File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 15/markSceme-HL-paper2html
File size: 1.32 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p><span class="fontstyle0">An equation for the combustion of propane is given below.</span></p>
<p style="text-align: center;">C<sub>3</sub>H<sub>8</sub>(g) + 5O<sub>2</sub>(g)&nbsp;<img src="">3CO<sub>2</sub>(g) + 4H<sub>2</sub>O(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the standard enthalpy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>H</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, for this reaction, using section 11 of the data booklet.</span></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard enthalpy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>H</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, for this reaction using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether the entropy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>S</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, for this reaction is negative or positive.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>S</mi><mo>⦵</mo></msup></math> <span class="fontstyle0">for the reaction in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><span class="fontstyle0">, using section 12 of the data booklet.</span></p>
<p><span class="fontstyle0">The standard molar entropy for oxygen gas is <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>205</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard Gibbs free energy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi mathvariant="normal">G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle4"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi></math></span><span class="fontstyle0">, for the reaction at 5 °</span><span class="fontstyle0">C, using your answers to (b) and (d). Use section 1 of the data booklet.</span></p>
<p><span class="fontstyle0">(If you did not obtain an answer to (b) or (d) use values of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>-</mo><mn>1952</mn><mo> </mo><mi>kJ</mi></math></span><span class="fontstyle0"> and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>+</mo><mn>113</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">respectively, although these are not the correct answers.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Bonds broken</em>: 8(C–H) + 2(C–C) + 5(O=O) / 8 × 414 «kJ mol<sup>−1</sup>» + 2 × 346 «kJ mol<sup>−1</sup>» + 5 × 498 «kJ mol−1» / 6494 «kJ» ✔</p>
<p>Bonds formed: 6(C=O) + 8(O–H) / 6 × 804 «kJ mol<sup>−1</sup>» + 8 × 463 «kJ mol<sup>−1</sup>» / 8528 «kJ» ✔</p>
<p>«Enthalpy change<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo></math>bonds broken<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math>bonds formed <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>=</mo><mn>6494</mn><mo> </mo><mi>kJ</mi><mo>−</mo><mn>8528</mn><mo> </mo><mi>kJ</mi><mo>=</mo><mo>»</mo><mo>−</mo><mn>2034</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo> </mo></math> ✔</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>4</mn><mo>(</mo><mo>−</mo><mn>241</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo>)</mo></math> AND</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mo>(</mo><mo>−</mo><mn>393</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo>)</mo></math></em> <em><strong>AND</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>1</mn><mo>»</mo><mo>(</mo><mo>−</mo><mn>105</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo>)</mo></math></em> ✔<br><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi mathvariant="normal">Δ</mi><msup><mi>H</mi><mo>⦵</mo></msup><mo>=</mo><mn>4</mn><mo>(</mo><mo>−</mo><mn>241</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo>)</mo><mo>+</mo><mn>3</mn><mo>(</mo><mo>−</mo><mn>393</mn><mo>.</mo><mn>5</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo>)</mo><mo>–</mo><mo>«</mo><mn>1</mn><mo>»</mo><mo>(</mo><mo>−</mo><mn>105</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo><mo>)</mo><mo>=</mo><mo>»</mo><mo>−</mo><mn>2043</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo></math> ✔</p>
<p><em>Award <strong>[2]</strong> for correct final answer. </em></p>
<p><em>Award <strong>[1 max]</strong> for <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">−</mo><mn mathvariant="italic">2219</mn><mo mathvariant="italic"> </mo><mo>«</mo><mi>k</mi><mi>J</mi><mo>»</mo></math>.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>positive <em><strong>AND</strong> </em>more moles «of gas» in products ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>4</mn><mo>×</mo><mn>188</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mo>×</mo><mn>213</mn><mo>.</mo><mn>8</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>1</mn><mo>×</mo><mo>»</mo><mn>270</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <em><strong>AND <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>5</mn><mo>×</mo><mn>205</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math></strong></em> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>∆</mo><msup><mi>S</mi><mo>⦵</mo></msup><mo>=</mo><mn>4</mn><mo>(</mo><mn>188</mn><mo>.</mo><mn>8</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>+</mo><mn>3</mn><mo>(</mo><mn>213</mn><mo>.</mo><mn>8</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>–</mo><mo>[</mo><mn>1</mn><mo>(</mo><mn>270</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>+</mo><mn>5</mn><mo>(</mo><mn>205</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>]</mo><mo>=</mo><mo>»</mo><mn>102</mn><mo>«</mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi mathvariant="normal">T</mi><mo>=</mo><mn>5</mn><mo>+</mo><mn>273</mn><mo>=</mo><mo>»</mo><mn>278</mn><mo> </mo><mi mathvariant="normal">K</mi></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msup><mi>ΔG</mi><mo>⦵</mo></msup><mo>=</mo><mo>−</mo><mn>2043</mn><mo> </mo><mi>kJ</mi><mo>−</mo><mo>(</mo><mn>278</mn><mo> </mo><mi mathvariant="normal">K</mi><mo>×</mo><mn>0</mn><mo>.</mo><mn>102</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>=</mo><mo>»</mo><mo>−</mo><mn>2071</mn><mo> </mo><mo>«</mo><mi>kJ</mi><mo>»</mo></math> ✔</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates had difficulty determining the number and type of bonds broken or formed and&nbsp;consequently this was the part of question 3 that was most poorly attempted. Those that could identify&nbsp;these bonds performed the calculations correctly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Enthalpy calculations using enthalpy of formation data were generally well done.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most knew that entropy increased however some lost the mark by not including an explanation based&nbsp;on increase number of mol of gaseous products.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Calculating ΔS<sup>ө</sup>, like most other calculations, was well done.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ΔG<sup>ө</sup> calculations were also well done, with some not seeing that specific units were to be used.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Millerite, a nickel sulfide mineral, is an important source of nickel. The first step in extracting&nbsp;nickel is to roast the ore in air.</p>
</div>

<div class="specification">
<p>The reaction for the formation of liquid tetracarbonylnickel is shown below:</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{Ni(s)}} + 4{\text{CO(g)}} \to {\text{Ni(CO}}{{\text{)}}_4}{\text{(l)}}">
  <mrow>
    <mtext>Ni(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <mtext>CO(g)</mtext>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mn>4</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the oxidation of nickel(II) sulfide to nickel(II) oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nickel obtained from another ore, nickeliferous limonite, is contaminated with iron. Both nickel and iron react with carbon monoxide gas to form gaseous complexes, tetracarbonylnickel, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Ni(CO}}{{\text{)}}_{\text{4}}}{\text{(g)}}">
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>, and pentacarbonyliron, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Fe(CO}}{{\text{)}}_{\text{5}}}{\text{(g)}}">
  <mrow>
    <mtext>Fe(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>. Suggest why the nickel can be separated from the iron successfully using carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {S^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>S</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span>, of the reaction, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{J}}\,{{\text{K}}^{ - 1}}">
  <mrow>
    <mtext>J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>, using the values given.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>H</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> in kJ.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to (c)(i) and (c)(ii), to determine the temperature, in °C, at which the decomposition of liquid tetracarbonylnickel to nickel and carbon monoxide becomes favourable.</p>
<p><br>(If you did not get answers to (c)(i) and (c)(ii), use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 500{\text{ J}}\,{{\text{K}}^{ - 1}}">
  <mo>−</mo>
  <mn>500</mn>
  <mrow>
    <mtext> J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 200{\text{ kJ}}">
  <mo>−</mo>
  <mn>200</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
</math></span> respectively but these are not the correct answers.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why experiments involving tetracarbonylnickel are very hazardous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{2NiS(s)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2NiO(s)}} + {\text{2S}}{{\text{O}}_{\text{2}}}{\text{(g)}}">
  <mrow>
    <mtext>2NiS(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>2NiO(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2S</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>formation of «gaseous» pentacarbonyliron is slower<br><em><strong>OR</strong></em><br>«gaseous» complexes form at different rates<br><em><strong>OR</strong></em><br>gases have different rates of diffusion «due to difference in masses»<br><em><strong>OR</strong></em><br>difference in thermal stability of «gaseous» complexes<br><em><strong>OR</strong></em><br>difference in boiling points of «gaseous» complexes<br><em><strong>OR</strong></em><br>difference in solubility of «gaseous» complexes<br><em><strong>OR</strong></em><br>difference in surface affinity «onto solid absorbent»<br><em><strong>OR</strong></em><br>difference in chemical properties of «gaseous» complexes</p>
<p> </p>
<p><em>Accept any other valid answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {S_{{\text{RHS}}}^\theta  = 313.4{\text{ }}\ll {\text{J}}\,{{\text{K}}^{ - 1}}\gg } ">
  <mo>∑</mo>
  <mrow>
    <msubsup>
      <mi>S</mi>
      <mrow>
        <mrow>
          <mtext>RHS</mtext>
        </mrow>
      </mrow>
      <mi>θ</mi>
    </msubsup>
    <mo>=</mo>
    <mn>313.4</mn>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mo>≪</mo>
    <mrow>
      <mtext>J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>≫</mo>
  </mrow>
</math></span><br><em><strong>AND</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {S_{{\text{LHS}}}^\theta  = \ll (4 \times 197.6) + 29.9{\text{ J}}\,{{\text{K}}^{ - 1}} = \gg {\text{ }}820.3{\text{ }}\ll {\text{J}}\,{{\text{K}}^{ - 1}}\gg } ">
  <mo>∑</mo>
  <mrow>
    <msubsup>
      <mi>S</mi>
      <mrow>
        <mrow>
          <mtext>LHS</mtext>
        </mrow>
      </mrow>
      <mi>θ</mi>
    </msubsup>
    <mo>=≪</mo>
    <mo stretchy="false">(</mo>
    <mn>4</mn>
    <mo>×</mo>
    <mn>197.6</mn>
    <mo stretchy="false">)</mo>
    <mo>+</mo>
    <mn>29.9</mn>
    <mrow>
      <mtext> J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>=≫</mo>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mn>820.3</mn>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mo>≪</mo>
    <mrow>
      <mtext>J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>≫</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {S^\theta }\ll  = \sum {S_{{\text{RHS}}}^\theta  - \sum {S_{{\text{LHS}}}^\theta  = } {\text{ }}313.4 - 820.3\gg  =  - 506.9{\text{ }}\ll {\text{J}}\,{{\text{K}}^{ - 1}}\gg } ">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>S</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>≪=</mo>
  <mo>∑</mo>
  <mrow>
    <msubsup>
      <mi>S</mi>
      <mrow>
        <mrow>
          <mtext>RHS</mtext>
        </mrow>
      </mrow>
      <mi>θ</mi>
    </msubsup>
    <mo>−</mo>
    <mo>∑</mo>
    <mrow>
      <msubsup>
        <mi>S</mi>
        <mrow>
          <mrow>
            <mtext>LHS</mtext>
          </mrow>
        </mrow>
        <mi>θ</mi>
      </msubsup>
      <mo>=</mo>
    </mrow>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mn>313.4</mn>
    <mo>−</mo>
    <mn>820.3</mn>
    <mo>≫=</mo>
    <mo>−</mo>
    <mn>506.9</mn>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mo>≪</mo>
    <mrow>
      <mtext>J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>≫</mo>
  </mrow>
</math></span></p>
<p> </p>
<p><em>Award [2] for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H^\theta }\ll  =  - 633.0 - 4 \times ( - 110.5)\gg  =  - 191{\text{ }}\ll kJ\gg ">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>H</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>≪=</mo>
  <mo>−</mo>
  <mn>633.0</mn>
  <mo>−</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>110.5</mn>
  <mo stretchy="false">)</mo>
  <mo>≫=</mo>
  <mo>−</mo>
  <mn>191</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mi>k</mi>
  <mi>J</mi>
  <mo>≫</mo>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«when» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta G = 0">
  <mi mathvariant="normal">Δ</mi>
  <mi>G</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> «forward and backward reactions are equally favourable»</p>
<p>«when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta G = 0">
  <mi mathvariant="normal">Δ</mi>
  <mi>G</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{T}} = \frac{{\Delta H}}{{\Delta S}}">
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>H</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>S</mi>
    </mrow>
  </mfrac>
</math></span>», <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{T}} = \ll \frac{{191{\text{ kJ}}}}{{0.5069{\text{ kJ}}\,{{\text{K}}^{ - 1}}}} = \gg {\text{ }}377{\text{ }}\ll {\text{K}}\gg ">
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mo>=≪</mo>
  <mfrac>
    <mrow>
      <mn>191</mn>
      <mrow>
        <mtext> kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.5069</mn>
      <mrow>
        <mtext> kJ</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=≫</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>377</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>K</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p>«temperature =» 104 «°C»</p>
<p> </p>
<p><em>Award [3] for correct final answer. Use of –500 J K<sup>–1</sup> and –200 kJ gives 127 °C.</em></p>
<p><em>Award [2 max] for T &lt; 104 «°C».</em></p>
