File "markSceme-HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 15/markSceme-HL-paper1html
File size: 199.37 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>Which ionic compound has the largest value of lattice enthalpy?</p>
<p>A. MgS</p>
<p>B. MgO</p>
<p>C. CaBr<sub>2 </sub></p>
<p>D. NaF</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which combination of Δ<em>H </em><sup>θ </sup>and Δ<em>S </em><sup>θ</sup> will result in a non-spontaneous reaction at all temperatures?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which combination gives the standard hydration enthalpy of <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>Na</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo></math></span><span class="fontstyle0">?</span></p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="246" height="131"></p>
<p><span class="fontstyle0">A. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mn>359</mn><mo>+</mo><mn>790</mn></math><span class="fontstyle0"><br></span></p>
<p><span class="fontstyle0">B. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mn>359</mn><mo>-</mo><mn>790</mn></math><span class="fontstyle0"><br></span></p>
<p><span class="fontstyle0">C. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>-</mo><mn>359</mn><mo>+</mo><mn>790</mn></math><span class="fontstyle0"><br></span></p>
<p><span class="fontstyle0">D. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>-</mo><mn>359</mn><mo>+</mo><mn>790</mn></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>About 60% of candidates could select values to put in an energy cycle for hydration enthalpy. The higher scoring candidates performed better on this question than lower scoring ones.</p>
</div>
<br><hr><br><div class="question">
<p>Which equation represents the lattice enthalpy of magnesium sulfide?</p>
<p>A. MgS (s) → Mg (g) + S (g)</p>
<p>B. MgS (s) → Mg<sup>+</sup> (g) + S<sup>–</sup> (g)</p>
<p>C. MgS (s) → Mg<sup>2+</sup> (g) + S<sup>2–</sup> (g)</p>
<p>D. MgS (s) → Mg (s) + S (s)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The table shows the variation of standard Gibbs energy with temperature for a reversible reaction.</p>
<p style="text-align:center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>G</mi><mo>⦵</mo></msup><mo>=</mo><mo>∆</mo><msup><mi>H</mi><mo>⦵</mo></msup><mo mathvariant="italic">-</mo><mi>T</mi><mo>∆</mo><msup><mi>S</mi><mo>⦵</mo></msup></math></p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>G</mi><mo>⦵</mo></msup><mo>=</mo><mo mathvariant="italic">-</mo><mi>R</mi><mi>T</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>K</mi></math></p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">What can be concluded about the reaction?</p>
<p style="text-align:left;">A. Equilibrium shifts left as temperature increases.</p>
<p style="text-align:left;">B. The forward reaction is more spontaneous below 300 K.</p>
<p style="text-align:left;">C. Entropy is higher in the products than in the reactants.</p>
<p style="text-align:left;">D. <em>K</em><sub>c</sub> decreases as temperature increases.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which value represents the lattice enthalpy, in kJ mol<sup>−1</sup>, of strontium chloride, SrCl<sub>2</sub>?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.13.49.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/16"></p>
<p>A. – (–829) + 164 + 243 + 550 + 1064 – (–698)</p>
<p>B. –829 + 164 + 243 + 550 + 1064 – 698</p>
<p>C. – (–829) + 164 + 243 + 550 + 1064 – 698</p>
<p>D. –829 + 164 + 243 + 550 + 1064 – (–698)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In which of the following situations is the forward reaction spontaneous?</p>
<p><br>A. The equilibrium constant is greater than one under standard conditions.</p>
<p>B. The cell potential is negative.</p>
<p>C. The Gibbs free energy change of the reverse reaction is negative.</p>
<p>D. The entropy change of the universe for the forward reaction is negative.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In which reaction does entropy decrease?</p>
<p>A. NaCl (s) → NaCl (aq)</p>
<p>B. Zn (s) + H<sub>2</sub>SO<sub>4 </sub>(aq) → ZnSO<sub>4 </sub>(aq) + H<sub>2 </sub>(g)</p>
<p>C. NH<sub>3 </sub>(g) + HCl (g) → NH<sub>4</sub>Cl (s)</p>
<p>D. CuCO<sub>3 </sub>(s) → CuO (s) + CO<sub>2 </sub>(g)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Second best answered question in the exam with 85% of candidates identifying the correct answering for reaction in which entropy decreases.</p>
</div>
<br><hr><br><div class="question">
<p>What are the signs of ΔH and ΔS for a reaction that is non-spontaneous at low temperatures but spontaneous at high temperatures?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Two-thirds of the candidates related information about the spontaneity of a reaction at different temperatures to the signs of ΔH and ΔS correctly. This question discriminated well between high-scoring and low-scoring candidates.</p>
