File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 2/markSceme-HL-paper2html
File size: 1.19 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>

<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>&nbsp;</mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>

<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>

<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math>&nbsp;</span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> <br>Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the mechanism of the reaction between chloroethane and aqueous sodium hydroxide, <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>NaOH</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math>, using curly arrows to represent the movement of electron pairs.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion.<br>Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and chemical shifts with splitting patterns in the <sup>1</sup>H NMR</span><span class="fontstyle0"> spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s produce chlorine radicals. Write two successive propagation steps to show how chlorine radicals catalyse the depletion of ozone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">p</mi><mn>6</mn></msup><mn>3</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>3</mn><msup><mi mathvariant="normal">p</mi><mn>5</mn></msup></math> ✔</p>
<p><em><br>Do <strong>not</strong> accept condensed electron configuration.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cl</mi><mo>-</mo></msup></math> <em><strong>AND</strong> </em>more «electron–electron» repulsion ✔</p>
<p><em><br>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo mathvariant="italic">-</mo></msup></math> <strong>AND</strong> has an extra electron.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> has a greater nuclear charge/number of protons/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">Z</mi><mi>eff</mi></msub></math> «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells<br><strong><em>OR</em></strong><br>same «outer» energy level<br><em><strong>OR</strong></em><br>similar shielding ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«two major» isotopes «of atomic mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>» ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«diatomic» molecule composed of «two» chlorine-37 atoms ✔</p>
<p>chlorine-37 is the least abundant «isotope»<br><em><strong>OR</strong></em><br>low probability of two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><mmultiscripts><mrow></mrow><mprescripts></mprescripts><mn>37</mn></mmultiscripts></mmultiscripts></math> «isotopes» occurring in a molecule ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>86</mn><mo>.</mo><mn>94</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">n</mi><mi>HCl</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>2000</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo> </mo></math>✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>400</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> is the limiting reactant ✔</p>
<p><em><br>Accept other valid methods of determining the limiting reactant in M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>4</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>»</mo></math></p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo>–</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>277</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo>«</mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo></math> ✔</p>
<p><em><br>Accept methods employing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></math></em>.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>4</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>2</mn></math> ✔</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxidizing agent <em><strong>AND</strong></em> oxidation state of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mn</mi></math> changes from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>2</mn></math>/decreases ✔</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially dissociates/ionizes «in water» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>ClO</mi><mo>-</mo></msup></math> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>[</mo><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo>]</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>61</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«free radical» substitution/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">S</mi><mi mathvariant="normal">R</mi></msub></math> ✔</p>
<p><em><br>Do not accept electrophilic or nucleophilic substitution.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloroethane <em><strong>AND</strong></em> C–Cl bond is weaker/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>324</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> than C–H bond/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>414</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math><br><em><strong>OR</strong></em><br>chloroethane <strong><em>AND</em> </strong>contains a polar bond ✔</p>
<p><em><br>Accept “chloroethane <strong>AND</strong> polar”.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="529" height="155"></p>
<p>curly arrow going from lone pair/negative charge on <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">O</mi></math> in <sup>−</sup>OH to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi></math> ✔</p>
<p>curly arrow showing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> leaving ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p> </p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>O</mi><msup><mi>H</mi><mo mathvariant="italic">-</mo></msup></math> with or without the lone pair.</em></p>
<p><em>Do <strong>not</strong> accept curly arrows originating on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><msup><mi>H</mi><mo>-</mo></msup></math>.</em></p>
<p><em>Accept curly arrows in the transition state.</em></p>
<p><em>Do <strong>not</strong> penalize if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mi>O</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>l</mi></math> are not at 180°.</em></p>
<p><em>Do <strong>not</strong> award M3 if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>H</mi><mo>-</mo><mi>C</mi></math> bond is represented.</em> </p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> / <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>OCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math> ✔</p>
<p><em><br>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">(</mo><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">2</mn></msub><msub><mo mathvariant="italic">)</mo><mn mathvariant="italic">2</mn></msub><mi>O</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 «signals» ✔</p>
<p>0.9−1.0 <em><strong>AND</strong> </em>triplet ✔</p>
<p>3.3−3.7<em><strong> AND</strong></em> quartet ✔</p>
<p><em>Accept any values in the ranges.</em></p>
<p><em>Award <strong>[1]</strong> for two correct chemical shifts or two correct splitting patterns.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>M</mi><mo>(</mo><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub><mo>)</mo><mo> </mo><mo>=</mo><mo>»</mo><mo> </mo><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>×</mo><mn>35</mn><mo>.</mo><mn>45</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>×</mo><mn>100</mn><mo>%</mo><mo>=</mo><mo>»</mo><mo> </mo><mn>58</mn><mo>.</mo><mn>64</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>research «collaboration» for alternative technologies «to replace <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s»<br><em><strong>OR</strong></em><br>technologies «developed»/data could be shared<br><em><strong>OR</strong></em><br>political pressure/Montreal Protocol/governments passing legislations ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “collaboration”.</em></p>
<p><em>Do <strong>not</strong> accept any reference to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math> as greenhouse gas or product of fossil fuel combustion.</em></p>
<p><em>Accept reference to specific measures, such as agreement on banning use/manufacture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math>s.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub><mo>+</mo><mi>Cl</mi><mo>·</mo><mo>→</mo><mi mathvariant="normal">O</mi><mn>2</mn><mo>+</mo><mi>ClO</mi><mo>·</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>ClO</mi><mo>·</mo><mo>+</mo><mi mathvariant="normal">O</mi><mo>·</mo><mo>→</mo><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo>+</mo><mi>Cl</mi><mo>·</mo></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>ClO</mi><mo>·</mo><mo>+</mo><msub><mi mathvariant="normal">O</mi><mn>3</mn></msub><mo>→</mo><mi>Cl</mi><mo>·</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></math> ✔</p>
<p><em>Penalize missing/incorrect radical dot (∙) once only.</em></p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Well answered question with 90% of candidates correctly identifying the complete electron&nbsp;configuration for chlorine.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could correctly explain the relative sizes of chlorine atom and chloride ion.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Fairly well answered though some candidates missed M2 for not recognizing the same number of&nbsp;shells affected.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than 80% could identify that the two peaks in the MS of chlorine are due to different isotopes.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not well answered. Some candidates were able to identify m/z 74 being due to the m/z of two Cl-37&nbsp;atoms, however fewer candidates were able to explain the relative abundance of the isotope.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Stoichiometric calculations were generally well done and over 90% could calculate mol from a given&nbsp;mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>90% of candidates earned full marks on this 2-mark question involving finding a limiting reactant.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, quite a number of candidates struggled with the quantity of excess reactant despite&nbsp;correctly identifying limiting reactant previously.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could find the volume of gas produced in a reaction under standard conditions.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than 90% could identify the oxidation number of manganese in both MnO<sub>2</sub> and MnCl<sub>2</sub>.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates stated that MnO<sub>2</sub> is an oxidizing agent in the reaction but many did not get the&nbsp;mark because there was no reference to oxidation states.</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another well answered 1-mark question where candidates correctly identified a weak acid as an acid&nbsp;which partially dissociates in water.&nbsp;</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Roughly ⅓ of the candidates failed to identify the conjugate base, perhaps distracted by the fact it&nbsp;was not contained in the equation given.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Vast majority of candidates could calculate the concentration of H<sup>+</sup> (aq) in a HClO (aq) solution with&nbsp;a pH =3.61.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many identified the reaction of chlorine with ethane as free-radical substitution, or just substitution,&nbsp;with some erroneously stating nucleophilic or electrophilic substitution.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The underlying reasons for the relative reactivity of ethane and chloroethane were not very well&nbsp;known with a few giving erroneous reasons and some stating ethane more reactive.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few earned full marks for the curly arrow mechanism of the reaction between sodium hydroxide&nbsp;and chloroethane. Mistakes being careless curly arrow drawing, inappropriate –OH notation, curly arrows&nbsp;from the hydrogen or from the carbon to the C–Cl bond, or a method that missed the transition state.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Approximately 60% could draw ethoxyethane however many demonstrated little knowledge of&nbsp;structure of an ether molecule.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A poorly answered question with some getting full marks on this 1HNMR spectrum of ethoxyethane&nbsp;question. Very few could identify all 3 of number of signals, chemical shift, and splitting pattern.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another good example of candidates being well rehearsed in calculations with 90% earning 2/2 on&nbsp;this question of calculation percentage by mass composition.&nbsp;</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Somewhat disappointing answers on this question about how international cooperation has&nbsp;contributed to the lowering of CFC emissions. Many gave vague answers and some referred to carbon&nbsp;emissions and global warming.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few could construct the propagation equations showing how CFCs affect ozone, and many lost marks by failing to identify ClO· as a radical.</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbide, CaC<sub>2</sub>, is an ionic solid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the nature of ionic bonding.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the relative atomic mass of a sample of calcium could be determined from its mass spectrum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When calcium compounds are introduced into a gas flame a red colour is seen; sodium compounds give a yellow flame. Outline the source of the colours and why they are different.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>reasons why solid calcium has a greater density than solid potassium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why solid calcium is a good conductor of electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six ionization energies of calcium.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbide reacts with water to form ethyne and calcium hydroxide.</p>
