File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 18/markSceme-HL-paper2html
File size: 1.59 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Cobalt forms the transition metal complex [Co(NH<sub>3</sub>)<sub>4</sub> (H<sub>2</sub>O)Cl]Br.</p>
</div>

<div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group whereas the melting points of the group 17 elements (F → I) increase down the group.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the shape of the complex ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the complex ion and the oxidation state of cobalt.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of acid-base theories, the type of reaction that takes place between the cobalt ion and water to form the complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p><em>Group 1:</em><br>atomic/ionic radius increases</p>
<p>smaller charge density</p>
<p><em><strong>OR</strong></em></p>
<p>force of attraction between metal ions and delocalised electrons decreases</p>
<p><em>Do not accept discussion of attraction between valence electrons and nucleus for M2.</em></p>
<p><em>Accept “weaker metallic bonds” for M2.</em></p>
<p><em>Group 17:</em><br>number of electrons/surface area/molar mass increase</p>
<p>London/dispersion/van der Waals’/vdw forces increase</p>
<p><em>Accept “atomic mass” for “molar mass”.</em></p>
<p><strong><em>[Max 3 Marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«distorted» octahedral</p>
<p><em>Accept “square bipyramid”.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Charge on complex ion:</em> 1+/+<br><em>Oxidation state of cobalt:</em> +2</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Lewis «acid-base reaction»</p>
<p>H2O: electron/e<sup>–</sup> pair donor</p>
<p><em><strong>OR</strong></em></p>
<p>Co<sup>2+</sup>: electron/e<sup>–</sup> pair acceptor</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium and vanadium are consecutive elements in the first transition metal series.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.37.43.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.b"></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{Ti}}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
</math></span> atom.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.43.58.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{T}}{{\text{i}}^{2 + }}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>i</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
</math></span> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the melting point of vanadium is higher than that of titanium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six successive ionization energies of vanadium on the axes provided.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.09.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.d.iii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of the electrons involved, how the bond between a ligand and a central metal ion is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why transition metals form coloured compounds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction</p>
<p>between <strong>«</strong>a lattice of<strong>» </strong>metal/positive ions/cations <strong><em>AND </em></strong><strong>«</strong>a sea of<strong>» </strong>delocalized electrons</p>
<p> </p>
<p><em>Accept “mobile electrons”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “metal atoms/nuclei”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(46 \times 7.98){\text{ + }}(47 \times 7.32){\text{ + }}(48 \times 73.99){\text{ + }}(49 \times 5.46){\text{ + }}(50 \times 5.25)}}{{100}} = 47.93">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>46</mn>
      <mo>×</mo>
      <mn>7.98</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>47</mn>
      <mo>×</mo>
      <mn>7.32</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>48</mn>
      <mo>×</mo>
      <mn>73.99</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>49</mn>
      <mo>×</mo>
      <mn>5.46</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>50</mn>
      <mo>×</mo>
      <mn>5.25</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>47.93</mn>
</math></span></p>
<p> </p>
<p><em>Answer must have two decimal places </em><em>with a value from 47.90 to 48.00.</em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><em>Award [0] for 47.87 (data booklet value).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons: </em>22 <strong><em>AND </em></strong><em>Neutrons: </em>26 <strong><em>AND </em></strong><em>Electrons: </em>22</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{s}}^{\text{2}}}{\text{3}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{d}}^{\text{2}}}">
  <mrow>
    <mtext>1</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>p</mtext>
      </mrow>
      <mrow>
        <mtext>6</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>p</mtext>
      </mrow>
      <mrow>
        <mtext>6</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>vanadium has smaller ionic radius «leading to stronger metallic bonding»</p>
<p> </p>
<p><em>Accept vanadium has «one» more valence electron«s» «leading to stronger metallic bonding».</em></p>
<p><em>Accept “atomic” for “ionic”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><img src=""></p>
<p>regular increase for first five <em><strong>AND</strong> </em>sharp increase to the 6th</p>
<p> </p>
<p><em>A log graph is acceptable.</em></p>
<p><em>Accept log plot on given axes (without amendment of y-axis).</em></p>
<p><em>Award mark if gradient of 5 to 6 is greater than “best fit line” of 1 to 5.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>titanium atoms/ions distort the regular arrangement of atoms/ions</p>
<p><strong><em>OR</em></strong></p>
<p>titanium atoms/ions are a different size to aluminium <strong>«</strong>atoms/ions<strong>»</strong></p>
<p>prevent layers sliding over each other</p>
<p> </p>
<p><em>Accept diagram showing different sizes </em><em>of atoms/ions.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pair of electrons provided by the ligand</p>
<p> </p>
<p><em>Do not accept “dative” or “coordinate bonding” alone.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially filled d-orbitals</p>
<p>«ligands cause» d-orbitals «to» split</p>
<p>light is absorbed as electrons transit to a higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light is absorbed as electrons are promoted</p>
<p>energy gap corresponds to light in the visible region of the spectrum</p>
<p>colour observed is the complementary colour</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ionic</p>
<p><strong><em>OR</em></strong></p>
<p>«electrostatic» attraction between oppositely charged ions</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«simple» molecular structure</p>
<p><strong><em>OR</em></strong></p>
<p>weak«er» intermolecular bonds</p>
<p><strong><em>OR</em></strong></p>
<p>weak«er» bonds between molecules</p>
<p> </p>
<p><em>Accept specific examples of weak </em><em>bonds such as London/dispersion and </em><em>van der Waals.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “covalent”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}{\text{(l)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} \to {\text{Ti}}{{\text{O}}_{\text{2}}}{\text{(s)}} + {\text{4HCl(aq)}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>4HCl(aq)</mtext>
  </mrow>
</math></span> correct products<br>correct balancing</p>
<p> </p>
<p><em>Accept ionic equation.</em></p>
<p><em>Award M2 if products are HCl and a </em><em>compound of Ti and O.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCl causes breathing/respiratory problems</p>
<p><strong><em>OR</em></strong></p>
<p>HCl is an irritant</p>
<p><strong><em>OR</em></strong></p>
<p>HCl is toxic</p>
<p><strong><em>OR</em></strong></p>
<p>HCl has acidic vapour</p>
<p><strong><em>OR</em></strong></p>
<p>HCl is corrosive</p>
<p> </p>
<p><em>Accept TiO<sub>2</sub> causes breathing</em></p>
<p><em>problems/is an irritant.</em></p>
<p><em>Accept “harmful” for both HCl and TiO<sub>2</sub></em><em>.</em></p>
<p><em>Accept “smoke is asphyxiant”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>

<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is set up between the Fe<sup>2+ </sup>(aq) | Fe (s) and Fe<sup>3+</sup> (aq) | Fe<sup>2+</sup> (aq) half-cells.</p>
<p>Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.</p>
<p><img src="" width="651" height="204"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, unlike typical transition metals, zinc compounds are not coloured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1:2 ✔</p>
<p><em>Accept 2 Fe<sup>3+</sup>: 1 Fe<sup>2+</sup></em><br><em>Do <strong>not</strong> accept 2:1 only</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass «spectroscopy»/MS ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="515" height="88"></p>
<p><em><br>Award <strong>[1 max]</strong> for 4 correct values.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific heat capacity « = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mi>q</mi><mrow><mi>m</mi><mo>×</mo><mo>∆</mo><mi>T</mi></mrow></mfrac><mo>/</mo><mfrac><mrow><mn>1000</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow><mrow><mn>50</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>×</mo><mn>44</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math>» = 0.45 «J g<sup>−1 </sup>K<sup>−1</sup>» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>2Fe<sup>3+</sup>(aq) + Fe(s) → 3Fe<sup>2+</sup>(aq) ✔</p>
<p><em>Cell potential:</em><br>«+0.77 V − (−0.45 V) = +»1.22 «V» ✔</p>
<p><em><br>Do <strong>not</strong> accept reverse reaction or equilibrium arrow.</em></p>
<p><em>Do <strong>not</strong> accept negative value for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>left electrode/anode labelled zinc/Zn <em><strong>AND</strong> </em>right electrode/cathode labelled iron/Fe ✔</p>
<p>electrolyte labelled as «aqueous» zinc salt/Zn<sup>2+</sup> ✔</p>
<p><em><br>Accept an inert conductor for the anode.</em></p>
<p><em>Accept specific zinc salts such as ZnSO<sub>4</sub>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>« <em>Zn</em><sup>2+</sup>» has a full d-shell<br><em><strong>OR</strong></em><br>does not form « ions with» an incomplete d-shell ✔</p>
<p><em><br>Do <strong>not</strong> accept “Zn is not a transition metal”.</em></p>
<p><em>Do <strong>not</strong> accept zinc atoms for zinc ions.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ligands donate pairs of electrons to metal ions<br><em><strong>OR</strong></em><br>forms coordinate covalent/dative bond✔</p>
<p>ligands are Lewis bases<br><em><strong>AND</strong></em><br>metal «ions» are Lewis acids ✔</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br></span></p>
<p><span style="background-color: #ffffff;">«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires</em>:<br>«delocalized» electrons «flow» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math alttext="\frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrode» 3 <em><strong>AND</strong> </em>oxygen/O<sub>2</sub> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept chlorine/Cl<sub>2</sub>.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>O (l) → 4H<sup>+</sup> (aq) + O<sub>2</sub> (g) + 4e<sup>–</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept 2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup>.<br>Accept 4OH<sup>−</sup> → 2H<sub>2</sub>O + O<sub>2</sub> + 4e<sup>−</sup></span></em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enthalpy of solution = lattice enthalpy + enthalpies of hydration «of Cu<sup>2+</sup> and Cl<sup>−</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;">«+2824 kJ mol<sup>–1</sup> − 2161 kJ mol<sup>–1</sup> − 2(359 kJ mol<sup>–1</sup>) =» −55 «kJ mol<sup>–1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept enthalpy cycle. <br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E</em><sup>θ</sup> = «+0.52 – 0.15 = +» 0.37 «V» ✔</span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">spontaneous <em><strong>AND</strong> E</em><sup>θ</sup> positive ✔</span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><sup>θ</sup> = «−<em>nFE</em> = −1 mol × 96 500 C Mol<sup>–1</sup> × 0.37 V=» −36 000 J/−36 kJ ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “−18 kJ mol<sup>–1</sup> «per mole of Cu<sup>+</sup>»”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept values of n other than 1.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Apply SF in this question.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept J/kJ or J mol<sup>−1</sup>/kJ mol<sup>−1</sup> for units.</span></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2 mol (aq) → 1 mol (aq) <em><strong>AND</strong> </em>decreases ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “solid formed from aqueous solution <strong>AND</strong> decreases”.<br>Do <strong>not</strong> accept 2 mol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> 1 mol without (aq).</span></em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> </span><span style="background-color: #ffffff;">&lt; 0</span><span style="background-color: #ffffff;"> <strong>AND</strong> </span><span style="background-color: #ffffff;">Δ</span><span style="background-color: #ffffff;"><em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span></span><span style="background-color: #ffffff;"> &lt; 0</span><em><span style="background-color: #ffffff;"><br><strong>OR</strong><br></span></em><span style="background-color: #ffffff;">Δ<em>G</em></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> + <em>T</em>Δ<em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 ✔</span></p>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>T</em>Δ<em>S</em> more negative «reducing spontaneity» <em><strong>AND</strong> </em>stability increases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept calculation showing non-spontaneity at 433 K.</span></em></p>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ligands cause» d-orbitals «to» split ✔</span></p>
<p><span style="background-color: #ffffff;">light absorbed as electrons transit to higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light absorbed as electrons promoted ✔</span></p>
<p><span style="background-color: #ffffff;">energy gap corresponds to «orange» light in visible region of spectrum ✔</span></p>
<p><span style="background-color: #ffffff;">colour observed is complementary ✔</span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">full «3»d sub-level/orbitals<br><em><strong>OR</strong></em><br>no d–d transition possible «and therefore no colour» ✔</span></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">octahedral <em><strong>AND</strong> </em>90° «180° for axial» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept square-based bi-pyramid.</span></em></p>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any <strong>two </strong>of:</em><br>ligand/chloride ion Lewis base <em><strong>AND</strong> </em>donates e-pair ✔<br>not Brønsted–Lowry base <em><strong>AND</strong> </em>does not accept proton/H<sup>+</sup> ✔<br>Lewis definition extends/broader than Brønsted–Lowry definition ✔</span></p>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Two hydrides of nitrogen are ammonia and hydrazine, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>. One derivative of ammonia is methanamine whose molecular structure is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-20_om_11.35.47.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/05"></p>
</div>

<div class="specification">
<p>Hydrazine is used to remove oxygen from water used to generate steam or hot water.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}} + {{\text{O}}_{\text{2}}}{\text{(aq)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
</math></span></p>
<p>The concentration of dissolved oxygen in a sample of water is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8.0 \times {10^{ - 3}}{\text{ g}}\,{\text{d}}{{\text{m}}^{ - 3}}">
  <mn>8.0</mn>
  <mo>×<!-- × --></mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>&nbsp;g</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the H−N−H bond angle in methanamine using VSEPR theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron domain geometry around the nitrogen atom and its hybridization in methanamine.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia reacts reversibly with water.<br><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {\text{NH}}_{\text{4}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}">
  <mrow>
    <mtext>N</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
  <mo stretchy="false">⇌</mo>
  <msubsup>
    <mrow>
      <mtext>NH</mtext>