</div>
<br><hr><br><div class="question">
<p>Which ion’s hydration energy is the most exothermic?</p>
<p>A. Li<sup>+</sup></p>
<p>B. Na<sup>+</sup></p>
<p>C. Br<sup>–</sup></p>
<p>D. I<sup>–</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which represents electron affinity?</p>
<p>A. Al<sup>2+ </sup>(g) → Al<sup>3+ </sup>(g) + e<sup>−</sup></p>
<p>B. C (g) + e<sup>−</sup> → C<sup>− </sup>(g)</p>
<p>C. Cl<sub>2 </sub>(g) → 2Cl (g)</p>
<p>D. S (s) → S<sup>+ </sup>(g) + e<sup>−</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which equation represents the standard enthalpy of atomization of bromine, Br<sub>2</sub>?</span></p>
<p><span style="background-color: #ffffff;">A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>Br<sub>2</sub> (l) → Br (g)</span></p>
<p><span style="background-color: #ffffff;">B. Br<sub>2</sub> (l) → 2Br (g)</span></p>
<p><span style="background-color: #ffffff;">C. Br<sub>2</sub> (l) → 2Br (l)</span></p>
<p><span style="background-color: #ffffff;">D. <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span></span>Br<sub>2</sub> (l) → Br (l)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>One G2 comment asked if enthalpy of atomization was on the syllabus. This Topic 15.1 question was answered correctly by 54 % of candidates but did not differentiate well between higher and lower scoring candidates.</p>
</div>
<br><hr><br><div class="question">
<p>What is the enthalpy of solution of MgF<sub>2</sub>(s) in kJ mol<sup>−1</sup>?</p>
<p style="text-align: center;">Lattice enthalpy of MgF<sub>2</sub>(s) = 2926 kJ mol<sup>−1</sup></p>
<p style="text-align: center;">Hydration enthalpy of Mg<sup>2+</sup>(g) = −1963 kJ mol<sup>−1</sup></p>
<p style="text-align: center;">Hydration enthalpy of F<sup>−</sup>(g) = −504 kJ mol<sup>−1</sup></p>
<p>A. 2926 − 1963 + 2(−504)</p>
<p>B. 2926 − 1963 − 504</p>
<p>C. −2926 − (−1963) − (−504)</p>
<p>D. −2926 − (−1963) − 2(−504)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the order of increasing (more exothermic) enthalpy of hydration?</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">X<sup>n+</sup> (g) → X<sup>n+</sup> (aq)</span></p>
<p><span style="background-color: #ffffff;">A. Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>, Na<sup>+</sup><br></span></p>
<p><span style="background-color: #ffffff;">B. Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup><br></span></p>
<p><span style="background-color: #ffffff;">C. K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup><br></span></p>
<p><span style="background-color: #ffffff;">D. Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound has the largest value of lattice enthalpy?</p>
<p>A. Na<sub>2</sub>O</p>
<p>B. K<sub>2</sub>O</p>
<p>C. Na<sub>2</sub>S</p>
<p>D. K<sub>2</sub>S</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A majority of students recognized the ionic compound with the highest lattice enthalpy.</p>
</div>
<br><hr><br><div class="question">
<p>What are the signs of Δ<em>H</em><sup>Θ</sup> and Δ<em>S</em><sup>Θ</sup> for the reaction, which is spontaneous at low temperature and non-spontaneous at very high temperature?</p>
<p>Δ<em>G</em><sup>Θ</sup> = Δ<em>H</em><sup>Θ</sup><em> </em>− <em>T</em>Δ<em>S</em><sup>Θ</sup></p>
<p style="text-align: center;">SO<sub>3</sub> (g) + CaO (s) → CaSO<sub>4</sub> (s)</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which system has the most negative entropy change, Δ<em>S</em>, for the forward reaction?</p>
<p>A. N<sub>2</sub>(g) + 3H<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> 2NH<sub>3</sub>(g)</p>
<p>B. CaCO<sub>3</sub>(s) → CaO(s) + CO<sub>2</sub>(g)</p>
<p>C. 2S<sub>2</sub>O<sub>3</sub><sup>2−</sup>(aq) + I<sub>2</sub>(aq) → S<sub>4</sub>O<sub>6</sub><sup>2−</sup>(aq) + 2I<sup>–</sup>(aq)</p>
<p>D. H<sub>2</sub>O(l) → H<sub>2</sub>O(g)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statements are correct for ionic compounds?</p>
<p>I. Lattice energy increases as ionic radii increase.<br>II. Within the same group, the melting point of salts tends to decrease as the radius of the cation increases.<br>III. Solubility in water depends on the relative magnitude of the lattice energy compared to the hydration energy.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which term in the expression ΔG<sup>⦵</sup> = ΔH<sup>⦵</sup> − TΔS<sup>⦵</sup> is an indirect measure of the entropy change of the surroundings when divided by T?</p>
<p>A. ΔG<sup>⦵</sup></p>
<p>B. ΔH<sup>⦵</sup></p>
<p>C. ΔS<sup>⦵</sup></p>
<p>D. −TΔS<sup>⦵</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This challenging question raised some debate and several teachers did not think it was suitable for this level. Most candidates chose -TΔS as “an indirect measure of the entropy change of the surroundings when divided by T”. While candidates are not expected to be familiar with the equation ΔS surroundings = -ΔHsystem/T, they could solve the question by recognizing that ΔH is the value that affects the surroundings while ΔS relates to the system. The wording of the question could have been simplified.</p>