<p style="text-align: center;">CaC<sub>2</sub>(s) + H<sub>2</sub>O(l) → C<sub>2</sub>H<sub>2</sub>(g) + Ca(OH)<sub>2</sub>(aq)</p>
<p>Estimate the pH of the resultant solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how sigma (σ) and pi (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>) bonds are formed.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of σ and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> bonds in a molecule of ethyne.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction <strong><em>AND </em></strong>oppositely charged ions</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>multiply relative intensity by <strong>«</strong><em>m</em>/<em>z</em><strong>» </strong>value of isotope</p>
<p><strong><em>OR</em></strong></p>
<p>find the frequency of each isotope</p>
<p> </p>
<p>sum of the values of products/multiplication <strong>«</strong>from each isotope<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>find/calculate the weighted average</p>
<p> </p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for stating “m/z values of </em><em>isotopes </em><strong><em>AND </em></strong><em>relative </em><em>abundance/intensity” but not stating </em><em>these need to be multiplied.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>promoted<strong>»</strong> electrons fall back to lower energy level</p>
<p>energy difference between levels is different</p>
<p> </p>
<p><em>Accept “Na and Ca have different </em><em>nuclear charge” for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>stronger metallic bonding</p>
<p>smaller ionic/atomic radius</p>
<p> </p>
<p>two electrons per atom are delocalized</p>
<p><strong><em>OR</em></strong></p>
<p>greater ionic charge</p>
<p> </p>
<p>greater atomic mass</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept just “heavier” or “more </em><em>massive” without reference to atomic </em><em>mass.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>delocalized/mobile electrons <strong>«</strong>free to move<strong>»</strong></p>
<p> </p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_13.26.19.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/02.e/M"></p>
<p>general increase</p>
<p>only one discontinuity between “IE2” and “IE3”</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pH &gt; 7</p>
<p> </p>
<p><em>Accept any specific pH value or range </em><em>of values above 7 and below 14.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>sigma (σ</em><em>)</em><em>:</em></p>
<p>overlap <strong>«</strong>of atomic orbitals<strong>» </strong>along the axial/internuclear axis</p>
<p><strong><em>OR</em></strong></p>
<p>head-on/end-to-end overlap <strong>«</strong>of atomic orbitals<strong>»</strong></p>
<p> </p>
<p><em>pi (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>)</em><em>:</em></p>
<p>overlap <strong>«</strong>of p-orbitals<strong>» </strong>above and below the internuclear axis</p>
<p><strong><em>OR</em></strong></p>
<p>sideways overlap <strong>«</strong>of p-orbitals<strong>»</strong></p>
<p> </p>
<p><em>Award marks for suitable diagrams.</em></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>sigma (σ</em><em>)</em><em>:</em> 3</p>
<p><strong><em>AND</em></strong></p>
<p><em>pi (</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span><em>)</em><em>:</em> 2</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Bromine can form the bromate(V) ion, BrO<sub>3</sub><sup>−</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of a bromine atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the orbital diagram of the <strong>valence shell</strong> of a bromine atom (ground state) on the energy axis provided. Use boxes to represent orbitals and arrows to represent electrons.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw two Lewis (electron dot) structures for BrO<sub>3</sub><sup>−</sup>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the preferred Lewis structure based on the formal charge on the bromine atom, giving your reasons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, using the VSEPR theory, the geometry of the BrO<sub>3</sub><sup>−</sup> ion and the O−Br−O bond angles.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions act as oxidizing agents in acidic conditions to form bromide ions.</p>
<p>Deduce the half-equation for this reduction reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions oxidize iron(II) ions, Fe<sup>2+</sup>, to iron(III) ions, Fe<sup>3+</sup>.</p>
<p>Deduce the equation for this redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in J, of the redox reaction in (ii), using sections 1 and 24 of the data booklet.</p>
<p><em>E</em><sup>Θ</sup> (BrO<sub>3</sub><sup>−</sup> / Br<sup>−</sup>) = +1.44 V</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the magnetic property of iron(II) and iron(III) ions.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup></p>
<p><em><strong>OR</strong></em></p>
<p>[Ar] 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup> ✔</p>
<p> </p>
<p><em>Accept 3d before 4s.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept double-headed arrows.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Structure I - follows octet rule:</em></p>
<p><img src=""></p>
<p><em>Structure II - does not follow octet rule:</em></p>
<p><img src=""></p>
<p> </p>
<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«structure I» formal charge on Br = +2</p>
<p><em><strong>OR</strong></em></p>
<p>«structure II» formal charge on Br = 0/+1 ✔</p>
<p> </p>
<p>structure II is preferred <em><strong>AND</strong> </em>it produces formal charge closer to 0 ✔</p>
<p> </p>
<p><em>Ignore any reference to formal charge on oxygen.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Geometry:</em><br>trigonal/pyramidal ✔</p>
<p><em>Reason:</em><br>three bonds <em><strong>AND</strong> </em>one lone pair<br><em><strong>OR</strong></em><br>four electron domains ✔</p>
<p><em>O−Br−O angle:</em><br>107° ✔</p>
<p> </p>
<p><em>Accept “charge centres” for “electron domains”.</em></p>
<p><em>Accept answers in the range 104–109°.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6e<sup>−</sup> + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l)</p>
<p>correct reactants and products ✔</p>
<p>balanced equation ✔</p>
<p> </p>
<p><em>Accept reversible arrows.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6Fe<sup>2+</sup> (aq) + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l) + 6Fe<sup>3+</sup> (aq) ✔</p>
<p> </p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sup>Θ</sup><sub>reaction</sub> = «+1.44 V – 0.77 V =» 0.67 «V» ✔</p>
<p>Δ<em>G</em><sup>Θ</sup> = «–n<em>FE</em><sup>Θ</sup><sub>reaction</sub> = – 6 × 96500 C mol<sup>–1</sup> × 0.67 V =» –3.9 × 10<sup>5</sup> «J» ✔</p>
<p> </p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>both are paramagnetic ✔</p>
<p>«both» contain unpaired electrons ✔</p>
<p> </p>
<p><em>Accept orbital diagrams for both ions showing unpaired electrons.</em></p>
<p> </p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium ions produce no emission or absorption lines in the visible region of the electromagnetic spectrum. Suggest why most magnesium compounds tested in a school laboratory show traces of yellow in the flame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain the convergence of lines in a hydrogen emission spectrum.</p>
<p>(ii) State what can be determined from the frequency of the convergence limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>(i) Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922K and 987K respectively.</p>
<p><img src="" alt></p>
<p>(ii) Identify the type of reaction occurring at the cathode (negative electrode).</p>
<p>(iii) State the products when a very <strong>dilute</strong> aqueous solution of magnesium chloride is electrolysed.</p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Standard electrode potentials are measured relative to the standard hydrogen electrode. Describe a standard hydrogen electrode.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A magnesium half-cell, Mg(s)/Mg<sup>2+</sup>(aq), can be connected to a copper half-cell, Cu(s)/Cu<sup>2+</sup>(aq).</p>
<p>(i) Formulate an equation for the spontaneous reaction that occurs when the circuit is completed.</p>
<p>(ii) Determine the standard cell potential, in V, for the cell. Refer to section 24 of the data booklet.</p>
<p>(iii) Predict, giving a reason, the change in cell potential when the concentration of copper ions increases.</p>
<div class="marks">[4]</div>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>contamination with sodium/other «compounds»</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>energy levels are closer together at high energy / high frequency / short wavelength</p>
<p> </p>
<p>ii<br>ionisation energy</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)</p>
<p><em>Anode (positive electrode):</em></p>
<p>2Cl<sup>–</sup> → Cl<sub>2</sub> (g) + 2e<sup>–</sup></p>
<p><em>Cathode (negative electrode):</em></p>
<p>Mg<sup>2+</sup> + 2e<sup>–</sup> → Mg (l)</p>
<p><em>Penalize missing/incorrect state symbols at Cl<sub>2</sub> and Mg once only.</em></p>
<p><em>Award <strong>[1 max]</strong> if equations are at wrong electrodes. </em></p>
<p><em>Accept Mg (g).</em></p>
<p> </p>
<p>ii)</p>
<p>reduction</p>
<p> </p>
<p>iii)</p>
<p><em>Anode (positive electrode):</em><br>oxygen/O<sub>2</sub><br><em><strong>OR</strong></em><br>hydogen ion/proton/H<sup>+</sup> <em><strong>AND</strong></em> oxygen/O<sub>2</sub><br><em>Cathode (negative electrode):</em><br>hydrogen/H<sub>2</sub><br><em><strong>OR</strong></em><br>hydroxide «ion»/OH<sup>–</sup> <em><strong>AND</strong></em> hydrogen/H<sub>2</sub></p>
<p><em>Award <strong>[1 max]</strong> if correct products given at wrong electrodes.</em></p>
<p> </p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>«inert» Pt electrode<br><em><strong>OR</strong></em><br>platinum black conductor</p>
<p>1 mol dm<sup>–3</sup> H<sup>+ </sup>(aq)</p>
<p>H<sub>2</sub> (g) at 100 kPa</p>
<p><em>Accept 1 atm H<sub>2</sub> (g).</em><br><em>Accept 1 bar H<sub>2</sub> (g)</em><br><em>Accept a labelled diagram.</em><br><em>Ignore temperature if it is specified.</em></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>Mg(s) + Cu<sup>2+</sup> (aq) → Mg<sup>2+</sup> (aq) + Cu(s)</p>
<p> </p>
<p>ii</p>
<p>«+0.34V – (–2.37V) = +»2.71 «V»</p>
<p> </p>
<p>iii</p>
<p>cell potential increases</p>
<p>reaction «in Q4(k)(i)» moves to the right<br><em><strong>OR <br></strong></em>potential of the copper half-cell increases/becomes more positive</p>
<p><em>Accept correct answers based on the Nernst equation</em></p>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>Nitric acid is usually produced by the oxidation of ammonia.</p>
</div>

<div class="specification">
