File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 19/markSceme-HL-paper3html
File size: 71.34 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><span class="fontstyle0">A voltaic cell is made up of nickel and magnesium half-cells.</span></p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mg</mi><mo>&nbsp;</mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>&nbsp;</mo><mo>|</mo><mo>&nbsp;</mo><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>&nbsp;</mo><mo>|</mo><mo>&nbsp;</mo><mo>|</mo><mo>&nbsp;</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>&nbsp;</mo><mo>|</mo><mo>&nbsp;</mo><mi>Ni</mi><mo>&nbsp;</mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write the balanced equation for the reaction in this voltaic cell.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the cell potential for <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>0100</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>&nbsp;</mo><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo></math></span><span class="fontstyle0">&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>0</mn><mo>.</mo><mn>800</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>&nbsp;</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo></math></span><span class="fontstyle0">&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use sections 1, 2 and 24 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, how an increase in temperature affects the potential of this cell. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>Mg</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math> ✔</p>
<p><em>Accept a balanced molecular equation such as “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mi>g</mi><mo mathvariant="italic">+</mo><mi>N</mi><mi>i</mi><mi>S</mi><msub><mi>O</mi><mn mathvariant="italic">4</mn></msub><mo mathvariant="italic">→</mo><mi>M</mi><mi>g</mi><mi>S</mi><msub><mi>O</mi><mn mathvariant="italic">4</mn></msub><mo mathvariant="italic">+</mo><mi>N</mi><mi>i</mi></math>”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>E</mi><mi mathvariant="normal">Ɵ</mi></msup><mo>=</mo><mo>«</mo><mn>2</mn><mo>.</mo><mn>37</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>26</mn><mo>=</mo><mo>»</mo><mo>(</mo><mo>+</mo><mo>)</mo><mn>2</mn><mo>.</mo><mn>11</mn><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math>&nbsp;✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi>Q</mi><mo>=</mo><mfenced><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0100</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>800</mn></mrow></mfrac></mfenced><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>0125</mn></math>&nbsp;<em><strong>AND&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>n</mi><mo>=</mo><mo>»</mo><mn>2</mn></math></strong></em>&nbsp;✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>E</mi><mo>=</mo><msup><mi>E</mi><mi>Ɵ</mi></msup><mo>−</mo><mfenced><mfrac><mrow><mi>R</mi><mi>T</mi></mrow><mrow><mi>n</mi><mi>F</mi></mrow></mfrac></mfenced><mo> </mo><mi>ln</mi><mo> </mo><mi>Q</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>11</mn><mo>−</mo><mfenced><mfrac><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo>×</mo><mn>298</mn></mrow><mrow><mn>2</mn><mo>×</mo><mn>96</mn><mo> </mo><mn>500</mn></mrow></mfrac></mfenced><mo>&nbsp;</mo><mi>ln</mi><mo> </mo><mn>0</mn><mo>.</mo><mn>0125</mn><mo>=</mo><mo>»</mo><mo>(</mo><mo>+</mo><mo>)</mo><mn>2</mn><mo>.</mo><mn>17</mn><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math>&nbsp;✔</p>
<p><br><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cell potential/<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> increases <em><strong>AND</strong> </em>increasing temperature favours forward reaction<br><em><strong>OR</strong></em><br>cell potential/<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> increases <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><mi>G</mi></math> becomes more negative<br><em><strong>OR</strong></em><br>cell potential/<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> increases <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mi>T</mi><mo>/</mo><mi>n</mi><mi>F</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>Q</mi></math>&nbsp;becomes more negative ✔</p>
<p><br><em>Accept any correct mathematical explanation using the Nernst equation.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Nearly all were able to write the balanced equation for the reaction occurring in the voltaic cell.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The cell potential numerical problem was well executed and many scored all three marks, by&nbsp;calculating the final answer as +2.17 V. The most common errors related to either incorrectly calculating&nbsp;Q or identifying n = 2 in the intermediate, numerical step.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was often gained as an easy subsequent mark for those that scored full marks in (b). The majority&nbsp;approached this problem by applying a mathematical explanation using the Nernst equation.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A fuel cell is an energy conversion device that generates electricity from a spontaneous redox reaction.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <em>Geobacter</em> species of bacteria can be used in microbial fuel cells to oxidise aqueous ethanoate ions, <br>CH<sub>3</sub>COO<sup>−</sup>(aq), to carbon dioxide gas.</p>