<p><em>Accept ΔG &lt; 0 and T &gt; 104 «°C».</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CO is toxic/poisonous<br><em><strong>OR</strong></em><br>Ni(CO)<sub>4</sub> decomposition deposits nickel in the lungs<br><em><strong>OR</strong></em><br>tetracarbonylnickel is toxic/poisonous<br><em><strong>OR</strong></em><br>tetracarbonylnickel is highly flammable «auto-ignition temperature of 60 °C»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">is in equilibrium with compound </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="247" height="82"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict the electron domain and molecular geometries around the </span><span class="fontstyle2"><strong>oxygen</strong> </span><span class="fontstyle0">atom of molecule </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">using VSEPR</span></p>
<p><span class="fontstyle0"><img src="" width="734" height="185"></span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of hybridization shown by the central carbon atom in molecule </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the number of sigma (</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">σ</mi></math></span><span class="fontstyle0">) and pi (<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">π</mi></math></span><span class="fontstyle0">) bonds around the central carbon atom in molecule </span><strong><span class="fontstyle3">B</span></strong>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The IR spectrum of one of the compounds is shown:</span></p>
<p><img src="" width="687" height="247"></p>
<p style="text-align: center;"><em><span class="fontstyle0">COBLENTZ SOCIETY. Collection © 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.</span></em></p>
<p style="text-align: left;"><span class="fontstyle0">Deduce, giving a reason, the compound producing this spectrum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><strong><span class="fontstyle2">B </span></strong><span class="fontstyle0">are isomers. Draw two other structural isomers with the formula <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><mi mathvariant="normal">O</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The equilibrium constant, </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math><span class="fontstyle0">, for the conversion of </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle3">B </span></strong><span class="fontstyle0">is </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> <span class="fontstyle0">in water at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, which compound, </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">or </span><strong><span class="fontstyle3">B</span></strong><span class="fontstyle0">, is present in greater concentration when equilibrium is reached.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard Gibbs free energy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle5"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold">mol</mi><mrow><mo mathvariant="bold">–</mo><mn mathvariant="bold">1</mn></mrow></msup></math></span><span class="fontstyle0">, for the reaction (</span><strong><span class="fontstyle5">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle5">B</span></strong><span class="fontstyle0">) at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene. Suggest the synthetic route including all the necessary reactants and steps.<br> </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene.</span></p>
<p><span class="fontstyle0">Suggest why propanal is a minor product obtained from the synthetic route in (g)(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Electron domain geometry: </em>tetrahedral<em> ✔</em></p>
<p><em>Molecular geometry: </em>bent/V-shaped<em> ✔</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>sp</mi><mn>2</mn></msup></math> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">σ</mi></math>-bonds: <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math><br><em><strong>AND</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">π</mi></math>-bonds: <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn></math> ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>B <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>=</mo><mi mathvariant="normal">O</mi></math> absorption/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1750</mn><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <br><em><strong>OR</strong></em> <br>B <em><strong>AND</strong></em> absence of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">O</mi><mo>–</mo><mi mathvariant="normal">H</mi><mo> </mo><mo>/</mo><mn>3200</mn><mo>−</mo><mn>3600</mn><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><mi>absorption</mi><mo>»</mo><mo> </mo></math>✔</p>
<p><em>Accept any value between <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn mathvariant="italic">1700</mn><mo mathvariant="italic">−</mo><mn mathvariant="italic">1750</mn><mo mathvariant="italic"> </mo><mi>c</mi><msup><mi>m</mi><mrow><mo mathvariant="italic">−</mo><mn mathvariant="italic">1</mn></mrow></msup></math></em>.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Accept any two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn>3</mn></msub><msub><mi>H</mi><mn>6</mn></msub><mi>O</mi></math> isomers except for propanone and propen-2-ol:</em></p>
<p><img src="">✔✔</p>
<p> </p>
<p><em>Penalize missing hydrogens in displayed structural formulas once only.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">B</mi></math> <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math> is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>/large ✔</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi mathvariant="normal">Δ</mi><msup><mi>G</mi><mi mathvariant="normal">Θ</mi></msup><mo>=</mo><mo>−</mo><mi>R</mi><mi>T</mi><mi>ln</mi><mi>K</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>00831</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><mo>(</mo><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi><mo>)</mo><mo> </mo><mo>(</mo><mi>ln</mi><mo> </mo><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup><mo>)</mo><mo>=</mo><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>−</mo><mn>46</mn><mo>«</mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="569" height="90"></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></math>/water «and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></math>» ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>CH</mi><mo>(</mo><mi>OH</mi><mo>)</mo><msub><mi>CH</mi><mn>3</mn></msub></math>/propan-2-ol ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">K</mi><mn>2</mn></msub><msub><mi>Cr</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>7</mn></msub></math>/«potassium» dichromate(VI) <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>KMnO</mi><mn>4</mn></msub></math>/«acidified potassium» manganate(VII) ✔</p>
<p><em>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><msup><mi>O</mi><mo mathvariant="italic">+</mo></msup></math>.</em></p>
<p> </p>
<p> </p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>primary carbocation «intermediate forms»<br><em><strong>OR</strong></em><br>minor product «of the water addition would be» propan-1-ol<br><em><strong>OR</strong></em><br>anti-Markovnikov addition of water ✔</p>
<p>primary alcohol/propan-1-ol oxidizes to an aldehyde/propanal ✔</p>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The majority of students got at least one of electron domain geometry or molecular geometry correct.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The vast majority of students could identify the hybridization around a central carbon atom.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The vast majority of students could identify BOTH sigma and pi bonds in a molecule.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates identified B having C = O and a peak at 1750.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A surprising number of candidates drew propanone here as an option, either failing to read the&nbsp;question or perhaps finding the structural formulae provided difficult to understand.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates identified B, the product, as being in greater concentration at equilibrium however&nbsp;some lost the mark because they did not include a reason.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could apply the formula for Gibbs free energy change, ΔG<sup>Θ</sup>, correctly however some&nbsp;did not get the units correct.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The mean mark was ⅔ for the required synthetic route. Some candidates failed to identify water as&nbsp;a reagent in the hydration reaction, or note that dichromate ion oxidation requires acidic conditions. This&nbsp;was also the question with most No Response.</p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question regarding the formation of a minor product was not well answered. Many candidates&nbsp;struggled to explain the formation of propan-1-ol and to then oxidize it to propanal.</p>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The Bombardier beetle sprays a mixture of hydroquinone and hydrogen peroxide to fight off&nbsp;predators. The reaction equation to produce the spray can be written as:</p>
<table style="width: 388.667px; margin-left: 120px;">
<tbody>
<tr>
<td style="width: 211px;">C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub>(aq) + H<sub>2</sub>O<sub>2</sub>(aq)</td>
<td style="width: 18px;">→</td>
<td style="width: 195.667px;">C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>(aq) + 2H<sub>2</sub>O(l)</td>
</tr>
<tr>
<td style="width: 211px;">hydroquinone</td>
<td style="width: 18px;">&nbsp;</td>
<td style="width: 195.667px;">quinone</td>
</tr>
</tbody>
</table>
<p style="text-align: center; padding-left: 120px;"><br>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogenation of propene produces propane. Calculate the standard entropy change, Δ<em>S<sup> </sup></em><sup>θ</sup>, for the hydrogenation of propene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy change, Δ<em>H </em><sup>θ</sup>, for the hydrogenation of propene is –124.4 kJ mol<sup>–1</sup>. Predict the temperature above which the hydrogenation reaction is not spontaneous.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>S<sup> </sup></em><sup>θ</sup> =» 270 «J K<sup>–1</sup> mol<sup>–1</sup>» – 267 «J K<sup>–1</sup> mol<sup>–1</sup>» – 131 «J K<sup>–1</sup> mol<sup>–1</sup>»</p>
<p>«Δ<em>S<sup> </sup></em><sup>θ</sup> =» –128 «J K<sup>–1</sup> mol<sup>–1</sup>»</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«non spontaneous if» Δ<em>G </em><sup>θ</sup> = Δ<em>H </em><sup>θ</sup> – <em>T</em>Δ<em>S </em><sup>θ</sup> &gt; 0<br><em><strong>OR</strong></em><br>Δ<em>H </em><sup>θ</sup> &gt; <em>T</em>Δ<em>S </em><sup>θ</sup></p>
<p>«<em>T</em> above» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - 124.4{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - {\text{1}}}}\gg }}{{ - 0.128{\text{ }}\ll {\text{kJ}}\,{{\text{K}}^{ - 1}}\,{\text{mo}}{{\text{l}}^{ - {\text{1}}}}\gg }} = ">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>124.4</mn>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo>≪</mo>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mrow>
              <mtext>1</mtext>
            </mrow>
          </mrow>
        </msup>
      </mrow>
      <mo>≫</mo>
    </mrow>
    <mrow>
      <mo>−</mo>
      <mn>0.128</mn>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mo>≪</mo>
      <mrow>
        <mtext>kJ</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mrow>
              <mtext>1</mtext>
            </mrow>
          </mrow>
        </msup>
      </mrow>
      <mo>≫</mo>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 972 «K»</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept 699 °C.</em></p>
<p><em>Do not award M2 for any negative T value.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Vanadium has a number of different oxidation states.</p>
</div>

<div class="specification">
<p>Electrode potentials for the reactions of vanadium and other species are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of vanadium in each of the following species.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.58.14.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/03.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that can reduce VO<sup>2+</sup>(aq) to V<sup>3+</sup>(aq) but no further.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that could convert <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{VO}}_2^ + {\text{(aq)}}">
  <msubsup>
    <mrow>
      <mtext>VO</mtext>
    </mrow>
    <mn>2</mn>
    <mo>+</mo>
  </msubsup>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
</math></span> to V<sup>2+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction between VO<sup>2+</sup>(aq) and V<sup>2+</sup>(aq) in acidic solution to form V<sup>3+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the spontaneity of this reaction by calculating a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> using the data given in (b) and in section 1 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{V_2}{O_5}:{\text{ }} + 5">
  <mrow>
    <msub>
      <mi>V</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mrow>
    <msub>
      <mi>O</mi>
      <mn>5</mn>
    </msub>
  </mrow>
  <mo>:</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{O^{2 + }}:{\text{ }} + 4">
  <mi>V</mi>
  <mrow>
    <msup>
      <mi>O</mi>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo>:</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
</math></span></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>penalize incorrect notation twice.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>SO<sub>3</sub>(aq)<br><em><strong>OR</strong></em><br>Pb(s)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Zn(s)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}{{\text{O}}^{2 + }}({\text{aq)}} + {{\text{V}}^{2 + }}({\text{aq)}} + {\text{2}}{{\text{H}}^ + }({\text{aq)}} \to {\text{2}}{{\text{V}}^{3 + }}({\text{aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}">
  <mrow>
    <mtext>V</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>V</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>V</mtext>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>aq)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
</math></span></p>
<p> </p>
<p><em>Accept equilibrium sign.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E^\theta }\ll  =  + 0.34{\text{ V}} - ( - 0.26{\text{ V}})\gg  =  + 0.60{\text{ }}\ll {\text{V}}\gg ">
  <mrow>
    <msup>
      <mi>E</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>≪=</mo>
  <mo>+</mo>
  <mn>0.34</mn>
  <mrow>
    <mtext> V</mtext>
  </mrow>
  <mo>−</mo>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>0.26</mn>
  <mrow>
    <mtext> V</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>≫=</mo>
  <mo>+</mo>
  <mn>0.60</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>V</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta } = \ll  - nF{E^\theta } =  - 9.65 \times {10^4}{\text{ C}}\,{\text{mo}}{{\text{l}}^{ - 1}} \times 0.60{\text{ J}}\,{{\text{C}}^{ - 1}} = \gg  - 57\,900{\text{ }}\ll {\text{J}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg / - 57.9{\text{ }}\ll {\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\gg ">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>=≪</mo>
  <mo>−</mo>
  <mi>n</mi>
  <mi>F</mi>
  <mrow>
    <msup>
      <mi>E</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>=</mo>
  <mo>−</mo>
  <mn>9.65</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mn>4</mn>
