File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 17/HL-paper2html
File size: 230.33 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Bonds can be formed in many ways.</p>
</div>

<div class="specification">
<p>The equilibrium for a mixture of NO<sub>2</sub> and N<sub>2</sub>O<sub>4</sub> gases is represented as:</p>
<p style="text-align: center;">2NO<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> N<sub>2</sub>O<sub>4</sub>(g)</p>
<p>At 100°C, the equilibrium constant, <em>K</em><sub>c</sub>, is 0.21.</p>
</div>

<div class="specification">
<p>Bonds can be formed in many ways.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the bonding in the resonance structures of ozone.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce one resonance structure of ozone and the corresponding formal charges on each oxygen atom.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The first six ionization energies, in kJ mol<sup>–1</sup>, of an element are given below.</p>
<p><img src="images/Schermafbeelding_2017-09-21_om_08.29.16.png" alt="M17/4/CHEMI/HP2/ENG/TZ2/04.c"></p>
<p>Explain the large increase in ionization energy from IE<sub>3</sub> to IE<sub>4</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a given time, the concentration of NO<sub>2</sub>(g) and N<sub>2</sub>O<sub>4</sub>(g) were 0.52 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.10{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
  <mn>0.10</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> respectively.</p>
<p>Deduce, showing your reasoning, if the forward or the reverse reaction is favoured at this time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the value of Δ<em>G</em> when the reaction quotient equals the equilibrium constant, <em>Q</em> = <em>K</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Many reactions are in a state of equilibrium.</p>
</div>

<div class="specification">
<p>The following reaction was allowed to reach equilibrium at 761 K.</p>
<p style="text-align: center;">H<sub>2</sub>&nbsp;(g) + I<sub>2</sub>&nbsp;(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> 2HI (g)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Δ<em>H</em><sup>θ</sup>&nbsp;&lt; 0</p>
</div>

<div class="specification">
<p>The pH of 0.010 mol dm<sup>–3</sup> carbonic acid, H<sub>2</sub>CO<sub>3</sub> (aq), is 4.17 at 25 °C.</p>
<p style="text-align: center;">H<sub>2</sub>CO<sub>3</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> HCO<sub>3</sub><sup>–</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression,<em> K</em><sub>c</sub> , for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following equilibrium concentrations in mol dm<sup>–3</sup> were obtained at 761 K.</p>
<p><img src=""></p>
<p>Calculate the value of the equilibrium constant at 761 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Δ<em>G</em><sup>θ</sup>, in kJ, for the above reaction at 761 K using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate [H<sub>3</sub>O<sup>+</sup>] in the solution and the dissociation constant, <em>K</em><sub>a</sub> , of the acid at 25 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <em>K</em><sub>b</sub> for HCO<sub>3</sub><sup>–</sup> acting as a base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen and iodine react to form hydrogen iodide.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)</p>
</div>

<div class="specification">
<p>The following experimental data was obtained.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Consider the reaction of hydrogen with solid iodine.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(s) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)&nbsp; &nbsp; &nbsp;&Delta;<em>H</em><sup>⦵</sup>&nbsp;= +53.0&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the order of reaction with respect to hydrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> conditions necessary for a successful collision between reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change of reaction, Δ<em>S</em><sup>⦵</sup>, in J K<sup>−1</sup> mol<sup>−1</sup>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how the value of the ΔS<sup>⦵</sup><sub>reaction</sub> would be affected if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> (g) were used as a reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>−1</sup>, for the reaction at 298 K. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the equilibrium constant, <em>K</em><sub>c</sub>, for this reaction at 298 K. Use your answer to (d)(iii) and sections 1 and 2 of the data booklet.</p>
<p>(If you did not obtain an answer to (d)(iii) use a value of 2.0 kJ mol<sup>−1</sup>, although this is not the correct answer).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following equilibrium reaction:</p>
<p style="text-align: center;">2SO<sub>2</sub> (g) + O<sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> 2SO<sub>3</sub> (g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for the reaction above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>SO<sub>2</sub> (g), O<sub>2 </sub>(g) and SO<sub>3 </sub>(g) are mixed and allowed to reach equilibrium at 600 °C.</p>
<p><img src=""></p>
<p>Determine the value of <em>K</em><sub>c</sub> at 600 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>White phosphorus is an allotrope of phosphorus and exists as P<sub>4</sub>.</p>
</div>

