File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 19/markSceme-HL-paper2html
File size: 1017.54 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Vanadium has a number of different oxidation states.</p>
</div>

<div class="specification">
<p>Electrode potentials for the reactions of vanadium and other species are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of vanadium in each of the following species.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.58.14.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/03.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that can reduce VO<sup>2+</sup>(aq) to V<sup>3+</sup>(aq) but no further.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that could convert <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{VO}}_2^ + {\text{(aq)}}">
  <msubsup>
    <mrow>
      <mtext>VO</mtext>
    </mrow>
    <mn>2</mn>
    <mo>+</mo>
  </msubsup>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
</math></span> to V<sup>2+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction between VO<sup>2+</sup>(aq) and V<sup>2+</sup>(aq) in acidic solution to form V<sup>3+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the spontaneity of this reaction by calculating a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> using the data given in (b) and in section 1 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{V_2}{O_5}:{\text{ }} + 5">
  <mrow>
    <msub>
      <mi>V</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mi>O</mi>
      <mn>5</mn>
    </msub>
  </mrow>
  <mo>:</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{O^{2 + }}:{\text{ }} + 4">
  <mi>V</mi>
  <mrow>
    <msup>
      <mi>O</mi>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo>:</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
</math></span></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>penalize incorrect notation twice.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>SO<sub>3</sub>(aq)<br><em><strong>OR</strong></em><br>Pb(s)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Zn(s)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}{{\text{O}}^{2 + }}({\text{aq)}} + {{\text{V}}^{2 + }}({\text{aq)}} + {\text{2}}{{\text{H}}^ + }({\text{aq)}} \to {\text{2}}{{\text{V}}^{3 + }}({\text{aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}">
  <mrow>
    <mtext>V</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>V</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>V</mtext>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
</math></span></p>
<p> </p>
<p><em>Accept equilibrium sign.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E^\theta }\ll  =  + 0.34{\text{ V}} - ( - 0.26{\text{ V}})\gg  =  + 0.60{\text{ }}\ll {\text{V}}\gg ">
  <mrow>
    <msup>
      <mi>E</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>≪=</mo>
  <mo>+</mo>
  <mn>0.34</mn>
  <mrow>
    <mtext> V</mtext>
  </mrow>
  <mo>−</mo>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>0.26</mn>
  <mrow>
    <mtext> V</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>≫=</mo>
  <mo>+</mo>
  <mn>0.60</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>V</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta } = \ll  - nF{E^\theta } =  - 9.65 \times {10^4}{\text{ C}}\,{\text{mo}}{{\text{l}}^{ - 1}} \times 0.60{\text{ J}}\,{{\text{C}}^{ - 1}} = \gg  - 57\,900{\text{ }}\ll {\text{J}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg / - 57.9{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg ">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>=≪</mo>
  <mo>−</mo>
  <mi>n</mi>
  <mi>F</mi>
  <mrow>
    <msup>
      <mi>E</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mn>9.65</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>4</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext> C</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mn>0.60</mn>
  <mrow>
    <mtext> J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=≫</mo>
  <mo>−</mo>
  <mn>57</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>900</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mo>−</mo>
  <mn>57.9</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p>spontaneous as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> is negative</p>
<p> </p>
<p><em>Do <strong>not</strong> award M3 as a stand-alone answer.</em></p>
<p><em>Accept “spontaneous” for M3 if answer given for M2 is negative.</em></p>
<p><em>Accept “spontaneous as </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E^\theta }">
  <mrow>
    <msup>
      <mi>E</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span><em> is positive” for M3.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium ions produce no emission or absorption lines in the visible region of the electromagnetic spectrum. Suggest why most magnesium compounds tested in a school laboratory show traces of yellow in the flame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain the convergence of lines in a hydrogen emission spectrum.</p>
<p>(ii) State what can be determined from the frequency of the convergence limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>(i) Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922K and 987K respectively.</p>
<p><img src="" alt></p>
<p>(ii) Identify the type of reaction occurring at the cathode (negative electrode).</p>
<p>(iii) State the products when a very <strong>dilute</strong> aqueous solution of magnesium chloride is electrolysed.</p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Standard electrode potentials are measured relative to the standard hydrogen electrode. Describe a standard hydrogen electrode.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A magnesium half-cell, Mg(s)/Mg<sup>2+</sup>(aq), can be connected to a copper half-cell, Cu(s)/Cu<sup>2+</sup>(aq).</p>
<p>(i) Formulate an equation for the spontaneous reaction that occurs when the circuit is completed.</p>
<p>(ii) Determine the standard cell potential, in V, for the cell. Refer to section 24 of the data booklet.</p>
<p>(iii) Predict, giving a reason, the change in cell potential when the concentration of copper ions increases.</p>
<div class="marks">[4]</div>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>contamination with sodium/other «compounds»</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>energy levels are closer together at high energy / high frequency / short wavelength</p>
<p> </p>
<p>ii<br>ionisation energy</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)</p>
<p><em>Anode (positive electrode):</em></p>
<p>2Cl<sup>–</sup> → Cl<sub>2</sub> (g) + 2e<sup>–</sup></p>
<p><em>Cathode (negative electrode):</em></p>
<p>Mg<sup>2+</sup> + 2e<sup>–</sup> → Mg (l)</p>
<p><em>Penalize missing/incorrect state symbols at Cl<sub>2</sub> and Mg once only.</em></p>
<p><em>Award <strong>[1 max]</strong> if equations are at wrong electrodes. </em></p>
<p><em>Accept Mg (g).</em></p>
<p> </p>
<p>ii)</p>
<p>reduction</p>
<p> </p>
<p>iii)</p>
<p><em>Anode (positive electrode):</em><br>oxygen/O<sub>2</sub><br><em><strong>OR</strong></em><br>hydogen ion/proton/H<sup>+</sup> <em><strong>AND</strong></em> oxygen/O<sub>2</sub><br><em>Cathode (negative electrode):</em><br>hydrogen/H<sub>2</sub><br><em><strong>OR</strong></em><br>hydroxide «ion»/OH<sup>–</sup> <em><strong>AND</strong></em> hydrogen/H<sub>2</sub></p>
<p><em>Award <strong>[1 max]</strong> if correct products given at wrong electrodes.</em></p>
<p> </p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>«inert» Pt electrode<br><em><strong>OR</strong></em><br>platinum black conductor</p>
<p>1 mol dm<sup>–3</sup> H<sup>+ </sup>(aq)</p>
<p>H<sub>2</sub> (g) at 100 kPa</p>
<p><em>Accept 1 atm H<sub>2</sub> (g).</em><br><em>Accept 1 bar H<sub>2</sub> (g)</em><br><em>Accept a labelled diagram.</em><br><em>Ignore temperature if it is specified.</em></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>Mg(s) + Cu<sup>2+</sup> (aq) → Mg<sup>2+</sup> (aq) + Cu(s)</p>
<p> </p>
<p>ii</p>
<p>«+0.34V – (–2.37V) = +»2.71 «V»</p>
<p> </p>
<p>iii</p>
<p>cell potential increases</p>
<p>reaction «in Q4(k)(i)» moves to the right<br><em><strong>OR <br></strong></em>potential of the copper half-cell increases/becomes more positive</p>
<p><em>Accept correct answers based on the Nernst equation</em></p>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>An acidic sample of a waste solution containing Sn<sup>2+</sup>(aq) reacted completely with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>&nbsp;solution to form Sn<sup>4+</sup>(aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify one organic functional group that can react with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Corrosion of iron is similar to the processes that occur in a voltaic cell. The initial steps involve the following half-equations:</p>
<p>Fe<sup>2+</sup>(aq) + 2e<sup>–</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Fe(s)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>O<sub>2</sub>(g) + H<sub>2</sub>O(l) + 2e<sup>–</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> 2OH<sup>–</sup>(aq)</p>
<p>Calculate <em>E</em> <sup>θ</sup>, in V, for the spontaneous reaction using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy, Δ<em>G</em> <sup>θ</sup>, in kJ, which is released by the corrosion of 1 mole of iron. Use section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why iron forms many different coloured complex ions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zinc is used to galvanize iron pipes, forming a protective coating. Outline how this process prevents corrosion of the iron pipes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>hydroxyl/OH<br><em><strong>OR</strong></em><br>aldehyde/CHO</p>
<p> </p>
<p><em>Accept “hydroxy/alcohol” for “hydroxyl”.</em></p>
<p><em>Accept amino/amine/NH<sub>2</sub>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>E</em> <sup>θ</sup> =» +0.85 «V»</p>
<p> </p>
<p><em>Accept 0.85 V.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>G</em> <sup>θ</sup> «= –<em>nFE</em> <sup>θ</sup>» = –2 «mol e<sup>–</sup>» x 96500 «C mol<sup>–1</sup>» x 0.85 «V»</p>
<p>«Δ<em>G</em> <sup>θ</sup> =» –164 «kJ»</p>
<p> </p>