    </mrow>
    <mrow>
      <mtext>4</mtext>
    </mrow>
    <mo>+</mo>
  </msubsup>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>O</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>−</mo>
    </msup>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
</math></span><br>Explain the effect of adding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{H}}^ + }{\text{(aq)}}">
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
</math></span> ions on the position of the equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine reacts with water in a similar way to ammonia. (The association of a molecule of hydrazine with a second H<sup>+</sup> is so small it can be neglected.)</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {{\text{N}}_{\text{2}}}{\text{H}}_{\text{5}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
  <mo stretchy="false">⇌</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <msubsup>
    <mrow>
      <mtext>H</mtext>
    </mrow>
    <mrow>
      <mtext>5</mtext>
    </mrow>
    <mo>+</mo>
  </msubsup>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>O</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>−</mo>
    </msup>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{p}}{K_{\text{b}}}{\text{ (hydrazine)}} = 5.77">
  <mrow>
    <mtext>p</mtext>
  </mrow>
  <mrow>
    <msub>
      <mi>K</mi>
      <mrow>
        <mtext>b</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext> (hydrazine)</mtext>
  </mrow>
  <mo>=</mo>
  <mn>5.77</mn>
</math></span></p>
<p>Calculate the pH of a <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0100{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
  <mn>0.0100</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> solution of hydrazine.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a suitable indicator for the titration of hydrazine solution with dilute sulfuric acid using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an ionic equation, what is observed when magnesium powder is added to a solution of ammonium chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change of reaction, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H">
  <mi mathvariant="normal">Δ</mi>
  <mi>H</mi>
</math></span>, in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{(g)}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy of formation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 50.6{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}">
  <mo>+</mo>
  <mn>50.6</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>. Calculate the enthalpy of vaporization, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H_{{\text{vap}}}}">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msub>
      <mi>H</mi>
      <mrow>
        <mrow>
          <mtext>vap</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
</math></span>, of hydrazine in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}">
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>. <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}} \to {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span> (If you did not get an answer to (f), use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 85{\text{ kJ}}">
  <mo>−</mo>
  <mn>85</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
</math></span> but this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1000 d}}{{\text{m}}^{\text{3}}}">
  <mrow>
    <mtext>1000 d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msup>
  </mrow>
</math></span> of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}{{\text{m}}^{\text{3}}}">
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msup>
  </mrow>
</math></span>, of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{24.8 d}}{{\text{m}}^{\text{3}}}">
  <mrow>
    <mtext>24.8 d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msup>
  </mrow>
</math></span> at SATP.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>107°</p>
<p> </p>
<p><em>Accept 100° </em><em>to &lt; </em><em>109.5°.</em></p>
<p><em>Literature value = </em><em>105.8°</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>tetrahedral</p>
<p>sp<sup>3</sup></p>
<p> </p>
<p> </p>
<p><em>No ECF allowed.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>removes/reacts with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}{{\text{H}}^ - }">
  <mrow>
    <mtext>O</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>−</mo>
    </msup>
  </mrow>
</math></span></p>
<p>moves to the right/products «to replace <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}{{\text{H}}^ - }">
  <mrow>
    <mtext>O</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>−</mo>
    </msup>
  </mrow>
</math></span> ions»</p>
<p> </p>
<p><em>Accept ionic equation for M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>b</sub> = 10<sup>–5.77</sup> / 1.698 x 10<sup>–6</sup><br><em><strong>OR</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{K_{\text{b}}} = \frac{{\left[ {{{\text{N}}_{\text{2}}}{\text{H}}_5^ + } \right] \times \left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{N}}_{\text{2}}}{{\text{H}}_4}} \right]}}">
  <mrow>
    <msub>
      <mi>K</mi>
      <mrow>
        <mtext>b</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>N</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <msubsup>
            <mrow>
              <mtext>H</mtext>
            </mrow>
            <mn>5</mn>
            <mo>+</mo>
          </msubsup>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mo>−</mo>
            </msup>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>N</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mn>4</mn>
            </msub>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p> [OH<sup>–</sup>]<sup>2</sup> «= 1.698 × 10<sup>–6</sup> × 0.0100» = 1.698 × 10<sup>–8</sup></p>
<p><em><strong>OR</strong></em></p>
<p>[OH<sup>–</sup>] «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {1.698 \times {{10}^{ - 8}}} ">
  <mo>=</mo>
  <msqrt>
    <mn>1.698</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>8</mn>
        </mrow>
      </msup>
    </mrow>
  </msqrt>
</math></span>» = 1.303 × 10<sup>–4</sup> «mol dm<sup>–3</sup>»</p>
<p>pH «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" =  - {\text{lo}}{{\text{g}}_{10}}\frac{{1 \times {{10}^{ - 14}}}}{{1.3 \times {{10}^{ - 4}}}}">
  <mo>=</mo>
  <mo>−</mo>
  <mrow>
    <mtext>lo</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mrow>
        <mn>10</mn>
      </mrow>
    </msub>
  </mrow>
  <mfrac>
    <mrow>
      <mn>1</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 10.1</p>
<p> </p>
<p><em>Award [3] for correct final answer.</em></p>
<p><em>Give appropriate credit for other methods containing errors that do not yield correct final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>methyl red</p>
<p><em><strong>OR</strong></em></p>
<p>bromocresol green</p>
<p><em><strong>OR</strong></em></p>
<p>bromophenol blue</p>
<p><em><strong>OR</strong></em></p>
<p>methyl orange</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bubbles</p>
<p><strong><em>OR</em></strong></p>
<p>gas</p>
<p><strong><em>OR</em></strong></p>
<p>magnesium disappears</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{2NH}}_{\text{4}}^ + {\text{(aq)}} + {\text{Mg(s)}} \to {\text{M}}{{\text{g}}^{{\text{2}} + }}{\text{(aq)}} + {\text{2N}}{{\text{H}}_{\text{3}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{(g)}}">
  <msubsup>
    <mrow>
      <mtext>2NH</mtext>
    </mrow>
    <mrow>
      <mtext>4</mtext>
    </mrow>
    <mo>+</mo>
  </msubsup>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>Mg(s)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>M</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mrow>
        <mrow>
          <mtext>2</mtext>
        </mrow>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2N</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>3</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “hydrogen” without </em><em>reference to observed changes.</em></p>
<p><em>Accept "smell of ammonia".</em></p>
<p><em>Accept 2H<sup>+</sup></em><em>(aq) + </em><em>Mg(s) </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \to ">
  <mo stretchy="false">→</mo>
</math></span><em> </em><em>Mg</em><sup><em>2+</em></sup><em>(aq) + </em><em>H</em><sub><em>2</em></sub><em>(g)</em></p>
<p><em>Equation must be ionic.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>bonds broken</em>:</p>
<p>E(N–N) + 4E(N–H)</p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="158{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg  + 4 \times 391{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg /1722{\text{ }}\ll {\text{kJ}}\gg ">
  <mn>158</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
  <mo>+</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mn>391</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>1722</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><em>bonds formed</em>:</p>
<p>E(N<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \equiv ">
  <mo>≡</mo>
</math></span>N) + 2E(H–H)</p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="945{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg  + 2 \times 436{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg /1817{\text{ }}\ll {\text{kJ}}\gg ">
  <mn>945</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
  <mo>+</mo>
  <mn>2</mn>
  <mo>×</mo>
  <mn>436</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>1817</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll \Delta H = {\text{bonds broken}} - {\text{bonds formed}} = 1722 - 1817 = \gg  - 95{\text{ }}\ll {\text{kJ}}\gg ">
  <mo>≪</mo>
  <mi mathvariant="normal">Δ</mi>
  <mi>H</mi>
  <mo>=</mo>
  <mrow>
    <mtext>bonds broken</mtext>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mtext>bonds formed</mtext>
  </mrow>
  <mo>=</mo>
  <mn>1722</mn>
  <mo>−</mo>
  <mn>1817</mn>
  <mo>=≫</mo>
  <mo>−</mo>
  <mn>95</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p> </p>
<p><em>Award [3] for correct final answer.</em></p>
<p><em>Award [2 max] for +</em><em>95 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-20_om_14.03.34.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/05.g/M"></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H_{{\text{vap}}}} =  - 50.6{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}} - {\text{(}} - 95{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}{\text{)}}">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msub>
      <mi>H</mi>
      <mrow>
        <mrow>
          <mtext>vap</mtext>
        </mrow>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mn>50.6</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mtext>(</mtext>
  </mrow>
  <mo>−</mo>
  <mn>95</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>)</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll \Delta {H_{vap}} = \gg  + 44{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg ">
  <mo>≪</mo>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msub>
      <mi>H</mi>
      <mrow>
        <mi>v</mi>
        <mi>a</mi>
        <mi>p</mi>
      </mrow>
    </msub>
  </mrow>
  <mo>=≫</mo>
  <mo>+</mo>
  <mn>44</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p> </p>
<p><em>Award [2] for correct final answer. Award </em><em>[1 max] for </em>–<em>44 </em><em>«</em><em>kJ mol<sup>–</sup></em><sup><em>1</em></sup><em>».</em></p>
<p><em>Award [2] for:</em></p>
<p><em>ΔH</em><sub><em>vap </em></sub>= –<em>50.6 kJ mol<sup>–</sup></em><sup><em>1 </em></sup><em>– (–85 J mol<sup>–</sup></em><sup><em>1</em></sup><em>) = </em>+<em>34 </em><em>«</em><em>kJ mol<sup>–</sup></em><sup><em>1</em></sup><em>»</em><em>.</em></p>
<p><em>Award [1 max] for –</em><em>34 </em><em>«</em><em>kJ mol<sup>–</sup></em><sup><em>1</em></sup><em>».</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total mass of oxygen <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll  = 8.0 \times {10^{ - 3}}{\text{ g}}\,{\text{d}}{{\text{m}}^{ - 3}} \times 1000{\text{ d}}{{\text{m}}^3}\gg  = 8.0{\text{ }}\ll {\text{g}}\gg ">
  <mo>≪=</mo>
  <mn>8.0</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext> g</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mn>1000</mn>
  <mrow>
    <mtext> d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>≫=</mo>
  <mn>8.0</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>g</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{n(}}{{\text{O}}_{\text{2}}}{\text{) }}\ll  = \frac{{8.0{\text{ g}}}}{{32.00{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = \gg {\text{ }}0.25{\text{ }}\ll {\text{mol}}\gg ">
  <mrow>
    <mtext>n(</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>) </mtext>
  </mrow>
  <mo>≪=</mo>
  <mfrac>
    <mrow>
      <mn>8.0</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>32.00</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=≫</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.25</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>mol</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{n(}}{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{)}} = {\text{n(}}{{\text{O}}_{\text{2}}}{\text{)}}">
  <mrow>
    <mtext>n(</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>)</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>n(</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>)</mtext>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll {\text{mass of hydrazine}} = 0.25{\text{ mol}} \times 32.06{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}} = \gg {\text{ }}8.0{\text{ }}\ll {\text{g}}\gg ">
  <mo>≪</mo>
  <mrow>
    <mtext>mass of hydrazine</mtext>
  </mrow>
  <mo>=</mo>
  <mn>0.25</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mo>×</mo>
  <mn>32.06</mn>
  <mrow>
    <mtext> g</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=≫</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>8.0</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>g</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p> </p>
<p><em>Award [3] for correct final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll {\text{n(}}{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{)}} = {\text{n(}}{{\text{O}}_{\text{2}}}{\text{)}} = \frac{{8.0{\text{ g}}}}{{32.00{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = \gg {\text{ }}0.25{\text{ }}\ll {\text{mol}}\gg ">
  <mo>≪</mo>
  <mrow>
    <mtext>n(</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>N</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>)</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>n(</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>)</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>8.0</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>32.00</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=≫</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>0.25</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>mol</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll {\text{volume of nitrogen}} = 0.25{\text{ mol}} \times 24.8{\text{ d}}{{\text{m}}^3}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg  = 6.2{\text{ }}\ll {\text{d}}{{\text{m}}^3}\gg ">
  <mo>≪</mo>
  <mrow>
    <mtext>volume of nitrogen</mtext>
  </mrow>
  <mo>=</mo>
  <mn>0.25</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mo>×</mo>
  <mn>24.8</mn>
  <mrow>
    <mtext> d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫=</mo>
  <mn>6.2</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p> </p>
<p><em>Award [1] for correct final answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Butanoic acid, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH, is a weak acid and ethylamine, CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>, is a weak base.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of each substance with water.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram showing the delocalization of electrons in the conjugate base of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the average oxidation state of carbon in butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A 0.250 mol dm<sup>−3</sup> aqueous solution of butanoic acid has a concentration of hydrogen ions, [H<sup>+</sup>], of 0.00192 mol dm<sup>−3</sup>. Calculate the concentration of hydroxide ions, [OH<sup>−</sup>], in the solution at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of a 0.250 mol dm<sup>−3</sup> aqueous solution of ethylamine at 298 K, using section 21 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the pH curve for the titration of 25.0 cm<sup>3</sup> of ethylamine aqueous solution with 50.0 cm<sup>3</sup> of butanoic acid aqueous solution of equal concentration. No calculations are required.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why butanoic acid is a liquid at room temperature while ethylamine is a gas at room temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable reagent for the reduction of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the product of the complete reduction reaction in (e)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Butanoic acid:</em><br>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COO<sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq) ✔</p>