<p>State the half-equations for the reactions at both electrodes.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A concentration cell is an example of an electrochemical cell.</p>
<p>(i) State the difference between a concentration cell and a standard voltaic cell.</p>
<p>(ii) The overall redox equation and the standard cell potential for a voltaic cell are:</p>
<p>Zn (s) + Cu<sup>2+</sup> (aq) → Zn<sup>2+</sup> (aq) + Cu (s)     <em>E</em><sup>θ</sup><sub>cell</sub> = +1.10 V</p>
<p>Determine the cell potential <em>E</em> at 298 K to three significant figures given the following concentrations in mol dm<sup>−3</sup>:</p>
<p>[Zn<sup>2+</sup>] = 1.00 × 10<sup>−4</sup>       [Cu<sup>2+</sup>] = 1.00 × 10<sup>−1</sup></p>
<p>Use sections 1 and 2 of the data booklet.</p>
<p>(iii) Deduce, giving your reason, whether the reaction in (b) (ii) is more or less spontaneous than in the standard cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dye-sensitized solar cells (DSSC) convert solar energy into electrical energy.</p>
<p>(i) Describe how a DSSC converts sunlight into electrical energy.</p>
<p>(ii) Explain the role of the electrolyte solution containing iodide ions, I<sup>−</sup>, and triiodide ions, I<sub>3</sub><sup>−</sup>, in the DSSC.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Negative electrode (anode):</em> CH<sub>3</sub>COO<sup>−</sup> (aq) + 2H<sub>2</sub>O (l) → 2CO<sub>2</sub> (g) + 7H<sup>+</sup> (aq) + 8e<sup>−</sup></p>
<p><em>Positive electrode (cathode):</em> O<sub>2 </sub>(g) + 4H<sup>+</sup> (aq) + 4e<sup>−</sup> → 2H<sub>2</sub>O (l)</p>
<p><em>Accept equilibrium signs in equations. <br>Award <strong>[1 max]</strong> if correct equations are given at wrong electrodes.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>concentration cell has different concentrations of electrolyte «solutions» «but same electrodes and electrolytes»<br><em><strong>OR</strong></em><br>standard voltaic cell has different electrodes/electrolytes «but same concentration of electrolytes»<br><em>Accept “both half-cells in concentration cell made from same materials”.</em></p>
<p><br>ii<br>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = 1.10 - \left( {\frac{{RT}}{{nF}}} \right)\ln \frac{{\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right]}}{{\left[ {{\text{C}}{{\text{u}}^{2 + }}} \right]}} = 1.10 - \left( {\frac{{8.31 \times 298}}{{2 \times 96500}}} \right)\ln \frac{{{{10}^{ - 4}}}}{{{{10}^{ - 1}}}} = 1.10 + 0.0886 = ">
  <mi>E</mi>
  <mo>=</mo>
  <mn>1.10</mn>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mi>R</mi>
          <mi>T</mi>
        </mrow>
        <mrow>
          <mi>n</mi>
          <mi>F</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>ln</mi>
  <mo>⁡</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>Z</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>n</mtext>
              </mrow>
              <mrow>
                <mn>2</mn>
                <mo>+</mo>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>u</mtext>
              </mrow>
              <mrow>
                <mn>2</mn>
                <mo>+</mo>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1.10</mn>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>8.31</mn>
          <mo>×</mo>
          <mn>298</mn>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mo>×</mo>
          <mn>96500</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>ln</mi>
  <mo>⁡</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>1.10</mn>
  <mo>+</mo>
  <mn>0.0886</mn>
  <mo>=</mo>
</math></span>»</p>
<p>(+) 1.19 «V»<br><em>3 significant figures needed for mark.</em></p>
<p><br>iii<br>more spontaneous because <em>E</em> &gt; <em>E</em><sup>θ</sup><sub>cell</sub></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>photon/«sun»light absorbed by the dye/photosensitizer/«transition» metal complex<br><em><strong>OR<br></strong></em>dye/photosensitizer/«transition» metal complex excited by photon/«sun»light </p>
<p>electron«s» move«s» to conduction band<br><em><strong>OR<br></strong></em>electron«s» transferred to semiconductor/TiO<sub>2</sub>     </p>
<p> </p>
<p>ii</p>
<p>I<sub>3</sub><sup>−</sup> + 2e<sup>−</sup> → 3I<sup>−</sup> «at cathode»<br><em><strong>OR<br></strong></em>triiodide ions/I<sub>3</sub><sup>−</sup> reduced into/produce iodide ions/I<sup>−</sup> «at cathode»</p>