<p><em>Accept “«+»164 «kJ»” as question states energy released.</em></p>
<p><em>Award <strong>[1 max]</strong> for “+” or “–” 82 «kJ».</em></p>
<p><em>Do not accept answer in J.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>incompletely filled d-orbitals</p>
<p>colour depends upon the energy difference between the split d-orbitals</p>
<p>variable/multiple/different oxidation states</p>
<p>different «nature/identity of» ligands</p>
<p>different number of ligands</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Zn/zinc is a stronger reducing agent than Fe/iron<br><em><strong>OR</strong></em><br>Zn/zinc is oxidized instead of Fe/iron<br><em><strong>OR</strong></em><br>Zn/zinc is the sacrificial anode</p>
<p> </p>
<p><em>Accept “Zn is more reactive than Fe”.</em></p>
<p><em>Accept “Zn oxide layer limits further corrosion”.</em></p>
<p><em>Do not accept “Zn layer limits further corrosion”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p><span class="fontstyle0">Label the diagram with the species in the equation.</span></p>
<p><span class="fontstyle0"><img src="" width="576" height="239"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard cell potential, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">V</mi></math>, for the cell at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use section 24 of the data booklet</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard free energy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi mathvariant="normal">G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle4"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi></math></span><span class="fontstyle0">, for the cell using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(vi).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative pathway/mechanism <em><strong>AND</strong></em> lower <em>E</em><sub>a</sub> ✔</p>
<p><em>Accept description of how catalyst lowers E<sub>a</sub> (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>more/greater proportion of molecules with <em>E</em> <img src=""><em>E</em><sub>a </sub>✔</p>
<p>greater frequency/probability/chance of collisions «between the molecules»<br><em><strong>OR</strong></em><br>more collision per unit of time/second ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonding/bonds «and dipole–dipole and London/dispersion forces are present in» propan-2-ol ✔</p>
<p>dipole–dipole «and London/dispersion are present in» propanone ✔</p>
<p>propan-2-ol less volatile <em><strong>AND</strong></em> hydrogen bonding/bonds stronger «than dipole–dipole »<br><em><strong>OR</strong></em><br>propan-2-ol less volatile <em><strong>AND</strong></em> «sum of all» intermolecular forces stronger ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>13</mn><mo> </mo><mi mathvariant="normal">V</mi><mo>−</mo><mo>(</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>26</mn><mo> </mo><mi mathvariant="normal">V</mi><mo>)</mo><mo>=</mo><mo>+</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>13</mn><mo>«</mo><mi mathvariant="normal">V</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msup><mi>ΔG</mi><mi mathvariant="normal">Θ</mi></msup><mo>=</mo><mo>−</mo><msup><mi>nFE</mi><mi mathvariant="normal">Θ</mi></msup><mo>=</mo><mo>−</mo><mn>2</mn><mo>×</mo><mn>96</mn><mo> </mo><mn>500</mn><mo>×</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>13</mn></mrow><mn>1000</mn></mfrac><mo>=</mo><mo>»</mo><mo>−</mo><mn>25</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">k</mi><mo> </mo><mi mathvariant="normal">J</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Bi</mi><mo>/</mo><mi>Cu</mi><mo>/</mo><mi>Ag</mi><mo>/</mo><mi>Pd</mi><mo>/</mo><mi>Hg</mi><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Au</mi><mo> </mo></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>b</mi></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong></em> «a sea of» delocalized electrons ✔</p>
<p><em>Accept “mobile/free electrons”.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>malleability/hardness<br><em><strong>OR</strong></em><br>«tensile» strength/ductility<br><em><strong>OR</strong></em><br>density<br><em><strong>OR</strong></em><br>thermal/electrical conductivity<br><em><strong>OR</strong></em><br>melting point<br><em><strong>OR</strong></em><br>thermal expansion ✔</p>
<p><em>Do not accept corrosion/reactivity or any chemical property.</em></p>
<p><em>Accept other specific physical properties.</em></p>
<div class="question_part_label">d(vi).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Although fairly well done some candidates did not mention that providing an alternate pathway to the&nbsp;reaction was how the activation energy was lowered and hence did not gain the mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates earned at least 1 mark for the effect of temperature on rate. Some missed&nbsp;increase in collision frequency, others the idea that more particles reached the required activation energy.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The average mark was 1.9/3. Almost all candidates could recognize hydrogen bonding in alcohol but&nbsp;many missed the dipole-dipole attraction in propanone. There was also some confusion on the term&nbsp;volatility, with some thinking stronger IMF meant higher volatility.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A surprising number of No Response for a question where candidates simply had to label a diagram&nbsp;with the species in the equation. Some candidates had the idea but did not use the species for electrolytic&nbsp;cell, e.g., Pb(SO<sub>4</sub>) instead of Pb<sup>2+</sup>(aq).</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% of candidates could correctly calculate a cell potential by using a reduction table and a&nbsp;balanced redox reaction.&nbsp;</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was similar to 2f(ii) where many could apply the formula for Gibbs free energy change,&nbsp;ΔG<sup>ө</sup>,&nbsp;correctly however some did not get the units correct.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% could correctly pick a metal to reverse the electron flow, however some candidates thought&nbsp;a more reactive, rather than a less reactive metal than nickel would reverse the electron flow.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were aware that metallic bonding involved a "sea of electrons", but were unsure about surrounding what and could not identify that it was electrostatic attraction holding the metal&nbsp;together.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates could correctly identify a physical property of a metal which might be altered&nbsp;when alloying.</p>
<div class="question_part_label">d(vi).</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following half-cell reactions and their standard electrode potentials.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a balanced equation for the overall reaction when the standard nickel and iodine half-cells are connected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, the direction of movement of electrons when the standard nickel and manganese half-cells are connected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential, in V, when the standard iodine and manganese half-cells are connected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the best reducing agent in the table above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the products of electrolysis of a concentrated aqueous solution of sodium chloride using inert electrodes. Your answer should include half-equations for the reaction at each electrode.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Ni (s) + I<sub>2</sub> (aq) → 2I<sup>– </sup>(aq) + Ni<sup>2+</sup> (aq)</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electron movement «in the wire» from Mn(s) to Ni(s)</p>
<p><em>E</em><sup>θ</sup> «for reduction» of Ni<sup>2+</sup> is greater/less negative than <em>E</em><sup>θ</sup> «for reduction» of Mn<sup>2+</sup></p>
<p><em><strong>OR</strong></em></p>
<p>Ni<sup>2+</sup> is stronger oxidizing agent than Mn<sup>2+</sup></p>
<p><em><strong>OR</strong></em></p>
<p>Mn is stronger reducing agent than Ni</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«0.54 V – (–1.18 V) = +»1.72 «V»</p>
<p><em>Do <strong>not</strong> accept –1.72 V.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mn «(s)»</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Positive electrode (anode):</em><br>2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup></p>
<p>Cl<sup>–</sup> oxidized because higher concentration</p>
<p><em><strong>OR</strong></em></p>
<p>electrode potential/<em>E</em> depends on concentration</p>
<p><em><strong>OR</strong></em></p>
<p>electrode potential values «of H<sub>2</sub>O and Cl<sup>–</sup>» are close</p>
<p><em>Negative electrode (cathode):</em><br>2H<sub>2</sub>O (l) + 2e<sup>–</sup> → H<sub>2</sub> (g) + 2OH<sup>–</sup> (aq)</p>
<p><em><strong>OR</strong></em></p>
<p>2H<sup>+ </sup>(aq) + 2e<sup>–</sup> → H<sub>2</sub> (g)</p>
<p>H<sub>2</sub>O/H<sup>+</sup> reduced because Na<sup>+</sup> is a weaker oxidizing agent</p>
<p><em><strong>OR</strong></em></p>
<p>Na<sup>+</sup> not reduced to Na in water</p>
<p><em><strong>OR</strong></em></p>
<p>H<sup>+</sup> easier to reduce than Na<sup>+</sup><br><em><strong>OR</strong></em></p>
<p>H lower in activity series «than Na»</p>
<p><em>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span>.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Oxidation and reduction reactions can have a variety of commercial uses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student decides to build a voltaic cell consisting of an aluminium electrode, Al (s), a tin electrode, Sn (s), and solutions of aluminium nitrate, Al(NO<sub>3</sub>)<sub>3 </sub>(aq) and tin(II) nitrate, Sn(NO<sub>3</sub>)<sub>2 </sub>(aq).</p>
<p>Electron flow is represented on the diagram.</p>
<p>Label each line in the diagram using section 25 of the data booklet.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the expected overall chemical reaction in (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ, for the cell, using section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Al/aluminium «electrode» <em><strong>AND</strong> </em>aluminium nitrate/Al(NO<sub>3</sub>)<sub>3</sub>/Al<sup>3+</sup> on left ✓</p>