    </msup>
  </mrow>
  <mrow>
    <mtext> C</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>×</mo>
  <mn>0.60</mn>
  <mrow>
    <mtext> J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>=≫</mo>
  <mo>−</mo>
  <mn>57</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>900</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
  <mrow>
    <mo>/</mo>
  </mrow>
  <mo>−</mo>
  <mn>57.9</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>kJ</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>mo</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p>spontaneous as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> is negative</p>
<p> </p>
<p><em>Do <strong>not</strong> award M3 as a stand-alone answer.</em></p>
<p><em>Accept “spontaneous” for M3 if answer given for M2 is negative.</em></p>
<p><em>Accept “spontaneous as </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{E^\theta }">
  <mrow>
    <msup>
      <mi>E</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span><em> is positive” for M3.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, reacts with thionyl chloride, SOCl<sub>2</sub>, according to the reaction&nbsp;below.</p>
<p style="text-align: center;">HOCH<sub>2</sub>CH<sub>2</sub>OH (l) + 2SOCl<sub>2</sub> (l) → ClCH<sub>2</sub>CH<sub>2</sub>Cl (l) + 2SO<sub>2</sub> (g) + 2HCl (g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change for this reaction using the following data.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change for this reaction using the following data.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard free energy change, Δ<em>G</em><sup>θ</sup>, for the above reaction is –103 kJ mol<sup>–1</sup> at 298 K.</p>
<p>Suggest why Δ<em>G</em><sup>θ</sup> has a large negative value considering the sign of Δ<em>H</em><sup>θ</sup> in part (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sup>θ</sup> = [–165.2 + 2(–296.9) + 2(–92.3)] – [–454.7 + 2(–245.7)]</p>
<p>«Δ<em>H</em><sup>θ </sup>= +»2.5 «kJ»</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1]</strong> for –2.5 «kJ».</em></p>
<p><em>Do <strong>not</strong> accept ECF for M2 if more than one error in M1.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>S</em><sup>θ </sup>= [208.5 + 2(248.1) + 2(186.8)] – [166.9 + 2(278.6)]»</p>
<p>«Δ<em>S</em><sup>θ </sup>= +» 354.2 «J K<sup>–1</sup> mol<sup>–1</sup>»</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«3 moles of» liquid to «4 moles of» gas</p>
<p><em><strong>OR</strong></em></p>
<p>«large» positive Δ<em>S</em></p>
<p><em><strong>OR</strong></em></p>
<p>«large» increase in entropy</p>
<p><em>T</em>Δ<em>S</em> &gt; Δ<em>H</em> «at the reaction temperature»</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about ethene, C<sub>2</sub>H<sub>4</sub>, and ethyne, C<sub>2</sub>H<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne reacts with chlorine in a similar way to ethene. Formulate equations for the following reactions.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Under certain conditions, ethyne can be converted to benzene.</p>
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the reaction stated, using section 11 of the data booklet.</p>
<p style="text-align: center;">3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(g)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the following similar reaction, using Δ<em>H</em><sub>f</sub> values in section 12 of the data booklet.</p>
<p style="text-align: center;">3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(l)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, giving two reasons, the difference in the values for (c)(i) and (ii). If you did not obtain answers, use −475 kJ for (i) and −600 kJ for (ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, Δ<em>S</em><sup>Θ</sup>, in J K<sup>−1</sup>, for the reaction in (ii) using section 12 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, showing your working, the spontaneity of the reaction in (ii) at 25 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible Lewis structure for benzene is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_14.31.21.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/03.d"></p>
<p>State one piece of physical evidence that this structure is <strong>incorrect</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nickel/Ni <strong>«</strong>catalyst<strong>»</strong></p>
<p> </p>
<p>high pressure</p>
<p><strong><em>OR</em></strong></p>
<p>heat</p>
<p> </p>
<p><em>Accept these other catalysts: Pt, Pd, Ir, </em><em>Rh, Co, Ti.</em></p>
<p><em>Accept “high temperature” or a stated </em><em>temperature such as “150 </em><em>°</em><em>C”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_13.51.15.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/03.a.ii/M"></p>
<p> </p>
<p><em>Ignore square brackets and “n”.</em></p>
<p><em>Connecting line at end of carbons must </em><em>be shown.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ethyne:</em> C<sub>2</sub>H<sub>2</sub> + Cl<sub>2</sub> → CHClCHCl</p>
<p><em>benzene:</em> C<sub>6</sub>H<sub>6</sub> + Cl<sub>2</sub> → C<sub>6</sub>H<sub>5</sub>Cl + HCl</p>
<p> </p>
<p><em>Accept “C</em><sub><em>2</em></sub><em>H</em><sub><em>2</em></sub><em>Cl</em><sub><em>2</em></sub><em>”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sup>Θ</sup> = bonds broken – bonds formed</p>
<p><strong>«</strong>Δ<em>H</em><sup>Θ</sup> = 3(C≡C) – 6(C<img src="">C)<sub>benzene</sub> / 3 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 839 – 6 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 507 / 2517 – 3042 =<strong>»</strong> –525 <strong>«</strong>kJ<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for “+525 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>”.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for:</em></p>
<p><strong><em>«</em></strong><em>Δ</em><em>H<sup>Θ</sup></em><em> =</em><em> </em><em>3(C≡</em><em>C) –</em><em> </em><em>3(C</em><em>–</em><em>C) –</em><em> </em><em>3(C</em><em>=</em><em>C) / </em><em>3 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span></em><em> </em><em>839 –</em><em> </em><em>3 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span></em><em> </em><em>346 –</em><em> </em><em>3 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span></em><em> </em><em>614 / 2517 </em><em>– </em><em>2880 </em><em>=</em><strong><em>» </em></strong><em>–</em><em>363 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sup>Θ</sup> = ΣΔ<em>H</em><sub>f</sub> (products) – ΣΔ<em>H</em><sub>f</sub> (reactants)</p>
<p><strong>«</strong>Δ<em>H</em><sup>Θ</sup> = 49 kJ – 3 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 228 kJ =<strong>»</strong> –635 <strong>«</strong>kJ<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for “+635 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sub>f</sub> values are specific to the compound</p>
<p><strong><em>OR</em></strong></p>
<p>bond enthalpy values are averages <strong>«</strong>from many different compounds<strong>»</strong></p>
<p> </p>
<p>condensation from gas to liquid is exothermic</p>
<p> </p>
<p><em>Accept “benzene is in two different </em><em>states </em><strong><em>«</em></strong><em>one liquid the other gas</em><strong><em>»</em></strong><em>” </em><em>for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>Δ<em>S</em><sup>Θ</sup> = 173 – 3 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 201 =<strong>»</strong> –430<strong> «</strong>J K<sup>–1</sup><strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>T = <strong>«</strong>25 + 273 =<strong>» </strong>298 <strong>«</strong>K<strong>»</strong></p>
<p>Δ<em>G</em><sup>ϴ</sup> <strong>«</strong>= –635 kJ – 298 K × (–0.430 kJ K<sup>–1</sup>)<strong>» </strong>= –507 kJ</p>
<p>Δ<em>G</em><sup>ϴ</sup> &lt; 0 <strong><em>AND </em></strong>spontaneous</p>
<p> </p>
<p><em>ΔG</em><sup><em>ϴ </em></sup><em>&lt; 0 may be inferred from the </em><em>calculation.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equal C–C bond <strong>«</strong>lengths/strengths<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>regular hexagon</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>all<strong>» </strong>C–C have bond order of 1.5</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>all<strong>» </strong>C–C intermediate between single and double bonds</p>
<p> </p>
<p><em>Accept “all C</em><em>–</em><em>C</em><em>–</em><em>C bond angles are </em><em>equal”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Enthalpy changes depend on the number and type of bonds broken and formed.</p>
</div>

<div class="specification">
<p>Enthalpy changes depend on the number and type of bonds broken and formed.</p>
</div>

<div class="specification">
<p>The table lists the standard enthalpies of formation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\text{f}}^\Theta ">
  <mi mathvariant="normal">Δ<!-- Δ --></mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mtext>f</mtext>
    </mrow>
    <mi mathvariant="normal">Θ<!-- Θ --></mi>
  </msubsup>
</math></span>, for some of the species in the&nbsp;reaction above.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_08.21.04.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/04.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen gas can be formed industrially by the reaction of natural gas with steam.</p>
<p>                                          CH<sub>4</sub>(g) + H<sub>2</sub>O(g) → 3H<sub>2</sub>(g) + CO(g)</p>
<p>Determine the enthalpy change, Δ<em>H, </em>for the reaction, in kJ, using section 11 of the data booklet.</p>
<p>Bond enthalpy for C≡O: 1077 kJ mol<sup>−1</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why no value is listed for H<sub>2</sub>(g).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Δ<em>H</em><sup>Θ</sup>, in kJ, for the reaction using the values in the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The table lists standard entropy, <em>S</em><sup>Θ</sup>, values.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_15.07.35.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/05.c"></p>
<p>Calculate the standard entropy change for the reaction, Δ<em>S</em><sup>Θ</sup>, in J K<sup>−1</sup>.</p>
<p>CH<sub>4</sub>(g) + H<sub>2</sub>O(g) → 3H<sub>2</sub>(g) + CO(g)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard free energy change, Δ<em>G</em><sup>Θ</sup>, in kJ, for the reaction at 298 K using your answer to (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature, in K, above which the reaction becomes spontaneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>bonds broken:</em> 4(C–H) + 2(H–O)/4(414) + 2(463)/2582 <strong>«</strong>kJ<strong>»</strong></p>
<p><em>bonds made: </em>3(H–H) + C≡O/3(436) + 1077/2385 <strong>«</strong>kJ<strong>»</strong></p>
<p>Δ<em>H </em><strong>«</strong>= ΣBE<sub>(bonds broken)</sub> – ΣBE<sub>(bonds made)</sub> = 2582 – 2385<strong>» =</strong> <strong>«</strong>+<strong>» </strong>197 <strong>«</strong>kJ<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[2 max] </em></strong><em>for –197 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>.</em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\text{f}}^\Theta ">
  <mi mathvariant="normal">Δ</mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mtext>f</mtext>
    </mrow>
    <mi mathvariant="normal">Θ</mi>
  </msubsup>
</math></span> for any element = 0 <strong>«</strong>by definition<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>no energy required to form an element <strong>«</strong>in its stable form<strong>» </strong>from itself</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ΔH</em><sup>Θ</sup> <strong>« =</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {\Delta H_{\text{f}}^\Theta } ">
  <mo>∑</mo>
  <mrow>
    <mi mathvariant="normal">Δ</mi>
    <msubsup>
      <mi>H</mi>
      <mrow>
        <mtext>f</mtext>
      </mrow>
      <mi mathvariant="normal">Θ</mi>
    </msubsup>
  </mrow>
</math></span><sub>(products)</sub> – <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {\Delta H_{\text{f}}^\Theta } ">
  <mo>∑</mo>
  <mrow>
    <mi mathvariant="normal">Δ</mi>
    <msubsup>
      <mi>H</mi>
      <mrow>
        <mtext>f</mtext>
      </mrow>
      <mi mathvariant="normal">Θ</mi>
    </msubsup>
  </mrow>
</math></span><sub>(reactants)</sub> = –111 + 0 – [–74.0 + (–242)]<strong>»</strong></p>
<p>= <strong>«</strong>+<strong>» </strong>205 <strong>«</strong>kJ<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>Δ<em>S</em><sup>Θ</sup> = Σ<em>S</em><sup>Θ</sup><sub>products</sub> – Σ<em>S</em><sup>Θ</sup><sub>reactants</sub> = 198 + 3 × 131 – (186 + 189) =<strong>» «</strong>+<strong>» </strong>216 <strong>«</strong>J K<sup>–1</sup><strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>Δ<em>G</em><sup>Θ</sup> = Δ<em>H</em><sup>Θ</sup> – TΔ<em>S</em><sup>Θ</sup> = 205 kJ – 298 K × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{216}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>216</mn>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span> kJ K<sup>–1</sup> =<strong>» «</strong>+<strong>» </strong>141 <strong>«</strong>kJ<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>Δ<em>H</em><sup>Θ</sup> = TΔ<em>S</em><sup>Θ</sup><strong>»</strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{T}} = \frac{{\Delta {H^\Theta }}}{{\Delta {S^\Theta }}} = \frac{{205000{\text{ J}}}}{{216{\text{ J }}{{\text{K}}^{ - 1}}}}">
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>H</mi>
          <mi mathvariant="normal">Θ</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>S</mi>
          <mi mathvariant="normal">Θ</mi>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>205000</mn>
      <mrow>
        <mtext> J</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>216</mn>
      <mrow>
        <mtext> J </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span><strong>»</strong></p>
<p><strong>«</strong>T =<strong>» </strong>949 <strong>«</strong>K<strong>»</strong></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>award a mark for negative value </em><em>of T.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen and iodine react to form hydrogen iodide.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)</p>
</div>

<div class="specification">
<p>The following experimental data was obtained.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Consider the reaction of hydrogen with solid iodine.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(s) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)&nbsp; &nbsp; &nbsp;&Delta;<em>H</em><sup>⦵</sup>&nbsp;= +53.0&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the order of reaction with respect to hydrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> conditions necessary for a successful collision between reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change of reaction, Δ<em>S</em><sup>⦵</sup>, in J K<sup>−1</sup> mol<sup>−1</sup>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how the value of the ΔS<sup>⦵</sup><sub>reaction</sub> would be affected if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> (g) were used as a reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>−1</sup>, for the reaction at 298 K. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the equilibrium constant, <em>K</em><sub>c</sub>, for this reaction at 298 K. Use your answer to (d)(iii) and sections 1 and 2 of the data booklet.</p>