<p>iodide ions/I<sup>−</sup> reduce dye/act as reducing agent <em><strong>AND</strong></em> oxidized into/produce triiodide ions/I<sub>3</sub><sup>−</sup><sup> <br></sup><em><strong>OR<br></strong></em>dye<sup>+</sup> + e<sup>−</sup> → dye <strong><em>AND</em></strong> 3I<sup>-</sup> → I<sub>3</sub><sup>−</sup> + 2e<sup>−</sup></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton-exchange membrane (PEM) fuel cell uses pure hydrogen gas as the fuel and a proton exchange membrane as the electrolyte.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="512" height="421"></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>A dye-sensitized solar cell (DSSC) uses light energy to produce electricity.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equations for the reactions occurring at the electrodes.</span></p>
<p><span style="background-color: #ffffff;"><br>Anode (negative electrode):<br></span></p>
<p><span style="background-color: #ffffff;">Cathode (positive electrode):</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential, <em>E</em><sup>θ</sup>, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest how PEM fuel cells can be used to produce a larger voltage than that calculated in (b)(i).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest an advantage of the PEM fuel cell over the lead-acid battery for use in cars.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Outline the functions of the dye, TiO<sub>2</sub> and the electrolyte in the operation of the DSSC.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Dye: </span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">TiO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub>:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Suggest an advantage of the DSSC over silicon-based photovoltaic cells.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Anode (negative electrode):</em><br>H<sub>2</sub> (g) → 2H<sup>+</sup> (aq) + 2e<sup>−</sup> ✔</span></p>
<p><span style="background-color: #ffffff;"><em>Cathode (positive electrode):</em><br>O<sub>2</sub> (g) + 4H<sup>+</sup> (aq) + 4e<sup>−</sup> → 2H<sub>2</sub>O (l) ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept any correct integer or fractional coefficients. Award <strong>[1 max]</strong> for M1 and M2 if correct half-equations are given at the wrong electrodes <strong>OR</strong> if incorrect reversed half-equations are given at the correct electrodes.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">(+)1.23 «V» ✔</span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Do <strong>not</strong> accept “-1.23 «V»”.</em></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">connect several fuel cells in series<br><em><strong>OR</strong></em><br>increase pressure/concentration of reactant/hydrogen/oxygen ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Do <strong>not</strong> accept changes in [H<sup>+</sup>]/pH as they do not affect cell potential in this case.<br>Do <strong>not</strong> accept reference to quantity for “concentration”.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">liquid in cell is less/not corrosive<br><em><strong>OR</strong></em><br>does not contain lead/toxic chemicals<br><em><strong>OR</strong></em><br>larger energy density/charge capacity/current per unit mass<br><em><strong>OR</strong></em><br>does not have to be charged prior to use / is always ready for use «as long as fuel is available» ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Dye</em>:<br>absorbs photons/light<br><em><strong>OR</strong></em><br>releases electrons ✔</span></p>
<p><span style="background-color: #ffffff;"><em>TiO2</em>:<br>conducts current/electricity<br><em><strong>OR</strong></em><br>semiconductor ✔</span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>reduces/regenerates «the oxidized» dye ✔</span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>cheaper/ease of manufacture<br><em><strong>OR</strong></em><br>plentiful and renewable resources «to construct DSSC cells» ✔</span></p>
<p><span style="background-color: #ffffff;">use light of lower energy/lower frequency/longer wavelength<br><em><strong>OR</strong></em><br>use of nanoparticles provides large surface area for exposure to sunlight/sun/light<br><em><strong>OR</strong></em><br>can absorb better under cloudy conditions ✔</span></p>
<p><span style="background-color: #ffffff;">operate at lower «internal» temperatures<br><em><strong>OR</strong></em><br>better at radiating heat away «since constructed with thin front layer of conductive plastic compared to glass box in photovoltaic cells» ✔</span></p>
<p><span style="background-color: #ffffff;">better conductivity ✔</span></p>
<p><span style="background-color: #ffffff;">more flexible/durable ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “lower mass/lighter «so greater flexibility to integrate into windows etc.»” <strong>OR</strong> “greater power-conversion efficiency «with latest DSSC models»”.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br>