<p> </p>
<p><em>Ethylamine:</em><br>CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+ </sup>(aq) + OH<sup>−</sup> (aq) ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Diagram showing:</em><br>dotted line along O–C–O <em><strong>AND</strong> </em>negative charge</p>
<p> </p>
<p><em>Accept correct diagrams with pi clouds.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–1 ✔</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}\,{\text{mo}}{{\text{l}}^2}\,{\text{d}}{{\text{m}}^{ - 6}}}}{{0.00192\,{\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.00192</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 5.21 × 10<sup>–12</sup> «mol dm<sup>–3</sup>» ✔</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«p<em>K</em><sub>b</sub> = 3.35, <em>K</em><sub>b</sub> = 10<sup>–3.35</sup> = 4.5 × 10<sup>–4</sup>»</p>
<p>«C<sub>2</sub>H<sub>5</sub>NH<sub>2</sub> + H<sub>2</sub>O <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> C<sub>2</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup> + OH<sup>–</sup>»</p>
<p> </p>
<p><em>K</em><sub>b</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left[ {{\text{O}}{{\text{H}}^--}} \right]\left[ {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{3}}}^{\text{ + }}} \right]}}{{\left[ {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{2}}}} \right]}}">
  <mfrac>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mo>−</mo>
            </msup>
            <mo>−</mo>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>3</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <msup>
            <mrow>
              <msub>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mrow>
                  <mtext>3</mtext>
                </mrow>
              </msub>
            </mrow>
            <mrow>
              <mtext> + </mtext>
            </mrow>
          </msup>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>3</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong>OR</strong></p>
<p>«<em>K</em><sub>b</sub> =» 4.5 × 10<sup>–4</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left[ {{\text{O}}{{\text{H}}^-}} \right]\left[ {{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{3}}}^{\text{ + }}} \right]}}{{0.250}}">
  <mfrac>
    <mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mo>−</mo>
            </msup>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>3</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>H</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msub>
          </mrow>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <msup>
            <mrow>
              <msub>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mrow>
                  <mtext>3</mtext>
                </mrow>
              </msub>
            </mrow>
            <mrow>
              <mtext> + </mtext>
            </mrow>
          </msup>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.250</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p>«<em>K</em><sub>b</sub> =» 4.5 × 10<sup>–4</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{x^2}}}{{0.250}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.250</mn>
    </mrow>
  </mfrac>
</math></span> ✔</p>
<p><br>« x = [OH<sup>–</sup>] =» 0.011 «mol dm<sup>–3</sup>» ✔</p>
<p> </p>
<p>«pH = –log<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}}}{{0.011}} = ">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.011</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 12.04</p>
<p><em><strong>OR</strong></em></p>
<p>«pH = 14.00 – (–log 0.011)=» 12.04 ✔</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>decreasing pH curve ✔</p>
<p>pH close to 7 (6–8) at volume of 25 cm<sup>3</sup> butanoic acid ✔</p>
<p>weak acid/base shape with no flat «strong acid/base» parts on the curve ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>butanoic acid forms more/stronger hydrogen bonds ✔<br>butanoic acid forms stronger London/dispersion forces ✔<br>butanoic acid forms stronger dipole–dipole interaction/force ✔</p>
<p> </p>
<p><em>Accept “butanoic acid forms dimers”</em></p>
<p><em>Accept “butanoic acid has larger M<sub>r</sub>/hydrocarbon chain/number of electrons” for M2.</em></p>
<p><em>Accept “butanoic acid has larger «permanent» dipole/more polar” for M3.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lithium aluminium hydride/LiAlH<sub>4</sub> ✔</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>butan-1-ol/1-butanol/CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH ✔</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Soluble acids and bases ionize in water.</p>
</div>

<div class="specification">
<p>A solution containing 0.510 g of an unknown monoprotic acid, HA, was titrated with&nbsp;0.100 mol dm<sup>–3</sup> NaOH(aq). 25.0 cm<sup>3</sup> was required to reach the equivalence point.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following curve was obtained using a pH probe.</p>
<p><img src=""></p>
<p>State, giving a reason, the strength of the acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique other than a pH titration that can be used to detect the equivalence point.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the p<em>K</em><sub>a</sub> for this acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The p<em>K</em><sub>a</sub> of an anthocyanin is 4.35. Determine the pH of a 1.60 × 10<sup>–3</sup> mol dm<sup>–3</sup> solution to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>weak <em><strong>AND</strong></em> pH at equivalence greater than 7<br><em><strong>OR</strong></em><br>weak acid <em><strong>AND</strong></em> forms a buffer region</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>calorimetry<br><em><strong>OR</strong></em><br>measurement of heat/temperature<br><em><strong>OR</strong></em><br>conductivity measurement</p>
<p> </p>
<p><em>Accept “indicator” but not “universal indicator”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«p<em>K</em><sub>a</sub> = pH at half-equivalence =» 5.0</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>a</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{10^{ - 4.35}}/4.46683 \times {10^{ - 5}}">
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>4.35</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mn>4.46683</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>5</mn>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p>[H<sub>3</sub>O<sup>+</sup>] = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {4.46683 \times {{10}^{ - 5}} \times 1.60 \times {{10}^{ - 3}}} \,\,\,/\,\,\sqrt {7.1469 \times {{10}^{ - 8}}} \,\,/\,\,2.6734 \times {10^{ - 4}}">
  <msqrt>
    <mn>4.46683</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>5</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>×</mo>
    <mn>1.60</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>3</mn>
        </mrow>
      </msup>
    </mrow>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <msqrt>
    <mn>7.1469</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>8</mn>
        </mrow>
      </msup>
    </mrow>
  </msqrt>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>2.6734</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>4</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> «mol dm<sup>–3</sup>»</p>
<p>pH = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \log \sqrt {7.1469 \times {{10}^{ - 8}}}  = ">
  <mo>−</mo>
  <mi>log</mi>
  <mo>⁡</mo>
  <msqrt>
    <mn>7.1469</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>8</mn>
        </mrow>
      </msup>
    </mrow>
  </msqrt>
  <mo>=</mo>
</math></span>» 3.57</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer to two decimal places.</em></p>
<p><em>If quadratic equation used, then: [H<sub>3</sub>O<sup>+</sup>] = 2.459 × 10<sup>–4</sup> «mol dm<sup>–3</sup>» and pH = 3.61</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">A student performs a titration to determine the concentration of ethanoic acid, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></math></span><span class="fontstyle0">, in vinegar using potassium hydroxide.</span> </p>
</div>

<div class="specification">
<p><span class="fontstyle0">The pH curve for the reaction is given.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="446" height="312"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write a balanced equation for the reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Identify the </span><span class="fontstyle2"><strong>major</strong> </span><span class="fontstyle0">species, other than water and potassium ions, at these points.</span></p>
<p><span class="fontstyle0"><img src="" width="651" height="162"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State a suitable indicator for this titration. Use section 22 of the data booklet</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest, giving a reason, which point on the curve is considered a buffer region.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi mathvariant="normal">a</mi></msub></math> <span class="fontstyle0">expression for ethanoic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi mathvariant="normal">b</mi></msub></math> <span class="fontstyle0">of the conjugate base of ethanoic acid using sections 2 and 21 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">In a titration, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>25</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">of vinegar required <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>20</mn><mo>.</mo><mn>75</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> </span><span class="fontstyle0">of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">potassium hydroxide to reach the end-point.</span></p>
<p><span class="fontstyle0">Calculate the concentration of ethanoic acid in the vinegar.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Potassium hydroxide solutions can react with carbon dioxide from the air. The solution was made one day prior to using it in the titration.</span></p>
<p><span class="fontstyle0"> State the type of error that would result from the student’s approach.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Potassium hydroxide solutions can react with carbon dioxide from the air. The solution was made one day prior to using it in the titration.</span></p>
<p><span class="fontstyle0">Predict, giving a reason, the effect of this error on the calculated concentration of ethanoic acid in 5(e).</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>KOH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><mi>COOK</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo></math> ✔</p>
<p><em>Accept the ionic equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>B: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi><mo> </mo></math> <em><strong>AND</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msup><mi>COO</mi><mo>−</mo></msup></math></em> ✔</p>
<p>C: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msup><mi>COO</mi><mo>−</mo></msup></math> ✔</p>
<p><em>Accept names.</em></p>
<p><em>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><mi>O</mi><mi>O</mi><mi>K</mi></math> for <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><mi>O</mi><msup><mi>O</mi><mo mathvariant="italic">−</mo></msup></math></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>phenolphthalein ✔</p>
<p><em>Accept “phenol red” or “bromothymol </em><em>blue”.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>B <em><strong>AND</strong></em> the region where small additions «of the base/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>KOH</mi></math> » result in little or no<br>change in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi></math><br><em><strong>OR</strong></em><br>B <em><strong>AND</strong></em> the flattest region of the curve «at intermediate <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi></math>/before equivalence<br>point »<br><em><strong>OR</strong></em><br>B <em><strong>AND</strong></em> half the volume needed to reach equivalence point<br><em><strong>OR</strong></em><br>B <em><strong>AND</strong></em> similar amounts of weak acid/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></math>/ethanoic acid <em><strong>AND</strong> </em>conjugate base/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msup><mi>COO</mi><mo>−</mo></msup></math>/ethanoate ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">a</mi></msub><mo>=</mo><mfrac><mrow><mfenced open="[" close="]"><mrow><msub><mi>CH</mi><mn>3</mn></msub><msup><mi>COO</mi><mo>-</mo></msup></mrow></mfenced><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">H</mi><mn>3</mn></msub><msup><mi mathvariant="normal">O</mi><mo>+</mo></msup></mrow></mfenced></mrow><mfenced open="[" close="]"><mrow><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></mrow></mfenced></mfrac></math></p>
<p>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>+</mo></msup></math> instead of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mn>3</mn></msub><msup><mi>O</mi><mo>+</mo></msup></math>.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi>K</mi><mi mathvariant="normal">a</mi></msub><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn><mo>.</mo><mn>76</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi>K</mi><mi mathvariant="normal">w</mi></msub><mo>=</mo><msub><mi>K</mi><mi mathvariant="normal">a</mi></msub><mo>·</mo><msub><mi>K</mi><mi mathvariant="normal">b</mi></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>×</mo><msub><mi>K</mi><mi mathvariant="normal">b</mi></msub><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><msub><mi mathvariant="normal">K</mi><mi mathvariant="normal">b</mi></msub><mo>=</mo><mo>»</mo><mn>5</mn><mo>.</mo><mn>8</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></math> ✔</p>
<p><em>Accept answers between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">5</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">7</mn><mo mathvariant="italic">−</mo><mn mathvariant="italic">5</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">9</mn><mo mathvariant="italic">×</mo><msup><mn mathvariant="italic">10</mn><mrow><mo mathvariant="italic">−</mo><mn mathvariant="italic">10</mn></mrow></msup></math></em>.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi mathvariant="normal">n</mi><mo>(</mo><mi>KOH</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>02075</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>×</mo><mn>1</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>0208</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi mathvariant="normal">n</mi><mo>(</mo><mi>KOH</mi><mo>)</mo><mo>=</mo><mi mathvariant="normal">n</mi><mo>(</mo><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi><mo>)</mo><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>[</mo><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi><mo>]</mo><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>0208</mn><mo> </mo><mi>mol</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>02500</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>830</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>systematic «error» ✔</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mrow><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></mrow></mfenced></math> would be higher ✔</p>
<p>actual <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfenced open="[" close="]"><mi>KOH</mi></mfenced></math> is lower «than the value in calculation»<br><em><strong>OR</strong></em><br>larger volume of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>KOH</mi></math> «solution» needed to neutralize the acid ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mi>O</mi><mi>H</mi></math> partially neutralised by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></math> from air.</em></p>