</div>
<br><hr><br><div class="question">
<p>Which change is exothermic?</p>
<p> </p>
<p>A. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>Cl<sub>2</sub> (g) → Cl (g)</p>
<p>B. K (g) → K<sup>+</sup> (g) + e<sup>−</sup></p>
<p>C. KCl (s) → K<sup>+</sup> (g) + Cl<sup>−</sup> (g)</p>
<p>D. Cl (g) + e<sup>−</sup> → Cl<sup>−</sup> (g)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which represents the enthalpy change of hydration of the chloride ion?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement is correct?</p>
<p>A. If Δ<em>H </em>< 0, reaction is always spontaneous.</p>
<p>B. If Δ<em>H </em>> 0, reaction is never spontaneous.</p>
<p>C. If Δ<em>S </em>< 0, reaction can be spontaneous if temperature is low enough.</p>
<p>D. If Δ<em>S </em>< 0, reaction can be spontaneous if temperature is high enough.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The Born-Haber cycle for potassium oxide is shown below:</p>
<p><img src=""></p>
<p>Which expression represents the lattice enthalpy in kJ mol<sup>–1</sup>?</p>
<p>A. –361 + 428 + 838 + 612</p>
<p>B. –(–361) + 428 + 838 + 612</p>
<p>C. –361 + 428 + 838 – 612</p>
<p>D. –(–361) + 428 + 838 – 612</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which substance has the highest lattice enthalpy?</p>
<p>A. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>KCl</mtext></math></p>
<p>B. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CaCl</mtext><mn>2</mn></msub></math></p>
<p>C. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>KF</mtext></math></p>
<p>D. <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CaF</mtext><mtext>2</mtext></msub></math></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">Which equation represents lattice enthalpy?</span></p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">A. NaCl (g) → Na<sup>+</sup> (g) + Cl<sup>−</sup> (g)</span></p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">B. NaCl (s) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Na</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">+</sup> (g) + <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Cl</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup> (g)</span></p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">C. NaCl (s) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Na</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">+</sup> (aq) + <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Cl</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup> (aq)</span></p>
<p style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="background-color: #ffffff;">D. NaCl (s) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Na</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">+</sup> (s) + <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Cl</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup> (s)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>72 % of candidates chose the correct equation that represents lattice enthalpy. Many candidates chose A, where the ionic compound (NaCl) was gaseous, and others chose distractor C, where the ions produced were aqueous. The discrimination index for the question was quite high.</p>
</div>
<br><hr><br><div class="question">
<p>Which equation represents hydration enthalpy?</p>
<p>A. Na<sup>+ </sup>(g) → Na<sup>+ </sup>(aq)</p>
<p>B. Na<sup>+ </sup>(aq) → Na<sup>+ </sup>(g)</p>
<p>C. NaCl (s) → NaCl (aq)</p>
<p>D. NaCl (aq) → NaCl (s)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>65% of the candidates recognized the equation that represents hydration enthalpy. The most commonly chosen distractor was an enthalpy of solution.</p>
</div>
<br><hr><br><div class="question">
<p>Consider the Born–Haber cycle for the formation of sodium oxide:</p>
<p style="text-align:center;"><img src=""></p>
<p>What is the lattice enthalpy, in kJ mol<sup>−1</sup>, of sodium oxide?</p>
<p><br>A. 414 + 2(108) + 249 + 2(496) − 141 + 790</p>
<p>B. 414 + 2(108) + 249 + 2(496) + 141 + 790</p>
<p>C. −414 + 2(108) + 249 + 2(496) − 141 + 790</p>
<p>D. −414 − 2(108) − 249 − 2(496) + 141 − 790</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the standard enthalpy of formation, in kJ mol<sup>–1</sup>, of IF (g)?</p>
<p>IF<sub>7</sub> (g) + I<sub>2</sub> (s) → IF<sub>5</sub> (g) + 2IF (g) <em>ΔH<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="^\theta ">
<msup>
<mi></mi>
<mi>θ</mi>
</msup>
</math></span></em> = –89 kJ</p>
<p><em>ΔH</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_f^\theta ">
<msubsup>
<mi></mi>
<mi>f</mi>
<mi>θ</mi>
</msubsup>
</math></span> (IF<sub>7</sub>) = –941 kJ mol<sup>–1</sup></p>
<p><em>ΔH</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_f^\theta ">
<msubsup>
<mi></mi>
<mi>f</mi>
<mi>θ</mi>
</msubsup>
</math></span> (IF<sub>5</sub>) = –840 kJ mol<sup>–1</sup></p>
<p>A. –190</p>
<p>B. –95</p>