<p>A mixture of nitric acid and sulfuric acid can be used to convert benzene to nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a Lewis (electron dot) structure of the nitric acid molecule, HNO<sub>3</sub>, that obeys the octet rule, showing any non-zero formal charges on the atoms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the relative lengths of the three bonds between N and O in nitric acid.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique used to determine the length of the bonds between N and O in solid HNO<sub>3</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation for the reaction between the acids to produce the electrophile, NO<sub>2</sub><sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the carbocation intermediate produced when this electrophile attacks benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of signals that you would expect in the <sup>1</sup>H NMR spectrum of nitrobenzene and the relative areas of these.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><br>Accept <strong>all</strong> 2p electrons pointing downwards.</em></p>
<p><em>Accept half arrows instead of full arrows.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="188" height="139"></p>
<p>bonds and non-bonding pairs correct ✔</p>
<p>formal charges correct ✔</p>
<p> </p>
<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>
<p><em>Do <strong>not</strong> accept resonance structures with delocalised bonds/electrons.</em></p>
<p><em>Accept + and – sign respectively.</em></p>
<p><em>Do not accept a bond between nitrogen and hydrogen.</em></p>
<p><em>For an incorrect Lewis structure, allow ECF for non-zero formal charges.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>two N-O same length/order ✔<br>delocalization/resonance ✔</p>
<p>N-OH longer «than N-O»<br><em><strong>OR</strong></em><br>N-OH bond order 1 <em><strong>AND</strong> </em>N-O bond order 1½ ✔</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> if bond strength, rather than bond length discussed.</em></p>
<p><em>Accept N-O between single and double bond <strong>AND</strong> N-OH single bond.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>X-ray crystallography ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HNO<sub>3</sub> + 2H<sub>2</sub>SO<sub>4</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>3</sub>O<sup>+</sup> + 2HSO<sub>4</sub><sup>-</sup> ✔</p>
<p> </p>
<p><em>Accept “HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>2</sub>O + HSO<sub>4</sub><sup>-</sup>”.</em></p>
<p><em>Accept “HNO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> H<sub>2</sub>NO<sub>3</sub><sup>+</sup> + HSO<sub>4</sub><sup>-</sup>” <strong>AND</strong> “H<sub>2</sub>NO<sub>3</sub><sup>+</sup> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NO<sub>2</sub><sup>+</sup> + H<sub>2</sub>O”.</em></p>
<p><em>Accept single arrows instead of equilibrium signs.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="243" height="200"></p>
<p> </p>
<p><em>Accept any of the five structures.</em></p>
<p><em>Do <strong>not</strong> accept structures missing the positive charge.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Number of signals</em>: three/3 ✔</p>
<p><em>Relative areas</em>: 2 : 2 : 1 ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Drawing arrows in the boxes to represent the electron configuration of a nitrogen atom was done extremely well.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Drawing the Lewis structure of HNO<sub>3</sub> was performed extremely poorly with structures that included H bonded to N, no double bond or a combination of single, double and even a triple bond or incorrect structures with dotted lines to reflect resonance. Many did not calculate non-zero formal charges.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly done; some explained relative bond strengths between N and O in HNO<sub>3</sub>, not relative lengths; others included generic answers such as triple bond is shortest, double bond is longer, single longest.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A majority could not state the technique to determine length of bonds; answers included NMR, IR, and such instead of X-ray crystallography.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many had difficulties writing the balanced equation(s) for the formation of the nitronium ion.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again, many had difficulty drawing the structural formula of the carbocation intermediate produced in the reaction.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Deducing the number of signals in the 1H NMR spectrum of nitrobenzene, which depend on the number of different hydrogen environments, was done poorly. Also, instead of relative areas, the common answer included chemical shift (ppm) values.</p>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about iron.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the <strong>full</strong> electron configuration of Fe<sup>2+</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, when ligands bond to the iron ion causing the d-orbitals to split, the complex is coloured.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>, for iron-54.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6d.PNG" alt width="269" height="186"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An iron nail and a copper nail are inserted into a lemon.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6e.PNG" alt width="400" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard electrode potential, in V, when the Fe<sup>2+</sup> (aq) | Fe (s) and Cu<sup>2+</sup> (aq) | Cu (s) standard half-cells are connected at 298 K. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate ΔG<sup>θ</sup>, in kJ, for the spontaneous reaction in (f)(i), using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate a value for the equilibrium constant, K<sub>c</sub>, at 298 K, giving your answer to two significant figures. Use your answer to (f)(ii) and section 1 of the data booklet. </span></p>
<p><span style="background-color: #ffffff;">(If you did not obtain an answer to (f)(ii), use −140 kJ mol<sup>−1</sup>, but this is not the correct value.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup>   <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«frequency/wavelength of visible» light absorbed by electrons moving between d levels/orbitals    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">colour due to remaining frequencies<br><em><strong>OR</strong></em><br>complementary colour transmitted    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{26}}}^{{\text{54}}}{\text{Fe}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>26</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>54</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Fe</mtext>
  </mrow>
</math></span>     <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 54 × 0.0584 + 56 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.9168 + 57 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0217 + 58 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0031</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 55.9111    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 55.91    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Award <strong>[2]</strong> for correct final answer</span></em></p>
<p><em><span style="background-color: #ffffff;"><br>Do <strong>not</strong> accept data booklet value (55.85).</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lemon juice is the electrolyte<br><em><strong>OR</strong></em><br>lemon juice allows flow of ions<br><em><strong>OR</strong></em><br>each nail/metal forms a half-cell with the lemon juice    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>iron is higher than copper in the activity series<br><em><strong>OR</strong></em><br>each half-cell/metal has a different redox/electrode potential     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">iron is oxidized<br><strong><em>OR</em></strong><br>Fe → Fe<sup>2+</sup> + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Fe → Fe<sup>3+</sup> + 3e<sup>−</sup><br><em><strong>OR</strong></em><br>iron is anode/negative electrode of cell   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">copper is cathode/positive electrode of cell<br><em><strong>OR</strong></em><br>reduction occurs at the cathode<br><em><strong>OR</strong></em><br>2H<sup>+</sup> + 2e<sup>−</sup> → H<sub>2</sub>   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br>electrons flow from iron to copper   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«E<sup>θ</sup> = +0.34 V −(−0.45 V) = +»0.79 «V»   <strong>[✔]</strong></span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ΔG</span><sup>θ</sup> <span style="background-color: #ffffff;">= −nFE<sup>θ</sup> = −2mol × 96 500 C mol<sup>−1</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.79{\text{ J }}{{\text{C}}^{ - 1}}}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>0.79</mn>
      <mrow>
        <mtext> J </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span> =» −152 «kJ»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept range 150−153 kJ.</span></em></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ln<em>K<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\Delta {G^\theta }}}{{RT}} = - \frac{{ - 152 \times {{10}^3}{\text{ Jmo}}{{\text{l}}^{ - 1}}}}{{8.31{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \times 298{\text{K}}}}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>G</mi>
          <mi>θ</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>152</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> Jmo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mrow>
        <mtext>J</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>298</mn>
      <mrow>
        <mtext>K</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 61.38    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"><em>K</em> = 4.5 × 10<sup>26</sup>    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept answers in range 2.0 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>26</sup> to 5.5 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>26</sup>.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> award M2 if answer not given to two significant figures.</span></em></p>
<p><span style="background-color: #ffffff;"><em>If −140 kJmol<sup>−1</sup> used, answer is 3.6 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>24</sup></em>.</span></p>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Done fairly well with common mistakes leaving in the 4s<sup>2</sup> electrons as part of Fe<sup>2+</sup> electron configuration, or writing 4s<sup>1</sup> 3d<sup>5</sup></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was poorly answered and showed a clear misconception and misunderstanding of the concepts. Most of the candidates failed to explain why the complex is coloured and based their answers on the emission of light energy when electrons fall back to ground state and not on light absorption by electrons moving between the split d-orbitals and complementary colour transmitted of certain frequencies.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates wrote the nuclear notation for iron as Z over A.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question on average atomic mass was the best answered question on the exam. A few candidates did not write the answer to two decimal places as per instructions.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates scored M1 regarding the lemon juice role as electrolyte. Some earned M2 but a lot of answers were too vague, such as ‘electrons move through the circuit’, <em>etc</em>.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 50 % of candidates earned this relatively easy mark on calculate EMF from 2 half-cell electrode potentials.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; typical errors were using the incorrect value for n, the number of electrons, or not using consistent units and making a factor of 1000 error in the final answer.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was left blank by quite a few candidates. Common errors included not using correct units, or more often, calculation error in converting ln <em>K</em><sub>c</sub> into <em>K</em><sub>c</sub> value.</p>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Properties of elements and their compounds can be related to the position of the elements in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the decrease in atomic radius from Na to Cl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the radius of the sodium ion, Na<sup>+</sup>, is smaller than the radius of the oxide ion, O<sup>2−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show the relative values of the successive ionization energies of boron.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether Mn<sup>2+</sup> or Fe<sup>2+</sup> is likely to have a more exothermic enthalpy of hydration.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nuclear charge/number of protons/Z<sub>eff</sub> increases «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells/«outer» energy level/shielding ✔</p>