<div class="question_part_label">f(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could write a balanced neutralization equation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Identifying species present at various points along a pH titration curve was one of the most poorly&nbsp;answered questions in the exam. Very few candidates realized there were two major species at point B&nbsp;even when they were able in general to realize that B was a buffer zone.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates could identify a suitable indicator to use in a titration of a weak acid with a&nbsp;strong base.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students could identify a buffer zone region in a titration but very few (50%) could coherently&nbsp;explain why.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly answered with only 50% correctly writing a K<sub>a</sub> expression. The major error was in candidates&nbsp;trying to calculate a K<sub>a</sub> rather than write an expression for it.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Like with other calculations in this exam, the majority of candidates could correctly determine a&nbsp;concentration from titration data.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% of candidates could identify the method used as a systematic error, with some stating human or&nbsp;random error.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates identified that the systematic error would result in the concentration of the alkali&nbsp;being lowered but then failed to propagate this through to the effect on the concentration of the acid.</p>
<div class="question_part_label">f(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Graphing is an important tool in the study of rates of chemical reactions.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph represents the titration of 25.00 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> aqueous ethanoic acid with 0.100 mol dm<sup>−3</sup> aqueous sodium hydroxide.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_13.41.48.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/02.d.i_01"></p>
<p>Deduce the <strong>major </strong>species, other than water and sodium ions, present at points A and B during the titration.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of 0.100 mol dm<sup>−3</sup> aqueous ethanoic acid.</p>
<p><em>K</em><sub>a</sub> = 1.74 × 10<sup>−5</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an equation, why sodium ethanoate is basic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict whether the pH of an aqueous solution of ammonium chloride will be greater than, equal to or less than 7 at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the reaction of nitrogen dioxide, NO<sub>2</sub>, with water to form two acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the reaction of one of the acids produced in (e)(i) with calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>A: CH<sub>3</sub>COOH/ethanoic/acetic acid <strong><em>AND </em></strong>CH<sub>3</sub>COO<sup>–</sup>/ethanoate/acetate ions</p>
<p>B: CH<sub>3</sub>COO<sup>–</sup>/ethanoate/acetate ions</p>
<p> </p>
<p><em>Penalize “sodium ethanoate/acetate” </em><em>instead of “ethanoate/acetate ions” only </em><em>once.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{K_{\text{a}}} = 1.74 \times {10^{ - 5}} = \frac{{{{{\text{[}}{{\text{H}}^ + }{\text{]}}}^2}}}{{0.10}}">
  <mrow>
    <msub>
      <mi>K</mi>
      <mrow>
        <mtext>a</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>1.74</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>5</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mtext>[</mtext>
            </mrow>
            <mrow>
              <msup>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mo>+</mo>
              </msup>
            </mrow>
            <mrow>
              <mtext>]</mtext>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.10</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p><strong><em>OR</em></strong></p>
<p>[H<sup>+</sup>] = 1.32 × 10<sup>–3</sup> <strong>«</strong>mol dm<sup>–3</sup><strong>»</strong></p>
<p><strong>«</strong>pH =<strong>» </strong>2.88</p>
<p> </p>
<p><em>Accept </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>forms weak acid and strong base, thus basic<strong>»</strong></p>
<p>CH<sub>3</sub>COO<sup>–</sup>(aq) + H<sub>2</sub>O(l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> CH<sub>3</sub>COOH(aq) + OH<sup>–</sup>(aq)</p>
<p> </p>
<p><em>Accept →</em><em> </em><em>for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span></em><em>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>less than 7</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2NO<sub>2</sub>(g) + H<sub>2</sub>O(l) → HNO<sub>2</sub>(aq) + HNO<sub>3</sub>(aq)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2HNO<sub>2</sub>(aq) + CaCO<sub>3</sub>(s) → Ca(NO<sub>2</sub>)<sub>2</sub>(aq) + CO<sub>2</sub>(g) + H<sub>2</sub>O(l)</p>
<p><strong><em>OR</em></strong></p>
<p>2HNO<sub>3</sub>(aq) + CaCO<sub>3</sub>(s) → Ca(NO<sub>3</sub>)<sub>2</sub>(aq) + CO<sub>2</sub>(g) + H<sub>2</sub>O(l)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the weak acid methanoic acid, HCOOH.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of 0.0100 mol dm<sup>–3</sup> methanoic acid stating any assumption you make. <em>K</em><sub>a </sub>= 1.6 × 10<sup>–4</sup>.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch a graph of pH against volume of a strong base added to a weak acid showing how you would determine p<em>K</em><sub>a</sub> for the weak acid.</p>
<p><img src="" alt></p>
<p>(ii) Explain, using an equation, why the pH increases very little in the buffer region when a small amount of alkali is added.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Calculation:</em></p>
<p><em><strong>ALTERNATIVE 1:<br></strong></em>[H<sup>+</sup>] = (K<sub>a</sub> × [HA])<sup>1/2</sup> / (1.6 × 10<sup>–4</sup> × 0.0100)<sup>1/2</sup> / 1.3 × 10<sup>–3</sup> «mol dm<sup>–3</sup>»</p>
<p>pH = «–log<sub>10</sub>[H<sup>+</sup>] ≈» 2.9</p>
<p><em><strong>ALTERNATIVE 2:<br></strong></em>pH = 0.5(p<em>K</em><sub>a</sub> - log<sub>10</sub>[HA])<br>pH = 2.9</p>
<p><em>Award <strong>[2]</strong> for correct final answer</em></p>
<p><em>Assumption</em>:<br>ionisation is &lt;&lt; 0.0100 so 0.0100 - [A<sup>–</sup>] ≈ 0.0100<br><em><strong>OR<br></strong></em>[HA]<sub>eqm</sub> = [HA]<sub>initial <br></sub><em><strong>OR <br></strong></em>all H<sup>+</sup> ions in the solution come from the acid «and not from the self-ionisation of water»<br><em><strong>OR<br></strong></em>[H<sup>+</sup>] = [HCOO<sup>–</sup>]</p>
<p><em>Do not accept partial dissociation</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src="" alt></p>
<p>correct shape of graph<br>pH at half neutralization/equivalence</p>
<p><em>M1: must show buffer region at pH &lt; 7 and equivalence at pH &gt; 7. <br>Accept graph starting from where two axes meet as pH scale is not specified.</em></p>
<p> </p>
<p>ii</p>
<p><em><strong>ALTERNATIVE 1: </strong></em></p>
<p>HCOOH <img src="" alt> HCOO<sup>–</sup> + H<sup>+ <br></sup>H<sup>+</sup> ions consumed in reaction with OH<sup>–</sup> are produced again as equilibrium moves to the right «so [H<sup>+</sup>] remains almost unchanged»</p>
<p><em><strong>ALTERNATIVE</strong> <strong>2</strong></em>:<br>HCOOH + OH<sup>–</sup> <img src="" alt> HCOO<sup>–</sup> + H<sub>2</sub>O<br>added OH<sup>-</sup> are neutralized by HCOOH<br><em><strong>OR<br></strong></em>strong base replaced by weak base </p>
<p><em>Accept HA or any other weak acid in equations.<br>Equilibrium sign must be included in equation for M1</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>50.00&thinsp;cm<sup>3</sup> of 0.75&thinsp;mol&thinsp;dm<sup>&minus;3</sup> sodium hydroxide was added in 1.00&thinsp;cm<sup>3</sup> portions to 22.50&thinsp;cm<sup>3</sup> of 0.50&thinsp;mol&thinsp;dm<sup>&minus;3</sup> chloroethanoic acid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the initial pH before any sodium hydroxide was added, using section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concentration of excess sodium hydroxide was 0.362 mol dm<sup>−3</sup>. Calculate the pH of the solution at the end of the experiment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the neutralisation curve obtained <strong>and</strong> label the equivalence point.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>K</em>a = 10<sup>–2.87</sup> = 1.35 × 10<sup>–3</sup> »</p>
<p>«1.35 × 10<sup>–3</sup> = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mfenced open="[" close="]"><mi>chloroethanoate</mi></mfenced><mo>×</mo><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced></mrow><mrow><mn>0</mn><mo>.</mo><mn>50</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><msup><mi mathvariant="normal">x</mi><mn>2</mn></msup><mrow><mn>0</mn><mo>.</mo><mn>50</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> »</p>
<p>«x = [H<sup>+</sup>] =<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>1</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>50</mn></msqrt></math>=» 2.6 × 10<sup>–2</sup> «mol dm<sup>–3</sup>» ✔</p>
<p><br>«pH = –log[H<sup>+</sup>] = –log(2.6 × 10<sup>–2</sup>) =» 1.59 ✔</p>
<p> </p>
<p><em>Accept final answer in range 1.58–1.60.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«pOH = –log(0.362) = 0.441»</p>
<p>«pH = 14.000 – 0.441 =» 13.559 ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><strong>OR</strong></em></p>
<p><img src=""></p>
<p>starts at 1.6 <em><strong>AND</strong> </em>finishes at 13.6 ✔</p>
<p>approximately vertical at the correct volume of alkali added ✔</p>
<p>equivalence point labelled <em><strong>AND</strong> </em>above pH 7 ✔</p>
<p> </p>
<p><em>Accept any range from 1.1-1.9 <strong>AND </strong>13.1-13.9 for <strong>M1</strong> or ECF from 11c(i) and 11c(ii).</em></p>
<p><em>Award <strong>M2</strong> for vertical climb at 28 cm<sup>3</sup> <strong>OR</strong> 15 cm<sup>3</sup>.</em></p>
<p><em>Equivalence point must be labelled for <strong>M3</strong>.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Propanoic acid, CH<sub>3</sub>CH<sub>2</sub>COOH, is a weak organic acid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of 0.00100 mol dm<sup>–3</sup> propanoic acid solution. Use section 21 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the general shape of the variation of pH when 50 cm<sup>3</sup> of 0.001 mol dm<sup>–3</sup> NaOH (aq) is gradually added to 25 cm<sup>3</sup> of 0.001 mol dm<sup>–3</sup>&nbsp;CH<sub>3</sub>CH<sub>2</sub>COOH (aq).</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>a</sub> = 10<sup>−4.87</sup> / 1.35 × 10<sup>−5</sup> ✔</p>
<p>[H<sup>+</sup>] =&nbsp;«<math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mn>1</mn><mo>.</mo><mn>35</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>001</mn></msqrt><mo>=</mo><msqrt><mn>1</mn><mo>.</mo><mn>35</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup></msqrt><mo>=</mo></math>»&nbsp;1.16 × 10<sup>−4</sup> «mol dm<sup>−3</sup>» ✔</p>
<p>pH = 3.94 ✔</p>
<p><em><br>Accept alternative methods of calculation.</em></p>
<p><em>Award<strong> [3]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[3]</strong> for 3.96 {answer if solved by quadratic}.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Any three of:</em></p>
<p>correct “S” shape ✔</p>
<p>equivalence point at 25 cm<sup>3</sup> ✔</p>
<p>final pH tends to 11 ✔</p>
<p>pH at equivalence point &gt;7 ✔</p>
<p>starting pH between 3.8 - 4 ✔</p>
<p>pH at half equivalence approx. 5 ✔</p>
<p><em><br>Do not penalize for incorrect points.<br></em><em>Award any 3 correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The overall equation for the production of hydrogen cyanide, HCN, is shown below.</p>
<p style="text-align: center;">CH<sub>4</sub>&thinsp;(g) + NH<sub>3</sub>&thinsp;(g) +<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>O<sub>2</sub>&thinsp;(g) &rarr; HCN&thinsp;(g) + 3H<sub>2</sub>O&thinsp;(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why NH<sub>3</sub> is a Lewis base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of a 1.00 × 10<sup>−2</sup> mol dm<sup>−3</sup> aqueous solution of ammonia.</p>
<p style="text-align:center;">p<em>K</em><sub>b</sub> = 4.75 at 298 K.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether a 1.0 dm<sup>3</sup> solution made from 0.10 mol NH<sup>3</sup> and 0.20 mol HCl will form a buffer solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the shape of one sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>) and one pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>) bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the number of sigma and pi bonds in HCN.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the carbon atom in HCN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why hydrogen chloride, HCl, has a lower boiling point than hydrogen cyanide, HCN.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metal cyanide complexes are coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>donates «lone/non-bonding» pair of electrons ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Kb</em> = 10<sup>-4.75</sup> /1.78 x 10<sup>-5</sup><br><em><strong>OR</strong></em><br><em>Kb</em> = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><msup><mfenced open="[" close="]"><msup><mi>OH</mi><mo>-</mo></msup></mfenced><mn>2</mn></msup><mfenced open="[" close="]"><msub><mi>NH</mi><mn>3</mn></msub></mfenced></mfrac></math> ✔</p>
<p> </p>
<p>[OH<sup>–</sup>] = « <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfenced><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup></mrow></mfenced></msqrt></math> =» 4.22 × 10<sup>–4</sup> «(mol dm<sup>–3</sup>)» ✔</p>
<p> </p>
<p>pOH« = –log<sub>10</sub> (4.22 × 10<sup>–4</sup>)» = 3.37<br><em><strong>AND</strong></em><br>pH = «14 – 3.37» = 10.6<br><em><strong><br>OR</strong></em><br><br>[H<sup>+</sup>]« =<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>22</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow></mfrac></math>» = 2.37 × 10<sup>–11</sup><br><em><strong>AND</strong></em><br>pH« = –log<sub>10</sub> 2.37 × 10<sup>–11</sup>» = 10.6 ✔</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no <em><strong>AND</strong> </em>is not a weak acid conjugate base system</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>weak base «totally» neutralized/ weak base is not in excess</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>will not neutralize small amount of acid ✔</p>
<p> </p>
<p><em>Accept “no <strong>AND</strong> contains 0.10 mol NH<sub>4</sub>Cl + 0.10 mol HCl”.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>):</em></p>
<p> <img src=""></p>
<p> </p>
<p><em>Pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math>):</em></p>
<p><img src=""></p>
<p> </p>
<p><em>Accept overlapping p-orbital(s) with both lobes of equal size/shape.</em></p>
<p><em>Shaded areas are not required in either diagram.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>): 2 <em><strong>AND</strong> </em>Pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>): 2 ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sp ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCN has stronger dipole–dipole attraction ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept reference to H-bonds.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three from:</em></p>
<p>partially filled d-orbitals ✔</p>
<p>«CN- causes» d-orbitals «to» split ✔</p>
<p>light is absorbed as electrons transit to a higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light is absorbed as electrons are promoted ✔</p>
<p>energy gap corresponds to light in the visible region of the spectrum ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “colour observed is the complementary colour” for M4.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The main error was the omission of lone electron "pair", though there was also a worrying amount of very confused answers for a very basic chemistry concept where 40% provided very incorrect answers.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rather surprisingly, many students got full marks for this multi-step calculation; others went straight to the pH/pKa acid/base equation so lost at least one of the marks: students often seem less prepared for base calculations, as opposed to acid calculations.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly answered revealing little understanding of buffering mechanisms, which is admittedly a difficult topic.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved to be the most challenging question (10%). It was a good question, where candidates had to explain a huge difference in boiling point of two covalent compounds, requiring solid understanding of change of state where breaking bonds cannot be involved). Yet most considered the triple bonds in HCN as the cause, suggesting covalent bonds break when substance boil, which is very worrying. Others considered H-bonds which at least is an intermolecular force, but shows they are not too familiar with the conditions necessary for H-bonding.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question appears frequently in exams but with slightly different approaches. In general candidates ignore the specific question and give the same answers, failing in this case to describe why complexes are coloured rather than what colour is seen. These answers appear to reveal that many candidates don't really understand this phenomenon, but learn the answer by heart and make mistakes when repeating it, for example, stating that the ‘d-orbitals of the ligands were split’- an obvious misconception. The average mark was 1.6/3, with a MS providing 4 ideas that would merit a mark</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>