<p>Sn/tin «electrode» <em><strong>AND</strong> </em>tin«(II)» nitrate/Sn(NO<sub>3</sub>)<sub>2</sub>/Sn<sup>2+</sup> on right ✓</p>
<p>salt bridge <em><strong>AND</strong> </em>voltmeter/V/lightbulb ✓</p>
<p><em><br>Award <strong>[1]</strong> if M1 and M2 are reversed.</em></p>
<p><em>Award <strong>[1]</strong> for two correctly labelled solutions <strong>OR</strong> two correctly labelled electrodes for M1 and M2.</em></p>
<p><em>Accept a specific salt for “salt bridge”.</em></p>
<p><em>Accept other circuit components such as ammeter/A, fan, buzzer, resistor/heating element/R/Ω.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3Sn<sup>2+ </sup>(aq) + 2Al (s) → 3Sn (s) + 2Al<sup>3+ </sup>(aq)<br><em><strong>OR</strong></em><br>3Sn(NO<sub>3</sub>)<sub>2 </sub>(aq) + 2Al (s) → 3Sn (s) + 2Al(NO<sub>3</sub>)<sub>3 </sub>(aq) ✓</p>
<p><em>If half cells are reversed in part-question (a) then the equation must be reversed to award the mark.</em></p>
<p><em>Do <strong>not</strong> penalize equilibrium arrows.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«1.66 + (−0.14) = +»1.52 «V» ✓</p>
<p>&nbsp;</p>
<p><em>Calculation must be consistent with equation given in 3 b.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup>&nbsp;= −<em>nFE</em><sup>⦵</sup>&nbsp;= −6 × 9.65 × 104 × 1.52 =» −880080 «J mol<sup>−1</sup>»<br><em><strong>OR</strong></em><br>6 «electrons» ✓</p>
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>-</mo><mn>880080</mn></mrow><mn>1000</mn></mfrac></math>=» −880 «kJ» ✓</p>
<p>&nbsp;</p>
<p><em>Award<strong> [1]</strong> for “«+»880”.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>

<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is set up between the Fe<sup>2+ </sup>(aq) | Fe (s) and Fe<sup>3+</sup> (aq) | Fe<sup>2+</sup> (aq) half-cells.</p>
<p>Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.</p>
<p><img src="" width="651" height="204"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, unlike typical transition metals, zinc compounds are not coloured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1:2 ✔</p>
<p><em>Accept 2 Fe<sup>3+</sup>: 1 Fe<sup>2+</sup></em><br><em>Do <strong>not</strong> accept 2:1 only</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass «spectroscopy»/MS ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="515" height="88"></p>
<p><em><br>Award <strong>[1 max]</strong> for 4 correct values.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific heat capacity « = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mi>q</mi><mrow><mi>m</mi><mo>×</mo><mo>∆</mo><mi>T</mi></mrow></mfrac><mo>/</mo><mfrac><mrow><mn>1000</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow><mrow><mn>50</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>×</mo><mn>44</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math>» = 0.45 «J g<sup>−1 </sup>K<sup>−1</sup>» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>2Fe<sup>3+</sup>(aq) + Fe(s) → 3Fe<sup>2+</sup>(aq) ✔</p>
<p><em>Cell potential:</em><br>«+0.77 V − (−0.45 V) = +»1.22 «V» ✔</p>
<p><em><br>Do <strong>not</strong> accept reverse reaction or equilibrium arrow.</em></p>
<p><em>Do <strong>not</strong> accept negative value for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>left electrode/anode labelled zinc/Zn <em><strong>AND</strong> </em>right electrode/cathode labelled iron/Fe ✔</p>
<p>electrolyte labelled as «aqueous» zinc salt/Zn<sup>2+</sup> ✔</p>
<p><em><br>Accept an inert conductor for the anode.</em></p>
<p><em>Accept specific zinc salts such as ZnSO<sub>4</sub>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>« <em>Zn</em><sup>2+</sup>» has a full d-shell<br><em><strong>OR</strong></em><br>does not form « ions with» an incomplete d-shell ✔</p>
<p><em><br>Do <strong>not</strong> accept “Zn is not a transition metal”.</em></p>
<p><em>Do <strong>not</strong> accept zinc atoms for zinc ions.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ligands donate pairs of electrons to metal ions<br><em><strong>OR</strong></em><br>forms coordinate covalent/dative bond✔</p>
<p>ligands are Lewis bases<br><em><strong>AND</strong></em><br>metal «ions» are Lewis acids ✔</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows an incomplete voltaic cell with a light bulb in the circuit.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing component of the cell and its function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the half-equations for the reaction at each electrode when current flows.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Annotate the diagram with the location and direction of electron movement when current flows.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential, in V, using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the loss in mass of one electrode if the mass of the other electrode increases by 0.10 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>salt bridge</p>
<p> </p>
<p>movement of ions</p>
<p><strong><em>OR</em></strong></p>
<p>balance charge</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “to complete circuit” </em><em>unless ion movement is mentioned for </em><em>M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Positive electrode (cathode):</em></p>
<p>Ag<sup>+</sup>(aq) + e<sup>–</sup> → Ag(s)</p>
<p> </p>
<p><em>Negative electrode (anode):</em></p>
<p>Mg(s) → Mg<sup>2+</sup>(aq) + 2e<sup>–</sup></p>
<p> </p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>if correct equations </em><em>given at wrong electrodes.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in external wire from left to right</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>E =</em> +0.80 V – (–2.37 V) = +<strong>»</strong> 3.17 <strong>«</strong>V<strong>»</strong></p>
<p><strong><em>[1 mark]</em><br></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>moles of silver <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.10{\text{ g}}}}{{107.87{\text{ g mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>0.10</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>107.87</mn>
      <mrow>
        <mtext> g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p>moles of magnesium <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.5 \times 0.10{\text{ }}\ll {\text{g}}\gg }}{{107.87{\text{ }}\ll {\text{g mo}}{{\text{l}}^{ - 1}}\gg }}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.5</mn>
      <mo>×</mo>
      <mn>0.10</mn>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo>≪</mo>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mo>≫</mo>
    </mrow>
    <mrow>
      <mn>107.87</mn>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo>≪</mo>
      <mrow>
        <mtext>g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>≫</mo>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>«</strong>loss in mass of magnesium <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{24.31{\text{ g mol}} \times 0.5 \times 0.10{\text{ g}}}}{{107.87{\text{ g mo}}{{\text{l}}^{ - 1}}}} = ">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>24.31</mn>
      <mrow>
        <mtext> g mol</mtext>
      </mrow>
      <mo>×</mo>
      <mn>0.5</mn>
      <mo>×</mo>
      <mn>0.10</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>107.87</mn>
      <mrow>
        <mtext> g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>» </strong>0.011 <strong>«</strong>g<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In acidic solution, bromate ions, BrO<sub>3</sub><sup>−</sup>(aq), oxidize iodide ions, I<sup>−</sup>(aq).</p>
<p>BrO<sub>3</sub><sup>−</sup>(aq) + 6H<sup>+</sup>(aq) + 6e<sup>−</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Br<sup>−</sup>(aq) + 3H<sub>2</sub>O(l)</p>
<p>2I<sup>−</sup>(aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> I<sub>2</sub>(s) + 2e<sup>−</sup></p>
<p>Formulate the equation for the redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The change in the free energy for the reaction under standard conditions, Δ<em>G</em><sup>Θ</sup>, is −514 kJ at 298 K.</p>
<p>Determine the value of <em>E</em><sup>Θ</sup>, in V, for the reaction using sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard electrode potential, in V, for the BrO<sub>3</sub><sup>−</sup>/Br<sup>−</sup> reduction half‑equation using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>–</sup>(aq) + 6H<sup>+</sup>(aq) + 6I<sup>–</sup>(aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Br<sup>–</sup>(aq) + 3I<sub>2</sub>(s) + 3H<sub>2</sub>O(l)</p>
<p> </p>
<p><em>Accept →</em><em> for </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span><em>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>n = 6</p>
<p><strong>«</strong>Δ<em>G</em><sup>Θ</sup> = –n<em>FE</em><sup>Θ</sup><strong>»</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E^\Theta } =  - \frac{{\Delta {G^\Theta }}}{{{\text{n}}F}} = \frac{{514 \times {{10}^3}{\text{ J mo}}{{\text{l}}^{ - 1}}}}{{6 \times 9.65 \times {{10}^4}{\text{ C mo}}{{\text{l}}^{ - 1}}}} = ">
  <mrow>
    <msup>
      <mi>E</mi>
      <mi mathvariant="normal">Θ</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>G</mi>
          <mi mathvariant="normal">Θ</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>n</mtext>
      </mrow>
      <mi>F</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>514</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> J mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6</mn>
      <mo>×</mo>
      <mn>9.65</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>4</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> C mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>» </strong>0.888 <strong>«</strong>V<strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>E</em><sup>Θ</sup> = <em>E</em><sup>Θ</sup>(BrO<sub>3</sub><sup>–</sup><strong>/</strong>Br<sup>–</sup><strong>) –</strong> <em>E</em><sup>Θ</sup>(I<sub>2</sub>/I<sup>–</sup>)<strong>»</strong></p>