<p><em> </em></p>
<p><em>Accept “atomic number” for “number of protons”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>isoelectronic/same electronic configuration/«both» have 2.8 ✔</p>
<p>more protons in Na<sup>+</sup> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Sketch showing:</em></p>
<p>largest increase between third and fourth ionization energies ✔</p>
<p>IE<sub>1</sub> &lt; IE<sub>2</sub> &lt; IE<sub>3</sub> &lt; IE<sub>4</sub> &lt; IE<sub>5</sub> ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Fe<sup>2+</sup> <em><strong>AND</strong> </em>smaller size/radius</p>
<p><em><strong>OR</strong></em></p>
<p>Fe<sup>2+</sup> <em><strong>AND</strong></em> higher charge density ✔</p>
<p> </p>
<p>stronger interaction with «polar» water molecules ✔</p>
<p> </p>
<p><em>M1 not needed for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Fast moving helium nuclei (<sup>4</sup>He<sup>2+</sup>) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><em>Figure from PPLATO / FLAP (Flexible Learning Approach To Physics), http://www.met.reading.ac.uk/pplato2/h-flap/</em><br><em>phys8_1.html#top 1996 The Open University and The University of Reading.</em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest what can be concluded about the gold atom from this experiment.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent experiments showed electrons existing in energy levels occupying various orbital shapes.</p>
<p>Sketch diagrams of 1s, 2s and 2p.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copper is a transition metal that forms different coloured complexes. A complex [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+ </sup>(aq) changes colour when excess Cl<sup>− </sup>(aq) is added.</p>
<p>Explain the cause of this colour change, using sections 3 and 15 from the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Most <sup>4</sup>He<sup>2+</sup> passing straight through:</em></p>
<p>most of the atom is empty space<br><em><strong>OR</strong></em><br>the space between nuclei is much larger than <sup>4</sup>He<sup>2+</sup> particles<br><em><strong>OR</strong></em><br>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>
<p><em><br>Very few <sup>4</sup>He<sup>2+</sup> deviating largely from their path:</em></p>
<p>nucleus/centre is positive «and repels <sup>4</sup>He<sup>2+</sup> particles»<br><em><strong>OR</strong></em><br>nucleus/centre is «more» dense/heavy «than <sup>4</sup>He<sup>2+</sup> particles and deflects them»<br><em><strong>OR</strong></em><br>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept the same reason for both <strong>M1</strong> and <strong>M2</strong>.</em></p>
<p><em>Accept “most of the atom is an electron cloud” for <strong>M1</strong>.</em></p>
<p><em>Do not accept only “nucleus repels <sup>4</sup>He<sup>2+</sup> particles” for <strong>M2</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="372" height="174"></p>
<p>1s <em><strong>AND</strong> </em>2s as spheres ✔</p>
<p>one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (p<sub>x</sub>, p<sub>y</sub> p<sub>z</sub>) ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>10</sup><br><em><strong>OR</strong></em><br>[Ar] 4s<sup>1</sup>3d<sup>10</sup> ✔</p>
<p><em><br>Accept configuration with 3d before 4s.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloride is lower in the spectrochemical series ✔</p>
<p>«ligand cause» decreased/lesser splitting «in d-orbitals compared to H<sub>2</sub>O» ✔</p>
<p><br>frequency/energy of light absorbed is decreased<br><em><strong>OR</strong></em><br>wavelength of light absorbed is increased ✔</p>
<p><em><br></em><em>Accept <strong>·</strong>chloride a weaker ligand than water/produces a smaller energy difference than water for <strong>M1</strong>.</em></p>
<p><em>Award <strong>[2 max]</strong> for mentioning splitting of orbitals is changed <strong>AND</strong> frequency/ wavelength/energy of light absorbed</em><br><em>are different/changed without mentioning correct decrease or increase.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>
</div>

<div class="specification">
<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>
<p style="text-align: right;">Mass of crucible and lid = 47.372 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and magnesium ribbon before heating = 53.726 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and product after heating = 56.941 &plusmn;0.001&thinsp;g</p>
<p style="text-align: left;">&nbsp;</p>
</div>

<div class="specification">
<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>
<p style="text-align: center;">3&thinsp;Mg&thinsp;(s) + N<sub>2&thinsp;</sub>(g) &rarr; Mg<sub>3</sub>N<sub>2&thinsp;</sub>(s)</p>
</div>

<div class="specification">
<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>
</div>

<div class="specification">
<p>Most nitride ions are <sup>14</sup>N<sup>3&ndash;</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write a balanced equation for the reaction that occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of magnesium, in mol, that was used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty of the mass of product after heating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate coefficients that balance the equation for the following reaction.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia is added to water that contains a few drops of an indicator. Identify an indicator that would change colour. Use sections 21 and 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of subatomic particles in this ion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, whether magnesium or nitrogen would have the greater sixth ionization energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2 Mg(s) + O<sub>2</sub>(g) → 2 MgO(s) ✔</p>
<p> </p>
<p><em>Do not accept equilibrium arrows. Ignore state symbols</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>aluminium/Al ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mn>53</mn><mo>.</mo><mn>726</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>244</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>354</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo><mo>✔</mo></math></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass of product <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>=</mo><mn>56</mn><mo>.</mo><mn>941</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>»</mo><mo>=</mo><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mtext>⟨⟨100 × </mtext><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>001</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mtext>=0.0209⟩⟩ = 0.02 «%»</mtext></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer </em></p>
<p><em>Accept 0.021%</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo> </mo><mo>×</mo><mo> </mo><mo>(</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>16</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>40</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⟨</mo><mo>⟨</mo><mn>100</mn><mo>×</mo><mfrac><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mo>=</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>822</mn><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>91</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award «0.2614 mol x 40.31 g mol<sup>–1</sup>»</em></p>
<p><em>Accept alternative methods to arrive at the correct answer.</em></p>
<p><em>Accept final answers in the range 90.5-91.5%</em></p>
<p><em><strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes<br><em><strong>AND</strong></em><br>«each Mg combines with <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> N, so» mass increase would be 14x<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> which is less than expected increase of 16x<br><em><strong>OR</strong></em><br>3 mol Mg would form 101g of Mg<sub>3</sub>N<sub>2</sub> but would form 3 x MgO = 121 g of MgO<br><em><strong>OR</strong></em><br>0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg<sub>3</sub>N<sub>2</sub> ✔</p>
<p> </p>
<p><em>Accept Yes <strong>AND</strong> “the mass of N/N<sub>2</sub> that combines with each g/mole of Mg is lower than that of O/O<sub>2</sub>”</em></p>
<p><em>Accept YES<strong> AND</strong> “molar mass of nitrogen less than of oxygen”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>incomplete reaction<br><em><strong>OR</strong></em><br>Mg was partially oxidised already<br><em><strong>OR</strong></em><br>impurity present that evaporated/did not react ✔</p>
<p> </p>
<p><em>Accept “crucible weighed before fully cooled”.</em></p>
<p><em>Accept answers relating to a higher atomic mass impurity consuming less O/O<sub>2</sub>.</em></p>
<p><em>Accept “non-stoichiometric compounds formed”.</em></p>
<p><em>Do <strong>not</strong> accept "human error", "wrongly calibrated balance" or other non-chemical reasons.</em></p>
<p><em>If answer to (b)(iii) is &gt;100%, accept appropriate reasons, such as product absorbed moisture before being weighed.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«1» Mg<sub>3</sub>N<sub>2</sub> (s) + <strong>6</strong> H<sub>2</sub>O (l) → <strong>3</strong> Mg(OH)<sub>2</sub> (s) + <strong>2</strong> NH<sub>3</sub> (aq) ✔</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>phenol red ✔</p>
<p><em><br>Accept bromothymol blue or phenolphthalein.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Mg<sub>3</sub>N<sub>2</sub>: -3</em><br><strong><em>AND</em></strong><br><em>NH<sub>3</sub>: -3 ✔</em></p>
<p><em><br>Do not accept 3 or 3-</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Acid–base:</em><br>yes <strong>AND</strong> N<sup>3-</sup> accepts H<sup>+</sup>/donates electron pair«s»<br><strong><em>OR</em></strong><br>yes <strong>AND</strong> H<sub>2</sub>O loses H<sup>+</sup> «to form OH<sup>-</sup>»/accepts electron pair«s» ✔</p>
<p><em>Redox:</em><br>no <strong>AND</strong> no oxidation states change ✔</p>
<p> </p>
<p><em>Accept “yes <strong>AND</strong> proton transfer takes place”</em></p>
<p><em>Accept reference to the oxidation state of specific elements not changing.</em></p>
<p><em>Accept “not redox as no electrons gained/lost”.</em></p>
<p><em>Award <strong>[1 max]</strong> for Acid–base: yes <strong>AND</strong> Redox: no without correct reasons, if no other mark has been awarded</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons</em>: 7 <em><strong>AND</strong> Neutrons</em>: 7 <em><strong>AND</strong> Electrons</em>: 10 ✔</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">isotope</span>«s» ✔</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nitride <em><strong>AND</strong> </em>smaller nuclear charge/number of protons/atomic number ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nitrogen <em><strong>AND</strong> </em>electron lost from first «energy» level/s sub-level/s-orbital <em><strong>AND</strong> </em>magnesium from p sub-level/p-orbital/second «energy» level<br><em><strong>OR</strong></em><br>nitrogen <em><strong>AND</strong> </em>electron lost from lower level «than magnesium» ✔</p>
<p> </p>
<p><em>Accept “nitrogen <strong>AND</strong> electron lost closer to the nucleus «than magnesium»”.</em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>subatomic particles «discovered»<br><em><strong>OR</strong></em><br>particles smaller/with masses less than atoms «discovered»<br><em><strong>OR</strong></em><br>«existence of» isotopes «same number of protons, different number of neutrons» ✔</p>
<p><br>charged particles obtained from «neutral» atoms<br><em><strong>OR</strong></em><br>atoms can gain or lose electrons «and become charged» ✔</p>
<p><br>atom «discovered» to have structure ✔</p>
<p><br>fission<br><em><strong>OR</strong></em><br>atoms can be split ✔</p>
<p> </p>
<p><em>Accept atoms can undergo fusion «to produce heavier atoms»</em></p>
<p><em>Accept specific examples of particles.</em></p>
<p><em>Award <strong>[2]</strong> for “atom shown to have a nucleus with electrons around it” as both M1 and M3.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Award <strong>[1]</strong> for all bonding types correct.</em></p>
