File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 19/markSceme-HL-paper1html
File size: 481.45 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>Which is correct for a redox reaction where the standard electrode potential is negative?</p>
<p>Δ<em>G</em><sup>Θ</sup> = −<em>n</em><em>FE</em><sup>Θ</sup> and Δ<em>G</em><sup>Θ</sup> = −<em>RT</em> ln <em>K</em></p>
<p> </p>
<p>A.   Δ<em>G</em><sup>Θ</sup> is negative and <em>K</em> is less than 1.</p>
<p>B.   Δ<em>G</em><sup>Θ</sup> is negative and <em>K</em> is greater than 1.</p>
<p>C.   Δ<em>G</em><sup>Θ</sup> is positive and <em>K</em> is less than 1.</p>
<p>D.   Δ<em>G</em><sup>Θ</sup> is positive and <em>K</em> is greater than 1.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which signs for both <em>E</em><sup>θ</sup><sub>cell </sub>and Δ<em>G</em><sup>θ </sup>result in a spontaneous redox reaction occurring under standard conditions?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An iron rod is electroplated with silver. Which is a correct condition for this process?</p>
<p>A. The silver electrode is the positive electrode.</p>
<p>B. The iron rod is the positive electrode.</p>
<p>C. The electrolyte is iron(II) sulfate.</p>
<p>D. Oxidation occurs at the negative electrode.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement is correct for the overall reaction in a voltaic cell?</p>
<p>2AgNO<sub>3</sub>(aq) + Ni(s) → 2Ag(s) + Ni(NO<sub>3</sub>)<sub>2</sub>(aq)         <em>E</em> <sup>θ</sup>= +1.06 V</p>
<p>A.     Electrons flow from Ag electrode to Ni electrode.</p>
<p>B.     Ni is oxidized to Ni<sup>2+</sup> at the cathode (negative electrode).</p>
<p>C.     Ag<sup>+</sup> is reduced to Ag at the anode (positive electrode).</p>
<p>D.     Ag has a more positive standard electrode potential value than Ni.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which statement is correct when a zinc spoon is electroplated with silver?</span></p>
<p><span class="fontstyle0">A.  The cathode (negative electrode) is made of silver.<br></span></p>
<p><span class="fontstyle0">B.  The anode (positive electrode) is the zinc spoon.<br></span></p>
<p><span class="fontstyle0">C.  The anode (positive electrode) is made of silver.<br></span></p>
<p><span class="fontstyle0">D.  The electrolyte is zinc sulfate solution.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Very pleasing to see that nearly 80% could identify the material best suited as anode in an electrolytic cell.&nbsp;Many candidates, however, thought that the material being electroplated should be the anode.</p>
</div>
<br><hr><br><div class="question">
<p>What are the products when concentrated aqueous copper (II) chloride is electrolysed using platinum electrodes?</p>
<p><img src="" width="520" height="173"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What would be the electrode potential, <em>E</em><sup>⦵</sup>, of the Mn<sup>2+ </sup>(aq)|Mn (s) half-cell if Fe<sup>3+ </sup>(aq)|Fe<sup>2+ </sup>(aq) is used as the reference standard?</p>
<p style="text-align:left;padding-left:120px;">Mn<sup>2+</sup> (aq) + 2e<sup>−</sup> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> Mn (s)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <em>E</em><sup>⦵</sup>&nbsp;= −1.18 V<br><br>Fe<sup>3+</sup> (aq) + e<sup>−</sup> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> Fe<sup>2+ </sup>(aq)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>E</em><sup>⦵</sup>&nbsp;= +0.77 V</p>
<p>A.&nbsp; −1.95 V</p>
<p>B.&nbsp; −0.41 V</p>
<p>C.&nbsp; +0.41 V</p>
<p>D.&nbsp; +1.95 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which gives the equation and cell potential of the spontaneous reaction?</p>
<p><img src="" width="528" height="313"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the major products of electrolysing concentrated aqueous potassium iodide, KI(aq)?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.32.44.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/31"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What does <strong>not </strong>affect the mass of products formed in electrolysis of an aqueous solution?</p>
<p>A.     Current</p>
<p>B.     Duration of electrolysis</p>
<p>C.     Initial mass of cathode</p>
<p>D.     Charge on the ions</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Consider the following standard electrode potentials:</p>
<p style="text-align:center;"><img src=""></p>
<p>Which species will react with each other spontaneously under standard conditions?</p>
<p><br>A.  Zn<sup>2+ </sup>(aq) + Pb (s)</p>
<p>B.  Pb<sup>2+ </sup>(aq) + Br<sub>2 </sub>(l)</p>
<p>C.  Zn (s) + Br<sup>− </sup>(aq)</p>
<p>D.  Pb (s) + Br<sub>2</sub> (l)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the products when dilute aqueous copper (II) nitrate is electrolysed using platinum electrodes?</p>