<div class="specification">
<p>An equilibrium exists between PCl<sub>3</sub> and PCl<sub>5</sub>.</p>
<p style="text-align: center;">PCl<sub>3&thinsp;</sub>(g) + Cl<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> PCl<sub>5&thinsp;</sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the Lewis (electron dot) structure of the P<sub>4</sub> molecule, containing only single bonds.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation for the reaction of white phosphorus (P<sub>4</sub>) with chlorine gas to form phosphorus trichloride (PCl<sub>3</sub>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the electron domain and molecular geometry using VSEPR theory, and estimate the Cl–P–Cl bond angle in PCl<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the reason why PCl<sub>5</sub> is a non-polar molecule, while PCl<sub>4</sub>F is polar.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change (Δ<em>H</em><sup>⦵</sup>) for the forward reaction in kJ mol<sup>−1</sup>.</p>
<p style="text-align:center;">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>3 </sub>(g) = −306.4 kJ mol<sup>−1</sup></p>
<p style="text-align:center;">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>5 </sub>(g) = −398.9 kJ mol<sup>−1</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change, Δ<em>S</em>, in J K<sup>−1 </sup>mol<sup>−1</sup>, for this reaction.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:center;"> </p>
<p style="text-align:center;"><em>Chemistry 2e, Chpt. 21 Nuclear Chemistry, Appendix G: Standard Thermodynamic Properties for Selected Substances https://openstax.org/books/chemistry-2e/pages/g-standard-thermodynamic-properties-for- selectedsubstances# page_667adccf-f900-4d86-a13d-409c014086ea © 1999-2021, Rice University. Except where otherwise noted, textbooks on this site are licensed under a Creative Commons Attribution 4.0 International License. (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change (Δ<em>G</em>), in kJ mol<sup>−1</sup>, for this reaction at 25 °C. Use section 1 of the data booklet.</p>
<p>If you did not obtain an answer in c(i) or c(ii) use −87.6 kJ mol<sup>−1</sup> and −150.5 J mol<sup>−1 </sup>K<sup>−1</sup> respectively, but these are not the correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equilibrium constant, <em>K</em>, for this reaction at 25 °C, referring to section 1 of the data booklet.</p>
<p>If you did not obtain an answer in (c)(iii), use Δ<em>G</em> = –43.5 kJ mol<sup>−1</sup>, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression,<em> K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, the effect of an increase in temperature on the position of this equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(vi).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Phenylethene can be polymerized to form polyphenylethene (polystyrene, PS).</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6.PNG" alt width="187" height="190"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The major product of the reaction with hydrogen bromide is C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub> and the minor product is C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the repeating unit of polyphenylethene.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Phenylethene is manufactured from benzene and ethene in a two-stage process. The overall reaction can be represented as follows with ΔG<sup>θ</sup> = +10.0 kJ mol<sup>−1</sup> at 298 K.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6b.PNG" alt width="593" height="174"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the equilibrium constant for the overall conversion at 298 K, using section 1 of the data booklet.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The benzene ring of phenylethene reacts with the nitronium ion, NO<sub>2</sub><sup>+</sup>, and the C=C double bond reacts with hydrogen bromide, HBr.</span></p>
<p><span style="background-color: #ffffff;">Compare and contrast these two reactions in terms of their reaction mechanisms.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Similarity: </span></p>
<p><span style="background-color: #ffffff;">Difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why the major product, C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub>, can exist in two forms and state the relationship between these forms.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Two forms: </span></p>
<p><span style="background-color: #ffffff;">Relationship:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can exist in different conformational forms (isomers).</span></p>
<p><span style="background-color: #ffffff;">Outline what this means.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can be directly converted to an intermediate compound, <strong>X</strong>, which can then be directly converted to the acid C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br → <strong>X</strong> → C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH</span></p>
<p><span style="background-color: #ffffff;">Identify <strong>X</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is produced by the Haber&ndash;Bosch process which involves the equilibrium:</p>
<p style="text-align: center;">N<sub>2&thinsp;</sub>(g) + 3&thinsp;H<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2&thinsp;NH<sub>3&thinsp;</sub>(g)</p>
<p>The percentage of ammonia at equilibrium under various conditions is shown:</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><sup>[The Haber Bosch Process [graph] Available at: https://commons.wikimedia.org/wiki/File:Ammonia_yield.png</sup><br><sup>[Accessed: 16/07/2022].]</sup></p>
</div>

<div class="specification">
<p>One factor affecting the position of equilibrium is the enthalpy change of the reaction.</p>
</div>

<div class="specification">
<p>The standard free energy change, &Delta;<em>G</em><sup>⦵</sup>, for the Haber&ndash;Bosch process is &ndash;33.0&thinsp;kJ at 298&thinsp;K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the expression for the equilibrium constant, <em>K</em><sub>c</sub>, for this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the use of a catalyst affects the position of the equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the reaction quotient, Q, explain why the percentage yield increases as the pressure is increased at constant temperature.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the value obtained in (b)(i) might differ from a value calculated using Δ<em>H</em><sub>f</sub> data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate that your answer to (b)(i) is consistent with the effect of an increase in temperature on the percentage yield, as shown in the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, whether the reaction is spontaneous or not at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the equilibrium constant, <em>K</em>, at 298 K. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change for the Haber–Bosch process, in J mol<sup>–1 </sup>K<sup>–1</sup> at 298 K. Use your answer to (b)(i) and section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the reaction equation, why this sign for the entropy change is expected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>

