File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 2/markSceme-HL-paper1html
File size: 29.52 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p><span style="background-color: #ffffff;">What is the ground state electron configuration of an atom of chromium, Cr (Z = 24)?</span></p>
<p><span style="background-color: #ffffff;">A. [Ar]3d<sup>6</sup></span></p>
<p><span style="background-color: #ffffff;">B. [Ar]4s<sup>2</sup>3d<sup>4</sup></span></p>
<p><span style="background-color: #ffffff;">C. [Ar]4s<sup>1</sup>3d<sup>5</sup></span></p>
<p><span style="background-color: #ffffff;">D. [Ar]4s<sup>2</sup>4p<sup>4</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Some candidates had ground state configuration of Cr as 4s<sup>2</sup> 3d<sup>4</sup> rather than 4s<sup>1</sup> 3d<sup>5</sup></p>
</div>
<br><hr><br><div class="question">
<p>Which representation would be correct for a species, <strong>Z</strong>, which has 31 protons, 40 neutrons and 28 electrons?</p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{31}^{71}{{\rm{Z}}^{3 + }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
<mrow>
<mn>71</mn>
</mrow>
</msubsup>
<mrow>
<msup>
<mrow>
<mrow>
<mi mathvariant="normal">Z</mi>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mo>+</mo>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>B. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{31}^{71}{{\rm{Z}}^{3 - }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>31</mn>
</mrow>
<mrow>
<mn>71</mn>
</mrow>
</msubsup>
<mrow>
<msup>
<mrow>
<mrow>
<mi mathvariant="normal">Z</mi>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mo>−</mo>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>C. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{40}^{71}{{\rm{Z}}^{3 + }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>40</mn>
</mrow>
<mrow>
<mn>71</mn>
</mrow>
</msubsup>
<mrow>
<msup>
<mrow>
<mrow>
<mi mathvariant="normal">Z</mi>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mo>+</mo>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>D. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{28}^{71}{{\rm{Z}}^{3 + }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>28</mn>
</mrow>
<mrow>
<mn>71</mn>
</mrow>
</msubsup>
<mrow>
<msup>
<mrow>
<mrow>
<mi mathvariant="normal">Z</mi>
</mrow>
</mrow>
<mrow>
<mn>3</mn>
<mo>+</mo>
</mrow>
</msup>
</mrow>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which species has two more neutrons than electrons?</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>L</mi><mprescripts></mprescripts><mn>3</mn><mn>6</mn></mmultiscripts><msup><mi>i</mi><mo>+</mo></msup></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>B</mi><mprescripts></mprescripts><mn>4</mn><mn>9</mn></mmultiscripts><msup><mi>e</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>N</mi><mprescripts></mprescripts><mn>11</mn><mn>23</mn></mmultiscripts><msup><mi>a</mi><mo>+</mo></msup></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>C</mi><mprescripts></mprescripts><mn>20</mn><mn>42</mn></mmultiscripts><msup><mi>a</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></p>
<p><br>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>L</mi><mprescripts></mprescripts><mn>3</mn><mn>6</mn></mmultiscripts><msup><mi>i</mi><mo>+</mo></msup></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>B</mi><mprescripts></mprescripts><mn>4</mn><mn>9</mn></mmultiscripts><msup><mi>e</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>N</mi><mprescripts></mprescripts><mn>11</mn><mn>23</mn></mmultiscripts><msup><mi>a</mi><mo>+</mo></msup></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>C</mi><mprescripts></mprescripts><mn>20</mn><mn>42</mn></mmultiscripts><msup><mi>a</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which is correct for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{16}^{34}{{\text{S}}^{2 - }}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>16</mn>
</mrow>
<mrow>
<mn>34</mn>
</mrow>
</msubsup>
<mrow>
<msup>
<mrow>
<mtext>S</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mo>−</mo>
</mrow>
</msup>
</mrow>
</math></span>?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="432" height="225"></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>93 % of the candidates deduced the correct numbers of protons, neutrons and electrons in the sulfide ion.</p>
</div>
<br><hr><br>