<p>C. +6</p>
<p>D. +95</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which equation represents enthalpy of hydration?</p>
<p>A. Na(g) → Na<sup>+</sup>(aq) + e<sup>−</sup></p>
<p>B. Na<sup>+</sup>(g) → Na<sup>+</sup>(aq)</p>
<p>C. NaCl(s) → Na<sup>+</sup>(g) + Cl<sup>−</sup>(g)</p>
<p>D. NaCl(s) → Na<sup>+</sup>(aq) + Cl<sup>−</sup>(aq)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which is correct for the reaction H<sub>2</sub>O (g) → H<sub>2</sub>O (l) ?</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">A. Enthalpy increases and entropy increases.</span></p>
<p><span style="background-color: #ffffff;">B. Enthalpy decreases and entropy increases.</span></p>
<p><span style="background-color: #ffffff;">C. Enthalpy increases and entropy decreases.</span></p>
<p><span style="background-color: #ffffff;">D. Enthalpy decreases and entropy decreases.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Higher scoring candidates had more success understanding enthalpy and entropy decreases.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which change has the greatest increase in entropy?</span></p>
<p><span style="background-color: #ffffff;">A. CO<sub>2</sub> (s) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">B. <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (g) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (l)</span></p>
<p><span style="background-color: #ffffff;">C. <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (g) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (s)</span></p>
<p><span style="background-color: #ffffff;">D. <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (l) → <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">CO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub> (s)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>94 % of the candidates chose the change with the greatest increase in entropy.</p>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which reaction becomes more spontaneous as temperature increases?<br></span></p>
<p><span class="fontstyle0">A. <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>CaCO</mi><mn>3</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><mi>CaO</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><msub><mi>CO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo></math></span></p>
<p><span class="fontstyle0">B. <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">N</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>3</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>⇌</mo><mn>2</mn><msub><mi>NH</mi><mn>3</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo></math></span></p>
<p><span class="fontstyle0">C. <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><msub><mi>CO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>4</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>→</mo><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>8</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>5</mn><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo></math></span></p>
<p><span class="fontstyle0">D. <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>SO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>→</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><msub><mi>SO</mi><mn>4</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo></math></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The majority of candidates could see that reactions which form more mol of gas become spontaneous at higher temperature.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which reaction has the greatest increase in entropy of the system?</span></p>
<p><span style="background-color: #ffffff;">A. HCl (g) + NH<sub>3</sub> (g) → NH<sub>4</sub>Cl (s)<br></span></p>
<p><span style="background-color: #ffffff;">B. (NH<sub>4</sub>)<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> (s) → Cr<sub>2</sub>O<sub>3</sub> (s) + N<sub>2</sub> (g) + 4H<sub>2</sub>O (g)<br></span></p>
<p><span style="background-color: #ffffff;">C. CaCO<sub>3</sub> (s) → CaO (s) + CO<sub>2</sub> (g)<br></span></p>
<p><span style="background-color: #ffffff;">D. I<sub>2</sub> (g) → I<sub>2</sub> (s)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which change results in the largest negative value of Δ<em>S</em>?</p>
<p>A. C<sub>2</sub>H<sub>5</sub>OH (l) + SOCl<sub>2 </sub>(l) → C<sub>2</sub>H<sub>5</sub>Cl (l) + SO<sub>2 </sub>(g) + HCl (g)</p>
<p>B. CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>C. H<sub>2</sub>O (l) → H<sub>2</sub>O (s)</p>
<p>D. NH<sub>3 </sub>(g) + HCl (g) → NH<sub>4</sub>Cl (s)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The combustion of glucose is exothermic and occurs according to the following equation:</p>
<p>C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> (s) + 6O<sub>2</sub> (g) → 6CO<sub>2</sub> (g) + 6H<sub>2</sub>O (g)</p>
<p>Which is correct for this reaction?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>