<p><strong>«</strong><em>E</em><sup>Θ</sup>(BrO<sub>3</sub><sup>–</sup><strong>/</strong>Br<sup>–</sup><strong>) =</strong> <em>E</em><sup>Θ</sup> + <em>E</em><sup>Θ</sup>(I<sub>2</sub>/I<sup>–</sup>) = 0.888 + 0.54 =<strong>» «</strong>+<strong>» </strong>1.43 <strong>«</strong>V<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>IE <strong>«</strong>= Δ<em>E =</em> <em>h</em>ν = 6.63 × 10<sup>–34</sup> J s × 3.28 × 10<sup>15</sup> s<sup>–1</sup><strong>» =</strong> 2.17 × 10<sup>–18</sup> <strong>«</strong>J<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{C}{{\text{v}}} = \frac{{3.00 \times {{10}^8}{\text{ m}}{{\text{s}}^{ - 1}}}}{{3.28 \times {{10}^{15}}{\text{ }}{{\text{s}}^{ - 1}}}} = ">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mi>C</mi>
    <mrow>
      <mtext>v</mtext>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> m</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.28</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>15</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 9.15 × 10<sup>–8</sup> <strong>«</strong>m<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change <strong>«</strong>in colour<strong>»</strong></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “solution around cathode </em><em>will become paler and solution around </em><em>the anode will become darker”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxygen/O<sub>2</sub></p>
<p> </p>
<p><em>Accept “carbon dioxide/CO2”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Transition metals:</em></p>
<p><strong>«</strong>contain<strong>» </strong>d and s orbitals <strong>«</strong>which are close in energy<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>successive<strong>» </strong>ionization energies increase gradually</p>
<p> </p>
<p><em>Alkali metals</em>:</p>
<p>second electron removed from <strong>«</strong>much<strong>» </strong>lower energy level</p>
<p><strong><em>OR</em></strong></p>
<p>removal of second electron requires large increase in ionization energy</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>3.26 g of iron powder are added to 80.0 cm<sup>3</sup> of 0.200 mol dm<sup>−3</sup> copper(II) sulfate solution. The following reaction occurs:</p>
<p style="text-align: center;">Fe (s) + CuSO<sub>4</sub> (aq) → FeSO<sub>4</sub> (aq) + Cu (s)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the limiting reactant showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of copper obtained experimentally was 0.872 g. Calculate the percentage yield of copper.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5 °C.</p>
<p>Calculate the enthalpy change, Δ<em>H</em>, of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State another assumption you made in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The only significant uncertainty is in the temperature measurement.</p>
<p>Determine the absolute uncertainty in the calculated value of Δ<em>H</em> if the uncertainty in the temperature rise was ±0.2 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the concentration of iron(II) sulfate, FeSO<sub>4</sub>, against time as the reaction proceeds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be determined from the graph in part (c)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student electrolyzed aqueous iron(II) sulfate, FeSO<sub>4</sub> (aq), using platinum electrodes. State half-equations for the reactions at the electrodes, using section 24 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>n<sub>CuSO4</sub> <strong>«</strong>= 0.0800 dm<sup>3</sup> × 0.200 mol dm<sup>–3</sup><strong>»</strong> = 0.0160 mol <em><strong>AND</strong></em></p>
<p>n<sub>Fe</sub> <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.26\,{\text{g}}}}{{55.85\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>3.26</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>55.85</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong> = 0.0584 mol ✔</p>
<p>CuSO<sub>4</sub> is the limiting reactant ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> award M2 if mole calculation is not shown.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em><br><strong>«</strong>0.0160 mol × 63.55 g mol<sup>–1</sup> =<strong>»</strong> 1.02 <strong>«</strong>g<strong>»  ✔</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872\,{\text{g}}}}{{1.02\,{\text{g}}}} \times 100 = ">
  <mfrac>
    <mrow>
      <mn>0.872</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.02</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span><strong>» </strong>85.5<strong> «</strong>%<strong>»  ✔</strong></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872\,{\text{g}}}}{{63.55\,{\text{g}}\,{\text{mo}}{{\text{l}}^{--1}}}} = ">
  <mfrac>
    <mrow>
      <mn>0.872</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>63.55</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 0.0137 <strong>«</strong>mol<strong>»  ✔</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0137\,{\text{mol}}}}{{0.0160\,{\text{mol}}}} \times 100 = ">
  <mfrac>
    <mrow>
      <mn>0.0137</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.0160</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span><strong>»</strong> 85.6 <strong>«</strong>%<strong>»  ✔</strong></p>
<p> </p>
<p><em>Accept answers in the range 85–86 %.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>q = <strong>«</strong>80.0 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 7.5 K =<strong>»</strong> 2.5 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong>/2.5 <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p><strong>«</strong>per mol of CuSO<sub>4</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 2.5\,{\text{kJ}}}}{{0.0160\,{\text{mol}}}} =  - 1.6 \times {10^2}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>2.5</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.0160</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.6</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> kJ mol<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>for the reaction<strong>»</strong> Δ<em>H</em> = –1.6 × 10<sup>2</sup> <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>q = <strong>«</strong>80.0 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 7.5 K =<strong>»</strong> 2.5 × 10<sup>3</sup> <strong>«</strong>J<strong>»</strong>/2.5 <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p><strong>«</strong>n<sub>Cu</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.872}}{{63.55}}">
  <mfrac>
    <mrow>
      <mn>0.872</mn>
    </mrow>
    <mrow>
      <mn>63.55</mn>
    </mrow>
  </mfrac>
</math></span> = 0.0137 mol<strong>»</strong></p>
<p><strong>«</strong>per mol of CuSO<sub>4</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 2.5\,{\text{kJ}}}}{{0.0137\,{\text{mol}}}} =  - 1.8 \times {10^2}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>2.5</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.0137</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mn>1.8</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> kJ mol<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>for the reaction<strong>»</strong> Δ<em>H</em> = –1.8 × 10<sup>2</sup> <strong>«</strong>kJ<strong>»</strong> ✔</p>
<p> </p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>density <strong>«</strong>of solution<strong>»</strong> is 1.00 g cm<sup>−3</sup></p>
<p><em><strong>OR</strong></em></p>
<p>specific heat capacity <strong>«</strong>of solution<strong>»</strong> is 4.18 J g<sup>−1</sup> K<sup>−1</sup>/that of <strong>«</strong>pure<strong>»</strong> water</p>
<p><em><strong>OR</strong></em></p>
<p>reaction goes to completion</p>
<p><em><strong>OR</strong></em></p>
<p>iron/CuSO<sub>4</sub> does not react with other substances ✔</p>
<p> </p>
<p><em>The mark for “reaction goes to completion” can only be awarded if 0.0160 mol was used in part (b)(i).</em></p>
<p><em>Do <strong>not</strong> accept “heat loss”.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2\,^\circ {\text{C}} \times \frac{{100}}{{7.5\,^\circ {\text{C}}}} = ">
  <mn>0.2</mn>
  <msup>
    <mspace width="thinmathspace"></mspace>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>7.5</mn>
      <msup>
        <mspace width="thinmathspace"></mspace>
        <mo>∘</mo>
      </msup>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 3 %/0.03 ✔</p>
<p><strong>«</strong>0.03 × 160 kJ<strong>»</strong> = <strong>«</strong>±<strong>»</strong> 5 <strong>«</strong>kJ<strong>» </strong>✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.2\,^\circ {\text{C}} \times \frac{{100}}{{7.5\,^\circ {\text{C}}}} = ">
  <mn>0.2</mn>
  <msup>
    <mspace width="thinmathspace"></mspace>
    <mo>∘</mo>
  </msup>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>100</mn>
    </mrow>
    <mrow>
      <mn>7.5</mn>
      <msup>
        <mspace width="thinmathspace"></mspace>
        <mo>∘</mo>
      </msup>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 3 %/0.03 ✔</p>
<p><strong>«</strong>0.03 × 180 kJ<strong>»</strong> = <strong>«</strong>±<strong>»</strong> 5 <strong>«</strong>kJ<strong>» </strong>✔</p>
<p> </p>
<p><em>Accept values in the range 4.1–5.5 «kJ».</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p> </p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p> <img src=""></p>
<p>initial concentration is zero <em><strong>AND</strong> </em>concentration increases with time ✔</p>
<p>decreasing gradient as reaction proceeds ✔</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>draw a<strong>»</strong> tangent to the curve at time = 0 ✔</p>
<p><strong>«</strong>rate equals<strong>»</strong> gradient/slope <strong>«</strong>of the tangent<strong>»</strong> ✔</p>
<p> </p>
<p><em>Accept suitable diagram.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>piece has smaller surface area ✔</p>
<p> </p>
<p>lower frequency of collisions</p>
<p><em><strong>OR</strong></em></p>
<p>fewer collisions per second/unit time ✔</p>
<p> </p>
<p><em>Accept “chance/probability” instead of “frequency”.</em></p>
<p><em>Do <strong>not</strong> accept just “fewer collisions”.</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Anode (positive electrode):</em></p>
<p>2H<sub>2</sub>O (l) → O<sub>2</sub> (g) + 4H<sup>+</sup> (aq) + 4e<sup>–</sup> ✔</p>
<p> </p>
<p><em>Cathode (negative electrode):</em></p>
<p>2H<sub>2</sub>O (l) + 2e<sup>–</sup> → H<sub>2</sub> (g) + 2OH<sup>–</sup> (aq)<br><em><strong>OR</strong></em><br>2H<sup>+</sup> (aq) + 2e<sup>–</sup> → H<sub>2</sub> (g) ✔</p>