</div>

<div class="specification">
<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>
<p style="text-align: right;">Mass of crucible and lid = 47.372 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and magnesium ribbon before heating = 53.726 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and product after heating = 56.941 &plusmn;0.001&thinsp;g</p>
<p style="text-align: left;">&nbsp;</p>
</div>

<div class="specification">
<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>
<p style="text-align: center;">3&thinsp;Mg&thinsp;(s) + N<sub>2&thinsp;</sub>(g) &rarr; Mg<sub>3</sub>N<sub>2&thinsp;</sub>(s)</p>
</div>

<div class="specification">
<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>
</div>

<div class="specification">
<p>Most nitride ions are <sup>14</sup>N<sup>3&ndash;</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write a balanced equation for the reaction that occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of magnesium, in mol, that was used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty of the mass of product after heating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate coefficients that balance the equation for the following reaction.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia is added to water that contains a few drops of an indicator. Identify an indicator that would change colour. Use sections 21 and 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of subatomic particles in this ion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, whether magnesium or nitrogen would have the greater sixth ionization energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2 Mg(s) + O<sub>2</sub>(g) → 2 MgO(s) ✔</p>
<p> </p>
<p><em>Do not accept equilibrium arrows. Ignore state symbols</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>aluminium/Al ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mn>53</mn><mo>.</mo><mn>726</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>244</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>6</mn><mo>.</mo><mn>354</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo><mo>✔</mo></math></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass of product <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mo>=</mo><mn>56</mn><mo>.</mo><mn>941</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>-</mo><mn>47</mn><mo>.</mo><mn>372</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>»</mo><mo>=</mo><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mtext>⟨⟨100 × </mtext><mfrac><mrow><mn>2</mn><mo>×</mo><mn>0</mn><mo>.</mo><mn>001</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mtext>=0.0209⟩⟩ = 0.02 «%»</mtext></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer </em></p>
<p><em>Accept 0.021%</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo> </mo><mo>×</mo><mo> </mo><mo>(</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>16</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>2614</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>40</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⟨</mo><mo>⟨</mo><mn>100</mn><mo>×</mo><mfrac><mrow><mn>9</mn><mo>.</mo><mn>569</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>10</mn><mo>.</mo><mn>536</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow></mfrac><mo>=</mo><mo> </mo><mn>90</mn><mo>.</mo><mn>822</mn><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>91</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award «0.2614 mol x 40.31 g mol<sup>–1</sup>»</em></p>
<p><em>Accept alternative methods to arrive at the correct answer.</em></p>
<p><em>Accept final answers in the range 90.5-91.5%</em></p>
<p><em><strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes<br><em><strong>AND</strong></em><br>«each Mg combines with <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> N, so» mass increase would be 14x<math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac></mstyle></math> which is less than expected increase of 16x<br><em><strong>OR</strong></em><br>3 mol Mg would form 101g of Mg<sub>3</sub>N<sub>2</sub> but would form 3 x MgO = 121 g of MgO<br><em><strong>OR</strong></em><br>0.2614 mol forms 10.536 g of MgO, but would form 8.796 g of Mg<sub>3</sub>N<sub>2</sub> ✔</p>
<p> </p>
<p><em>Accept Yes <strong>AND</strong> “the mass of N/N<sub>2</sub> that combines with each g/mole of Mg is lower than that of O/O<sub>2</sub>”</em></p>
<p><em>Accept YES<strong> AND</strong> “molar mass of nitrogen less than of oxygen”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>incomplete reaction<br><em><strong>OR</strong></em><br>Mg was partially oxidised already<br><em><strong>OR</strong></em><br>impurity present that evaporated/did not react ✔</p>
<p> </p>
<p><em>Accept “crucible weighed before fully cooled”.</em></p>
<p><em>Accept answers relating to a higher atomic mass impurity consuming less O/O<sub>2</sub>.</em></p>
<p><em>Accept “non-stoichiometric compounds formed”.</em></p>
<p><em>Do <strong>not</strong> accept "human error", "wrongly calibrated balance" or other non-chemical reasons.</em></p>
<p><em>If answer to (b)(iii) is &gt;100%, accept appropriate reasons, such as product absorbed moisture before being weighed.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«1» Mg<sub>3</sub>N<sub>2</sub> (s) + <strong>6</strong> H<sub>2</sub>O (l) → <strong>3</strong> Mg(OH)<sub>2</sub> (s) + <strong>2</strong> NH<sub>3</sub> (aq) ✔</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>phenol red ✔</p>
<p><em><br>Accept bromothymol blue or phenolphthalein.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Mg<sub>3</sub>N<sub>2</sub>: -3</em><br><strong><em>AND</em></strong><br><em>NH<sub>3</sub>: -3 ✔</em></p>
<p><em><br>Do not accept 3 or 3-</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Acid–base:</em><br>yes <strong>AND</strong> N<sup>3-</sup> accepts H<sup>+</sup>/donates electron pair«s»<br><strong><em>OR</em></strong><br>yes <strong>AND</strong> H<sub>2</sub>O loses H<sup>+</sup> «to form OH<sup>-</sup>»/accepts electron pair«s» ✔</p>
<p><em>Redox:</em><br>no <strong>AND</strong> no oxidation states change ✔</p>
<p> </p>
<p><em>Accept “yes <strong>AND</strong> proton transfer takes place”</em></p>
<p><em>Accept reference to the oxidation state of specific elements not changing.</em></p>
<p><em>Accept “not redox as no electrons gained/lost”.</em></p>
<p><em>Award <strong>[1 max]</strong> for Acid–base: yes <strong>AND</strong> Redox: no without correct reasons, if no other mark has been awarded</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons</em>: 7 <em><strong>AND</strong> Neutrons</em>: 7 <em><strong>AND</strong> Electrons</em>: 10 ✔</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">isotope</span>«s» ✔</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nitride <em><strong>AND</strong> </em>smaller nuclear charge/number of protons/atomic number ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nitrogen <em><strong>AND</strong> </em>electron lost from first «energy» level/s sub-level/s-orbital <em><strong>AND</strong> </em>magnesium from p sub-level/p-orbital/second «energy» level<br><em><strong>OR</strong></em><br>nitrogen <em><strong>AND</strong> </em>electron lost from lower level «than magnesium» ✔</p>
<p> </p>
<p><em>Accept “nitrogen <strong>AND</strong> electron lost closer to the nucleus «than magnesium»”.</em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>subatomic particles «discovered»<br><em><strong>OR</strong></em><br>particles smaller/with masses less than atoms «discovered»<br><em><strong>OR</strong></em><br>«existence of» isotopes «same number of protons, different number of neutrons» ✔</p>
<p><br>charged particles obtained from «neutral» atoms<br><em><strong>OR</strong></em><br>atoms can gain or lose electrons «and become charged» ✔</p>
<p><br>atom «discovered» to have structure ✔</p>
<p><br>fission<br><em><strong>OR</strong></em><br>atoms can be split ✔</p>
<p> </p>
<p><em>Accept atoms can undergo fusion «to produce heavier atoms»</em></p>
<p><em>Accept specific examples of particles.</em></p>
<p><em>Award <strong>[2]</strong> for “atom shown to have a nucleus with electrons around it” as both M1 and M3.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Award <strong>[1]</strong> for all bonding types correct.</em></p>
<p><em>Award <strong>[1]</strong> for <strong>each</strong> correct description.</em></p>
<p><em>Apply ECF for M2 only once.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Done very well. However, it was disappointing to see the formula of oxygen molecule as O and the oxide as Mg<sub>2</sub>O and MgO<sub>2</sub> at HL level.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; the question asked to identify a metal; however, answers included S, Si, P and even noble gases besides Be and Na. The only choice of aluminium; however, since its oxide is amphoteric, it could not be the answer in the minds of some.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very good performance; some calculated the mass of oxygen instead of magnesium for the calculation of the amount, in mol, of magnesium. Others calculated the mass, but not the amount in mol as required.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; instead of calculating percentage uncertainty, some calculated percentage difference.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Satisfactory performance; however, a good number could not answer the question correctly on determining the percentage yield.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly done. The question asked to evaluate and explain but instead many answers simply agreed with the information provided instead of assessing its strength and limitation.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; explaining the yield found was often a challenge by not recognizing that incomplete reaction or Mg partially oxidized or impurities present that evaporated or did not react would explain the yield.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align:left;">Calculating coefficients that balance the given equation was done very well.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well done; some chose bromocresol green or methyl red as the indicator that would change colour, instead of phenol red, bromothymol blue or phenolphthalein.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; however, surprising number of candidates could not determine one or both oxidation states correctly or wrote it as 3 or 3−, instead of −3.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; choosing the given reaction as an acid-base or redox reaction was not done well. Often answers were contradictory and the reasoning incorrect.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Stating the number of subatomic particles in a <sup>14</sup>N<sup>3-</sup> was done very well. However, some answers showed a lack of understanding of how to calculate the number of relevant subatomic particles given formula of an ion with charge and mass number.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Exceptionally well done; A few candidates referred to isomers, rather than isotopes.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There was reference to nitrogen and magnesium, rather than nitride and magnesium ions. Also, instead identifying smaller nuclear charge in nitride ion, some referred to core electrons, Z<sub>eff</sub>, increased electron-electron repulsion or shielding.</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Common error in suggesting nitrogen would have the greater sixth ionization energy was that for nitrogen, electron is lost from first energy level without making reference to magnesium losing it from second energy level.</p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; some teachers were concerned about the expected answers. However, generally, students were able to suggest two reasons why matter is divisible.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One teacher commented that not asking to describe bonding in terms of electrostatic attractions as in earlier papers would have been confusing and some did answer in terms of electrostatic forces of attractions involved. However, the question was clear in its expectation that the answer had to be in terms of how the valence electrons produce the three types of bonds and the overall performance was good. Some had difficulty identifying the bond type for Mg, O<sub>2</sub> and MgO.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Carbonated water is produced when carbon dioxide is dissolved in water under pressure. The following equilibria are established.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Equilibrium (1) &nbsp;CO<sub>2</sub> (g)&nbsp;<img src="images/5.PNG" alt width="64" height="25"> CO<sub>2</sub> (aq)</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Equilibrium (2) &nbsp;CO<sub>2</sub> (aq) + H<sub>2</sub>O (l) <img src="" width="49" height="14"> H<sup>+</sup> (aq) + HCO<sub>3</sub><sup>−</sup> (aq)</span></span></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Carbon dioxide acts as a weak acid.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Soda water has sodium hydrogencarbonate, NaHCO<sub>3</sub>, dissolved in the carbonated water.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish between a weak and strong acid.</span></p>
<p><span style="background-color: #ffffff;">Weak acid: </span></p>
<p><span style="background-color: #ffffff;">Strong acid: </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The hydrogencarbonate ion, produced in Equilibrium (2), can also act as an acid.</span></p>
<p><span style="background-color: #ffffff;">State the formula of its conjugate base.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When a bottle of carbonated water is opened, these equilibria are disturbed.</span></p>
<p><span style="background-color: #ffffff;">State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">At 298 K the concentration of aqueous carbon dioxide in carbonated water is 0.200 mol dm<sup>−3</sup> and the pK<sub>a</sub> for Equilibrium (2) is 6.36.</span></p>
<p><span style="background-color: #ffffff;">Calculate the pH of carbonated water.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of bonding in sodium hydrogencarbonate.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Between sodium and hydrogencarbonate:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Between hydrogen and oxygen in hydrogencarbonate:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">100.0cm<sup>3</sup> of soda water contains 3.0 × 10<sup>−2</sup>g NaHCO<sub>3</sub>.</span></p>
<p><span style="background-color: #ffffff;">Calculate the concentration of NaHCO<sub>3</sub> in mol dm<sup>−3</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The uncertainty of the 100.0cm<sup>3</sup> volumetric flask used to make the solution was ±0.6cm<sup>3</sup>.</span></p>
<p><span style="background-color: #ffffff;">Calculate the maximum percentage uncertainty in the mass of NaHCO<sub>3</sub> so that the concentration of the solution is correct to ±1.0 %.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The reaction of the hydroxide ion with carbon dioxide and with the hydrogencarbonate ion can be represented by Equations 3 and 4.</span></p>
<p><span style="background-color: #ffffff;">Equation (3)     OH<sup>−</sup> (aq) + CO<sub>2</sub> (g) → HCO<sub>3</sub><sup>−</sup> (aq)<br>Equation (4)     OH<sup>−</sup> (aq) + HCO</span><sub>3</sub><sup>−</sup><span style="background-color: #ffffff;"> (aq) → H<sub>2</sub>O (l) + CO<sub>3</sub><sup>2−</sup> (aq)<br></span></p>
<p><span style="background-color: #ffffff;">Discuss how these equations show the difference between a Lewis base and a Brønsted–Lowry base.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Equation (3):</span></p>
<p><span style="background-color: #ffffff;">Equation (4):</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Aqueous sodium hydrogencarbonate has a pH of approximately 7 at 298 K.</span></p>