<p>(If you did not obtain an answer to (d)(iii) use a value of 2.0 kJ mol<sup>−1</sup>, although this is not the correct answer).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>first order ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rate=<em>k</em> [H<sub>2</sub>] [<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>]</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>3</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>20</mn></math> ✔</p>
<p>mol<sup>–1</sup> dm<sup>3</sup> s<sup>–1</sup> ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em> ≥ <em>E</em><sub>a</sub> <em><strong>AND</strong> </em>appropriate «collision» geometry/correct orientation ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub><mo>=</mo><mfrac><msup><mfenced open="[" close="]"><mi>HI</mi></mfenced><mn>2</mn></msup><mrow><mfenced open="[" close="]"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub></mfenced><mfenced open="[" close="]"><msub><mi mathvariant="normal">I</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> = 2 × 206.6 – (130.6 + 116.1) =» 166.5 «J K<sup>–1</sup> mol<sup>–1</sup>» ✔</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> lower/less positive <em><strong>AND</strong> </em>same number of moles of gas</p>
<p><em><strong>OR</strong></em></p>
<p>Δ<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><msup><mi>S</mi><mo>⦵</mo></msup><mtext>reaction</mtext></msub></math> lower/less positive <em><strong>AND</strong> </em>a solid has less entropy than a gas ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup> = 53.0 kJ mol<sup>–1</sup> – (298K × 0.1665 kJ K<sup>–1</sup> mol<sup>–1</sup>) =» 3.4 «kJ mol<sup>–1</sup>» ✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«ln <em>K</em><sub>c</sub>= – (3.4 × 10<sup>3</sup> J mol<sup>–1</sup> /8.31 J K<sup>–1</sup> mol<sup>–1</sup> × 298 K)» = –1.37 ✔</p>
<p>«<em>K</em><sub>c</sub> =» 0.25 ✔</p>
<p><em>Award <strong>[2]</strong> for “0.45” for the use of 2.0 kJ mol<sup>–1</sup> for ΔG</em><sup>⦵</sup><em>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>4(a)(i)-(iii): Deduction of rate orders and rate expression were very well done overall, with occasional errors in the units of the rate constant, but clearly among the best answered questions.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well answered by all but very weak candidates. Some teachers thought this should be a 2-mark question but actually the marks were generally missed when students mentioned both required conditions but failed to refer the necessary energy to <em>E<sub>a</sub></em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>One of the best answered questions.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ΔS was well calculated in general except for some inverted calculations or failure to consider the ratios of the reactants.<br><br></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates confused the entropy change in this situation with absolute entropy of a solid and gas, or having realised that entropy would decrease lacked clarity in their explanations and lost the mark.</p>
<p>4(d)(ii)-(d)(iv): marks were lost due to inconsistency of units throughout, i.e., not because answers were given in different units to those required, but because candidates failed to convert all data to the same unit for calculations.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>

<div class="specification">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>

<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the change in entropy, Δ<em>S</em>, in J K<sup>−1</sup>, for the decomposition of calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature, in K, at which the decomposition of calcium carbonate becomes spontaneous, using b(i), b(ii) and section 1 of the data booklet.</p>
<p>(If you do not have answers for b(i) and b(ii), use Δ<em>H</em> = 190 kJ and Δ<em>S</em> = 180 J K<sup>−1</sup>, but these are not the correct answers.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch an energy profile for the decomposition of calcium carbonate based on your answer to b(i), labelling the axes and activation energy, <em>E</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how adding a catalyst to the reaction would impact the enthalpy change of reaction, Δ<em>H</em>, and the activation energy, <em>E</em><sub>a</sub>.</p>
<p><img src="" width="679" height="174"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2 </sub>(aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in d(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>CaCO3</sub> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>555</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>11</mn><mo>.</mo><mn>09</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 5.55 «mol» ✓</p>
<p>«<em>V</em> = 5.55 mol × 22.7 dm<sup>3</sup> mol<sup>−1</sup> =» 126 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept method using pV = nRT to obtain the volume with p as either 100 kPa (126 dm<sup>3</sup>) or 101.3 kPa (125 dm<sup>3</sup>).</em></p>
<p><em>Do not penalize use of 22.4 dm<sup>3</sup> mol<sup>–1</sup> to obtain the volume (124 dm<sup>3</sup>).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>ΔH</em> =» (−635 «kJ» – 393.5 «kJ») – (−1207 «kJ») ✓</p>
<p>«<em>ΔH</em> = + » 179 «kJ» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [1 max]</strong> for −179 kJ.</em></p>
<p><em>Ignore an extra step to determine total enthalpy change in kJ: 179 kJ mol<sup>-1</sup> x 5.55 mol = 993 kJ.</em></p>
<p><em>Award <strong>[2]</strong> for an answer in the range 990 - 993« kJ».</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>S</em> = (40 J K<sup>−1</sup> + 214 J K<sup>−1</sup>) − (93 J K<sup>−1</sup>) =» 161 «J K<sup>−1</sup>» ✓</p>
<p><em><br>Ignore an extra step to determine total entropy change in JK<sup>–1</sup>: 161 J mol<sup>–1</sup>K<sup>–1</sup> x 5.55 mol = 894 «J mol<sup>–1</sup>K<sup>–1</sup>»</em></p>
<p><em>Award <strong>[1]</strong> for 894 «J mol<sup>–1</sup>K<sup>–1</sup>».</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«spontaneous» if Δ<em>G</em> = Δ<em>H</em> − <em>T</em>Δ<em>S</em> &lt; 0<br><em><strong>OR</strong></em><br>Δ<em>H</em> &lt; <em>T</em>Δ<em>S</em> ✓</p>
<p>«<em>T</em> &gt;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>179</mn><mo> </mo><mi>kJ</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>16</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>=» 1112 «K» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept “1056 K” if both of the incorrect values are used to solve the problem.</em></p>
<p><em>Do <strong>not</strong> award M2 for any negative T value.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>endothermic sketch ✓</p>
<p>x-axis labelled “extent of reaction/progress of reaction/reaction coordinate/reaction pathway” <em><strong>AND</strong> </em>y-axis labelled “potential energy/energy/enthalpy✓</p>
<p>activation energy/<em>E</em><sub>a</sub> ✓</p>
<p><img src=""></p>
<p><em><br>Do <strong>not</strong> accept “time” for x-axis.</em></p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em> same <em><strong>AND</strong> </em>lower <em>E</em><sub>a</sub> ✓</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Ca(OH)<sub>2 </sub>(aq) + 2HCl (aq) → 2H<sub>2</sub>O (l) + CaCl<sub>2 </sub>(aq) ✓</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>HCl</sub> = 0.0350 dm<sup>3</sup> × 0.025 mol dm<sup>−3</sup> =» 0.00088 «mol»</p>
<p><em><strong>OR</strong></em><br><em>n</em><sub>Ca(OH)2</sub> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math> <em>n</em><sub>HCl</sub>/0.00044 «mol» ✓</p>
<p><br>«<em>V</em> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mstyle displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>×</mo><mn>0</mn><mo>.</mo><mn>00088</mn><mo> </mo><mi>mol</mi></mstyle><mrow><mn>0</mn><mo>.</mo><mn>015</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math> =» 0.029 «dm<sup>3</sup>» ✓</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for 0.058 «dm<sup>3</sup>».</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1:</strong></em></p>
<p>[OH<sup>−</sup>] = « 2 × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«[H<sup>+</sup>] =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><mn>0466</mn></mrow></mfrac></math> = 2.15 × 10<sup>−13 </sup>mol dm<sup>−3</sup>»</p>
<p>pH = « −log (2.15 × 10−13) =» 12.668 ✓</p>
<p>&nbsp;</p>
<p><em><strong>Alternative 2:</strong></em></p>
<p>[OH<sup>−</sup>] =« 2 × 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> =» 0.0466 «mol dm<sup>−3</sup>» ✓</p>
<p>«pOH = −log (0.0466) = 1.332»</p>
<p>pH = «14.000 – pOH = 14.000 – 1.332 =» 12.668 ✓</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for pH =12.367.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em><sub>Ca(OH)2</sub> = 2.41 dm<sup>3</sup> × 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> =» 0.0562 «mol» <em><strong>AND</strong></em></p>
<p>«<em>n</em><sub>CO2</sub> =<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>0</mn><mo>.</mo><mn>750</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></mrow><mrow><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></mfrac></math>=» 0.0330 «mol» ✓</p>
<p>«CO<sub>2</sub> is the limiting reactant»</p>
<p>«<em>m</em><sub>CaCO3</sub> = 0.0330 mol × 100.09 g mol<sup>−1</sup> =» 3.30 «g» ✓</p>
<p>&nbsp;</p>
<p><em>Only award ECF for M2 if limiting reagent is used.</em></p>
<p><em>Accept answers in the range 3.30 - 3.35 «g».</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>85</mn></mrow><mrow><mn>3</mn><mo>.</mo><mn>30</mn></mrow></mfrac></math> ×&nbsp;100 =» 86.4 «%» ✓</p>
<p>&nbsp;</p>
<p><em>Accept answers in the range 86.1-86.4 «%».</em></p>
<p><em>Accept “71.3 %” for using the incorrect given value of 4.00 g.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«add» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO <em><strong>AND</strong> </em>to «acidic» water/river/lake/soil<br><em><strong>OR</strong></em><br>«use» Ca(OH)<sub>2</sub>/CaCO<sub>3</sub>/CaO in scrubbers «to prevent release of acidic pollution» ✓</p>
<p>&nbsp;</p>
<p><em>Accept any correct name for any of the calcium compounds listed.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol and methanoic acid are important industrial products.</p>
</div>

<div class="specification">
<p>Ethanol is used as a fuel.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the chemical equation for the complete combustion of ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in enthalpy, Δ<em>H</em>, in kJ, when 56.00 g of ethanol is burned. Use section 13 in the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oxidation of ethanol with potassium dichromate, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, can form two different organic products. Determine the names of the organic products and the methods used to isolate them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation and name the organic product when ethanol reacts with methanoic acid.</p>
<p><img src="" width="667" height="189"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the titration curve of methanoic acid with sodium hydroxide, showing how you would determine methanoic acid p<em>K</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify an indicator that could be used for the titration in 5(d)(i), using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration of methanoic acid in a solution of pH = 4.12. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify if aqueous solutions of the following salts are acidic, basic, or neutral.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH<sub>2</sub>OH (l) + 3O<sub>2 </sub>(g) → 2CO<sub>2 </sub>(g) + 3H<sub>2</sub>O (g) ✓</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>n</em> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>56</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>46</mn><mo>.</mo><mn>08</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math> =» 1.215 «mol» ✓</p>
<p>«1.215mol × (−1367 kJ mol<sup>−1</sup>) =» −1661 «kJ» ✓</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for “«+»1661 «kJ»”.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethanal <em><strong>AND</strong> </em>distillation ✓</p>
<p>ethanoic acid <em><strong>AND</strong></em> reflux «followed by distillation» ✓</p>
<p><em><br>Award <strong>[1]</strong> for both products <strong>OR</strong> both methods.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>CH<sub>3</sub>CH<sub>2</sub>OH + HCOOH <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> HCOOCH<sub>2</sub>CH<sub>3</sub> + H<sub>2</sub>O ✓</p>
<p><em>Product name:</em><br>ethyl methanoate ✓</p>
<p><em><br>Accept equation without equilibrium arrows.</em></p>
<p><em>Accept equation with molecular formulas (C<sub>2</sub>H<sub>6</sub>O + CH<sub>2</sub>O<sub>2</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math>&nbsp;C<sub>3</sub>H<sub>6</sub>O<sub>2</sub> + H<sub>2</sub>O) only if product name is correct.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="328" height="256"></p>
<p>increasing S-shape pH curve ✓</p>
<p>p<em>K</em><sub>a</sub>: pH at half neutralization/equivalence ✓</p>
<p><em><br>M1: Titration curve must show buffer region at pH &lt;7 and equivalence at pH &gt;7.</em></p>
<p><em>Ignore other parts of the curve, i.e., before buffer region, etc.</em></p>
<p><em>Accept curve starting from where two axes meet as pH scale is not specified.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>phenolphthalein<br><em><strong>OR</strong></em><br>phenol red ✓</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1:</strong></em><br><em>K</em><sub>a</sub> =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced><mfenced open="[" close="]"><msup><mi>HCOO</mi><mo>-</mo></msup></mfenced></mrow><mfenced open="[" close="]"><mi>HCOOH</mi></mfenced></mfrac></math><br><em><strong>OR</strong></em><br>[HCOOH] =&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msup><mfenced><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>12</mn></mrow></msup></mfenced><mn>2</mn></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn><mo>.</mo><mn>75</mn></mrow></msup></mfrac></math>✓</p>
<p>«[HCOOH] =» 3.24 × 10<sup>−5</sup> «mol dm<sup>−3</sup>» ✓</p>
<p>&nbsp;</p>
<p><em><strong>Alternative 2:</strong></em><br>«pH = p<em>K</em><sub>a</sub> + log <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mfenced open="[" close="]"><msup><mi>HCOO</mi><mo>-</mo></msup></mfenced><mfenced open="[" close="]"><mi>HCOOH</mi></mfenced></mfrac></math>»<br>4.12 = 3.75 + log<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>12</mn></mrow></msup><mfenced open="[" close="]"><mi>HCOOH</mi></mfenced></mfrac></math> ✓</p>
<p>«[HCOOH] =» 3.24 × 10<sup>−5</sup> «mol dm<sup>−3</sup>» ✓</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Sodium methanoate:</em> basic</p>
<p><em>Ammonium chloride:</em> acidic</p>
<p><em>Sodium nitrate:</em> neutral ✓ ✓</p>
<p><em><br>Award <strong>[2]</strong> for three correct.</em></p>
<p><em>Award <strong>[1]</strong> for two correct.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br></span></p>