<p> </p>
<p><em>Accept “4OH<sup>–</sup> (aq) → O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)  + 4e<sup>–</sup>” <strong>OR </strong>“Fe<sup>2+</sup> (aq) → Fe<sup>3+</sup> (aq) + e<sup>–</sup>” for M1.</em></p>
<p><em>Accept “Fe<sup>2+</sup> (aq) + 2e<sup>–</sup> → Fe (s)” <strong>OR</strong> “SO<sub>4</sub><sup>2-</sup> (aq) 4H<sup>+</sup> (aq) + 2e<sup>–</sup> → 2H<sub>2</sub>SO<sub>3</sub>(aq) + H<sub>2</sub>O (l)”</em><br><em>for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The standard electrode potential of zinc can be measured using a standard hydrogen electrode (SHE).</p>
<p>Draw and annotate the diagram to show the complete apparatus required to measure the standard electrode potential of zinc.</p>
<p style="text-align:center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="" width="476" height="305"></p>
<p>H<sub>2 </sub>(g) entering at «298 K and» 100 kPa ✔</p>
<p>platinum electrode on left ✔</p>
<p>voltmeter connecting electrodes <em><strong>AND</strong> </em>salt bridge connecting electrolytes ✔</p>
<p>1 mol dm<sup>–3</sup> H<sup>+</sup> on the left <em><strong>AND</strong></em> 1 mol dm<sup>–3 </sup>Zn<sup>2+</sup> on the right ✔</p>
<p> </p>
<p><em>Voltmeter and salt bridge need to be drawn but not necessarily annotated for <strong>M3</strong>.</em></p>
<p><em>Concentrations, but not state symbols, required for <strong>M4</strong>.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a reactive metal often found in alloys.</p>
</div>

<div class="specification">
<p>Magnesium is sometimes used as a sacrificial anode to protect steel from corrosion.</p>
</div>

<div class="specification">
<p>A graph of the volume of gas produced by reacting magnesium with a large excess of 1&thinsp;mol&thinsp;dm<sup>&ndash;3</sup> hydrochloric acid is shown.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="507" height="331"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard potential, in V, of a cell formed by magnesium and steel half-cells. Use section 24 of the data booklet and assume steel has the standard electrode potential of iron.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ, of the cell reaction. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This cell causes the electrolytic reduction of water on the steel. State the half-equation for this reduction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to deduce the dependence of the reaction rate on the amount of Mg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction is first order with respect to HCl. Calculate the time taken, in seconds (s), for half of the Mg to dissolve when [HCl] = 0.5 mol dm<sup>–3</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carbonates also react with HCl and the rate can be determined by graphing the mass loss. Suggest why this method is less suitable for the reaction of Mg with HCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1</strong></em></p>
<p>put Mg in Zn<sup>2+</sup>(aq) ✔</p>
<p>Zn/«black» layer forms «on surface of Mg» ✔</p>
<p><em><br>Award <strong>[1 max]</strong> for “no reaction when Zn placed in Mg<sup>2+</sup>(aq)”.</em></p>
<p> </p>
<p><em><strong>Alternative 2</strong></em></p>
<p>place both metals in acid ✔</p>
<p>bubbles evolve more rapidly from Mg<br><em><strong>OR</strong></em><br>Mg dissolves faster ✔</p>
<p> </p>
<p><em><strong>Alternative 3</strong></em></p>
<p>construct a cell with Mg and Zn electrodes ✔</p>
<p><em><br>Accept “electrons flow from Mg to Zn”. </em></p>
<p><em>Accept Mg is negative electrode/anode </em><br><em><strong>OR</strong> </em><br><em>Zn is positive electrode/cathode</em></p>
<p><br>bulb lights up<br><em><strong>OR</strong></em><br>shows (+) voltage<br><em><strong>OR</strong></em><br>size/mass of Mg(s) decreases &lt;&lt;over time&gt;&gt;<br><em><strong>OR</strong></em><br>size/mass of Zn increases &lt;&lt;over time&gt;&gt;</p>
<p><em><br>Accept other correct methods.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Cell potential: «(–0.45 V – (–2.37 V)» = «+»1.92 «V» ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em>º = -nFEº»<br>n = 2<br><em><strong>OR</strong></em><br>Δ<em>G</em>º = «-»2×96500×1.92 / «-»370,560 «J» ✔</p>
<p>-371 «kJ» ✔</p>
<p> </p>
<p><em>For n = 1, award [1] for –185 «kJ».</em></p>
<p><em>Award <strong>[1 max]</strong> for (+)371 «kJ»</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2 H<sub>2</sub>O + 2 e<sup>-</sup> → H<sub>2</sub> + 2 OH<sup>-</sup> ✔</p>
<p><em><br>Accept equation with equilibrium arrows.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>independent / not dependent ✔</p>
<p> </p>
<p><em>Accept “zero order in Mg”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«2×170 s» = 340 «s» ✔</p>
<p> </p>
<p><em>Accept 320 – 360 «s».</em></p>
<p><em>Accept 400 – 450 «s» based on no more gas being produced after 400 to 450s.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«relative/percentage» decrease in mass is «too» small/«much» less ✔</p>
<p><em><br>Accept “«relative/percentage» uncertainty in mass loss «too» great”. <strong>OR</strong> “density/molar mass of H<sub>2</sub> is «much» less than CO<sub>2</sub>”.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; some experiments would not have worked such as adding magnesium to zinc salt without reference to aqueous environment, adding Zn to magnesium ions, or Mg combustion reaction being more exothermic. In the last one, an inference wad made instead of identifying an observation or measuring temperature using a thermometer or a temperature probe.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; instead of <em>E</em>° = 1.92 V, answer such as −1.92 V + or −2.82 V showed a lack of understanding of how to calculate <em>E</em>° cell.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Satisfactory performance; two major challenges in applying the equation Δ<em>G</em>° = −n<em>FE</em>° from the data booklet included:</p>
<p>Using n = 1, not 2, the number of electrons transferred in the redox reaction.</p>
<p>ΔG° unit from the equation is in J; some did not convert J to kJ as asked for.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; some candidates had difficulty writing the reduction half-equation for water, the typical error included O<sub>2</sub>(g) gas in the reactant or product, rather than H<sub>2</sub>(g) in the product or including an equation with Fe(s) and H<sub>2</sub>O(l) as reactants.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates found this to be a tough question (see comments for parts (ii) and (iii)).</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance in calculating time from the graph for the data provided. Some wrote the rate expression, which only contains [HCl] and not mass or amount in mol Mg (as a solid, [Mg] is constant). This presented a challenge in arriving at a reasonable answer.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly done; many candidates did not grasp the question and answer it appropriately. Candidates generally did not realize that decrease in mass (due to H<sub>2</sub>(g) as a product for the reaction of Mg with HCl) is «too» small/«much» less compared to that of CO<sub>2</sub>(g) from the reaction of carbonates with HCl.</p>
<div class="question_part_label">c(iii).</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">An aqueous solution of silver nitrate, AgNO<sub>3</sub> (aq), can be electrolysed using platinum electrodes.</span></p>
<p><span style="background-color: #ffffff;">Formulate the half-equations for the reaction at each electrode during electrolysis.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Cathode (negative electrode):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Anode (positive electrode):</span></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="background-color: #ffffff;"><em>Cathode (negative electrode):</em><br>Ag<sup>+</sup> (aq) + e<sup>−</sup> → Ag (s)    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br><em>Anode (positive electrode):</em><br>2H<sub>2</sub>O(l) → O<sub>2</sub> (g) + 4H<sup>+</sup> (aq) + 4e<sup>−</sup>    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept 4OH<sup>−</sup> (aq) → O<sub>2</sub> (g) + 2H<sub>2</sub>O(l) + 4e<sup>−</sup></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept multiple or fractional coefficients in both half-equations.</span></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Very few answers were correct, even for stronger candidates. Many failed to formulate the correct half equation for the reaction at the anode and used the nitrate ion instead of oxidation of H<sub>2</sub>O. Some candidates lost one of the marks for using equilibrium arrows in an electrolysis equation.</p>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about iron.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the <strong>full</strong> electron configuration of Fe<sup>2+</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, when ligands bond to the iron ion causing the d-orbitals to split, the complex is coloured.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>, for iron-54.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6d.PNG" alt width="269" height="186"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An iron nail and a copper nail are inserted into a lemon.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6e.PNG" alt width="400" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard electrode potential, in V, when the Fe<sup>2+</sup> (aq) | Fe (s) and Cu<sup>2+</sup> (aq) | Cu (s) standard half-cells are connected at 298 K. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate ΔG<sup>θ</sup>, in kJ, for the spontaneous reaction in (f)(i), using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate a value for the equilibrium constant, K<sub>c</sub>, at 298 K, giving your answer to two significant figures. Use your answer to (f)(ii) and section 1 of the data booklet. </span></p>