<p>E<sup>⦵</sup> (Cu | Cu<sup>2+</sup>) = –0.34 V.</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Average performance with a lower discrimination index and no clear misconception based on the incorrect choices.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Consider the following table of standard electrode potentials.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="329" height="120"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Which is the strongest oxidizing agent?</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. Pb<sup>2+</sup></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. Pb</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. Al<sup>3+</sup></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. Al</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was a challenging question with a high discrimination index. 57 % of the candidates identified the strongest oxidizing agent given the standard electrode potentials. The most commonly chosen distractor was Al<sup>3+</sup> (C).</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which factors affect the amount of product formed at the cathode during electrolysis of molten salts?</span></p>
<p><span style="background-color: #ffffff;">    I. current<br>    II. time<br>    III. charge on the cation</span></p>
<p><span style="background-color: #ffffff;">A. I and II only</span></p>
<p><span style="background-color: #ffffff;">B. I and III only</span></p>
<p><span style="background-color: #ffffff;">C. II and III only</span></p>
<p><span style="background-color: #ffffff;">D. I, II and III</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Majority of candidates answered this correctly with the most common mistake being omission of time as a factor affecting electrolysis quantities.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Three cells with platinum electrodes are connected in series to a DC power supply.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="566" height="293"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">What is the ratio of moles formed at each cathode (negative electrode)?</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="" width="349" height="176"></span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which conditions deposit the greatest mass of copper when solutions containing copper ions are electrolysed for 10 minutes?</span></p>
<p><img src="" width="319" height="179"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Nearly all candidates understood that larger current would produce more mass in electrolysis, however&nbsp;quite a few also thought that more copper would be deposited if the ion had a +2 rather than +1 charge.</p>
</div>
<br><hr><br><div class="question">
<p>Which combination would electroplate an object with copper?</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_10.07.27.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/30_01"></p>
<p><img src="images/Schermafbeelding_2018-08-07_om_10.08.26.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/30_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the products when an aqueous solution of copper(II) sulfate is electrolysed using inert graphite electrodes?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Consider the standard electrode potentials:</p>
<p style="padding-left:150px;">Cr<sup>3+</sup> (aq) + 3e<sup>−</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Cr (s)       <strong><em>E</em></strong><sup>Θ</sup> = −0.74 V</p>
<p style="padding-left:150px;">Hg<sup>2+</sup> (aq) + 2e<sup>−</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Hg (l)      <strong><em>E</em></strong><sup>Θ</sup> = +0.85 V</p>
<p>What is the cell potential, in V, for the voltaic cell?</p>
<p style="padding-left:150px;">2Cr (s) + 3Hg<sup>2+</sup> (aq) → 3Hg (l) + 2Cr<sup>3+</sup> (aq)</p>
<p> </p>
<p>A.   −1.59</p>
<p>B.   +0.11</p>
<p>C.   +1.07</p>
<p>D.   +1.59</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the products of electrolysis when concentrated calcium bromide solution is electrolysed using graphite electrodes?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which E<sup>⦵</sup> value, in V, for the reaction Mn (s) + Zn<sup>2+ </sup>(aq) → Mn<sup>2+ </sup>(aq) + Zn (s) can be deduced from the following equations?</p>
<p style="text-align:center;">Mn (s) + 2Ag<sup>+ </sup>(aq) → Mn<sup>2+ </sup>(aq) + 2Ag (s)     E<sup>⦵</sup> = 1.98 V</p>
<p style="text-align:center;">Zn (s) + Cu<sup>2+ </sup>(aq) → Zn<sup>2+ </sup>(aq) + Cu (s)        E<sup>⦵</sup> = 1.10 V</p>
<p style="text-align:center;">Cu (s) + 2Ag<sup>+ </sup>(aq) → Cu<sup>2+ </sup>(aq) + 2Ag (s)      E<sup>⦵</sup> = 0.46 V</p>
<p style="text-align:left;">A.  0.42</p>
<p style="text-align:left;">B.  1.34</p>
<p style="text-align:left;">C.  2.62</p>
<p style="text-align:left;">D.  3.54</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>56% of candidates were able to deduce the E<sup>Ɵ</sup> of the reaction.</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of <strong>increasing</strong> mass deposited by this electrolytic cell?</p>
<p style="text-align:center;">A<sub>r</sub>  Ag = 108,  Cu = 64,  Sb = 122</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="554" height="307"></p>
<p>A.  Ag &lt; Cu &lt; Sb</p>
<p>B.  Sb &lt; Ag &lt; Cu</p>
<p>C.  Cu &lt; Ag &lt; Sb</p>