<p><span style="background-color: #ffffff;">«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires</em>:<br>«delocalized» electrons «flow» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math alttext="\frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrode» 3 <em><strong>AND</strong> </em>oxygen/O<sub>2</sub> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept chlorine/Cl<sub>2</sub>.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>O (l) → 4H<sup>+</sup> (aq) + O<sub>2</sub> (g) + 4e<sup>–</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept 2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup>.<br>Accept 4OH<sup>−</sup> → 2H<sub>2</sub>O + O<sub>2</sub> + 4e<sup>−</sup></span></em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enthalpy of solution = lattice enthalpy + enthalpies of hydration «of Cu<sup>2+</sup> and Cl<sup>−</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;">«+2824 kJ mol<sup>–1</sup> − 2161 kJ mol<sup>–1</sup> − 2(359 kJ mol<sup>–1</sup>) =» −55 «kJ mol<sup>–1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept enthalpy cycle. <br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E</em><sup>θ</sup> = «+0.52 – 0.15 = +» 0.37 «V» ✔</span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">spontaneous <em><strong>AND</strong> E</em><sup>θ</sup> positive ✔</span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><sup>θ</sup> = «−<em>nFE</em> = −1 mol × 96 500 C Mol<sup>–1</sup> × 0.37 V=» −36 000 J/−36 kJ ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “−18 kJ mol<sup>–1</sup> «per mole of Cu<sup>+</sup>»”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept values of n other than 1.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Apply SF in this question.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept J/kJ or J mol<sup>−1</sup>/kJ mol<sup>−1</sup> for units.</span></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2 mol (aq) → 1 mol (aq) <em><strong>AND</strong> </em>decreases ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “solid formed from aqueous solution <strong>AND</strong> decreases”.<br>Do <strong>not</strong> accept 2 mol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> 1 mol without (aq).</span></em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> </span><span style="background-color: #ffffff;">&lt; 0</span><span style="background-color: #ffffff;"> <strong>AND</strong> </span><span style="background-color: #ffffff;">Δ</span><span style="background-color: #ffffff;"><em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span></span><span style="background-color: #ffffff;"> &lt; 0</span><em><span style="background-color: #ffffff;"><br><strong>OR</strong><br></span></em><span style="background-color: #ffffff;">Δ<em>G</em></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> + <em>T</em>Δ<em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 ✔</span></p>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>T</em>Δ<em>S</em> more negative «reducing spontaneity» <em><strong>AND</strong> </em>stability increases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept calculation showing non-spontaneity at 433 K.</span></em></p>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ligands cause» d-orbitals «to» split ✔</span></p>
<p><span style="background-color: #ffffff;">light absorbed as electrons transit to higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light absorbed as electrons promoted ✔</span></p>
<p><span style="background-color: #ffffff;">energy gap corresponds to «orange» light in visible region of spectrum ✔</span></p>
<p><span style="background-color: #ffffff;">colour observed is complementary ✔</span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">full «3»d sub-level/orbitals<br><em><strong>OR</strong></em><br>no d–d transition possible «and therefore no colour» ✔</span></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">octahedral <em><strong>AND</strong> </em>90° «180° for axial» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept square-based bi-pyramid.</span></em></p>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any <strong>two </strong>of:</em><br>ligand/chloride ion Lewis base <em><strong>AND</strong> </em>donates e-pair ✔<br>not Brønsted–Lowry base <em><strong>AND</strong> </em>does not accept proton/H<sup>+</sup> ✔<br>Lewis definition extends/broader than Brønsted–Lowry definition ✔</span></p>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Properties of elements and their compounds can be related to the position of the elements in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the decrease in atomic radius from Na to Cl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the radius of the sodium ion, Na<sup>+</sup>, is smaller than the radius of the oxide ion, O<sup>2−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show the relative values of the successive ionization energies of boron.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether Mn<sup>2+</sup> or Fe<sup>2+</sup> is likely to have a more exothermic enthalpy of hydration.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nuclear charge/number of protons/Z<sub>eff</sub> increases «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells/«outer» energy level/shielding ✔</p>
<p><em> </em></p>
<p><em>Accept “atomic number” for “number of protons”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>isoelectronic/same electronic configuration/«both» have 2.8 ✔</p>
<p>more protons in Na<sup>+</sup> ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Sketch showing:</em></p>
<p>largest increase between third and fourth ionization energies ✔</p>
<p>IE<sub>1</sub> &lt; IE<sub>2</sub> &lt; IE<sub>3</sub> &lt; IE<sub>4</sub> &lt; IE<sub>5</sub> ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Fe<sup>2+</sup> <em><strong>AND</strong> </em>smaller size/radius</p>
<p><em><strong>OR</strong></em></p>
<p>Fe<sup>2+</sup> <em><strong>AND</strong></em> higher charge density ✔</p>
<p> </p>
<p>stronger interaction with «polar» water molecules ✔</p>
<p> </p>
<p><em>M1 not needed for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about sodium and its compounds.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The Born-Haber cycle for sodium oxide is shown (not to scale).</span></p>
<p><span style="background-color: #ffffff;"><img src="images/3d.PNG" alt width="391" height="427"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Sodium peroxide is used in diving apparatus to produce oxygen from carbon dioxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Na<sub>2</sub>O<sub>2</sub> (s) + 2CO<sub>2</sub> (g) → 2Na<sub>2</sub>CO<sub>3</sub> (s) + O<sub>2</sub> (g)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Plot the relative values of the first four ionization energies of sodium.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why the alkali metals (group 1) have similar chemical properties.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the structure and bonding in solid sodium oxide.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate values for the following changes using section 8 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;"><br>ΔH<sub>atomisation</sub> (Na) = 107 kJ mol<sup>−1</sup><br>ΔH<sub>atomisation</sub> (O) = 249 kJ mol<sup>−1</sup></span></p>
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></span>O<sub>2</sub>(g) <span style="background-color: #ffffff;">→ </span>O<sup>2- </sup>(g):</p>
<p><span style="background-color: #ffffff;">Na (s) → Na<sup>+</sup> (g):</span></p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The standard enthalpy of formation of sodium oxide is −414 kJ mol<sup>−1</sup>. Determine the lattice enthalpy of sodium oxide, in kJ mol<sup>−1</sup>, using section 8 of the data booklet and your answers to (d)(i).</span></p>
<p><span style="background-color: #ffffff;"><br>(If you did not get answers to (d)(i), use +850 kJ mol<sup>−1</sup> and +600 kJ mol<sup>−1</sup> respectively, but these are not the correct answers.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Justify why K<sub>2</sub>O has a lower lattice enthalpy (absolute value) than Na<sub>2</sub>O.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write equations for the separate reactions of solid sodium oxide and solid phosphorus(V) oxide with excess water and differentiate between the solutions formed.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Sodium oxide, Na<sub>2</sub>O:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Phosphorus(V) oxide, P<sub>4</sub>O<sub>10</sub>:</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Differentiation:</span></span></span></span></p>
<p> </p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: left;"><span style="background-color: #ffffff;">Sodium peroxide, Na<sub>2</sub>O<sub>2</sub>, is formed by the reaction of sodium oxide with oxygen.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Na<sub>2</sub>O (s) + O<sub>2</sub> (g) → 2Na<sub>2</sub>O<sub>2</sub> (s)</span></p>
<p style="text-align: left;"><span style="background-color: #ffffff;">Calculate the percentage yield of sodium peroxide if 5.00g of sodium oxide produces 5.50g of sodium peroxide.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy change, <em>ΔH</em>, in kJ, for this reaction using data from the table and section 12 of the data booklet.</span></p>
<p style="padding-left:90px;"><span style="background-color: #ffffff;"><img src=""></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why bond enthalpy values are not valid in calculations such as that in (g)(i).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An allotrope of molecular oxygen is ozone. Compare, giving a reason, the bond enthalpies of the O to O bonds in O<sub>2</sub> and O<sub>3</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why a real gas differs from ideal behaviour at low temperature and high pressure.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The reaction of sodium peroxide with excess water produces hydrogen peroxide and one other sodium compound. Suggest the formula of this compound.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the oxidation number of carbon in sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="392" height="260">      <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p><em>Notes: Accept curve showing general trend.</em><br><em>Award mark only if the energy difference between the first two points is larger than that between points 2/3 and 3/4.</em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">same number of electrons in outer shell</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">all are s<sup>1</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</span>✔<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«3-D/giant» regularly repeating arrangement «of ions»<br><em><strong>OR</strong></em><br>lattice «of ions»    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">electrostatic attraction between oppositely charged ions<br><em><strong>OR</strong></em><br>electrostatic attraction between Na<sup>+</sup> and O<sup>2−</sup> ions    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>Note: </strong>Do <strong>not</strong> accept “ionic” without description.</em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></span>O<sub>2</sub>(g) <span style="background-color: #ffffff;">→ </span>O<sup>2- </sup>(g)</p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">«ΔH<sub>atomisation</sub> (O) + 1st EA + 2nd EA = 249 k Jmol<sup>−1</sup> − 141 kJmol<sup>−1</sup> + 753 kJmol<sup>−1</sup> =» «+»861 «kJmol<sup>−1</sup>»    <strong>[✔]</strong></span></p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> </p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">Na (s) → Na<sup>+</sup> (g)</span></p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«ΔH<sub>atomisation</sub> (Na) + 1st IE = 107 kJmol<sup>−1</sup> + 496 kJmol<sup>−1</sup> =» «+»603 «kJmol<sup>−1</sup>»     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lattice enthalpy = 861 «kJ mol<sup>−1</sup>» + 2 × 603 «kJ mol<sup>−1</sup>» −(−414 «kJ mol<sup>−1</sup>»)     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«= +» 2481 «kJ mol<sup>−1</sup>»    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: bold;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">Note: </span><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">Award [2] for correct final answer.</span></span></em></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">If given values are used:<br>M1: lattice enthalpy = 850 «kJ mol<sup>−1</sup>» +<br>2 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 600 «kJ mol<sup>−1</sup>» −(−414 «kJ mol<sup>−1</sup>»)<br>M2: «= +» 2464 «kJ mol<sup>−1</sup>»</span></span></em></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">K<sup>+</sup> ion is larger than Na<sup>+</sup></span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">smaller attractive force because of greater distance between ion «centres»      <strong>[✔]</strong></span></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Sodium oxide:</em><br>Na<sub>2</sub>O(s) + H<sub>2</sub>O(l) → 2NaOH (aq)      <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Phosphorus(V) oxide:</em><br>P<sub>4</sub>O<sub>10</sub> (s) + 6H<sub>2</sub>O(l) → 4H<sub>3</sub>PO<sub>4</sub> (aq)     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"><em>Differentiation</em>:<br>NaOH/product of Na<sub>2</sub>O is alkaline/basic/pH &gt; 7 <em><strong>AND</strong> </em>H<sub>3</sub>PO<sub>4</sub>/product of P<sub>4</sub>O<sub>10</sub> is acidic/pH &lt; 7     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">n(Na<sub>2</sub>O<sub>2</sub>) theoretical yield «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5.00{\text{g}}}}{{61.98{\text{g mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>5.00</mn>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>61.98</mn>
      <mrow>
        <mtext>g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 0.0807/8.07 × 10<sup>−2</sup> «mol»</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span><span style="background-color: #ffffff;"><br></span></p>
<p><span style="background-color: #ffffff;">mass of Na<sub>2</sub>O<sub>2</sub> theoretical yield «= <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5.00{\text{g}}}}{{61.98{\text{g mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>5.00</mn>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>61.98</mn>
      <mrow>
        <mtext>g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></span> × 77.98 gmol<sup>−1</sup>» = 6.291 «g»   </span><strong> [✔]</strong></p>
<p><span style="background-color: #ffffff;">% yield «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5.50{\text{g}}}}{{6.291{\text{g}}}}">
  <mfrac>
    <mrow>
      <mn>5.50</mn>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.291</mn>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> × 100» <em><strong>OR</strong> </em>« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0705}}{{0.0807}}">
  <mfrac>
    <mrow>
      <mn>0.0705</mn>
    </mrow>
    <mrow>
      <mn>0.0807</mn>
    </mrow>
  </mfrac>
</math></span> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 100» = 87.4 «%»     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Award [2] for correct final answer.</span></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>∑Δ</em><span style="background-color: #ffffff;"><em>H<sub>f</sub></em> products = 2 × (−1130.7) / −2261.4 «kJ»    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">∑Δ</em><em>H<sub>f</sub></em> reactants = 2 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> (−510.9) + 2 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> (−393.5) / −1808.8 «kJ»     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Δ</em><em>H</em> = «<em>∑</em><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Δ</em><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">H<sub>f</sub></em> products − <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">∑Δ</em><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">H<sub>f</sub></em> reactants = −2261.4 −(−1808.8) =» −452.6 «kJ»     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Award<strong> [3]</strong> for correct final answer. </span></em></p>