<p><span style="background-color: #ffffff;">Sketch a graph of pH against volume when 25.0cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> NaOH (aq) is gradually added to 10.0cm<sup>3</sup> of 0.0500 mol dm<sup>−3</sup> NaHCO<sub>3</sub> (aq).</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="569" height="344"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Weak acid:</em> partially dissociated/ionized «in aqueous solution/water»<br><em><strong>AND</strong></em><br><em>Strong acid</em>: «assumed to be almost» completely/100 % dissociated/ionized «in aqueous solution/water»    <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">CO<sub>3</sub><sup>2-</sup>    <strong>[✔]</strong></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">shifts to left/reactants <em><strong>AND</strong> </em>to increase amount/number of moles/molecules of gas/CO<sub>2</sub> (g)    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “shifts to left/reactants <strong>AND</strong> to increase pressure”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«K<sub>a</sub> =» 10<sup>–6.36</sup>/4.37 × 10<sup>–7</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{[{{\text{H}}^ + }]}^2}}}{{[{\text{C}}{{\text{O}}_2}]}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">[</mo>
            <mrow>
              <msup>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mo>+</mo>
              </msup>
            </mrow>
            <mo stretchy="false">]</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mo stretchy="false">[</mo>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <msub>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mo stretchy="false">]</mo>
    </mrow>
  </mfrac>
</math></span><br><em><strong>OR</strong></em><br>«K<sub>a</sub> =» 10<sup>–6.36</sup>/4.37 × 10<sup>–7</sup> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{[{{\text{H}}^ + }]}^2}}}{{0.200}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">[</mo>
            <mrow>
              <msup>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mo>+</mo>
              </msup>
            </mrow>
            <mo stretchy="false">]</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.200</mn>
    </mrow>
  </mfrac>
</math></span>  <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">[H<sup>+</sup>] « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {0.200 \times 4.37 \times {{10}^{ - 7}}} ">
  <msqrt>
    <mn>0.200</mn>
    <mo>×</mo>
    <mn>4.37</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>7</mn>
        </mrow>
      </msup>
    </mrow>
  </msqrt>
</math></span>  » = 2.95 × 10<sup>–4</sup> «mol dm<sup>–3</sup>» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>«pH =» 3.53 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Award <strong>[3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Between sodium and hydrogencarbonate:</em><br>ionic    <strong>[✔]</strong><br></span></p>
<p><span style="background-color: #ffffff;"><em>Between hydrogen and oxygen in hydrogencarbonate:</em><br>«polar» covalent     <strong>[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«additional HCO<sub>3</sub><sup>-</sup>» shifts position of equilibrium to left   <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">pH increases   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Do <strong>not</strong> award M2 without any justification in terms of equilibrium shift in M1.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«molar mass of NaHCO<sub>3</sub> =» 84.01 «g mol<sup>-1</sup>»    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«concentration = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.0 \times {{10}^{ - 2}}{\text{g}}}}{{84.01{\text{ g mo}}{{\text{l}}^{ - 1}}}} \times \frac{1}{{0.100{\text{ d}}{{\text{m}}^3}}}">
  <mfrac>
    <mrow>
      <mn>3.0</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>2</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>84.01</mn>
      <mrow>
        <mtext> g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>0.100</mn>
      <mrow>
        <mtext> d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 3.6 × 10<sup>–3</sup> «mol dm<sup>-3</sup>»     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«1.0 – 0.6 = ± » 0.4 «%»    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Equation (3):</em><br>OH<sup>-</sup> donates an electron pair <em><strong>AND</strong> </em>acts as a Lewis base     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Equation (4):</em><br>OH<sup>-</sup> accepts a proton/H<sup>+</sup>/hydrogen ion <em><strong>AND</strong> </em>acts as a Brønsted–Lowry base <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="579" height="358"></p>
<p><span style="background-color: #ffffff;">S-shaped curve from ~7 to between 12 and 14     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">equivalence point at 5 cm<sup>3</sup>     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept starting point &gt;6~7.</span></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>As expected, many candidates were able to distinguish between strong and weak acids; some candidates referred to “dissolve” rather than dissociate.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than half the candidates were able to deduce that carbonate was the conjugate base but a significant proportion of those that did, wrote the carbonate ion with an incorrect charge.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students gave generic responses referring to a correct shift without conveying the idea of compensation or restoration of pressure or moles of gas. This generic reply reflects the difficulty in applying a theoretical concept to the practical situation described in the question.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates calculated the pH of the aqueous CO<sub>2</sub>. Some candidates attempted to use the Henderson-Hasselback equation and others used the quadratic expression to calculate [H<sup>+</sup>] (these two options were very common in the Spanish scripts) getting incorrect solutions. These answers usually ended in pH of approx. 1 which candidates should realize cannot be correct for soda water.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was an easy question, especially the identification of the type of bond between H and O, yet some candidates interpreted that the question referred to intermolecular bonding.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A significant number of candidates omitted the “equilibrium” involved in the dissolution of a weak base.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is another stoichiometry question that most candidates were able to solve well, with occasional errors when calculating <em>M</em><sub>r</sub> of hydrogen carbonate.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mixed responses, more attention should be given to this simple calculation which is straightforward and should be easy as required for IA reports.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a good way to test this topic because answers showed that, while candidates usually knew the topic in theory, they could not apply this to identify the Lewis and Bronsted-Lowry bases in the context of a reaction that was given to them. In some cases, they failed to specify the base, OH<sup>-</sup> or also lost marks referring just to electrons, an electron or H instead of hydrogen ions or H<sup>+</sup> for example.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students that got 1mark for this titration curve was for the general shape, because few realized they had the data to calculate the equivalence point. There were also some difficulties in establishing the starting point even if it was specified in the stem.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Both vinegar (a dilute aqueous solution of ethanoic acid) and bleach are used as cleaning agents.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Bleach reacts with ammonia, also used as a cleaning agent, to produce the poisonous compound chloramine, NH<sub>2</sub>Cl.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why ethanoic acid is classified as a weak acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">Cl<sub>2</sub> (g) + 2NaOH (aq) ⇌ NaOCl (aq) + NaCl (aq) + H<sub>2</sub>O (l)</span></p>
<p><span style="background-color: #ffffff;">Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar </span><span style="background-color: #ffffff;">and bleach together as cleaners.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a Lewis (electron dot) structure of chloramine.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the hybridization of the nitrogen atom in chloramine.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the molecular geometry of chloramine and estimate its H–N–H bond angle.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">H–N–H bond angle:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of bond formed when chloramine is protonated.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sketch a graph of pH against volume of hydrochloric acid added to ammonia solution, showing how you would determine the pK<sub>a</sub> of the ammonium ion.</span></p>
<p><img src="images/5di.PNG" alt width="478" height="387"></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a suitable indicator for the titration, using section 22 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain, using <strong>two</strong> equations, how an equimolar solution of ammonia and ammonium ions acts as a buffer solution when small amounts of acid or base are added.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">partial dissociation «in aqueous solution»    <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ethanoic acid/vinegar reacts with NaOH    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">moves equilibrium to left/reactant side    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">releases Cl<sub>2</sub> (g)/chlorine <span style="text-decoration: underline;">gas</span><br><em><strong>OR</strong></em><br>Cl<sub>2</sub> (g)/chlorine <span style="text-decoration: underline;">gas</span> is toxic    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept “ethanoic acid produces H<sup>+</sup> ions”</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “ethanoic acid/vinegar reacts with NaOCl”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “2CH<sub>3</sub>COOH + NaOCl + NaCl → 2CH<sub>3</sub>COONa + Cl<sub>2</sub> + H<sub>2</sub>O” as it does not refer to equilibrium.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept suitable molecular or ionic equations for M1 and M3.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/5ci.PNG" alt width="133" height="101">     <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept any combination of dots/crosses or lines to represent electron pairs.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">sp<sup>3</sup>    <strong>[✔]</strong></span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Molecular geometry</em>:<br>«trigonal» pyramidal   <strong>[✔]</strong><br></span></p>
<p><span style="background-color: #ffffff;"><em>H–N–H bond angle</em>:<br>107°    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept angles in the range of 100–109.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>covalent/dative/coordinate    <strong>[✔]</strong></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/5di_m.PNG" alt width="424" height="298"></p>
<p><span style="background-color: #ffffff;">correct shape of graph <em><strong>AND</strong> </em>vertical drop at Vn    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">pK<sub>a</sub> = pH at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{Vn}}}}{2}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>Vn</mtext>
      </mrow>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span>/half neutralization/half equivalence    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="font-size: 14px;"><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong></span></span><span style="background-color: #ffffff;">M1: must show buffer region at pH &gt; 7 and equivalence point at pH &lt; 7. Graph must start below pH = 14.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">methyl orange<br><em><strong>OR</strong></em><br>bromophenol blue<br><em><strong>OR</strong></em><br>bromocresol green<br><em><strong>OR</strong></em><br>methyl red    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">NH<sub>3</sub> (aq) + H<sup>+</sup> (aq) → NH<sub>4</sub> + (aq)    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">NH<sub>4</sub> + (aq) + OH<sup>−</sup> (aq) → NH<sub>3</sub> (aq) + H<sub>2</sub>O(l)    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept reaction arrows or equilibrium signs in both equations.</span></em></p>
<p><em><span style="background-color: #ffffff;">Award <strong>[1 max]</strong>, based on two correct reverse equations but not clearly showing reacting with acid or base but rather dissociation.</span></em></p>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Majority of candidates understood weak acids do not fully dissociate.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The average score was 1 out 3. Many could not suggest why it is dangerous to mix chlorine with vinegar. Most students gained at least one mark for stating that “chlorine gas will be produced” but couldn’t link it to equilibrium ideas.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly drew the Lewis structure of chloramine. Some left off lone pair electrons.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mostly correct with a surprising number stating sp or sp<sup>2</sup> hybridization.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done with some candidates misinterpreting the bond angle from the stated geometry.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>“Ionic bond”, “hydrogen bond” and “intermolecular forces” were some common answers.</p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Quite poorly done with many candidates not indicating a vertical drop but rather a weak acid/weak base curve. Some did not have the correct location for the equivalence point.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done although a number of candidates chose bromothymol blue as a suitable indicator for weak base with a strong acid.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly 30 % of candidates did not attempt to answer this question about buffer equations. It was also poorly answered because equations were not used to explain buffer action or the dissociation equations for the base and acid were given rather than their reactions with H<sup>+</sup> or OH<sup>-</sup> .</p>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Another common acid found in food is ethanoic acid.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A sample of ethanoic acid was titrated with sodium hydroxide solution, and the following pH curve obtained.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate the graph to show the buffer region and the volume of sodium hydroxide at the equivalence point.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the most suitable indicator for the titration using section 22 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe, using a suitable equation, how the buffer solution formed during the titration resists pH changes when a small amount of acid is added.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><span style="background-color: #ffffff;">buffer region on graph ✔<br>equivalence point/V<sub>eq</sub> on graph ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Construction lines not required.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">phenolphthalein ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept phenol red.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1:</strong></em><br>H<sup>+</sup> (aq) + CH<sub>3</sub>COO<sup>–</sup> (aq) → CH<sub>3</sub>COOH (aq) ✔</span></p>
<p><span style="background-color: #ffffff;">added acid neutralised by ethanoate ions<br><em><strong>OR</strong></em><br>«weak» CH<sub>3</sub>COOH (aq)/ethanoic acid replaces H<sup>+</sup> (aq)<br><em><strong>OR</strong></em><br>CH<sub>3</sub>COOH/CH<sub>3</sub>COO<sup>–</sup> ratio virtually/mostly unchanged ✔</span></p>
<p><span style="background-color: #ffffff;"><br><em><strong>ALTERNATIVE 2:</strong></em><br>CH<sub>3</sub>COOH (aq) <span class="mjpage"><math alttext=" \rightleftharpoons " xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">⇌</mo> </math></span> H<sup>+</sup> (aq) + CH<sub>3</sub>COO<sup>–</sup> (aq) ✔</span></p>