<p><span style="background-color: #ffffff;">(If you did not obtain an answer to (f)(ii), use −140 kJ mol<sup>−1</sup>, but this is not the correct value.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup>   <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«frequency/wavelength of visible» light absorbed by electrons moving between d levels/orbitals    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">colour due to remaining frequencies<br><em><strong>OR</strong></em><br>complementary colour transmitted    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{26}}}^{{\text{54}}}{\text{Fe}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>26</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>54</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Fe</mtext>
  </mrow>
</math></span>     <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 54 × 0.0584 + 56 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.9168 + 57 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0217 + 58 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0031</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 55.9111    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 55.91    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Award <strong>[2]</strong> for correct final answer</span></em></p>
<p><em><span style="background-color: #ffffff;"><br>Do <strong>not</strong> accept data booklet value (55.85).</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lemon juice is the electrolyte<br><em><strong>OR</strong></em><br>lemon juice allows flow of ions<br><em><strong>OR</strong></em><br>each nail/metal forms a half-cell with the lemon juice    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>iron is higher than copper in the activity series<br><em><strong>OR</strong></em><br>each half-cell/metal has a different redox/electrode potential     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">iron is oxidized<br><strong><em>OR</em></strong><br>Fe → Fe<sup>2+</sup> + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Fe → Fe<sup>3+</sup> + 3e<sup>−</sup><br><em><strong>OR</strong></em><br>iron is anode/negative electrode of cell   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">copper is cathode/positive electrode of cell<br><em><strong>OR</strong></em><br>reduction occurs at the cathode<br><em><strong>OR</strong></em><br>2H<sup>+</sup> + 2e<sup>−</sup> → H<sub>2</sub>   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br>electrons flow from iron to copper   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«E<sup>θ</sup> = +0.34 V −(−0.45 V) = +»0.79 «V»   <strong>[✔]</strong></span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ΔG</span><sup>θ</sup> <span style="background-color: #ffffff;">= −nFE<sup>θ</sup> = −2mol × 96 500 C mol<sup>−1</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.79{\text{ J }}{{\text{C}}^{ - 1}}}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>0.79</mn>
      <mrow>
        <mtext> J </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span> =» −152 «kJ»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept range 150−153 kJ.</span></em></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ln<em>K<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\Delta {G^\theta }}}{{RT}} = - \frac{{ - 152 \times {{10}^3}{\text{ Jmo}}{{\text{l}}^{ - 1}}}}{{8.31{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \times 298{\text{K}}}}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>G</mi>
          <mi>θ</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>152</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> Jmo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mrow>
        <mtext>J</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>298</mn>
      <mrow>
        <mtext>K</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 61.38    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"><em>K</em> = 4.5 × 10<sup>26</sup>    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept answers in range 2.0 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>26</sup> to 5.5 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>26</sup>.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> award M2 if answer not given to two significant figures.</span></em></p>
<p><span style="background-color: #ffffff;"><em>If −140 kJmol<sup>−1</sup> used, answer is 3.6 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>24</sup></em>.</span></p>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Done fairly well with common mistakes leaving in the 4s<sup>2</sup> electrons as part of Fe<sup>2+</sup> electron configuration, or writing 4s<sup>1</sup> 3d<sup>5</sup></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was poorly answered and showed a clear misconception and misunderstanding of the concepts. Most of the candidates failed to explain why the complex is coloured and based their answers on the emission of light energy when electrons fall back to ground state and not on light absorption by electrons moving between the split d-orbitals and complementary colour transmitted of certain frequencies.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates wrote the nuclear notation for iron as Z over A.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question on average atomic mass was the best answered question on the exam. A few candidates did not write the answer to two decimal places as per instructions.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates scored M1 regarding the lemon juice role as electrolyte. Some earned M2 but a lot of answers were too vague, such as ‘electrons move through the circuit’, <em>etc</em>.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 50 % of candidates earned this relatively easy mark on calculate EMF from 2 half-cell electrode potentials.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; typical errors were using the incorrect value for n, the number of electrons, or not using consistent units and making a factor of 1000 error in the final answer.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was left blank by quite a few candidates. Common errors included not using correct units, or more often, calculation error in converting ln <em>K</em><sub>c</sub> into <em>K</em><sub>c</sub> value.</p>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Standard electrode potential values, <em>E</em><sup>⦵</sup>, can be used to predict spontaneity.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron(II) is oxidized by bromine.</p>
<p style="text-align:center;">2Fe<sup>2+</sup> (aq) + Br<sub>2</sub> (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2Fe<sup>3+</sup> (aq) + 2Br<sup>−</sup> (aq)</p>
<p>Calculate the <em>E</em><sup>⦵</sup><sub>cell</sub>, in V, for the reaction using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, giving a reason, if iodine will also oxidize iron(II). </p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Molten zinc chloride undergoes electrolysis in an electrolytic cell at 450 °C.</p>
<p>Deduce the half-equations for the reaction at each electrode.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the overall cell reaction including state symbols. Use section 7 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>E</mi><mo>⦵</mo></msup><mtext>cell</mtext></msub></math> = 1.09 – 0.77 =» 0.32 «V» ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«2Fe<sup>2+</sup> (aq) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2 </sub>(s) → 2Fe<sup>3+</sup> (aq) + 2<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>–</sup> (aq) »</p>
<p>no/non-spontaneous <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>E</mi><mover><mtext>O</mtext><mo>¨</mo></mover></msup><mtext>cell</mtext></msub></math> «= 0.54 – 0.77 »= –0.23 «V»/ <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>E</mi><mover><mtext>O</mtext><mo>¨</mo></mover></msup><mo>&lt;</mo><mn>0</mn></math><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>reduction potential of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub> lower «than Fe3<sup>+</sup> »/ 0.54 &lt;0.77 ✔</p>
<p> </p>
<p><em>Accept “standard electrode potential of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi></math><sub>2</sub> lower /less positive than iron”.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Cathode (negative electrode):</p>
<p>Zn<sup>2+</sup> + 2e<sup>−</sup> → Zn (l) ✔</p>
<p> </p>
<p>Anode (positive electrode):</p>
<p>2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → ½ Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ZnCl<sub>2</sub> (l) → Zn (l) + Cl<sub>2</sub> (g)</p>
<p>balanced equation ✔</p>
<p>correct state symbols ✔</p>
<p> </p>
<p><em>Accept ionic equation.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Only 50% got this straightforward calculation right, the most common error being to multiply both <em>E</em><sub>0</sub> values by 2, reflecting a lack of practice with this type of exercises.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 10% were able to correctly justify the feasibility of the reaction with I<sub>2</sub>; the MS showed the best answer using the E(v) values but also allowed simpler explanations referring to E<sub>0</sub> of iron; even then many candidates wrote Fe<sup>+2</sup> instead of Fe<sup>+3</sup>, understandably perhaps as this was mentioned in the question. However, it also revealed some difficulty in using and understanding data from the <em>E</em><sub>0</sub> table in the data booklet.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3(bi)/(bii) Answers to both these questions revealed that many candidates struggle to conceptualize the equations that describe electrolysis. The question asked for products of the easiest case of electrolysis, a molten salt. However, many candidates proposed oxidation or reduction equations at both electrodes, or Zn and Cl<sub>2</sub> (with no charge) as the initial species rather than the product; the average mark was 1.2/2 as only 55% answered correctly.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3(bi)/(bii) Answers to both these questions revealed that many candidates struggle to conceptualize the equations that describe electrolysis. The question asked for products of the easiest case of electrolysis, a molten salt. However, many candidates proposed oxidation or reduction equations at both electrodes, or Zn and Cl<sub>2</sub> (with no charge) as the initial species rather than the product; the average mark was 1.2/2 as only 55% answered correctly.</p>