<p><em><span style="background-color: #ffffff;">Award <strong>[2 max]</strong> for “+ 452.6 «kJ»”.</span></em></p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">only valid for covalent bonds</span></p>
<p><em><strong><span style="background-color: #ffffff;">OR</span></strong></em></p>
<p><span style="background-color: #ffffff;">only valid in gaseous state     <strong>[✔]</strong></span></p>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">bond in O<sub>3</sub> has lower enthalpy <em><strong>AND</strong> </em>bond order is 1.5 «not 2»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept “bond in ozone is longer”.</span></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em></span></p>
<p><span style="background-color: #ffffff;">finite volume of particles «requires adjustment to volume of gas»     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">short-range attractive forces «overcomes low kinetic energy»    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">NaOH    <strong>[✔]</strong></span></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">IV    <strong>[✔]</strong></span></p>
<div class="question_part_label">k.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally well done with a correct plot of ionization energies.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority answered correctly stating same number of valence electrons as the reason. Some candidates stated same size or similar ionization energy but the majority scored well.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates lost one or two marks for missing “electrostatic forces” between “oppositely charged ions”, or “lattice”. Some candidates’ answers referred to covalent bonds and shapes of molecules.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance with typical error being in the calculation for the first equation, ½O2 (g) → O<sub>2</sub><sup>−</sup> (g), where the value for the first electron affinity of oxygen was left out.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates earned some credit for ECF based on (d)(i).</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance with answers using atomic size rather than ionic size or making reference to electronegativities of K and Na.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>An average of 1.1 out of 3 earned here. Many candidates could write a balanced equation for the reaction of sodium oxide with water but not phosphorus(V) oxide. Mediocre performance in identifying the acid/base nature of the solutions formed.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority earned one or two marks in finding a % yield.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The average was 2.2 out 3 for this question on enthalpy of formation. Enthalpy calculations were generally well done.</p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates referred to “bond enthalpy values are average”, rather than not valid for solids or only used for gases.</p>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates recognized that ozone had a resonance structure but then only compared bond length between ozone and oxygen rather than bond enthalpy.</p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few candidates could distinguish the cause for difference in behaviour between real and ideal gases at low temperature or high pressure. Many answers were based on increase in number of collisions or faster rate or movement of gas particles.</p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Na<sub>2</sub>O was a common formula in many candidates’ answers for the product of the reaction of sodium peroxide with water.</p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The vast majority of candidates could correctly state the oxidation number of carbon in sodium carbonate.</p>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>White phosphorus is an allotrope of phosphorus and exists as P<sub>4</sub>.</p>
</div>

<div class="specification">
<p>An equilibrium exists between PCl<sub>3</sub> and PCl<sub>5</sub>.</p>
<p style="text-align: center;">PCl<sub>3&thinsp;</sub>(g) + Cl<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> PCl<sub>5&thinsp;</sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the Lewis (electron dot) structure of the P<sub>4</sub> molecule, containing only single bonds.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation for the reaction of white phosphorus (P<sub>4</sub>) with chlorine gas to form phosphorus trichloride (PCl<sub>3</sub>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the electron domain and molecular geometry using VSEPR theory, and estimate the Cl–P–Cl bond angle in PCl<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the reason why PCl<sub>5</sub> is a non-polar molecule, while PCl<sub>4</sub>F is polar.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change (Δ<em>H</em><sup>⦵</sup>) for the forward reaction in kJ mol<sup>−1</sup>.</p>
<p style="text-align:center;">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>3 </sub>(g) = −306.4 kJ mol<sup>−1</sup></p>
<p style="text-align:center;">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>5 </sub>(g) = −398.9 kJ mol<sup>−1</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change, Δ<em>S</em>, in J K<sup>−1 </sup>mol<sup>−1</sup>, for this reaction.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:center;"> </p>
<p style="text-align:center;"><em>Chemistry 2e, Chpt. 21 Nuclear Chemistry, Appendix G: Standard Thermodynamic Properties for Selected Substances https://openstax.org/books/chemistry-2e/pages/g-standard-thermodynamic-properties-for- selectedsubstances# page_667adccf-f900-4d86-a13d-409c014086ea © 1999-2021, Rice University. Except where otherwise noted, textbooks on this site are licensed under a Creative Commons Attribution 4.0 International License. (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change (Δ<em>G</em>), in kJ mol<sup>−1</sup>, for this reaction at 25 °C. Use section 1 of the data booklet.</p>
<p>If you did not obtain an answer in c(i) or c(ii) use −87.6 kJ mol<sup>−1</sup> and −150.5 J mol<sup>−1 </sup>K<sup>−1</sup> respectively, but these are not the correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equilibrium constant, <em>K</em>, for this reaction at 25 °C, referring to section 1 of the data booklet.</p>
<p>If you did not obtain an answer in (c)(iii), use Δ<em>G</em> = –43.5 kJ mol<sup>−1</sup>, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression,<em> K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, the effect of an increase in temperature on the position of this equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(vi).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="282" height="109"></p>
<p><em>Accept any diagram with each P joined to the other three. <br>Accept any combination of dots, crosses and lines.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P<sub>4 </sub>(s) + 6Cl<sub>2 </sub>(g) → 4PCl<sub>3 </sub>(l) ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Electron domain geometry</em>: tetrahedral ✔</p>
<p><em>Molecular geometry</em>: trigonal pyramidal ✔</p>
<p><em>Bond angle</em>: 100«°» ✔</p>
<p><em><br>Accept any value or range within the range 91−108«°» for <strong>M3</strong>.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>PCl<sub>5</sub> is non-polar</em>:</p>
<p>symmetrical<br><em><strong>OR</strong></em><br>dipoles cancel ✔</p>
<p> </p>
<p><em>PCl<sub>4</sub>F is polar:</em></p>
<p>P–Cl has a different bond polarity than P–F ✔</p>
<p>non-symmetrical «dipoles»<br><em><strong>OR</strong></em><br>dipoles do not cancel ✔</p>
<p><em><br></em><em>Accept F more electronegative than/different electronegativity to Cl for <strong>M2</strong>.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«−398.9 kJ mol<sup>−1</sup> − (−306.4 kJ mol<sup>−1</sup>) =» −92.5 «kJ mol<sup>−1</sup>» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«ΔS = 364.5 J K<sup>–1 </sup>mol<sup>–1</sup> – (311.7 J K<sup>–1 </sup>mol<sup>–1</sup> + 223.0 J K<sup>–1 </sup>mol<sup>–1</sup>)=» –170.2 «J K<sup>–1 </sup>mol<sup>–1</sup>» ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«ΔS =» –0.1702 «kJ mol<sup>–1 </sup>K<sup>–1</sup>»<br><em><strong>OR</strong></em><br>298 «K» ✔</p>
<p>«ΔG = –92.5 kJ mol<sup>–1</sup> – (298 K × –0.1702 kJ mol<sup>–1 </sup>K<sup>–1</sup>) =» –41.8 «kJ mol<sup>–1</sup>» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>If –87.6 and -150.5 are used then –42.8.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«ΔG = –41.8 kJ mol<sup>–1</sup> = <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mn>1000</mn></mfrac></math> × 298 K × ln<em>K</em>»<br><em><strong>OR</strong></em><br>«ΔG = –41800 J mol<sup>–1</sup> = –8.31 J mol<sup>–1 </sup>K<sup>–1</sup> × 298 K × ln<em>K</em>»<br><br>«ln<em>K</em> = =» 16.9 ✔</p>
<p>«<em>K</em> = e<sup>16.9</sup> =» 2.19 × 10<sup>7</sup> ✔</p>
<p> </p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<p><em>Accept range of 1.80 × 10<sup>6</sup>–2.60 × 10<sup>7</sup>.</em></p>
<p><em>If –43.5 is used then 4.25 × 10<sup>7</sup>.</em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>K</em><sub>c</sub> =» <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mfenced open="[" close="]"><msub><mi>PCl</mi><mn>5</mn></msub></mfenced><mrow><mfenced open="[" close="]"><msub><mi>PCl</mi><mn>3</mn></msub></mfenced><mfenced open="[" close="]"><msub><mi>Cl</mi><mn>2</mn></msub></mfenced></mrow></mfrac></math> ✔</p>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«shifts» left/towards reactants <em><strong>AND</strong> </em>«forward reaction is» exothermic/ΔH is negative ✔</p>
<div class="question_part_label">c(vi).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(vi).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A molecule of citric acid, C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>, is shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="215" height="123"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The equation for the first dissociation of citric acid in water is</span></span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a conjugate acid–base pair in the equation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The value of <em>K</em><sub>a</sub> at 298 K for the first dissociation is 5.01 × 10<sup>−4</sup>.</span></p>
<p><span style="background-color: #ffffff;">State, giving a reason, the strength of citric acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H<sup>+</sup>], and on K<sub>a</sub>, of increasing the temperature.</span></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }"><mi mathvariant="normal">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math>, in kJ mol<sup>−1</sup>, for the first dissociation of citric acid at 298 K, using section 1 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> laboratory methods of distinguishing between solutions of citric acid and hydrochloric acid of equal concentration, stating the expected observations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> <em><strong>AND</strong> </em>C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup><br><em><strong>OR</strong></em><br>H<sub>2</sub>O <em><strong>AND</strong> </em>H<sub>3</sub>O<sup>+</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">weak acid <em><strong>AND</strong> </em>partially dissociated<br><em><strong>OR</strong></em><br>weak acid <em><strong>AND</strong> </em>equilibrium lies to left<br><em><strong>OR</strong></em><br>weak acid <em><strong>AND</strong> K</em><sub>a</sub> &lt; 1 ✔</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }"><mi mathvariant="normal">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math></span> = −<em>RT</em> ln <em>K</em> = −8.31 J K<sup>–1</sup> mol<sup>–1</sup> × 298 K × ln(5.01 × 10<sup>–4</sup>) ÷ 1000 =» 18.8 «kJ mol<sup>–1</sup>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">non-spontaneous <em><strong>AND</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }"><mi mathvariant="normal">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math></span> positive ✔</span></p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br></span></p>
<p><span style="background-color: #ffffff;">«electrical» conductivity <em><strong>AND</strong> </em>HCl greater ✔<br></span></p>
<p><span style="background-color: #ffffff;">pH <em><strong>AND</strong> </em>citric acid higher ✔<br></span></p>
<p><span style="background-color: #ffffff;">titrate with strong base <em><strong>AND</strong> </em>pH at equivalence higher for citric acid ✔<br></span></p>
<p><span style="background-color: #ffffff;">add reactive metal/carbonate/hydrogen carbonate <em><strong>AND</strong> </em>stronger effervescence/faster reaction with HCl ✔<br></span></p>
<p><span style="background-color: #ffffff;">titration <em><strong>AND</strong> </em>volume of alkali for complete neutralisation greater for citric acid ✔<br></span></p>
<p><span style="background-color: #ffffff;">titrate with strong base <em><strong>AND</strong> </em>more than one equivalence point for complete neutralisation of citric acid ✔<br></span></p>
<p><span style="background-color: #ffffff;">titrate with strong base <em><strong>AND</strong> </em>buffer zone with citric acid ✔<br></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “add universal indicator </span></em><span style="background-color: #ffffff;"><strong>AND</strong></span> <em><span style="background-color: #ffffff;">HCl more red/pink” for M2. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept any acid reaction </span></em><span style="background-color: #ffffff;"><strong>AND</strong></span> <em><span style="background-color: #ffffff;">HCl greater rise in temperature. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept specific examples throughout. </span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “smell” or “taste”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>
<p><span style="background-color: #ffffff;">The <em>x</em>-axis and <em>y</em>-axis are shown with arbitrary units.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/2.PNG" alt width="564" height="283"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">This decomposition obeys the rate expression:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{d[{{\text{N}}_2}{\text{O]}}}}{{dt}}">
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mi>d</mi>
      <mo stretchy="false">[</mo>
      <mrow>
        <msub>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mrow>
        <mtext>O]</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>d</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
</math></span> = <em>k</em>[N<sub>2</sub>O]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce how the rate of reaction at <em>t</em> = 2 would compare to the initial rate.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">It has been suggested that the reaction occurs as a two-step process:</span></p>
<p><span style="background-color: #ffffff;">Step 1: N<sub>2</sub>O (g) → N<sub>2</sub> (g) + O (g)</span></p>