<div class="specification">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p style="text-align: center;">2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) &nbsp; &nbsp; Δ<em>H </em>&lt; 0</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_11.43.42.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_11.45.16.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_02"></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p style="text-align: center;">KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an approximate order of magnitude for <em>K</em><sub>c</sub>, using sections 1 and 2 of the data booklet. Assume Δ<em>G</em><sup>Θ</sup> for the forward reaction is approximately +50 kJ at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch two different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of CO<sub>2</sub>, in cm<sup>3</sup>, produced at STP by the combustion of 0.600 g of urea, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bond formation when urea acts as a ligand in a transition metal complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.00.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.j_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.07.17.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.k_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the splitting pattern of the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why TMS (tetramethylsilane) may be added to the sample to carry out <sup>1</sup>H NMR spectroscopy and why it is particularly suited to this role.</p>
<div class="marks">[2]</div>
<div class="question_part_label">l.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50&deg;C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Now consider the second stage of the reaction.</p>
<p style="text-align: center;">CO (g) + 2H<sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Δ<em>H</em><sup>⦵</sup>&nbsp;= –129 kJ</p>
</div>

<div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>

<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> reason why you would expect the value of Δ<em>H</em> calculated from the&nbsp;<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mi>f</mi><mi mathvariant="normal">⦵</mi></msubsup></math> values, given in section 12 of data booklet, to differ from your answer to (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equilibrium constant, <em>K</em><sub>c</sub>, has a value of 1.01 at 298 K.</p>
<p>Calculate Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>–1</sup>, for this reaction. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for the entropy change, Δ<em>S</em><sup>⦵</sup>, in J K<sup>–1</sup> mol<sup>–1</sup> at 298 K. Use your answers to (e)(i) and section 1 of the data booklet.</p>
<p>If you did not get answers to (e)(i) use –1 kJ, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the sign of Δ<em>S</em> with reference to the equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how a change in temperature from 298 K to 273 K would affect the spontaneity of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>This reaction is used in the manufacture of sulfuric acid.</p>
<p style="text-align: center;">2SO<sub>2</sub> (g) + O<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> 2SO<sub>3</sub> (g)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>K</em><sub>c</sub> = 280 at 1000 K</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why this equilibrium reaction is considered homogeneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reason, the sign of the standard entropy change of the forward reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in kJ, for this reaction at 1000 K. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether the forward reaction is endothermic or exothermic. Use your answers to (b) and (c).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.200 mol sulfur dioxide, 0.300 mol oxygen and 0.500 mol sulfur trioxide were mixed in a 1.00 dm<sup>3</sup> flask at 1000 K.</p>
<p>Predict the direction of the reaction showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A mixture of 1.00 mol SO<sub>2</sub>(g), 2.00 mol O<sub>2</sub>(g) and 1.00 mol SO<sub>3</sub>(g) is placed in a 1.00 dm<sup>3</sup>&nbsp;container and allowed to reach equilibrium.</p>
<p style="text-align: center;">2SO<sub>2</sub>(g) + O<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span>&nbsp;2SO<sub>3</sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrogen oxide is in equilibrium with dinitrogen dioxide.</p>
<p>2NO(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> N<sub>2</sub>O<sub>2</sub>(g)     Δ<em>H</em><sup>Θ</sup> &lt; 0</p>
<p>Deduce, giving a reason, the effect of increasing the temperature on the concentration of N<sub>2</sub>O<sub>2</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A two-step mechanism is proposed for the formation of NO<sub>2</sub>(g) from NO(g) that involves an exothermic equilibrium process.</p>
<p>First step: 2NO(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> N<sub>2</sub>O<sub>2</sub>(g)     fast</p>
<p>Second step: N<sub>2</sub>O<sub>2</sub>(g) + O<sub>2</sub> (g) → 2NO<sub>2</sub>(g)     slow</p>
<p>Deduce the rate expression for the mechanism.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The rate constant for a reaction doubles when the temperature is increased from 25.0 °C to 35 °C.</p>
<p>Calculate the activation energy, <em>E</em><sub>a</sub>, in kJ mol<sup>−1</sup> for the reaction using section 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about iron.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the <strong>full</strong> electron configuration of Fe<sup>2+</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, when ligands bond to the iron ion causing the d-orbitals to split, the complex is coloured.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>, for iron-54.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6d.PNG" alt width="269" height="186"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An iron nail and a copper nail are inserted into a lemon.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6e.PNG" alt width="400" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard electrode potential, in V, when the Fe<sup>2+</sup> (aq) | Fe (s) and Cu<sup>2+</sup> (aq) | Cu (s) standard half-cells are connected at 298 K. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate ΔG<sup>θ</sup>, in kJ, for the spontaneous reaction in (f)(i), using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate a value for the equilibrium constant, K<sub>c</sub>, at 298 K, giving your answer to two significant figures. Use your answer to (f)(ii) and section 1 of the data booklet. </span></p>
<p><span style="background-color: #ffffff;">(If you did not obtain an answer to (f)(ii), use −140 kJ mol<sup>−1</sup>, but this is not the correct value.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br>