<p>The determination of the states proved to be even more difficult, with many stating the ions were aqueous in spite of the fact that the question is clearly about molten zinc chloride. Allowing ECF for the overall equation allowed marks for many candidates, but very few realised that both ionic species in ZnCl<sub>2</sub> were actually liquid (being a molten salt). As a result, correct answers were below 45% and the average mark was 0.9/2.</p>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Rhenium, Re, was the last element with a stable isotope to be isolated.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Before its isolation, scientists predicted the existence of rhenium and some of its properties.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">One chloride of rhenium has the empirical formula ReCl<sub>3</sub>.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Rhenium forms salts containing the perrhenate(VII) ion, ReO<sub>4</sub><sup>−</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The stable isotope of rhenium contains 110 neutrons.</span></p>
<p><span style="background-color: #ffffff;">State the nuclear symbol notation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span> for this isotope.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest the basis of these predictions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A scientist wants to investigate the catalytic properties of a thin layer of rhenium </span><span style="background-color: #ffffff;">metal on a graphite surface.<br></span></p>
<p><span style="background-color: #ffffff;">Describe an electrochemical process to produce a layer of rhenium on graphite.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict <strong>two</strong> other chemical properties you would expect rhenium to have, given its position in the periodic table.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the relative reactivity of rhenium, compared to silver, zinc, and copper, can be established using pieces of rhenium and solutions of these metal sulfates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of this compound, applying IUPAC rules.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the percentage, by mass, of rhenium in ReCl<sub>3</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the existence of salts containing an ion with this formula could be predicted. Refer to section 6 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the coefficients required to complete the half-equation.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">ReO<sub>4</sub><sup>−</sup> (aq) + ____H<sup>+</sup> (aq) + ____e<sup>−</sup> ⇌ [Re(OH)<sub>2</sub>]<sup>2+</sup> (aq) + ____H<sub>2</sub>O (l)        E<sup>θ</sup> = +0.36 V</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, whether the reduction of ReO<sub>4</sub><sup>−</sup> to [Re(OH)<sub>2</sub>]<sup>2+</sup> would oxidize Fe<sup>2+</sup> to Fe<sup>3+</sup> in aqueous solution. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{75}}}^{{\text{185}}}{\text{Re}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>75</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>185</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Re</mtext>
  </mrow>
</math></span>    <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">gap in the periodic table<br><em><strong>OR</strong></em><br>element with atomic number «75» unknown<br><em><strong>OR</strong></em><br>break/irregularity in periodic trends     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«periodic table shows» regular/periodic trends «in properties»      <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">electrolyze «a solution of /molten» rhenium salt/Re<sup>n+</sup>     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">graphite as cathode/negative electrode<br>OR<br>rhenium forms at cathode/negative electrode     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “using rhenium anode” for M1.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>variable oxidation states<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">forms complex ions/compounds<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">coloured compounds/ions<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«para»magnetic compounds/ions     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other valid responses related to its <strong>chemical</strong> metallic properties.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “catalytic properties”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">place «pieces of» Re into each solution    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">if Re reacts/is coated with metal, that metal is less reactive «than Re»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other valid observations such as “colour of solution fades” or “solid/metal appears” for “reacts”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">rhenium(III) chloride<br><em><strong>OR</strong></em><br>rhenium trichloride    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«M<sub>r</sub> ReCl<sub>3</sub> = 186.21 + (3 × 35.45) =» 292.56    <strong>[✔]</strong><br>«100 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{186.21}}{{292.56}}">
  <mfrac>
    <mrow>
      <mn>186.21</mn>
    </mrow>
    <mrow>
      <mn>292.56</mn>
    </mrow>
  </mfrac>
</math></span> =» 63.648 «%» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">  </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">same group as Mn «which forms M</span>n<span style="background-color: #ffffff;">O<sub>4</sub><sup>-</sup>»<br><em><strong>OR</strong></em><br>in group 7/has 7 valence electrons, so its «highest» oxidation state is +7    <strong>[✔]</strong></span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 6H</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">+</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 3e</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">⇌</span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> [Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 2H</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">O (l)    <strong>[<span style="background-color: #ffffff;">✔]</span></strong></span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup></em> is a weaker oxidizing agent than Fe<sup>3+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>Fe<sup>3+</sup> is a stronger oxidizing agent than <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>Fe<sup>2+</sup> is a weaker reducing agent than <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup></em> is a stronger reducing agent than Fe<sup>2+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>cell emf would be negative/–0.41 V     <strong>[✔]</strong></span></p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was expected that this question would be answered correctly by all HL candidates. However, many confused the A-Z positions or calculated very unusual numbers for A, sometimes even with decimals.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is a NOS question which required some reflection on the full meaning of the periodic table and the wealth of information contained in it. But very few candidates understood that they were being asked to explain periodicity and the concept behind the periodic table, which they actually apply all the time. Some were able to explain the “gap” idea and other based predictions on properties of nearby elements instead of thinking of periodic trends. A fair number of students listed properties of transition metals in general.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done; most described the cell identifying the two electrodes correctly and a few did mention the need for Re salt/ion electrolyte.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well answered though some students suggested physical properties rather than chemical ones.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates chose to set up voltaic cells and in other cases failed to explain the actual experimental set up of Re being placed in solutions of other metal salts or the reaction they could expect to see.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates were able to name the compound according to IUPAC.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to answer this stoichiometric question correctly.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This should have been a relatively easy question but many candidates sometimes failed to see the connection with Mn or the amount of electrons in its outer shell.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, a great number of students were unable to balance this simple half-equation that was given to them to avoid difficulties in recall of reactants/products.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students understood that the oxidation of Fe<sup>2+</sup> was not viable but were unable to explain why in terms of oxidizing and reducing power; many students simply gave numerical values for <em>E</em><sup>Θ</sup> often failing to realise that the oxidation of Fe<sup>2+</sup> would have the inverse sign to the reduction reaction.</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br></span></p>