<p><em>Award <strong>[1]</strong> for <strong>each</strong> correct description.</em></p>
<p><em>Apply ECF for M2 only once.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Done very well. However, it was disappointing to see the formula of oxygen molecule as O and the oxide as Mg<sub>2</sub>O and MgO<sub>2</sub> at HL level.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; the question asked to identify a metal; however, answers included S, Si, P and even noble gases besides Be and Na. The only choice of aluminium; however, since its oxide is amphoteric, it could not be the answer in the minds of some.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very good performance; some calculated the mass of oxygen instead of magnesium for the calculation of the amount, in mol, of magnesium. Others calculated the mass, but not the amount in mol as required.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; instead of calculating percentage uncertainty, some calculated percentage difference.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Satisfactory performance; however, a good number could not answer the question correctly on determining the percentage yield.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly done. The question asked to evaluate and explain but instead many answers simply agreed with the information provided instead of assessing its strength and limitation.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; explaining the yield found was often a challenge by not recognizing that incomplete reaction or Mg partially oxidized or impurities present that evaporated or did not react would explain the yield.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">Calculating coefficients that balance the given equation was done very well.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well done; some chose bromocresol green or methyl red as the indicator that would change colour, instead of phenol red, bromothymol blue or phenolphthalein.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; however, surprising number of candidates could not determine one or both oxidation states correctly or wrote it as 3 or 3−, instead of −3.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; choosing the given reaction as an acid-base or redox reaction was not done well. Often answers were contradictory and the reasoning incorrect.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Stating the number of subatomic particles in a <sup>14</sup>N<sup>3-</sup> was done very well. However, some answers showed a lack of understanding of how to calculate the number of relevant subatomic particles given formula of an ion with charge and mass number.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Exceptionally well done; A few candidates referred to isomers, rather than isotopes.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There was reference to nitrogen and magnesium, rather than nitride and magnesium ions. Also, instead identifying smaller nuclear charge in nitride ion, some referred to core electrons, Z<sub>eff</sub>, increased electron-electron repulsion or shielding.</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Common error in suggesting nitrogen would have the greater sixth ionization energy was that for nitrogen, electron is lost from first energy level without making reference to magnesium losing it from second energy level.</p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; some teachers were concerned about the expected answers. However, generally, students were able to suggest two reasons why matter is divisible.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One teacher commented that not asking to describe bonding in terms of electrostatic attractions as in earlier papers would have been confusing and some did answer in terms of electrostatic forces of attractions involved. However, the question was clear in its expectation that the answer had to be in terms of how the valence electrons produce the three types of bonds and the overall performance was good. Some had difficulty identifying the bond type for Mg, O<sub>2</sub> and MgO.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from iron (II) sulfide, FeS.</p>
</div>

<div class="specification">
<p>Iron (II) sulfide, FeS, is ionically bonded.</p>
</div>

<div class="specification">
<p>The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why metals, like iron, can conduct electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why sulfur is classified as a non-metal by giving <strong>two</strong> of its chemical properties.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the first eight successive ionisation energies of sulfur.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="480" height="394"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in this type of solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique that could be used to determine the crystal structure of the solid compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the sulfide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of their electronic structures, why the ionic radius of the sulfide ion is greater than that of the oxide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in the oxidation state of sulfur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why this process might raise environmental concerns.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the addition of small amounts of carbon to iron makes the metal harder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>mobile/delocalized «sea of» electrons</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>forms acidic oxides «rather than basic oxides» ✔</p>
<p>forms covalent/bonds compounds «with other non-metals» ✔</p>
<p>forms anions «rather than cations» ✔</p>
<p>behaves as an oxidizing agent «rather than a reducing agent» ✔</p>
<p><em><br>Award <strong>[1 max]</strong> for 2 correct non-chemical properties such as non-conductor, high ionisation energy, high electronegativity, low electron affinity if no marks for chemical properties are awarded.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="465" height="378"></p>
<p>two regions of small increases <em><strong>AND</strong> </em>a large increase between them✔</p>
<p>large increase from 6th to 7th ✔</p>
<p><em><br>Accept line/curve showing these trends.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between oppositely charged ions/between Fe<sup>2+</sup> and S<sup>2−</sup> ✔</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>X-ray crystallography ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> ✔</p>
<p><em><br>Do <strong>not</strong> accept “[Ne] 3s<sup>2</sup> 3p<sup>6</sup>”.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«valence» electrons further from nucleus/extra electron shell/ electrons in third/3s/3p level «not second/2s/2p»✔</p>
<p><em><br>Accept 2,8 (for O<sup>2–</sup>) and 2,8,8 (for S<sup>2–</sup>)</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>allows them to explain the properties of different compounds/substances<br><em><strong>OR</strong></em><br>enables them to generalise about substances<br><em><strong>OR</strong></em><br>enables them to make predictions ✔</p>
<p><em><br>Accept other valid answers.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4FeS(s) + 7O<sub>2</sub>(g) → 2Fe<sub>2</sub>O<sub>3</sub>(s) + 4SO<sub>2</sub>(g) ✔</p>
<p><em><br>Accept any correct ratio.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>+6<br><em><strong>OR</strong></em><br>−2 to +4 ✔</p>
<p><em>Accept “6/VI”.</em><br><em>Accept “−II, 4//IV”.</em><br>Do <strong>not</strong> accept 2- to 4+.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sulfur dioxide/SO<sub>2</sub> causes acid rain ✔</p>
<p><em>Accept sulfur dioxide/SO<sub>2</sub>/dust causes respiratory problems</em><br><em>Do <strong>not</strong> accept just “causes respiratory problems” or “causes acid rain”.</em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>disrupts the regular arrangement «of iron atoms/ions»<br><em><strong>OR</strong></em><br>carbon different size «to iron atoms/ions» ✔</p>
<p>prevents layers/atoms sliding over each other ✔</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>

<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is set up between the Fe<sup>2+ </sup>(aq) | Fe (s) and Fe<sup>3+</sup> (aq) | Fe<sup>2+</sup> (aq) half-cells.</p>
<p>Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.</p>
<p><img src="" width="651" height="204"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, unlike typical transition metals, zinc compounds are not coloured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1:2 ✔</p>
<p><em>Accept 2 Fe<sup>3+</sup>: 1 Fe<sup>2+</sup></em><br><em>Do <strong>not</strong> accept 2:1 only</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass «spectroscopy»/MS ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="515" height="88"></p>
<p><em><br>Award <strong>[1 max]</strong> for 4 correct values.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific heat capacity « = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mi>q</mi><mrow><mi>m</mi><mo>×</mo><mo>∆</mo><mi>T</mi></mrow></mfrac><mo>/</mo><mfrac><mrow><mn>1000</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow><mrow><mn>50</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>×</mo><mn>44</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math>» = 0.45 «J g<sup>−1 </sup>K<sup>−1</sup>» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>2Fe<sup>3+</sup>(aq) + Fe(s) → 3Fe<sup>2+</sup>(aq) ✔</p>
<p><em>Cell potential:</em><br>«+0.77 V − (−0.45 V) = +»1.22 «V» ✔</p>
<p><em><br>Do <strong>not</strong> accept reverse reaction or equilibrium arrow.</em></p>
<p><em>Do <strong>not</strong> accept negative value for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>left electrode/anode labelled zinc/Zn <em><strong>AND</strong> </em>right electrode/cathode labelled iron/Fe ✔</p>
<p>electrolyte labelled as «aqueous» zinc salt/Zn<sup>2+</sup> ✔</p>
<p><em><br>Accept an inert conductor for the anode.</em></p>
<p><em>Accept specific zinc salts such as ZnSO<sub>4</sub>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>« <em>Zn</em><sup>2+</sup>» has a full d-shell<br><em><strong>OR</strong></em><br>does not form « ions with» an incomplete d-shell ✔</p>
<p><em><br>Do <strong>not</strong> accept “Zn is not a transition metal”.</em></p>
<p><em>Do <strong>not</strong> accept zinc atoms for zinc ions.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ligands donate pairs of electrons to metal ions<br><em><strong>OR</strong></em><br>forms coordinate covalent/dative bond✔</p>
<p>ligands are Lewis bases<br><em><strong>AND</strong></em><br>metal «ions» are Lewis acids ✔</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Oxygen exists as two allotropes, diatomic oxygen, O<sub>2</sub>, and ozone, O<sub>3</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Lewis (electron dot) structure for ozone.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the relative length of the two O−O bonds in ozone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why there are frequencies of UV light that will dissociate O<sub>3</sub> but not O<sub>2</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using equations, how the presence of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CCl</mtext><mtext>2</mtext></msub><msub><mtext>F</mtext><mtext>2</mtext></msub></math> results in a chain reaction that decreases the concentration of ozone in the stratosphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="437" height="78">✔</p>
<p><em>Accept any combination of lines, dots or crosses to represent electrons.</em></p>
<p><em>Do <strong>not</strong> accept structures that represent 1.5 bonds.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>both equal ✔</p>
<p>delocalization/resonance ✔</p>
<p><em><br>Accept bond length between 121 and 148 pm/ that of single O−O bond and double O=O bond for M1.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond in O<sub>3</sub> is weaker<br><em><strong>OR</strong></em><br>O<sub>3</sub> bond order 1.5/&lt; 2 ✔</p>
<p><em><br>Do <strong>not</strong> accept bond in O<sub>3</sub> is longer for M1.</em></p>
<p><br>lower frequency/longer wavelength «UV light» has enough energy to break the O–O bond in O<sub>3</sub> «but not that in O<sub>2</sub>» ✔</p>