<p><span style="background-color: #ffffff;">Step 2: N<sub>2</sub>O (g) + O (g) → N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">Explain how this could support the observed rate expression.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>
<p><span style="background-color: #ffffff;">Sketch, on the axes in question 2, the graph that you would expect.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment gave an error in the rate because the pressure gauge was inaccurate.</span></p>
<p><span style="background-color: #ffffff;">Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>
<p><img src="images/2f.PNG" alt width="637" height="309"></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the standard entropy change, in J K−1, for the decomposition of dinitrogen monoxide. </span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src="images/2gi.PNG" alt width="325" height="154"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide has a positive standard enthalpy of formation, Δ<em>H</em><sub>f</sub></span><sup>θ</sup><span style="background-color: #ffffff;">.</span></p>
<p><span style="background-color: #ffffff;">Deduce, giving reasons, whether altering the temperature would change the </span><span style="background-color: #ffffff;">spontaneity of the <strong>decomposition</strong> reaction.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">increase in the amount/number of moles/molecules «of gas»     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">from 2 to 3/by 50 %     <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«rate of reaction decreases»<br>concentration/number of molecules in a given volume decreases<br><em><strong>OR</strong></em><br>more space between molecules    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">collision rate/frequency decreases<br><em><strong>OR</strong></em><br>fewer collisions per unit time     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Do <strong>not</strong> accept just “larger space/volume” for M1.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">half «of the initial rate»    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><strong>Note: </strong><em>Accept “lower/slower «than initial rate»”.</em></span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1 slower than 2<br><em><strong>OR</strong></em><br>1 rate determinant step/RDS    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">1 is unimolecular/involves just one molecule so it must be first order<br><em><strong>OR</strong></em><br>if 1 faster/2 RDS, second order in N<sub>2</sub>O<br><em><strong>OR</strong></em><br>if 1 faster/2 RDS, first order in O     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="541" height="253"></p>
<p><span style="background-color: #ffffff;">smaller initial gradient     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">initial pressure is lower <em><strong>AND</strong> </em>final pressure of gas lower «by similar factor»     <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>it is a systematic error/not a random error</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> </em>«a similar magnitude» error would occur every time     <strong>[✔]</strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="635" height="419"></p>
<p><span style="background-color: #ffffff;">catalysed and uncatalysed E<sub>a</sub> marked on graph <em><strong>AND</strong> </em>with the catalysed being at lower energy     <strong>[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«for catalysed reaction» greater proportion of/more molecules have E ≥ E<sub>a</sub> / E &gt; E<sub>a</sub><br><em><strong>OR</strong></em><br>«for catalysed reaction» greater area under curve to the right of the E<sub>a</sub>     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “more molecules have the activation energy”.</span></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<span style="background-color: #ffffff;">S<sup>θ</sup> = 2(S<sup>θ</sup>(N<sub>2</sub>)) + S<sup>θ</sup>(O<sub>2</sub>) – 2(S<span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span>(N<sub>2</sub>O))<br></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em></span>Δ<span style="background-color: #ffffff;">S<span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2 × 193 «J mol<sup>-1</sup> K<sup>-1</sup>» + 205 «J mol<sup>-1</sup> K<sup>-1</sup>» – 2 × 220 «J mol<sup>-1</sup> K<sup>-1</sup>»     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«ΔS<span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = +»151 «J K<sup>-1</sup>»     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">exothermic decomposition<br><em><strong>OR</strong></em><br>Δ<em>H</em><sub>(decomposition)</sub> &lt; 0    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>TΔS</em><sup>θ</sup> &gt; Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ<br></span></sup></span></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em></span><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> «= Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> – <em>TΔS</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span>» &lt; 0 «at all temperatures»     <strong>[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</span></span></p>
<p><span style="background-color: #ffffff;">reaction spontaneous at all temperatures    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</span></span></p>
<div class="question_part_label">g(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Students were able in general to relate more moles of gas to increase in pressure.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few students were able to relate the effect of reduced pressure at constant volume with a decrease in concentration of gas molecules and mostly did not even refer to this, but rather concentrated on lower rate of reaction and frequency of collisions. Many candidates lost a mark by failing to explain rate as collisions per unit time, frequency, <em>etc</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Though the differential equation was considered to be misleading by teachers, most candidates attempted to answer this question, and more than half did so correctly, considering they had the graph to visualize the gradient.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students were able to identity step 1 as the RDS/slow but few mentioned unimolecularity or referred vaguely to NO<sub>2</sub> as the only reagent (which was obvious) and got only 1 mark.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students drew a lower initial gradient, but most did not reflect the effect of lower temperature on pressure at constant volume and started and finished the curve at the same pressure as the original one.</p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates identified the inaccurate pressure gauge as a systematic error, thus relating accuracy to this type of error.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The graph was generally well done, but in quite a few cases, candidates did not mention that increase of rate in the catalyzed reaction was due to <em>E</em> (particles) &gt; <em>E</em><sub>a</sub> or did so too vaguely.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates were able to calculate the ΔS of the reaction, though in some cases they failed to multiply by the number of moles.</p>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Though the question asked for decomposition (in bold), most candidates ignored this and worked on the basis of a the Δ<em>H</em> of formation. However, many did write a sound explanation for that situation. On the other hand, in quite a number of cases, they did not state the sign of the Δ<em>H</em> (probably taking it for granted) nor explicitly relate Δ<em>G</em> and spontaneity, which left the examiner with no possibility of evaluating their reasoning.</p>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>This reaction is used in the manufacture of sulfuric acid.</p>
<p style="text-align: center;">2SO<sub>2</sub> (g) + O<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> 2SO<sub>3</sub> (g)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>K</em><sub>c</sub> = 280 at 1000 K</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why this equilibrium reaction is considered homogeneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reason, the sign of the standard entropy change of the forward reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in kJ, for this reaction at 1000 K. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether the forward reaction is endothermic or exothermic. Use your answers to (b) and (c).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.200 mol sulfur dioxide, 0.300 mol oxygen and 0.500 mol sulfur trioxide were mixed in a 1.00 dm<sup>3</sup> flask at 1000 K.</p>
<p>Predict the direction of the reaction showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>all «species» are in same phase ✔</p>
<p> </p>
<p><em>Accept “all species are in same state”.</em></p>
<p><em>Accept “all species are gases”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>negative <em><strong>AND</strong> </em>fewer moles/molecules «of gas» in the products ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>G</em><sup>Θ</sup> =«–RT ln <em>K</em><sub>c</sub> =» –8.31 J K<sup>–1</sup> mol<sup>–1</sup> × 1000 K × ln 280</p>
<p><em><strong>OR</strong></em></p>
<p>Δ<em>G</em><sup>Θ</sup> = – 4.7 × 10<sup>4</sup> «J» ✔</p>
<p> </p>
<p>«Δ<em>G</em><sup>Θ</sup> =» – 47 «kJ» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>G</em><sup>Θ</sup> &lt; 0/spontaneous <em><strong>AND</strong></em> Δ<em>S</em><sup>Θ</sup> &lt; 0/unfavourable ✔</p>
<p>exothermic <em><strong>AND </strong></em>Δ<em>H</em><sup>Θ </sup> «must be» negative/favourable ✔</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«reaction quotient/<em>Q</em> =» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left[ {{\text{S}}{{\text{O}}_3}} \right]}^2}}}{{{{\left[ {{\text{S}}{{\text{O}}_2}} \right]}^2}\left[ {{{\text{O}}_2}} \right]}}{\text{/}}\frac{{{{0.500}^2}}}{{{{0.200}^2} \times 0.300}}{\text{/}}20.8">
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>[</mo>
              <mrow>
                <mrow>
                  <mtext>S</mtext>
                </mrow>
                <mrow>
                  <msub>
                    <mrow>
                      <mtext>O</mtext>
                    </mrow>
                    <mn>3</mn>
                  </msub>
                </mrow>
              </mrow>
              <mo>]</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>[</mo>
              <mrow>
                <mrow>
                  <mtext>S</mtext>
                </mrow>
                <mrow>
                  <msub>
                    <mrow>
                      <mtext>O</mtext>
                    </mrow>
                    <mn>2</mn>
                  </msub>
                </mrow>
              </mrow>
              <mo>]</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mrow>
        <mo>[</mo>
        <mrow>
          <mrow>
            <msub>
              <mrow>
                <mtext>O</mtext>
              </mrow>
              <mn>2</mn>
            </msub>
          </mrow>
        </mrow>
        <mo>]</mo>
      </mrow>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>/</mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>0.500</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mn>0.200</mn>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>0.300</mn>
    </mrow>
  </mfrac>
  <mrow>
    <mtext>/</mtext>
  </mrow>
  <mn>20.8</mn>
</math></span> ✔</p>
<p> </p>
<p>reaction quotient/<em>Q</em>/20.8/answer &lt; <em>K</em><sub>c</sub>/280</p>
<p><em><strong>OR</strong></em></p>
<p>mixture needs more product for the number to equal Kc ✔</p>
<p> </p>
<p>reaction proceeds to the right/products ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> award M3 without valid reasoning.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50&deg;C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Now consider the second stage of the reaction.</p>
<p style="text-align: center;">CO (g) + 2H<sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Δ<em>H</em><sup>⦵</sup>&nbsp;= –129 kJ</p>
</div>

<div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>

<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> reason why you would expect the value of Δ<em>H</em> calculated from the&nbsp;<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mi>f</mi><mi mathvariant="normal">⦵</mi></msubsup></math> values, given in section 12 of data booklet, to differ from your answer to (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equilibrium constant, <em>K</em><sub>c</sub>, has a value of 1.01 at 298 K.</p>
<p>Calculate Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>–1</sup>, for this reaction. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for the entropy change, Δ<em>S</em><sup>⦵</sup>, in J K<sup>–1</sup> mol<sup>–1</sup> at 298 K. Use your answers to (e)(i) and section 1 of the data booklet.</p>
<p>If you did not get answers to (e)(i) use –1 kJ, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the sign of Δ<em>S</em> with reference to the equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how a change in temperature from 298 K to 273 K would affect the spontaneity of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="430" height="342"></p>
<p>curve higher <em><strong>AND</strong> </em>to left of T<sub>1</sub> ✔</p>
<p>new/catalysed <em>E</em><sub>a</sub> marked <em><strong>AND</strong> </em>to the left of E<sub>a</sub> of curve T<sub>1</sub> ✔</p>
<p><em><br>Do <strong>not</strong> penalize curve missing a label, not passing exactly through the origin, or crossing x-axis after E<sub>a</sub>.</em><br><em>Do <strong>not</strong> award M1 if curve drawn shows significantly more/less molecules/greater/smaller area under curve than curve 1.</em><br><em>Accept E<sub>a</sub> drawn to T<sub>1</sub> instead of curve drawn as long as to left of marked E<sub>a</sub>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>methanoic acid/HCOOH/CHOOH<br><em><strong>OR</strong></em><br>methanal/HCHO ✔</p>
<p><em>Accept “carbon dioxide/CO<sub>2</sub>”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>4</sub>(g) + H<sub>2</sub>O(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH(l) + H<sub>2</sub>(g) ✔</p>
<p><em><br>Accept arrow instead of equilibrium sign.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of methane = « <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mn>8</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>16</mn><mo>.</mo><mn>05</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac></math>&nbsp;= » 0.498 «mol» ✔</p>
<p>amount of hydrogen = amount of methane / 0.498 «mol» ✔</p>
<p>volume of hydrogen = «0.498 mol × 22.7 dm<sup>3 </sup>mol<sup>−1</sup> = » 11.3 «dm<sup>3</sup>» ✔</p>
<p><em><br>Award <strong>[3]</strong> for final correct answer.</em><br><em>Award <strong>[2 max]</strong> for 11.4 «dm<sup>3</sup> due to rounding of mass to 16/moles to 0.5. »</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Σbonds broken = 4 × 414 «kJ» + 2 × 463 «kJ» / 2582 «kJ» ✔</p>
<p>Σbonds formed = 1077 «kJ» + 3 × 436 «kJ» / 2385 «kJ» ✔</p>
<p>Δ<em>H</em> «= Σbonds broken − Σbonds formed =( 2582 kJ − 2385 kJ)» = «+»197«kJ» ✔</p>