<p><span style="background-color: #ffffff;">«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires</em>:<br>«delocalized» electrons «flow» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math alttext="\frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrode» 3 <em><strong>AND</strong> </em>oxygen/O<sub>2</sub> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept chlorine/Cl<sub>2</sub>.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>O (l) → 4H<sup>+</sup> (aq) + O<sub>2</sub> (g) + 4e<sup>–</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept 2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup>.<br>Accept 4OH<sup>−</sup> → 2H<sub>2</sub>O + O<sub>2</sub> + 4e<sup>−</sup></span></em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enthalpy of solution = lattice enthalpy + enthalpies of hydration «of Cu<sup>2+</sup> and Cl<sup>−</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;">«+2824 kJ mol<sup>–1</sup> − 2161 kJ mol<sup>–1</sup> − 2(359 kJ mol<sup>–1</sup>) =» −55 «kJ mol<sup>–1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept enthalpy cycle. <br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E</em><sup>θ</sup> = «+0.52 – 0.15 = +» 0.37 «V» ✔</span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">spontaneous <em><strong>AND</strong> E</em><sup>θ</sup> positive ✔</span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><sup>θ</sup> = «−<em>nFE</em> = −1 mol × 96 500 C Mol<sup>–1</sup> × 0.37 V=» −36 000 J/−36 kJ ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “−18 kJ mol<sup>–1</sup> «per mole of Cu<sup>+</sup>»”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept values of n other than 1.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Apply SF in this question.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept J/kJ or J mol<sup>−1</sup>/kJ mol<sup>−1</sup> for units.</span></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2 mol (aq) → 1 mol (aq) <em><strong>AND</strong> </em>decreases ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “solid formed from aqueous solution <strong>AND</strong> decreases”.<br>Do <strong>not</strong> accept 2 mol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> 1 mol without (aq).</span></em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> </span><span style="background-color: #ffffff;">&lt; 0</span><span style="background-color: #ffffff;"> <strong>AND</strong> </span><span style="background-color: #ffffff;">Δ</span><span style="background-color: #ffffff;"><em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span></span><span style="background-color: #ffffff;"> &lt; 0</span><em><span style="background-color: #ffffff;"><br><strong>OR</strong><br></span></em><span style="background-color: #ffffff;">Δ<em>G</em></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> + <em>T</em>Δ<em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 ✔</span></p>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>T</em>Δ<em>S</em> more negative «reducing spontaneity» <em><strong>AND</strong> </em>stability increases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept calculation showing non-spontaneity at 433 K.</span></em></p>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ligands cause» d-orbitals «to» split ✔</span></p>
<p><span style="background-color: #ffffff;">light absorbed as electrons transit to higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light absorbed as electrons promoted ✔</span></p>
<p><span style="background-color: #ffffff;">energy gap corresponds to «orange» light in visible region of spectrum ✔</span></p>
<p><span style="background-color: #ffffff;">colour observed is complementary ✔</span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">full «3»d sub-level/orbitals<br><em><strong>OR</strong></em><br>no d–d transition possible «and therefore no colour» ✔</span></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">octahedral <em><strong>AND</strong> </em>90° «180° for axial» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept square-based bi-pyramid.</span></em></p>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any <strong>two </strong>of:</em><br>ligand/chloride ion Lewis base <em><strong>AND</strong> </em>donates e-pair ✔<br>not Brønsted–Lowry base <em><strong>AND</strong> </em>does not accept proton/H<sup>+</sup> ✔<br>Lewis definition extends/broader than Brønsted–Lowry definition ✔</span></p>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Determine the frequency of a photon that will cause the first ionization of copper. Use sections 1, 2 and 8 of the data booklet.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Explain why a copper(II) solution is blue, using section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0"> Copper plating can be used to improve the conductivity of an object.</span></p>
<p><span class="fontstyle0">State, giving your reason, at which electrode the object being electroplated should be placed.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>E</mi><mo>=</mo><mfrac><mrow><mn>745</mn><mo> </mo><mn>000</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>18</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>E</mi><mo>=</mo><mi>h</mi><mi>ν</mi><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>34</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><mi mathvariant="normal">s</mi><mo>×</mo><mi mathvariant="normal">ν</mi><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">ν</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>87</mn><mo>×</mo><msup><mn>10</mn><mn>15</mn></msup><mo> </mo><mo>«</mo><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>/</mo><mi>Hz</mi><mo>»</mo></math> ✔</p>
<p><br><em>Award <strong>[2]</strong> for correct final answer.</em><br><em>Award <strong>[1]</strong> for 1.12 × 10<sup>39</sup> «Hz».</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>orange light is absorbed «and the complementary colour is observed» ✔</p>
<p><em>Any <strong>TWO</strong> from:</em><br>partially filled d-orbitals ✔<br>«ligands/water cause» d-orbitals «to» split ✔<br>light is absorbed as electrons move to a higher energy orbital «in d–d transitions»<br><em><strong>OR</strong></em><br>light is absorbed as electrons are promoted ✔<br>energy gap corresponds to «orange» light in the visible region of the spectrum ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cathode/negative «electrode» <em><strong>AND</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cu</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></em> reduced «at that electrode» ✔</p>
<p><em>Accept cathode/negative «electrode» <strong>AND</strong> copper forms «at that electrode».</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Determining the frequency of a photon that will cause the first ionization of copper was the most&nbsp;challenging question on the exam. Many could not do it all, although some came up with the answer that&nbsp;came from using the result that would arise from the ionization energy in J/mole (and frequently kJ/mole)&nbsp;rather than J/atom.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students were able to fully explain why solutions containing Cu<sup>2+</sup> appear blue, however the&nbsp;misconception between absorption and emission spectra is still quite evident.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly not that well answered. Most students identified the cathode as the electrode where&nbsp;electroplating occurs but few could adequately justify why.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Bromine can form the bromate(V) ion, BrO<sub>3</sub><sup>−</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of a bromine atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the orbital diagram of the <strong>valence shell</strong> of a bromine atom (ground state) on the energy axis provided. Use boxes to represent orbitals and arrows to represent electrons.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw two Lewis (electron dot) structures for BrO<sub>3</sub><sup>−</sup>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the preferred Lewis structure based on the formal charge on the bromine atom, giving your reasons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, using the VSEPR theory, the geometry of the BrO<sub>3</sub><sup>−</sup> ion and the O−Br−O bond angles.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions act as oxidizing agents in acidic conditions to form bromide ions.</p>
<p>Deduce the half-equation for this reduction reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions oxidize iron(II) ions, Fe<sup>2+</sup>, to iron(III) ions, Fe<sup>3+</sup>.</p>
<p>Deduce the equation for this redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in J, of the redox reaction in (ii), using sections 1 and 24 of the data booklet.</p>
<p><em>E</em><sup>Θ</sup> (BrO<sub>3</sub><sup>−</sup> / Br<sup>−</sup>) = +1.44 V</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the magnetic property of iron(II) and iron(III) ions.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup></p>
<p><em><strong>OR</strong></em></p>
<p>[Ar] 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup> ✔</p>
<p> </p>
<p><em>Accept 3d before 4s.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept double-headed arrows.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Structure I - follows octet rule:</em></p>
<p><img src=""></p>
<p><em>Structure II - does not follow octet rule:</em></p>
<p><img src=""></p>
<p> </p>
<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«structure I» formal charge on Br = +2</p>
<p><em><strong>OR</strong></em></p>
<p>«structure II» formal charge on Br = 0/+1 ✔</p>
<p> </p>
<p>structure II is preferred <em><strong>AND</strong> </em>it produces formal charge closer to 0 ✔</p>
<p> </p>
<p><em>Ignore any reference to formal charge on oxygen.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Geometry:</em><br>trigonal/pyramidal ✔</p>
<p><em>Reason:</em><br>three bonds <em><strong>AND</strong> </em>one lone pair<br><em><strong>OR</strong></em><br>four electron domains ✔</p>
<p><em>O−Br−O angle:</em><br>107° ✔</p>
<p> </p>
<p><em>Accept “charge centres” for “electron domains”.</em></p>
<p><em>Accept answers in the range 104–109°.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6e<sup>−</sup> + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l)</p>
<p>correct reactants and products ✔</p>
<p>balanced equation ✔</p>
<p> </p>
<p><em>Accept reversible arrows.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6Fe<sup>2+</sup> (aq) + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l) + 6Fe<sup>3+</sup> (aq) ✔</p>
<p> </p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sup>Θ</sup><sub>reaction</sub> = «+1.44 V – 0.77 V =» 0.67 «V» ✔</p>
<p>Δ<em>G</em><sup>Θ</sup> = «–n<em>FE</em><sup>Θ</sup><sub>reaction</sub> = – 6 × 96500 C mol<sup>–1</sup> × 0.67 V =» –3.9 × 10<sup>5</sup> «J» ✔</p>
<p> </p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>both are paramagnetic ✔</p>
<p>«both» contain unpaired electrons ✔</p>
<p> </p>
<p><em>Accept orbital diagrams for both ions showing unpaired electrons.</em></p>
<p> </p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br>