<p><em><br>Accept “lower frequency/longer wavelength «UV light» has lower energy”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CCl</mtext><mtext>2</mtext></msub><msub><mtext>F</mtext><mtext>2</mtext></msub><msub><mtext>(g)&nbsp;→∙CClF</mtext><mtext>2</mtext></msub><mtext>(g)&nbsp;Cl</mtext><mo>∙</mo><mtext>(g)</mtext></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Cl•(g)+O</mtext><mtext>3</mtext></msub><msub><mtext>(g)→O</mtext><mtext>2</mtext></msub><mtext>(g)+ClO•(g)</mtext></math><br><em><strong>AND</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>ClO∙(g)+O</mtext><mtext>3</mtext></msub><msub><mtext>(g)→2O</mtext><mtext>2</mtext></msub><mtext>(g)+Cl</mtext><mo>∙</mo><mtext>(g)</mtext></math> ✔</p>
<p><em><br>Do <strong>not</strong> penalize missing radical.</em></p>
<p><em>Accept:for M2:</em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Cl∙(g)&nbsp;+&nbsp;O</mtext><mtext>3</mtext></msub><msub><mtext>(g)&nbsp;→&nbsp;O</mtext><mtext>2</mtext></msub><mtext>(g)&nbsp;+&nbsp;ClO</mtext><mo>∙</mo><mtext>(g)</mtext></math><br><em><strong>AND</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>ClO∙(g)&nbsp;+&nbsp;O(g)&nbsp;→&nbsp;O</mtext><mtext>2</mtext></msub><mtext>(g)&nbsp;+&nbsp;Cl</mtext><mo>∙</mo><mtext>(g)</mtext></math></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Analytical chemistry uses instruments to separate, identify, and quantify matter.</p>
</div>

<div class="specification">
<p>Nitric oxide reacts with chlorine.</p>
<p style="text-align: center;">2NO (g) + Cl<sub>2</sub> (g) → 2NOCl (g)</p>
<p>The following experimental data were obtained at 101.3 kPa and 263 K.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Menthol is an organic compound containing carbon, hydrogen and oxygen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how this spectrum is related to the energy levels in the hydrogen atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A sample of magnesium has the following isotopic composition.</p>
<p><img src=""></p>
<p>Calculate the relative atomic mass of magnesium based on this data, giving your answer to <strong>two</strong> decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete combustion of 0.1595 g of menthol produces 0.4490 g of carbon dioxide and 0.1840 g of water. Determine the empirical formula of the compound showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.150 g sample of menthol, when vaporized, had a volume of 0.0337 dm<sup>3</sup> at 150 °C and 100.2 kPa. Calculate its molar mass showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the molecular formula of menthol using your answers from parts (d)(i) and (ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the order of reaction with respect to Cl<sub>2</sub> and NO.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant at 263 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electron transfer/transition between high«er» energy level to low«er» energy level</p>
<p><em><strong>OR</strong></em></p>
<p>electron transitions into first energy level causes UV series</p>
<p><em><strong>OR</strong></em></p>
<p>transition into second energy level causes visible series</p>
<p><em><strong>OR</strong></em></p>
<p>transition into third energy level causes infrared series</p>
<p><em>Accept any of the points shown on a diagram.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>24 x 0.786 + 25 x 0.101 + 26 x 0.113</p>
<p>24.33</p>
<p>Award <strong>[2]</strong> for correct final answer.<br>Award <strong>[0]</strong> for 24.31 with no working (data booklet value).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon: «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.4490\,{\text{g}}}}{{44.01\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>0.4490</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>44.01</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 0.01020 «mol» / 0.1225 «g»<br><em><strong>OR</strong></em><br>hydrogen: «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.1840 \times 2}}{{18.02\,g\,mo{l^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>0.1840</mn>
      <mo>×</mo>
      <mn>2</mn>
    </mrow>
    <mrow>
      <mn>18.02</mn>
      <mspace width="thinmathspace"></mspace>
      <mi>g</mi>
      <mspace width="thinmathspace"></mspace>
      <mi>m</mi>
      <mi>o</mi>
      <mrow>
        <msup>
          <mi>l</mi>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 0.02042 «mol» / 0.0206 «g»</p>
<p>oxygen: «0.1595 – (0.1225 + 0.0206)» = 0.0164 «g» / 0.001025 «mol»</p>
<p>empirical formula: C<sub>10</sub>H<sub>20</sub>O</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<p><em>Do <strong>not</strong> award M3 for a hydrocarbon.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«temperature =» 423 K<br><em><strong>OR</strong></em><br><em>M</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{mRT}}{{pV}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>m</mi>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
    <mrow>
      <mi>p</mi>
      <mi>V</mi>
    </mrow>
  </mfrac>
</math></span></p>
<p>«<em>M </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.150\,{\text{g}} \times 8.31\,{\text{J}}{{\text{K}}^{ - 1}}\,{\text{mol}}{}^{ - 1} \times 423\,{\text{K}}}}{{100.2\,{\text{kPa}} \times 0.0337\,{\text{d}}{{\text{m}}^3}}} = ">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.150</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mo>×</mo>
      <mn>8.31</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>J</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
      <msup>
        <mrow>

        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
      <mo>×</mo>
      <mn>423</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>K</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>100.2</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>kPa</mtext>
      </mrow>
      <mo>×</mo>
      <mn>0.0337</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 156 «g mol<sup>–1</sup>»</p>
<p><em>Award <strong>[1]</strong> for correct answer with no working shown.</em></p>
<p><em>Accept “pV = nRT <strong>AND</strong> n = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{m}{M}">
  <mfrac>
    <mi>m</mi>
    <mi>M</mi>
  </mfrac>
</math></span>” for M1.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C<sub>10</sub>H<sub>20</sub>O</p>
<p><em><strong>[1 Mark]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Cl<sub>2</sub>:</em> first<br><em>NO:</em> second</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate = <em>k</em> [NO]<sup>2</sup> [Cl<sub>2</sub>]</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>180 / 1.80 x 10<sup>2</sup> «dm<sup>6</sup> mol<sup>–2</sup> min<sup>–1</sup>»</p>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br></span></p>
<p><span style="background-color: #ffffff;">«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires</em>:<br>«delocalized» electrons «flow» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math alttext="\frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrode» 3 <em><strong>AND</strong> </em>oxygen/O<sub>2</sub> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept chlorine/Cl<sub>2</sub>.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>O (l) → 4H<sup>+</sup> (aq) + O<sub>2</sub> (g) + 4e<sup>–</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept 2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup>.<br>Accept 4OH<sup>−</sup> → 2H<sub>2</sub>O + O<sub>2</sub> + 4e<sup>−</sup></span></em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enthalpy of solution = lattice enthalpy + enthalpies of hydration «of Cu<sup>2+</sup> and Cl<sup>−</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;">«+2824 kJ mol<sup>–1</sup> − 2161 kJ mol<sup>–1</sup> − 2(359 kJ mol<sup>–1</sup>) =» −55 «kJ mol<sup>–1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept enthalpy cycle. <br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E</em><sup>θ</sup> = «+0.52 – 0.15 = +» 0.37 «V» ✔</span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">spontaneous <em><strong>AND</strong> E</em><sup>θ</sup> positive ✔</span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><sup>θ</sup> = «−<em>nFE</em> = −1 mol × 96 500 C Mol<sup>–1</sup> × 0.37 V=» −36 000 J/−36 kJ ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “−18 kJ mol<sup>–1</sup> «per mole of Cu<sup>+</sup>»”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept values of n other than 1.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Apply SF in this question.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept J/kJ or J mol<sup>−1</sup>/kJ mol<sup>−1</sup> for units.</span></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2 mol (aq) → 1 mol (aq) <em><strong>AND</strong> </em>decreases ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “solid formed from aqueous solution <strong>AND</strong> decreases”.<br>Do <strong>not</strong> accept 2 mol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> 1 mol without (aq).</span></em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> </span><span style="background-color: #ffffff;">&lt; 0</span><span style="background-color: #ffffff;"> <strong>AND</strong> </span><span style="background-color: #ffffff;">Δ</span><span style="background-color: #ffffff;"><em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span></span><span style="background-color: #ffffff;"> &lt; 0</span><em><span style="background-color: #ffffff;"><br><strong>OR</strong><br></span></em><span style="background-color: #ffffff;">Δ<em>G</em></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> + <em>T</em>Δ<em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 ✔</span></p>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>T</em>Δ<em>S</em> more negative «reducing spontaneity» <em><strong>AND</strong> </em>stability increases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept calculation showing non-spontaneity at 433 K.</span></em></p>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ligands cause» d-orbitals «to» split ✔</span></p>
<p><span style="background-color: #ffffff;">light absorbed as electrons transit to higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light absorbed as electrons promoted ✔</span></p>
<p><span style="background-color: #ffffff;">energy gap corresponds to «orange» light in visible region of spectrum ✔</span></p>
<p><span style="background-color: #ffffff;">colour observed is complementary ✔</span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">full «3»d sub-level/orbitals<br><em><strong>OR</strong></em><br>no d–d transition possible «and therefore no colour» ✔</span></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">octahedral <em><strong>AND</strong> </em>90° «180° for axial» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept square-based bi-pyramid.</span></em></p>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any <strong>two </strong>of:</em><br>ligand/chloride ion Lewis base <em><strong>AND</strong> </em>donates e-pair ✔<br>not Brønsted–Lowry base <em><strong>AND</strong> </em>does not accept proton/H<sup>+</sup> ✔<br>Lewis definition extends/broader than Brønsted–Lowry definition ✔</span></p>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide, N<sub>2</sub>O, causes depletion of ozone in the stratosphere.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Different sources of N<sub>2</sub>O have different ratios of <sup>14</sup>N : <sup>15</sup>N.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The Lewis (electron dot) structure of the dinitrogen monoxide molecule can be represented as:</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="images/3d.PNG" alt width="373" height="54"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why ozone in the stratosphere is important.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide in the stratosphere is converted to nitrogen monoxide, NO (g).</span></p>
<p><span style="background-color: #ffffff;">Write <strong>two</strong> equations to show how NO (g) catalyses the decomposition of ozone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> analytical technique that could be used to determine the ratio of <sup>14</sup>N : <sup>15</sup>N.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A sample of gas was enriched to contain 2 % by mass of <sup>15</sup>N with the remainder being <sup>14</sup>N.</span></p>
<p><span style="background-color: #ffffff;">Calculate the relative molecular mass of the resulting N<sub>2</sub>O.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving <strong>two</strong> reasons, how the first ionization energy of <sup>15</sup>N compares with that of <sup>14</sup>N.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the first ionization energy of nitrogen is greater than both carbon and oxygen.</span></p>