<p><em><br>Award <strong>[3]</strong> for final correct answer.</em><br><em>Award <strong>[2 Max]</strong> for final answer of −197 «kJ»</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond energies are average values «not specific to the compound» ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="italic">c</mi></msub><mo>=</mo><mfrac><mrow><mfenced open="[" close="]"><mi>CO</mi></mfenced><msup><mfenced open="[" close="]"><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow><mrow><mfenced open="[" close="]"><msub><mi>CH</mi><mn>4</mn></msub></mfenced><mfenced open="[" close="]"><mrow><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi></mrow></mfenced></mrow></mfrac></math>&nbsp;✔</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K<sub>c</sub></em> increases <em><strong>AND</strong> </em>«forward» reaction endothermic ✔</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup>&nbsp;= − <em>RT lnK<sub>c</sub></em>»<br>Δ<em>G</em><sup>⦵</sup>&nbsp;= − 8.31 «J K<sup>−1</sup> mol<sup>−1</sup>» × 298 «K» × ln (1.01) / −24.6 «J mol<sup>−1</sup>» ✔</p>
<p>= −0.0246 «kJ mol<sup>–1</sup>» ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for +0.0246 «kJ mol<sup>–1</sup>».</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Δ<em>G</em><sup>⦵</sup>&nbsp;= Δ<em>H</em><sup>⦵&nbsp;</sup>− <em>TΔS</em><sup>⦵</sup>»</p>
<p>Δ<em>G</em><sup>⦵</sup>&nbsp;= −129 «kJ mol<sup>–1</sup>» − (298 «K» × Δ<em>S</em>) = −0.0246 «kJ mol<sup>–1</sup>» ✔</p>
<p>Δ<em>S</em><sup>⦵</sup>&nbsp;= «&nbsp;<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mn>129</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>0</mn><mo>.</mo><mn>0246</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow><mrow><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math> = » −433 «J K<sup>–1</sup> mol<sup>–1</sup>» ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award<strong> [1 max]</strong> for “−0.433 «kJ K<sup>–1 </sup>mol<sup>–1</sup>»”.</em></p>
<p><em>Award <strong>[1 max]</strong> for “433” or “+433” «J K<sup>–1</sup> mol<sup>–1</sup>».</em></p>
<p><em>Award<strong> [2]</strong> for −430 «J K<sup>–1</sup> mol<sup>–1</sup>» (result from given values).</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«negative as» product is liquid and reactants gases<br><em><strong>OR</strong></em><br>fewer moles of gas in product ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reaction «more» spontaneous/Δ<em>G</em> negative/less positive <em><strong>AND</strong> </em>effect of negative entropy decreases/TΔ<em>S</em> increases/is less negative/more positive<br><em><strong>OR</strong></em><br>reaction «more» spontaneous/Δ<em>G</em> negative/less positive <em><strong>AND</strong></em> reaction exothermic «so <em>K</em><sub>c</sub> increases » ✔</p>
<p><em>Award mark if correct calculation shown.</em></p>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is produced by the Haber&ndash;Bosch process which involves the equilibrium:</p>
<p style="text-align: center;">N<sub>2&thinsp;</sub>(g) + 3&thinsp;H<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2&thinsp;NH<sub>3&thinsp;</sub>(g)</p>
<p>The percentage of ammonia at equilibrium under various conditions is shown:</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><sup>[The Haber Bosch Process [graph] Available at: https://commons.wikimedia.org/wiki/File:Ammonia_yield.png</sup><br><sup>[Accessed: 16/07/2022].]</sup></p>
</div>

<div class="specification">
<p>One factor affecting the position of equilibrium is the enthalpy change of the reaction.</p>
</div>

<div class="specification">
<p>The standard free energy change, &Delta;<em>G</em><sup>⦵</sup>, for the Haber&ndash;Bosch process is &ndash;33.0&thinsp;kJ at 298&thinsp;K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the expression for the equilibrium constant, <em>K</em><sub>c</sub>, for this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the use of a catalyst affects the position of the equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the reaction quotient, Q, explain why the percentage yield increases as the pressure is increased at constant temperature.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the value obtained in (b)(i) might differ from a value calculated using Δ<em>H</em><sub>f</sub> data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate that your answer to (b)(i) is consistent with the effect of an increase in temperature on the percentage yield, as shown in the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, whether the reaction is spontaneous or not at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the equilibrium constant, <em>K</em>, at 298 K. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change for the Haber–Bosch process, in J mol<sup>–1 </sup>K<sup>–1</sup> at 298 K. Use your answer to (b)(i) and section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the reaction equation, why this sign for the entropy change is expected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi>c</mi></msub><mo>=</mo><mfrac><msup><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced><mn>2</mn></msup><mrow><mfenced open="[" close="]"><msub><mi>N</mi><mn>2</mn></msub></mfenced><msup><mfenced open="[" close="]"><msub><mi>H</mi><mn>2</mn></msub></mfenced><mn>3</mn></msup></mrow></mfrac></math> ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same/unaffected/unchanged ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>increasing pressure increases «all» concentrations<br><em><strong>OR</strong></em><br>increasing pressure decreases volume ✔</p>
<p><em><br>Q</em> becomes less than <em>K</em><sub>c</sub><br><em><strong>OR</strong></em><br>affects the lower line/denominator of Q expression more than upper line/numerator ✔</p>
<p><br>«for <em>Q</em> to once again equal <em>K</em><sub>c</sub>,» ratio of products to reactants increases<br><em><strong>OR</strong></em><br>«for <em>Q</em> to once again equal <em>K</em><sub>c</sub>,» equilibrium shifts to right/products ✔</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> for answers that do not refer to Q.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>bonds broken</em>: N≡N + 3(H-H) /«1 mol×»945 «kJ mol<sup>–1</sup>» + 3«mol»×436 «kJ mol<sup>–1</sup>» / 945 «kJ» + 1308 «kJ» / 2253 «kJ» ✔</p>
<p><em>bonds formed</em>: 6(N-H) / 6«mol»×391 «kJ mol<sup>–1</sup>» / 2346 «kJ» ✔</p>
<p>Δ<em>H</em> = «2253 kJ - 2346 kJ = » -93 «kJ» ✔</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> for (+)93 «kJ».</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«N-H» bond enthalpy is an average «and may not be the precise value in NH<sub>3</sub>» ✔</p>
<p> </p>
<p><em>Accept ΔH<sub>f</sub> data are more accurate / are not average values.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>increased temperature decreases yield «as shown on graph» ✔</p>
<p>shifts equilibrium in endothermic/reverse direction ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>spontaneous <em><strong>AND</strong> </em>Δ<em>G</em> &lt; 0 ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>K</mi><mo>=</mo><mo>⟨</mo><mo>⟨</mo><mfrac><mrow><mo>∆</mo><mi>G</mi></mrow><mrow><mi>R</mi><mo>.</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mo>⟩</mo><mo>⟩</mo><mo> </mo><mo>-</mo><mfrac><mrow><mo>-</mo><mn>33000</mn></mrow><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mi>x</mi><mn>298</mn></mrow></mfrac><mo> </mo><mo>/</mo><mo>«</mo><mo>+</mo><mo>»</mo><mn>13</mn><mo>.</mo><mn>3</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mo> </mo><mo>=</mo><mo> </mo><mn>6</mn><mo>.</mo><mn>13</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept answers in the range 4.4×10<sup>5</sup> to 6.2×10<sup>5</sup> (arises from rounding of ln K).</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>G</em> = «Δ<em>H</em> – <em>T</em>Δ<em>S</em> =» –93000 «J» – 298«K» × Δ<em>S</em> = –33000 ✔</p>
<p>Δ<em>S</em> = 〈〈<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mrow><mo>-</mo><mn>93000</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><mo>-</mo><mfenced><mrow><mo>-</mo><mn>33000</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow></mfenced></mrow><mrow><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math>〉〉 = –201 «J mol<sup>–1 </sup>K<sup>–1</sup>» ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> penalize failure to convert kJ to J in <strong>both</strong> (c)(ii) and (c)(iii).</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer</em></p>
<p><em>Award<strong> [1 max]</strong> for (+) 201 «J mol<sup>–1</sup> K<sup>–1</sup>».</em></p>
<p><em>Award [2] for –101 or –100.5 «J mol<sup>–1</sup> K<sup>–1</sup>».</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«forward reaction involves» decrease in number of moles «of gas» ✔</p>
<div class="question_part_label">c(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Deducing the equilibrium constant expression for the given equation was done very well.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; however, some misread the question as asking for the effect of a catalyst on equilibrium, rather than on the position of equilibrium.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; very few identified the effect of increasing pressure on all concentrations. Consequently, <em>Q</em> becomes less than <em>K</em><sub>c</sub> (it affects the denominator of <em>Q</em> expression more than the numerator) was not addressed. Question was often answered with respect to kinetics, namely greater frequency of collisions and speed of reaction rather than from equilibrium perspective based on effect of increase in pressure on concentrations.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; often the bond energy for single N–N bond instead of using it for the triple bond and not taking into consideration the coefficient of three in calculation of bond enthalpies of ammonia. Also, instead of using BE of bonds broken minus those that were formed, the operation was often reversed. Students should be encouraged to draw the Lewis structures in the equations first to determine the bonds being broken and formed.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Outlining why Δ<em>H</em><sub>rxn</sub> based on BE values differ due to being average compared to using Δ<em>H</em><sub>f</sub> values was generally done well.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; some did not relate that increased temperature decreases yield «as shown on graph» and others arrived at incorrect shift in equilibrium for the reaction.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reason for the reaction being spontaneous was generally very done well indeed.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance; for ln<em>K</em> calculation in the equation ΔG = RTln<em>K</em>, ΔG unit had to be converted from kJ to J. This led to an error of 1000 in the value of ln<em>K</em> for some.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very good performance; since the unit for <em>S</em> is J mol<sup>˗1</sup> K<sup>˗1</sup>, Δ<em>G</em> and Δ<em>H</em> needed to be converted from kJ to J, but that was not done in some cases.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance for sign of the entropy change expected for the reaction. Some answers were based on Δ<em>G</em> value rather than in terms of decrease in number of moles of gas or had no idea how to address the question.</p>
<div class="question_part_label">c(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate Δ<em>H</em><sup>θ</sup>, in kJ, for this similar reaction below using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\rm{f}}^\theta ">
  <mi mathvariant="normal">Δ</mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mrow>
        <mi mathvariant="normal">f</mi>
      </mrow>
    </mrow>
    <mi>θ</mi>
  </msubsup>
</math></span> data from section 12 of the data booklet. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\rm{f}}^\theta ">
  <mi mathvariant="normal">Δ</mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mrow>
        <mi mathvariant="normal">f</mi>
      </mrow>
    </mrow>
    <mi>θ</mi>
  </msubsup>
</math></span> of HOCH<sub>2</sub>CH<sub>2</sub>OH(l) is –454.8kJmol<sup>-1</sup>.</p>
<p>2CO (g) + 3H<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>(ii) Deduce why the answers to (a)(iii) and (b)(i) differ.</p>
<p>(iii) Δ<em>S</em><sup>θ</sup> for the reaction in (b)(i) is –620.1JK<sup>-1</sup>. Comment on the decrease in entropy.</p>
<p>(iv) Calculate the value of ΔG<sup>θ</sup>, in kJ, for this reaction at 298 K using your answer to (b)(i). (If you did not obtain an answer to (b)(i), use –244.0 kJ, but this is not the correct value.)</p>
<p>(v) Comment on the statement that the reaction becomes less spontaneous as temperature is increased.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the <sup>1</sup>HNMR data for ethanedioic acid and ethane-1,2-diol by completing the table.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br>«ΔH = Σ Δ<em>H</em><sub>f</sub> products – ΣΔ<em>H</em><sub>f</sub> reactants = –454.8 kJ mol<sup>-1</sup> – 2(–110.5 kJ mol<sup>-1</sup>) =» –233.8 «kJ»</p>
<p> </p>
<p>ii<br>in (a)(iii) gas is formed and in (b)(i) liquid is formed<br><em><strong>OR</strong></em><br>products are in different states<br><em><strong>OR</strong></em><br>conversion of gas to liquid is exothermic<br><em><strong>OR</strong></em><br>conversion of liquid to gas is endothermic<br><em><strong>OR</strong></em><br>enthalpy of vapourisation needs to be taken into account</p>
<p><em>Accept product is «now» a liquid.</em><br><em>Accept answers referring to bond enthalpies being means/averages.</em></p>
<p> </p>
<p>iii<br>«Δ<em>S</em> is negative because five mols of» gases becomes «one mol of» liquid<br><em><strong>OR</strong></em><br>increase in complexity of product «compared to reactants»<br><em><strong>OR</strong></em><br>product more ordered «than reactants»</p>
<p><em>Accept “fewer moles of gas” but not “fewer molecules”.</em></p>
<p><br><br>iv<br>Δ<em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{ - 620.1}}{{1000}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mo>−</mo>
          <mn>620.1</mn>
        </mrow>
        <mrow>
          <mn>1000</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>«kJ K<sup>-1</sup>»<br>Δ<em>G</em> = –233.8 kJ – (298 K <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{ - 620.1}}{{1000}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mo>−</mo>
          <mn>620.1</mn>
        </mrow>
        <mrow>
          <mn>1000</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> kJ K<sup>-1</sup>) = –49.0 «kJ»</p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em><br><em>Award <strong>[1 max]</strong> for «+»185 × 10<sup>3</sup>.</em></p>
<p><em>If –244.0 kJ used, answer is:</em><br>Δ<em>G</em> = –244.0 kJ – (298 K <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{ - 620.1}}{{1000}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mo>−</mo>
          <mn>620.1</mn>
        </mrow>
        <mrow>
          <mn>1000</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>kJ K<sup>-1</sup>) = –59.2 «kJ»<br><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p> </p>
<p>v<br>increasing T makes Δ<em>G</em> larger/more positive/less negative<br><em><strong>OR</strong></em><br>–TΔ<em>S</em> will increase</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em>Accept “none/no splitting” for singlet.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br>