2</sup></p>
<p>B. [Ne] 3s<sup>2</sup> 3p<sup>4</sup></p>
<p>C. [Ne] 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>3</sup> 4s<sup>2</sup></p>
<p>D. [Ne] 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>5</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Bromine consists of two stable isotopes that exist in approximately a 1 : 1 ratio. The relative atomic mass, <em>A</em><sub>r</sub>, of bromine is 79.90. Which are the stable isotopes of bromine?</span></p>
<p><span style="background-color: #ffffff;">A. <sup>79</sup>Br and <sup>81</sup>Br</span></p>
<p><span style="background-color: #ffffff;">B. <sup>80</sup>Br and <sup>81</sup>Br</span></p>
<p><span style="background-color: #ffffff;">C. <sup>78</sup>Br and <sup>80</sup>Br</span></p>
<p><span style="background-color: #ffffff;">D. <sup>79</sup>Br and <sup>80</sup>Br</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Almost 56 % of candidates could find a 1:1 ratio as an average of 2 items, however many had <sup>79</sup>Br and <sup>80</sup>Br with an average mass of 79.90</p>
</div>
<br><hr><br><div class="question">
<p>What does <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{12}^{24}M{g^{2 + }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>12</mn>
</mrow>
<mrow>
<mn>24</mn>
</mrow>
</msubsup>
<mi>M</mi>
<mrow>
<msup>
<mi>g</mi>
<mrow>
<mn>2</mn>
<mo>+</mo>
</mrow>
</msup>
</mrow>
</math></span> represent?</p>
<p>A. An ion with 12 protons and 24 neutrons</p>
<p>B. An ion with 14 protons and 24 neutrons</p>
<p>C. An ion with 12 protons and 12 neutrons</p>
<p>D. An ion with 12 protons and 22 neutrons</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement about <sup>56</sup>Fe<sup>3+</sup> and <sup>54</sup>Fe<sup>2+</sup> is correct?</p>
<p> </p>
<p>A. Both have the same numbers of protons and electrons.</p>
<p>B. Both have the same number of protons.</p>
<p>C. Both have the same number of neutrons.</p>
<p>D. Both have the same numbers of protons and neutrons.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The full electron configuration of an element is:</p>
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>2</sup></p>
<p>To which group and period does the element belong?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the relative atomic mass of an element with the following mass spectrum?</p>
<p style="text-align:center;"><img src=""></p>
<p>A. 23</p>
<p>B. 24</p>
<p>C. 25</p>
<p>D. 28</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>69% of the candidates determined the relative atomic mass of the element from its mass spectrum.</p>
</div>
<br><hr><br><div class="question">
<p>How are emission spectra formed?</p>
<p>A. Photons are absorbed when promoted electrons return to a lower energy level.</p>
<p>B. Photons are absorbed when electrons are promoted to a higher energy level.</p>
<p>C. Photons are emitted when electrons are promoted to a higher energy level.</p>
<p>D. Photons are emitted when promoted electrons return to a lower energy level.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is represented by <sup>“2−”</sup> in <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">X</mi><none></none><mrow><mn>2</mn><mo>-</mo></mrow><mprescripts></mprescripts><mi mathvariant="normal">Z</mi><mi mathvariant="normal">A</mi></mmultiscripts></math>?</p>
<p>A. loss of electron</p>
<p>B. gain of electron</p>
<p>C. loss of proton</p>
<p>D. gain of proton</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which experimental results support the theory that electrons exist in discrete energy levels?</p>
<p>A. <sup>1</sup>H NMR</p>
<p>B. X-ray diffraction pattern</p>
<p>C. Emission spectra</p>
<p>D. IR spectra</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A well answered question. 84% of the candidates identified emission spectra as the experimental results that support the theory that electrons exist in discrete energy levels.</p>
</div>
<br><hr><br><div class="question">
<p>What is the composition of the nucleus of <sup>26</sup>Mg?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_06.15.06.png" alt="M18/4/CHEMI/SPM/ENG/TZ2/05"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How many p-orbitals are occupied in a phosphorus atom?</p>
<p><br>A. 2</p>
<p>B. 3</p>
<p>C. 5</p>
<p>D. 6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which electron transition in the hydrogen atom emission spectrum emits radiation with the longest wavelength?</p>
<p>A. <em>n</em> = 2 → <em>n</em> = 1</p>
<p>B. <em>n</em> = 1 → <em>n</em> = 2</p>
<p>C. <em>n</em> = 4 → <em>n</em> = 1</p>
<p>D. <em>n</em> = 3 → <em>n</em> = 2</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the maximum number of electrons that can occupy a p-orbital?</p>
<p>A. 2</p>
<p>B. 3</p>
<p>C. 6</p>
<p>D. 8</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Question 6 was poorly answered as it asked for the number of electrons in a p orbital. Very few students gave the correct answer of 2. The majority chose answer C (6) for the maximum number of electrons that can occupy a p-orbital, rather than A (2). It appears candidates reflexively conflated p-orbitals with the entire p subshell in any given period.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which transition in the hydrogen atom emits visible light?</span></p>
<p><span style="background-color: #ffffff;">A. n = 1 to n = 2</span></p>
<p><span style="background-color: #ffffff;">B. n = 2 to n = 3</span></p>
<p><span style="background-color: #ffffff;">C. n = 2 to n = 1</span></p>
<p><span style="background-color: #ffffff;">D. n = 3 to n = 2</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question discriminated well between high scoring and low scoring candidates. 68% of the candidates chose the correct transition that emits visible light (n = 3 to n = 2). The most commonly chosen distractor C was the only other option that involved emission.</p>
</div>
<br><hr><br><div class="question">
<p>Which shows the number of subatomic particles in <sup>31</sup>P<sup>3−</sup>?</p>
<p><img src="images/Schermafbeelding_2018-08-09_om_11.44.09.png" alt="M18/4/CHEMI/SPM/ENG/TZ1/05"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>