<p><span style="background-color: #ffffff;">Nitrogen and carbon:</span></p>
<p><span style="background-color: #ffffff;">Nitrogen and oxygen:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State what the presence of alternative Lewis structures shows about the nature of the bonding in the molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State, giving a reason, the shape of the dinitrogen monoxide molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the hybridization of the central nitrogen atom in the molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">absorbs <span style="text-decoration: underline;">UV/ultraviolet</span> light «of longer wavelength than absorbed by O<sub>2</sub>»     <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">NO (g) + O<sub>3</sub> (g) → NO<sub>2</sub> (g) + O<sub>2</sub> (g)       <strong>[✔]</strong><br>NO<sub>2</sub> (g) + O<sub>3</sub> (g) <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> NO (g) + 2O<sub>2</sub> (g)     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Ignore radical signs.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept equilibrium arrows.</span></em></p>
<p><em><span style="background-color: #ffffff;">Award <strong>[1 max]</strong> for NO<sub>2</sub> (g) + O (g) <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline;white-space: normal;float: none;background-color: #ffffff;">→</span> NO (g) + O<sub>2</sub> (g).</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mass spectrometry/MS     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(98 \times 14) + (2 \times 15)}}{{100}}">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>98</mn>
      <mo>×</mo>
      <mn>14</mn>
      <mo stretchy="false">)</mo>
      <mo>+</mo>
      <mo stretchy="false">(</mo>
      <mn>2</mn>
      <mo>×</mo>
      <mn>15</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
</math></span> =» 14.02    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«M<sub>r</sub> = (14.02 × 2) + 16.00 =» 44.04    <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two</em>:</span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>have same nuclear charge /number of protons/Z<sup><sub>eff</sub></sup>      <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>neutrons do not affect attraction/ionization energy/Z<sup><sub>eff</sub></sup><br><em><strong>OR</strong></em><br>same <em><strong>AND</strong> </em>neutrons have no charge       <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>same attraction for «outer» electrons     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">same <em><strong>AND</strong> </em>have same electronic configuration/shielding     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: bold;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">Note: </span>Accept “almost the same”.</span></em></p>
<p><em><span style="background-color: #ffffff;">“Same” only needs to be stated once.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Nitrogen and carbon:</em></span></p>
<p><span style="background-color: #ffffff;">N has greater nuclear charge/«one» more proton «and electrons both lost from singly filled p-orbitals»    <strong>[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Nitrogen and oxygen:</em></span></p>
<p><span style="background-color: #ffffff;">O has a doubly filled «p-»orbital<br><em><strong>OR</strong></em><br>N has only singly occupied «p-»orbitals     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept “greater e– <sup>-</sup> e<sup>-</sup> repulsion in O” or “lower <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">e– </span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">-</sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;"> e</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">-</sup> repulsion in N”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept box annotation of electrons for M2.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">delocalization</span></p>
<p><span style="background-color: #ffffff;">OR</span></p>
<p><span style="background-color: #ffffff;">delocalized <em>π</em>-electrons    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “resonance”.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">linear <em><strong>AND</strong> </em>2 electron domains</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">linear <em><strong>AND</strong> </em>2 regions of electron density    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “two bonds </span><span style="background-color: #ffffff;"><strong>AND</strong></span> <span style="background-color: #ffffff;">no lone pairs” for reason.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">sp     <strong>[✔]</strong></span></p>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates sometimes failed to identify how ozone works in chemical terms, referring to protects/deflects, <em>i.e.</em>, the consequence rather than the mechanism.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates recalled the first equation for NO catalyzed decomposition of ozone only. Some considered other radical species.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>All candidates, with very few exceptions, answered this correctly.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to calculate the accurate mass of N<sub>2</sub>O, though quite a few candidates just calculated the mass of N and didn’t apply it to N<sub>2</sub>O, losing an accessible mark.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students realized that neutrons had no charge and could not affect IE significantly, but many others struggled a lot with this question since they considered that <sup>15</sup>N would have a higher IE because they considered the greater mass of the nucleus would result in an increase of attraction of the electrons.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mixed responses here; the explanation of higher IE for N with respect to C was less well explained, though it should have been the easiest. It was good to see that most candidates could explain the difference in IE of N and O, either mentioning paired/unpaired electrons or drawing box diagrams.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates identified resonance for this given Lewis representation.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Though quite a number of candidates suggested a linear shape correctly, they often failed to give a complete correct explanation, just mentioning the absence of lone pairs but not two bonds, instead of referring to electron domains.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Hybridisation of the N atom was correct in most cases.</p>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Iron(II) disulfide, FeS<sub>2</sub>, has been mistaken for gold.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electronic configuration of Fe<sup>2+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why there is a large increase from the 8th to the 9th ionization energy of iron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the oxidation state of sulfur in iron(II) disulfide, FeS<sub>2</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in iron, Fe (s).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup> ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>IE<sub>9</sub>: electron in lower energy level<br><em><strong>OR</strong></em><br>IE<sub>9</sub>: more stable/full electron level ✔</p>
<p><br>IE<sub>9</sub>: electron closer to nucleus<br><em><strong>OR</strong></em><br>IE<sub>9</sub>: electron more tightly held by nucleus ✔</p>
<p><br>IE<sub>9</sub>: less shielding by «complete» inner levels ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–1 ✔</p>
<p> </p>
<p><em>Accept “– I”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction/hold between «lattice of» positive ions/cations <em><strong>AND</strong> </em>delocalized «valence» electrons ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Mostly well done which was a pleasant surprise since this is not overly easy, predictably some gave [Ar] 4s<sup>2</sup> 3d<sup>4</sup>.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Despite some confusion regarding which sub-level the electrons were being removed from, many candidates were able to make at least one valid point, commonly in terms of lower energy/ full sub level/closer to nucleus.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was an easy question, yet 30% of the candidates were unable to work it out; some wrote the oxidation state in the conventionally incorrect format, 1- and lost the mark.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates knew the bonding in Fe is metallic but some did not “describe” it or missed the type of attraction, a minor mistake; others referred to nuclei or protons instead of cations/positive ions. In some cases, candidates referred too ionic bonding, probably still thinking of FeS<sub>2</sub> (not reading the question well). Overall, only 30% answered satisfactorily.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>IE <strong>«</strong>= Δ<em>E =</em> <em>h</em>ν = 6.63 × 10<sup>–34</sup> J s × 3.28 × 10<sup>15</sup> s<sup>–1</sup><strong>» =</strong> 2.17 × 10<sup>–18</sup> <strong>«</strong>J<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{C}{{\text{v}}} = \frac{{3.00 \times {{10}^8}{\text{ m}}{{\text{s}}^{ - 1}}}}{{3.28 \times {{10}^{15}}{\text{ }}{{\text{s}}^{ - 1}}}} = ">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mi>C</mi>
    <mrow>
      <mtext>v</mtext>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> m</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.28</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>15</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 9.15 × 10<sup>–8</sup> <strong>«</strong>m<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change <strong>«</strong>in colour<strong>»</strong></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “solution around cathode </em><em>will become paler and solution around </em><em>the anode will become darker”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxygen/O<sub>2</sub></p>
<p> </p>
<p><em>Accept “carbon dioxide/CO2”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Transition metals:</em></p>
<p><strong>«</strong>contain<strong>» </strong>d and s orbitals <strong>«</strong>which are close in energy<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>successive<strong>» </strong>ionization energies increase gradually</p>
<p> </p>
<p><em>Alkali metals</em>:</p>
<p>second electron removed from <strong>«</strong>much<strong>» </strong>lower energy level</p>
<p><strong><em>OR</em></strong></p>
<p>removal of second electron requires large increase in ionization energy</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The properties of elements can be predicted from their position in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Si has a smaller atomic radius than Al.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the first ionization energy of sulfur is lower than that of phosphorus.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the condensed electron configurations for Cr and Cr3<sup>+</sup>.</p>
<p><img src="" width="768" height="190"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe metallic bonding and how it contributes to electrical conductivity.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which complex ion [Cr(CN)<sub>6</sub>]<sup>3−</sup> or [Cr(OH)<sub>6</sub>]<sup>3−</sup> absorbs higher energy light. Use section 15 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>[Cr(OH)<sub>6</sub>]<sup>3−</sup> forms a green solution. Estimate a wavelength of light absorbed by this complex, using section 17 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the Lewis (electron dot) structure and molecular geometry of sulfur&nbsp;tetrafluoride, SF<sub>4</sub>, and sulfur dichloride, SCl<sub>2</sub>.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving reasons, the relative volatilities of SCl<sub>2</sub> and H<sub>2</sub>O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nuclear charge/number of protons/Z/Z<sub>eff</sub> increases «causing a stronger pull on the outer electrons» ✓</p>