<p><span style="background-color: #ffffff;">equilibrium shifts to the ethanoic acid side<br><em><strong>OR</strong></em><br>CH<sub>3</sub>COOH/CH<sub>3</sub>COO<sup>−</sup> ratio virtually/mostly unchanged ✔</span></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is soluble in water and forms an alkaline solution:</p>
<p style="text-align: center;">NH<sub>3&thinsp;</sub>(g) + H<sub>2</sub>O&thinsp;(l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> NH<sub>4</sub><sup>+&thinsp;</sup>(aq) + HO<sup>&ndash;&thinsp;</sup>(aq)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> in terms of the Brønsted–Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration, in mol dm<sup>–3</sup>, of the solution formed when 900.0 dm<sup>3</sup> of NH<sub>3 </sub>(g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm<sup>3</sup> of solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration, in mol dm<sup>–3</sup>, of ammonia molecules in the solution with pH = 9.3. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An aqueous solution containing high concentrations of both NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> acts as an acid-base buffer solution as a result of the equilibrium:</p>
<p style="text-align:center;">NH<sub>3</sub> (aq) + H<sup>+</sup> (aq) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇌</mo></math> NH<sub>4</sub><sup>+</sup> (aq)</p>
<p>Referring to this equilibrium, outline why adding a small volume of strong acid would leave the pH of the buffer solution almost unchanged.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium salts form slightly acidic solutions owing to equilibria such as:</p>
<p style="text-align:center;">Mg<sup>2+ </sup>(aq) + H<sub>2</sub>O (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> Mg(OH)<sup>+ </sup>(aq) + H<sup>+ </sup>(aq)</p>
<p>Comment on the role of Mg<sup>2+</sup> in forming the Mg(OH)<sup>+</sup> ion, in acid-base terms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mg(OH)<sup>+</sup> is a complex ion, but Mg is not regarded as a transition metal. Contrast Mg with manganese, Mn, in terms of one characteristic chemical property of transition metals, other than complex ion formation.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">conjugate</span> «acid and base» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of ammonia <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mrow><mi>P</mi><mo>.</mo><mi>V</mi></mrow><mrow><mi>R</mi><mo>.</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>100</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>k</mi><mi>P</mi><mi>a</mi><mo>×</mo><mn>900</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>d</mi><msup><mi>m</mi><mn>3</mn></msup></mrow><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi>J</mi><mo> </mo><msup><mi>K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi>m</mi><mi>o</mi><msup><mi>l</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>300</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>K</mi></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo> </mo><mo>=</mo><mo> </mo><mn>36</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p>concentration <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mi>n</mi><mi>V</mi></mfrac><mo>=</mo><mfrac><mrow><mn>36</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>00</mn></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>18</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msup><mi>OH</mi><mo>−</mo></msup><mo>]</mo><mo> </mo><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><msub><mi mathvariant="normal">K</mi><mi mathvariant="normal">W</mi></msub><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced></mfrac><mo>=</mo><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>3</mn></mrow></msup></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo> </mo><mo>×</mo><mo> </mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>⟨</mo><mo>⟨</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo></math>  ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi>b</mi></msub><mo>=</mo><mfrac><mrow><mfenced open="[" close="]"><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>O</mi><msup><mi>H</mi><mo>-</mo></msup></mrow></mfenced></mrow><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced></mfrac><mo>/</mo><mfrac><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup></mrow><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced></mfrac><mo>⟨</mo><mo>⟨</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><msub><mi>NH</mi><mn>3</mn></msub></mfenced><mo>=</mo><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>4</mn></mrow></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>65</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Accept other methods of carrying out the calculation.</em></p>
<p><em>Award <strong>[2]</strong> for correct answer.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equilibrium shifts to right/H<sup>+</sup> reacts with NH<sub>3</sub> ✔</p>
<p>«as large excess» ratio [NH<sub>3</sub>]:[NH<sub>4</sub><sup>+</sup>] «and hence pH» almost unchanged ✔</p>
<p> </p>
<p><em>Accept “strong acid/H<sup>+</sup> converted to a weak acid/NH<sub>4</sub><sup>+</sup> «and hence pH almost unchanged».</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Lewis acid ✔</p>
<p>accepts «a lone» electron pair «from the hydroxide ion» ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept electron acceptor without mention of electron pair.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><em>Property</em>: variable oxidation state ✔</p>
<p><em>Comparison</em>: Mn compounds can exist in different valencies/oxidation states <em><strong>AND</strong> </em>Mg has a valency/oxidation state of +2 in all its compounds ✔</p>
<p><em><br>Accept valency.</em><br><em>Accept for second statement “Mg «always» has the same oxidation state”.</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em>Property</em>: coloured ions/compounds/complexes ✔</p>
<p><em>Comparison</em>: Mn ions/compounds/complexes coloured <em><strong>AND</strong> </em>Mg ions/compounds white/«as solids»/colourless «in aqueous solution» ✔</p>
<p><em><br>Accept Mn forms coloured ions/compounds/complexes and Mg does not.</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p><em>Property:</em> catalytic activity ✔</p>
<p><em>Comparison:</em> «many» Mn compounds act as catalysts <em><strong>AND</strong> </em>Mg compounds do not «generally» catalyse reactions ✔<br><br><em><br>For any property accept a correct specific example, for example manganate(VII) is purple.</em><br><em>Do <strong>not</strong> accept differences in atomic structure, such as partially filled d sub-levels, but award ECF for a correct discussion.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Well done; However, instead of identifying the conjugate acid-base relationship, some simply identified these as Brønsted–Lowry base and acid.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance. Some teachers suggested the question had an error in units, but this was not the case. The question had to be solved, first by using the data provided for application of gas law to determine the number of moles of gas. Next, given volume of solution, <em>V</em> = 2.00 dm<sup>3</sup>, determine its concentration.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Concentration of [OH<sup>˗</sup>] was asked for but some calculated [H<sub>3</sub>O<sup>+</sup>] instead. On the whole, question was done well.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance. Since a mark was given for the <em>K</em><sub>b</sub> expression, that mark could also be scored for the Henderson Hasselbalch (HH) equation, provided it is specific to the equilibrium reaction. Unfortunately, there was poor understanding of the application of the equation in most cases. Students should be strongly encouraged to use the HH equation only when a buffer is involved. Appropriate <em>K</em><sub>a</sub> or <em>K</em><sub>b</sub> expressions should be used when buffer solutions are not involved.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance. One mark was scored for suggesting equilibrium shifts to right or H<sup>+</sup> reacts with NH<sub>3</sub>. However, some made reference to ammonia being a strong base or no reference to the strong acid, H<sup>+</sup> being converted to a weak acid, NH<sub>4</sub><sup>+</sup>.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; although some Mg<sup>2+</sup> was identified as a Lewis acid, the reasoning given was that it accepts an electron, rather than an electron pair or references were made to Bronsted-Lowry theory.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol and methanoic acid are important industrial products.</p>
</div>

<div class="specification">
<p>Ethanol is used as a fuel.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the chemical equation for the complete combustion of ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in enthalpy, Δ<em>H</em>, in kJ, when 56.00 g of ethanol is burned. Use section 13 in the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oxidation of ethanol with potassium dichromate, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, can form two different organic products. Determine the names of the organic products and the methods used to isolate them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation and name the organic product when ethanol reacts with methanoic acid.</p>
<p><img src="" width="667" height="189"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the titration curve of methanoic acid with sodium hydroxide, showing how you would determine methanoic acid p<em>K</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify an indicator that could be used for the titration in 5(d)(i), using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration of methanoic acid in a solution of pH = 4.12. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify if aqueous solutions of the following salts are acidic, basic, or neutral.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH<sub>2</sub>OH (l) + 3O<sub>2 </sub>(g) → 2CO<sub>2 </sub>(g) + 3H<sub>2</sub>O (g) ✓</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>56</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>46</mn><mo>.</mo><mn>08</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math> =» 1.215 «mol» ✓</p>
<p>«1.215mol × (−1367 kJ mol<sup>−1</sup>) =» −1661 «kJ» ✓</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for “«+»1661 «kJ»”.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethanal <em><strong>AND</strong> </em>distillation ✓</p>
<p>ethanoic acid <em><strong>AND</strong></em> reflux «followed by distillation» ✓</p>
<p><em><br>Award <strong>[1]</strong> for both products <strong>OR</strong> both methods.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>CH<sub>3</sub>CH<sub>2</sub>OH + HCOOH <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> HCOOCH<sub>2</sub>CH<sub>3</sub> + H<sub>2</sub>O ✓</p>
<p><em>Product name:</em><br>ethyl methanoate ✓</p>
<p><em><br>Accept equation without equilibrium arrows.</em></p>
<p><em>Accept equation with molecular formulas (C<sub>2</sub>H<sub>6</sub>O + CH<sub>2</sub>O<sub>2</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math>&nbsp;C<sub>3</sub>H<sub>6</sub>O<sub>2</sub> + H<sub>2</sub>O) only if product name is correct.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="328" height="256"></p>
<p>increasing S-shape pH curve ✓</p>
<p>p<em>K</em><sub>a</sub>: pH at half neutralization/equivalence ✓</p>
<p><em><br>M1: Titration curve must show buffer region at pH &lt;7 and equivalence at pH &gt;7.</em></p>
<p><em>Ignore other parts of the curve, i.e., before buffer region, etc.</em></p>
<p><em>Accept curve starting from where two axes meet as pH scale is not specified.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>phenolphthalein<br><em><strong>OR</strong></em><br>phenol red ✓</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1:</strong></em><br><em>K</em><sub>a</sub> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced><mfenced open="[" close="]"><msup><mi>HCOO</mi><mo>-</mo></msup></mfenced></mrow><mfenced open="[" close="]"><mi>HCOOH</mi></mfenced></mfrac></math><br><em><strong>OR</strong></em><br>[HCOOH] =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mfenced><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>12</mn></mrow></msup></mfenced><mn>2</mn></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn><mo>.</mo><mn>75</mn></mrow></msup></mfrac></math>✓</p>
<p>«[HCOOH] =» 3.24 × 10<sup>−5</sup> «mol dm<sup>−3</sup>» ✓</p>
<p>&nbsp;</p>
<p><em><strong>Alternative 2:</strong></em><br>«pH = p<em>K</em><sub>a</sub> + log <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mfenced open="[" close="]"><msup><mi>HCOO</mi><mo>-</mo></msup></mfenced><mfenced open="[" close="]"><mi>HCOOH</mi></mfenced></mfrac></math>»<br>4.12 = 3.75 + log<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>12</mn></mrow></msup><mfenced open="[" close="]"><mi>HCOOH</mi></mfenced></mfrac></math> ✓</p>
<p>«[HCOOH] =» 3.24 × 10<sup>−5</sup> «mol dm<sup>−3</sup>» ✓</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Sodium methanoate:</em> basic</p>
<p><em>Ammonium chloride:</em> acidic</p>
<p><em>Sodium nitrate:</em> neutral ✓ ✓</p>
<p><em><br>Award <strong>[2]</strong> for three correct.</em></p>
<p><em>Award <strong>[1]</strong> for two correct.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Many reactions are in a state of equilibrium.</p>
</div>

<div class="specification">
<p>The following reaction was allowed to reach equilibrium at 761 K.</p>
<p style="text-align: center;">H<sub>2</sub>&nbsp;(g) + I<sub>2</sub>&nbsp;(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> 2HI (g)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Δ<em>H</em><sup>θ</sup>&nbsp;&lt; 0</p>
</div>

<div class="specification">
<p>The pH of 0.010 mol dm<sup>–3</sup> carbonic acid, H<sub>2</sub>CO<sub>3</sub> (aq), is 4.17 at 25 °C.</p>
<p style="text-align: center;">H<sub>2</sub>CO<sub>3</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> HCO<sub>3</sub><sup>–</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression,<em> K</em><sub>c</sub> , for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following equilibrium concentrations in mol dm<sup>–3</sup> were obtained at 761 K.</p>
<p><img src=""></p>
<p>Calculate the value of the equilibrium constant at 761 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Δ<em>G</em><sup>θ</sup>, in kJ, for the above reaction at 761 K using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate [H<sub>3</sub>O<sup>+</sup>] in the solution and the dissociation constant, <em>K</em><sub>a</sub> , of the acid at 25 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <em>K</em><sub>b</sub> for HCO<sub>3</sub><sup>–</sup> acting as a base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>c</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{{\text{[HI]}}}^{\text{2}}}}}{{{\text{[}}{{\text{H}}_{\text{2}}}{\text{][}}{{\text{I}}_{\text{2}}}{\text{]}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mtext>[HI]</mtext>
            </mrow>
          </mrow>
          <mrow>
            <mtext>2</mtext>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>[</mtext>
      </mrow>
      <mrow>
        <msub>
          <mrow>
            <mtext>H</mtext>
          </mrow>
          <mrow>
            <mtext>2</mtext>
          </mrow>
        </msub>
      </mrow>
      <mrow>
        <mtext>][</mtext>
      </mrow>
      <mrow>
        <msub>
          <mrow>
            <mtext>I</mtext>
          </mrow>
          <mrow>
            <mtext>2</mtext>
          </mrow>
        </msub>
      </mrow>
      <mrow>
        <mtext>]</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>45.6</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>G</em><sup>θ</sup> = «– <em>RT</em> ln <em>K</em> = – (0.00831 kJ K<sup>−1</sup> mol<sup>−1</sup> x 761 K x ln 45.6) =» – 24.2 «kJ»</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[H<sub>3</sub>O<sup>+</sup>] = 6.76 x 10<sup>–5</sup> «mol dm<sup>–3</sup>»</p>
<p><em>K</em><sub>a</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left( {6.76 \times {{10}^{ - 5}}} \right)}^2}}}{{\left( {0.010 - 6.76 \times {{10}^{ - 5}}} \right)}}/\frac{{{{\left( {6.76 \times {{10}^{ - 5}}} \right)}^2}}}{{0.010}}">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>6.76</mn>
                <mo>×</mo>
                <mrow>
                  <msup>
                    <mrow>
                      <mn>10</mn>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>5</mn>
                    </mrow>
                  </msup>
                </mrow>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>0.010</mn>