<p>D.  Cu &lt; Sb &lt; Ag</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A rather challenging question. Only 30% of the candidates were able to deduce the relative masses of metals deposited in three electrolytic cells in series. Candidates had to take into account the charge of the metal ions and the molar masses of the metals therefore it was a time-consuming question. The most commonly chosen distractor, C, only took the molar masses into account.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What are the products when concentrated KBr (aq) is electrolyzed?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="433" height="212"></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Another challenging question with a high discrimination index. 57 % of the candidates were able to identify the electrode products during the electrolysis of concentration KBr (aq). The most commonly chosen distractor was C where K was the product at the cathode (instead of H<sub>2</sub>). Some teachers commented that the data booklet was needed to solve this question and others said “concentrated” was vague. But the effect of concentration is clearly stated in the syllabus and does not need the data booklet to be determined. As for the cation, potassium is known as a reactive metal according to the periodic trends and should have been easy to recognize as more reactive than hydrogen. Similar questions have appeared in past papers.</p>
</div>
<br><hr><br><div class="question">
<p>In the electrolysis of aqueous potassium nitrate, KNO<sub>3</sub>(aq), using inert electrodes, 0.1 mol of a gas was formed at the cathode (negative electrode).</p>
<p>Which is correct?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are the relative volumes of gas given off at E and F during electrolysis of the two cells in series? Assume all electrodes are inert.</p>
<p><img src=""></p>
<p>A.     1:1</p>
<p>B.     1:2</p>
<p>C.     2:1</p>
<p>D.     5:2</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which is <strong>not</strong> a requirement of the standard hydrogen electrode (SHE)?</span></p>
<p><span style="background-color: #ffffff;">A. V = 1 dm<sup>3</sup></span></p>
<p><span style="background-color: #ffffff;">B. p(H<sub>2</sub>) = 100 kPa</span></p>
<p><span style="background-color: #ffffff;">C. use of platinum as the electrode material</span></p>
<p><span style="background-color: #ffffff;">D. [H<sub>3</sub>O<sup>+</sup>] = 1 mol dm<sup>−3</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was a poorly answered question on the standard hydrogen electrode. Many candidates believed what was <strong>not</strong> required was a Pt electrode material</p>
</div>
<br><hr><br><div class="question">
<p>What is the standard half-cell potential of copper if the “zero potential reference electrode” is changed from the standard hydrogen electrode to a standard zinc electrode?</p>
<p><img src="images/Schermafbeelding_2017-09-22_om_15.19.51.png" alt="M17/4/CHEMI/HPM/ENG/TZ2/30"></p>
<p>A.     –1.1</p>
<p>B.     –0.34</p>
<p>C.     +0.34</p>
<p>D.     +1.1</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the electrolysis apparatus shown, 0.59 g of Ni is deposited on the cathode of the first cell.</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the mass of Ag deposited on the cathode of the second cell?</p>
<p><br>A.  0.54 g</p>
<p>B.  0.59 g</p>
<p>C.  1.08 g</p>
<p>D.  2.16 g</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A poorly answered question with low discrimination factor. Several teachers asked whether this question of "cells in series" was in the Chemistry Guide (see Topic 19.1, Electrochemical cells, on page 96) and it is likely that this topic may not have been covered in class by some teachers.</p>
</div>
<br><hr><br><div class="question">
<p>Two cells undergoing electrolysis are connected in series.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.27.51.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/30"></p>
<p>If <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span><em> </em>g of silver are deposited in cell 1, what volume of oxygen, in dm<sup>3</sup> at STP, is given off in cell 2?</p>
<p><em>A</em><sub>r</sub>(Ag) = 108; Molar volume of an ideal gas at STP = 22.7 dm<sup>3</sup> mol<sup>−1</sup></p>
<p>A.    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{{108}} \times \frac{1}{4} \times 22.7">
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mn>108</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
  <mo>×</mo>
  <mn>22.7</mn>
</math></span></p>
<p>B.    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{{108}} \times 4 \times 22.7">
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mn>108</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>22.7</mn>
</math></span></p>
<p>C.    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{{108}} \times \frac{1}{2} \times 22.7">
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mn>108</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>×</mo>
  <mn>22.7</mn>
</math></span></p>
<p>D.    <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{x}{{108}} \times 2 \times 22.7">
  <mfrac>
    <mi>x</mi>
    <mrow>
      <mn>108</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>22.7</mn>
</math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which aqueous solutions produce oxygen gas during electrolysis?</p>
<p style="padding-left:30px;">I.   Dilute CuCl<sub>2 </sub>(aq) with inert electrodes<br>II.  Dilute FeSO<sub>4 </sub>(aq) with inert electrodes<br>III. Dilute CuCl<sub>2 </sub>(aq) with copper electrodes</p>
<p>The standard electrode potentials are provided in the table:</p>
<p style="text-align:center;"><img src=""></p>
<p><br>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What happens to the mass of each copper electrode when aqueous copper(II) sulfate solution is electrolysed?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="394" height="249"></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>