<p>same number of shells/«outer» energy level/shielding ✓</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P has «three» unpaired electrons in 3p sub-level <em><strong>AND</strong> </em>S has one full 3p orbital «and two 3p orbitals with unpaired electrons»<br><em><strong>OR</strong></em><br>P: [Ne]3s<sup>2</sup>3p<sub>x</sub><sup>1</sup>3p<sub>y</sub><sup>1</sup>3p<sub>z</sub><sup>1</sup> <em><strong>AND</strong> </em>S: [Ne]3s<sup>2</sup>3p<sub>x</sub><sup>2</sup>3p<sub>y</sub><sup>1</sup>3p<sub>z</sub><sup>1</sup> ✓</p>
<p><em><br>Accept orbital diagrams for 3p sub-level for M1. Ignore other orbitals or sub-levels.</em></p>
<p>&nbsp;</p>
<p>repulsion between paired electrons in sulfur «and therefore easier to remove» ✓</p>
<p><em><br>Accept “removing electron from S gives more stable half-filled sub-level" for M2.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Cr:</em><br>[Ar] 4s<sup>1</sup>3d<sup>5</sup> ✓</p>
<p><em><br>Cr<sup>3+</sup>:</em><br>[Ar] 3d<sup>3</sup> ✓</p>
<p>&nbsp;</p>
<p><em>Accept “[Ar] 3d<sup>5</sup>4s<sup>1</sup>”.</em></p>
<p><em>Accept “[Ar] 3d<sup>3</sup>4s<sup>0</sup>”.</em></p>
<p><em>Award <strong>[1 max]</strong> for two correct full electron configurations “1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>3</sup>”.</em></p>
<p><em>Award<strong> [1 max]</strong> for 4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 3d<sup>3</sup>.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✓</p>
<p>between «a lattice of» cations/positive «metal» ions <em><strong>AND</strong> </em>«a sea of» delocalized electrons ✓</p>
<p>mobile electrons responsible for conductivity<br><em><strong>OR</strong></em><br>electrons move when a voltage/potential difference/electric field is applied ✓</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “nuclei” for “cations/positive ions” in M2.</em></p>
<p><em>Accept “mobile/free” for “delocalized” electrons in M2.</em></p>
<p><em>Accept “electrons move when connected to a cell/battery/power supply” <strong>OR</strong> “electrons move when connected in a circuit” for M3.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[Cr(CN)<sub>6</sub>]<sup>3−</sup> <em><strong>AND</strong></em> CN<sup>−</sup>/ligand causes larger splitting «in d-orbitals compared to OH<sup>−</sup>»<br><em><strong>OR</strong></em><br>[Cr(CN)<sub>6</sub>]<sup>3−</sup> <em><strong>AND</strong> </em>CN<sup>−</sup>/ligand associated with a higher Δ/«crystal field» splitting energy/energy difference «in the spectrochemical series compared to OH<sup>−</sup> » ✓</p>
<p>&nbsp;</p>
<p><em>Accept “[Cr(CN)<sub>6</sub>]<sup>3−</sup> <strong>AND</strong> «CN<sup>−</sup>» strong field ligand”.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any value or range between 647 and 700 nm ✓</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>&nbsp;</p>
<p><em>SF<sub>4</sub>/SCl<sub>2</sub> structure does not have to be 3-D for mark.<br><br>Penalize missing lone pairs of electrons on halogens once only.<br><br>Accept any combination of dots, lines or crosses for bonds/lone pairs.<br><br>Accept “non-linear” for SCl<sub>2</sub> molecular geometry.<br><br>Award <strong>[1]</strong> for two correct electron domain geometries, e.g. trigonal bipyramidal for SF<sub>4</sub> and tetrahedral for SCl<sub>2</sub>.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O forms hydrogen bonding «while SCl<sub>2</sub> does not» ✓</p>
<p>SCl<sub>2</sub> «much» stronger London/dispersion/«instantaneous» induced dipole-induced dipole forces ✓</p>
<p><em><strong><br>Alternative 1:</strong></em><br>H<sub>2</sub>O less volatile <em><strong>AND</strong> </em>hydrogen bonding stronger «than dipole–dipole and dispersion forces» ✓</p>
<p><em><strong><br>Alternative 2:</strong></em><br>SCl<sub>2</sub> less volatile <em><strong>AND</strong> </em>effect of dispersion forces «could be» greater than hydrogen bonding ✓</p>
<p><em><br>Ignore reference to Van der Waals.</em></p>
<p><em>Accept “SCl<sub>2</sub> has «much» larger molar mass/electron density” for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Rhenium, Re, was the last element with a stable isotope to be isolated.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Before its isolation, scientists predicted the existence of rhenium and some of its properties.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">One chloride of rhenium has the empirical formula ReCl<sub>3</sub>.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Rhenium forms salts containing the perrhenate(VII) ion, ReO<sub>4</sub><sup>−</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The stable isotope of rhenium contains 110 neutrons.</span></p>
<p><span style="background-color: #ffffff;">State the nuclear symbol notation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span> for this isotope.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest the basis of these predictions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A scientist wants to investigate the catalytic properties of a thin layer of rhenium </span><span style="background-color: #ffffff;">metal on a graphite surface.<br></span></p>
<p><span style="background-color: #ffffff;">Describe an electrochemical process to produce a layer of rhenium on graphite.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict <strong>two</strong> other chemical properties you would expect rhenium to have, given its position in the periodic table.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the relative reactivity of rhenium, compared to silver, zinc, and copper, can be established using pieces of rhenium and solutions of these metal sulfates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of this compound, applying IUPAC rules.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the percentage, by mass, of rhenium in ReCl<sub>3</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the existence of salts containing an ion with this formula could be predicted. Refer to section 6 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the coefficients required to complete the half-equation.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">ReO<sub>4</sub><sup>−</sup> (aq) + ____H<sup>+</sup> (aq) + ____e<sup>−</sup> ⇌ [Re(OH)<sub>2</sub>]<sup>2+</sup> (aq) + ____H<sub>2</sub>O (l)        E<sup>θ</sup> = +0.36 V</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, whether the reduction of ReO<sub>4</sub><sup>−</sup> to [Re(OH)<sub>2</sub>]<sup>2+</sup> would oxidize Fe<sup>2+</sup> to Fe<sup>3+</sup> in aqueous solution. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{75}}}^{{\text{185}}}{\text{Re}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>75</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>185</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Re</mtext>
  </mrow>
</math></span>    <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">gap in the periodic table<br><em><strong>OR</strong></em><br>element with atomic number «75» unknown<br><em><strong>OR</strong></em><br>break/irregularity in periodic trends     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«periodic table shows» regular/periodic trends «in properties»      <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">electrolyze «a solution of /molten» rhenium salt/Re<sup>n+</sup>     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">graphite as cathode/negative electrode<br>OR<br>rhenium forms at cathode/negative electrode     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “using rhenium anode” for M1.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>variable oxidation states<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">forms complex ions/compounds<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">coloured compounds/ions<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«para»magnetic compounds/ions     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other valid responses related to its <strong>chemical</strong> metallic properties.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “catalytic properties”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">place «pieces of» Re into each solution    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">if Re reacts/is coated with metal, that metal is less reactive «than Re»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other valid observations such as “colour of solution fades” or “solid/metal appears” for “reacts”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">rhenium(III) chloride<br><em><strong>OR</strong></em><br>rhenium trichloride    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«M<sub>r</sub> ReCl<sub>3</sub> = 186.21 + (3 × 35.45) =» 292.56    <strong>[✔]</strong><br>«100 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{186.21}}{{292.56}}">
  <mfrac>
    <mrow>
      <mn>186.21</mn>
    </mrow>
    <mrow>
      <mn>292.56</mn>
    </mrow>
  </mfrac>
</math></span> =» 63.648 «%» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">  </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">same group as Mn «which forms M</span>n<span style="background-color: #ffffff;">O<sub>4</sub><sup>-</sup>»<br><em><strong>OR</strong></em><br>in group 7/has 7 valence electrons, so its «highest» oxidation state is +7    <strong>[✔]</strong></span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 6H</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">+</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 3e</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">⇌</span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> [Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 2H</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">O (l)    <strong>[<span style="background-color: #ffffff;">✔]</span></strong></span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup></em> is a weaker oxidizing agent than Fe<sup>3+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>Fe<sup>3+</sup> is a stronger oxidizing agent than <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>Fe<sup>2+</sup> is a weaker reducing agent than <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup></em> is a stronger reducing agent than Fe<sup>2+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>cell emf would be negative/–0.41 V     <strong>[✔]</strong></span></p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was expected that this question would be answered correctly by all HL candidates. However, many confused the A-Z positions or calculated very unusual numbers for A, sometimes even with decimals.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is a NOS question which required some reflection on the full meaning of the periodic table and the wealth of information contained in it. But very few candidates understood that they were being asked to explain periodicity and the concept behind the periodic table, which they actually apply all the time. Some were able to explain the “gap” idea and other based predictions on properties of nearby elements instead of thinking of periodic trends. A fair number of students listed properties of transition metals in general.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done; most described the cell identifying the two electrodes correctly and a few did mention the need for Re salt/ion electrolyte.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well answered though some students suggested physical properties rather than chemical ones.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates chose to set up voltaic cells and in other cases failed to explain the actual experimental set up of Re being placed in solutions of other metal salts or the reaction they could expect to see.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates were able to name the compound according to IUPAC.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to answer this stoichiometric question correctly.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This should have been a relatively easy question but many candidates sometimes failed to see the connection with Mn or the amount of electrons in its outer shell.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, a great number of students were unable to balance this simple half-equation that was given to them to avoid difficulties in recall of reactants/products.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students understood that the oxidation of Fe<sup>2+</sup> was not viable but were unable to explain why in terms of oxidizing and reducing power; many students simply gave numerical values for <em>E</em><sup>Θ</sup> often failing to realise that the oxidation of Fe<sup>2+</sup> would have the inverse sign to the reduction reaction.</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br>