          <mo>−</mo>
          <mn>6.76</mn>
          <mo>×</mo>
          <mrow>
            <msup>
              <mrow>
                <mn>10</mn>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mn>5</mn>
              </mrow>
            </msup>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
  </mfrac>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>6.76</mn>
                <mo>×</mo>
                <mrow>
                  <msup>
                    <mrow>
                      <mn>10</mn>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>5</mn>
                    </mrow>
                  </msup>
                </mrow>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.010</mn>
    </mrow>
  </mfrac>
</math></span></p>
<p>4.6 x 10<sup>–7</sup></p>
<p><em>Accept 4.57 x 10<sup>–7</sup></em></p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}}}{{4.6 \times {{10}^{ - 7}}}}">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4.6</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 2.17 x 10<sup>–8</sup></p>
<p><em><strong>OR</strong></em></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}}}{{4.57 \times {{10}^{ - 7}}}}">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>4.57</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>7</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 2.19 x 10<sup>–8</sup></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Limescale, CaCO<sub>3</sub>(s), can be removed from water kettles by using vinegar, a dilute solution of ethanoic acid, CH<sub>3</sub>COOH(aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, a difference between the reactions of the same concentrations of hydrochloric acid and ethanoic acid with samples of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dissolved carbon dioxide causes unpolluted rain to have a pH of approximately 5, but other dissolved gases can result in a much lower pH. State one environmental effect of acid rain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation to show ammonia, NH<sub>3</sub>, acting as a Brønsted–Lowry base and a different equation to show it acting as a Lewis base.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of 0.010 mol dm<sup>−3</sup> 2,2-dimethylpropanoic acid solution.</p>
<p><em>K</em><sub>a</sub> (2,2-dimethylpropanoic acid) = 9.333 × 10<sup>−6</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using appropriate equations, how a suitably concentrated solution formed by the partial neutralization of 2,2-dimethylpropanoic acid with sodium hydroxide acts as a buffer solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>slower rate with ethanoic acid</p>
<p><strong><em>OR</em></strong></p>
<p>smaller temperature rise with ethanoic acid</p>
<p> </p>
<p>[H<sup>+</sup>] lower</p>
<p><strong><em>OR</em></strong></p>
<p>ethanoic acid is weak</p>
<p><strong><em>OR</em></strong></p>
<p>ethanoic acid is partially dissociated</p>
<p> </p>
<p><em>Accept experimental observations such </em><em>as “slower bubbling” or “feels less </em><em>warm”.</em></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>corrosion of materials/metals/carbonate materials</p>
<p>destruction of plant/aquatic life</p>
<p><strong>«</strong>indirect<strong>» </strong>effect on human health</p>
<p> </p>
<p><em>Accept “lowering pH of </em><em>oceans/lakes/waterways”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Brønsted–Lowry base:</em></p>
<p>NH<sub>3</sub> + H<sup>+</sup> → NH<sub>4</sub><sup>+</sup></p>
<p><em>Lewis base:</em></p>
<p>NH<sub>3</sub> + BF<sub>3</sub> → H<sub>3</sub>NBF<sub>3</sub></p>
<p> </p>
<p><em>Accept “AlCl</em><sub><em>3 </em></sub><em>as an example of Lewis </em><em>acid”.</em></p>
<p><em>Accept other valid equations such as </em><em>Cu</em><sup><em>2+</em></sup><em> +</em><em> </em><em>4NH</em><sub><em>3 </em></sub><em>→ </em><em>[Cu(NH</em><sub><em>3</em></sub><em>)</em><sub><em>4</em></sub><em>]</em><sup><em>2</em><em>+</em></sup><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[H<sup>+</sup>] <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {{{\text{K}}_{\text{a}}} \times \left[ {{{\text{C}}_5}{{\text{H}}_{10}}{{\text{O}}_2}} \right]}  = \sqrt {9.333 \times {{10}^{ - 6}} \times 0.010} {\text{ }}">
  <mo>=</mo>
  <msqrt>
    <mrow>
      <msub>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mtext>a</mtext>
        </mrow>
      </msub>
    </mrow>
    <mo>×</mo>
    <mrow>
      <mo>[</mo>
      <mrow>
        <mrow>
          <msub>
            <mrow>
              <mtext>C</mtext>
            </mrow>
            <mn>5</mn>
          </msub>
        </mrow>
        <mrow>
          <msub>
            <mrow>
              <mtext>H</mtext>
            </mrow>
            <mrow>
              <mn>10</mn>
            </mrow>
          </msub>
        </mrow>
        <mrow>
          <msub>
            <mrow>
              <mtext>O</mtext>
            </mrow>
            <mn>2</mn>
          </msub>
        </mrow>
      </mrow>
      <mo>]</mo>
    </mrow>
  </msqrt>
  <mo>=</mo>
  <msqrt>
    <mn>9.333</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>6</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>×</mo>
    <mn>0.010</mn>
  </msqrt>
  <mrow>
    <mtext> </mtext>
  </mrow>
</math></span><strong>» </strong>= 3.055 × 10<sup>–4</sup> <strong>«</strong>mol dm<sup>–3</sup><strong>»</strong></p>
<p><strong>«</strong>pH =<strong>» </strong>3.51</p>
<p> </p>
<p><em>Accept “pH =</em><em> </em><em>3.52”.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Accept other calculation methods.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(CH<sub>3</sub>)<sub>3</sub>CCOOH(aq) + OH<sup>–</sup>(aq) → (CH<sub>3</sub>)<sub>3</sub>CCOO<sup>–</sup>(aq) + H<sub>2</sub>O(l)</p>
<p><strong><em>OR</em></strong></p>
<p>(CH<sub>3</sub>)<sub>3</sub>CCOOH(aq) + OH<sup>–</sup>(aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> (CH<sub>3</sub>)<sub>3</sub>CCOO<sup>–</sup>(aq) + H<sub>2</sub>O(l) <strong><em>AND </em></strong>addition of alkali causes equilibrium to move to right</p>
<p> </p>
<p>(CH<sub>3</sub>)<sub>3</sub>CCOO<sup>–</sup>(aq) + H<sup>+</sup>(aq) → (CH<sub>3</sub>)<sub>3</sub>CCOOH(aq)</p>
<p><strong><em>OR</em></strong></p>
<p>(CH<sub>3</sub>)<sub>3</sub>CCOO<sup>–</sup>(aq) + H<sup>+</sup>(aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> (CH<sub>3</sub>)<sub>3</sub>CCOOH(aq) <strong><em>AND </em></strong>addition of acid causes equilibrium to move to right</p>
<p> </p>
<p><em>Accept “HA” for the acid.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for correct explanations </em><em>of buffering with addition of acid </em><strong><em>AND</em></strong><em> base </em><strong><em>without </em></strong><em>equilibrium equations.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Halogenoalkanes undergo nucleophilic substitution reactions with sodium hydroxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why most halogenoalkanes are more reactive than alkanes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Classify 1-bromopropane as a primary, secondary or tertiary halogenoalkane, giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 1-bromopropane with aqueous sodium hydroxide using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving your reason, whether the hydroxide ion acts as a Lewis acid, a Lewis base, or neither in the nucleophilic substitution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> advantages of understanding organic reaction mechanisms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>polarity/polar «molecule/bond»<br><em><strong>OR</strong></em><br>carbon–halogen bond is weaker than C–H bond ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>primary <em><strong>AND</strong> </em>Br/bromine is attached to a carbon bonded to two hydrogens<br><em><strong>OR</strong></em><br>primary <em><strong>AND</strong></em> Br/bromine is attached to a carbon bonded to one C/R/alkyl «group» ✔</p>
<p> </p>
<p><em>Accept “primary <strong>AND</strong> Br/bromine is attached to the first carbon in the chain”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from lone pair/negative charge on O in HO<sup>–</sup> to C ✔</p>
<p>curly arrow showing Br leaving ✔</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds ✔</p>
<p>formation of organic product CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH <em><strong>AND</strong> </em>Br<sup>–</sup> ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> allow curly arrow originating on H in HO<sup>–</sup>.</em></p>
<p><em>Accept curly arrow either going from bond between C and Br to Br in 1-bromopropane or in the transition state.</em></p>
<p><em>Do <strong>not</strong> penalize if HO and Br are not at 180° to each other.</em></p>
<p><em>Do <strong>not</strong> award <strong>M3</strong> if OH–C bond is represented.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Lewis» base <em><strong>AND</strong></em> donates a pair of electrons ✔</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>choose «most» appropriate reaction «for preparing the target compound» ✔<br>design/discover new reactions/reagents ✔<br>apply this knowledge to other areas of chemistry/science ✔<br>«retro-»synthesis «more effective» ✔<br>control/predict «desired» products ✔<br>control rate of reaction «more effectively» ✔<br>satisfy intellectual curiosity ✔<br>predicting how changing reagents/conditions might affect reaction ✔<br>suggesting intermediates/transition states ✔</p>
<p> </p>
<p><em>Accept other reasonable answers.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Phosphoric acid, H<sub>3</sub>PO<sub>4</sub> can form three different salts depending on the extent of neutralisation by sodium hydroxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction of one mole of phosphoric acid with one mole of sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate <strong>two</strong> equations to show the amphiprotic nature of H<sub>2</sub>PO<sub>4</sub><sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of H<sub>3</sub>PO<sub>4</sub> if 25.00 cm<sup>3</sup> is completely neutralised by the addition of 28.40 cm<sup>3</sup> of 0.5000 mol dm<sup>−3</sup> NaOH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the reasons that sodium hydroxide is considered a Brønsted–Lowry and Lewis base.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>H<sub>3</sub>PO<sub>4 </sub>(aq) + NaOH (aq) → NaH<sub>2</sub>PO<sub>4 </sub>(aq) + H<sub>2</sub>O (l) ✔</p>
<p><em><br>Accept net ionic equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>PO<sub>4</sub><sup>− </sup>(aq) + H<sup>+ </sup>(aq) → H<sub>3</sub>PO<sub>4 </sub>(aq) ✔</p>
<p>H<sub>2</sub>PO<sub>4</sub><sup>− </sup>(aq) + OH<sup>− </sup>(aq) → HPO<sub>4</sub><sup>2− </sup>(aq) + H<sub>2</sub>O (l) ✔</p>
<p><em><br>Accept reactions of H<sub>2</sub>PO<sub>4</sub><sup>−</sup> with any acidic, basic or amphiprotic species, such as H<sub>3</sub>O<sup>+</sup>, NH<sub>3</sub> or H<sub>2</sub>O. </em></p>
<p><em>Accept H<sub>2</sub>PO<sub>4</sub><sup>−</sup> (aq) → HPO<sub>4</sub><sup>2−</sup> (aq) + H<sup>+</sup> (aq) for <strong>M2</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>NaOH</mi><mo> </mo><mfrac><mrow><mn>28</mn><mo>.</mo><mn>40</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>5000</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></math>»</p>
<p>«<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>01420</mn><mo> </mo><mi>mol</mi></mrow><mn>3</mn></mfrac><mo>=</mo></math>» 0.004733 «mol» ✔</p>
<p>«<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>004733</mn><mo> </mo><mi>mol</mi></mrow><mstyle displaystyle="true"><mfrac><mrow><mn>25</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></mrow><mn>1000</mn></mfrac></mstyle></mfrac><mo>=</mo></math>» 0.1893 «mol dm<sup>−3</sup>» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Brønsted–Lowry base:</em><br>proton acceptor</p>
<p><em><strong>AND</strong></em></p>
<p><em>Lewis Base:</em><br>e<sup>–</sup> pair donor/nucleophile ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Hybridization of hydrocarbons affects their reactivity.</p>
</div>

<div class="specification">
<p>Experiments were carried out to investigate the mechanism of reaction between 2-chloropentane and aqueous sodium hydroxide.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a sigma and pi bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the hybridization of carbon in ethane, ethene and ethyne.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if but-1-ene exhibits cis-trans isomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction which occurs between but-1-ene and hydrogen iodide at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between but-1-ene with hydrogen iodide, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if the product of this reaction exhibits stereoisomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the units of the rate constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial rate of reaction in experiment 4.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, with a reason, the mechanism of the reaction between 2-chloropentane and sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the reason benzene is more reactive with an electrophile than a nucleophile.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Sigma (σ) bond:</em></p>
<p>overlap «of atomic orbitals» along the axial / intermolecular axis / electron density is between nuclei<br><em><strong>OR</strong></em><br>head-on/end-to-end overlap «of atomic orbitals» ✔</p>
<p> </p>
<p><em>Pi (π) bond:</em></p>
<p>overlap «of p-orbitals» above and below the internuclear axis/electron density above and below internuclear axis<br><em><strong>OR</strong></em><br>sideways overlap «of p-orbitals» ✔</p>
<p> </p>
<p><em>Accept a suitable diagram.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="473" height="69"></p>
<p><em><br>All 3 required for mark.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no <em><strong>AND</strong> </em>2 groups on a carbon «in the double bond» are the same/hydrogen «atoms»</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>molecule produced by rearranging atoms bonded on a carbon «in the double bond» is the same as the original ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition ✔</p>
<p> </p>
<p><em>Do not allow nucleophilic addition.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from C=C to H of HI <em><strong>AND</strong> </em>curly arrow showing I leaving ✔</p>
<p>representation of carbocation ✔</p>
<p>curly arrow going from lone pair/negative charge on I<sup>–</sup> to C<sup>+</sup> ✔</p>
<p>2-iodobutane formed ✔</p>
<p> </p>
<p><em>Penalize incorrect bond, e.g. –CH–H<sub>3</sub>C or –CH<sub>3</sub>C once only.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes <em><strong>AND</strong> </em>has a carbon attached to four different groups<br><em><strong>OR</strong></em><br>yes <em><strong>AND</strong> </em>it contains a chiral carbon ✔</p>
<p><em><br>Accept yes <strong>AND</strong> mirror image of molecule different to original/non-superimposable on original.</em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«rate =» k[NaOH][C<sub>5</sub>H<sub>11</sub>Cl] ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mol<sup>–1 </sup>dm<sup>3 </sup>s<sup>–1</sup> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>ALTERNATIVE 1:</strong></p>
<p>«k = » 1.25 «mol<sup>–1 </sup>dm<sup>3 </sup>s<sup>–1</sup>» ✔</p>
<p> </p>
<p>«rate = 1.25 mol<sup>–1 </sup>dm<sup>3 </sup>s<sup>–1</sup> × 0.60 mol dm<sup>–3</sup> × 0.25 mol dm<sup>–3</sup>»</p>
<p>1.9 x 10<sup>–1</sup> «mol dm<sup>–3 </sup>s<sup>–1</sup>» ✔</p>
<p> </p>
<p><strong>ALTERNATIVE 2:</strong></p>
<p>«[NaOH] exp. 4 is 3 × exp. 1»</p>
<p>«[C<sub>5</sub>H<sub>11</sub>Cl] exp. 4 is 2.5 × exp. 1»</p>
<p>«exp. 4 will be » 7.5× faster ✔</p>
<p>1.9 x 10<sup>–1</sup> «mol dm<sup>–3 </sup>s<sup>–1</sup>» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>S<sub>N</sub>2 <em><strong>AND</strong> </em>rate depends on both OH<sup>–</sup> and 2-chloropentane ✔</p>
<p><em><br>Accept E2 <strong>AND</strong> rate depends on both OH<sup>–</sup> and 2-chloropentane.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>delocalized electrons/pi bonds «around the ring»<br><em><strong>OR</strong></em><br>molecule has a region of high electron density/negative charge ✔</p>
<p>electrophiles are attracted/positively charged <em><strong>AND</strong></em> nucleophiles repelled/negatively charged ✔</p>
<p> </p>
<p><em>Do not accept just “nucleophiles less attracted” for <strong>M2</strong>.</em></p>
<p><em>Accept “benzene <strong>AND</strong> nucleophiles are both electron rich” for “repels nucleophiles”.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br>