File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 15/HL-paper2html
File size: 698.53 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p><span class="fontstyle0">An equation for the combustion of propane is given below.</span></p>
<p style="text-align: center;">C<sub>3</sub>H<sub>8</sub>(g) + 5O<sub>2</sub>(g)&nbsp;<img src="">3CO<sub>2</sub>(g) + 4H<sub>2</sub>O(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the standard enthalpy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>H</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, for this reaction, using section 11 of the data booklet.</span></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard enthalpy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>H</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, for this reaction using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether the entropy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>S</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, for this reaction is negative or positive.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>S</mi><mo>⦵</mo></msup></math> <span class="fontstyle0">for the reaction in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><span class="fontstyle0">, using section 12 of the data booklet.</span></p>
<p><span class="fontstyle0">The standard molar entropy for oxygen gas is <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>205</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard Gibbs free energy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi mathvariant="normal">G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle4"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi></math></span><span class="fontstyle0">, for the reaction at 5 °</span><span class="fontstyle0">C, using your answers to (b) and (d). Use section 1 of the data booklet.</span></p>
<p><span class="fontstyle0">(If you did not obtain an answer to (b) or (d) use values of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>-</mo><mn>1952</mn><mo> </mo><mi>kJ</mi></math></span><span class="fontstyle0"> and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>+</mo><mn>113</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi mathvariant="normal">K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">respectively, although these are not the correct answers.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Millerite, a nickel sulfide mineral, is an important source of nickel. The first step in extracting&nbsp;nickel is to roast the ore in air.</p>
</div>

<div class="specification">
<p>The reaction for the formation of liquid tetracarbonylnickel is shown below:</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{Ni(s)}} + 4{\text{CO(g)}} \to {\text{Ni(CO}}{{\text{)}}_4}{\text{(l)}}">
  <mrow>
    <mtext>Ni(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <mtext>CO(g)</mtext>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mn>4</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the oxidation of nickel(II) sulfide to nickel(II) oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nickel obtained from another ore, nickeliferous limonite, is contaminated with iron. Both nickel and iron react with carbon monoxide gas to form gaseous complexes, tetracarbonylnickel, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Ni(CO}}{{\text{)}}_{\text{4}}}{\text{(g)}}">
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>, and pentacarbonyliron, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Fe(CO}}{{\text{)}}_{\text{5}}}{\text{(g)}}">
  <mrow>
    <mtext>Fe(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>. Suggest why the nickel can be separated from the iron successfully using carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {S^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>S</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span>, of the reaction, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{J}}\,{{\text{K}}^{ - 1}}">
  <mrow>
    <mtext>J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>, using the values given.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>H</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> in kJ.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to (c)(i) and (c)(ii), to determine the temperature, in °C, at which the decomposition of liquid tetracarbonylnickel to nickel and carbon monoxide becomes favourable.</p>
<p><br>(If you did not get answers to (c)(i) and (c)(ii), use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 500{\text{ J}}\,{{\text{K}}^{ - 1}}">
  <mo>−</mo>
  <mn>500</mn>
  <mrow>
    <mtext> J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 200{\text{ kJ}}">
  <mo>−</mo>
  <mn>200</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
</math></span> respectively but these are not the correct answers.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why experiments involving tetracarbonylnickel are very hazardous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">is in equilibrium with compound </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="247" height="82"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict the electron domain and molecular geometries around the </span><span class="fontstyle2"><strong>oxygen</strong> </span><span class="fontstyle0">atom of molecule </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">using VSEPR</span></p>
<p><span class="fontstyle0"><img src="" width="734" height="185"></span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of hybridization shown by the central carbon atom in molecule </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the number of sigma (</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">σ</mi></math></span><span class="fontstyle0">) and pi (<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">π</mi></math></span><span class="fontstyle0">) bonds around the central carbon atom in molecule </span><strong><span class="fontstyle3">B</span></strong>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The IR spectrum of one of the compounds is shown:</span></p>
<p><img src="" width="687" height="247"></p>
<p style="text-align: center;"><em><span class="fontstyle0">COBLENTZ SOCIETY. Collection © 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.</span></em></p>
<p style="text-align: left;"><span class="fontstyle0">Deduce, giving a reason, the compound producing this spectrum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><strong><span class="fontstyle2">B </span></strong><span class="fontstyle0">are isomers. Draw two other structural isomers with the formula <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><mi mathvariant="normal">O</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The equilibrium constant, </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math><span class="fontstyle0">, for the conversion of </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle3">B </span></strong><span class="fontstyle0">is </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> <span class="fontstyle0">in water at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, which compound, </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">or </span><strong><span class="fontstyle3">B</span></strong><span class="fontstyle0">, is present in greater concentration when equilibrium is reached.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard Gibbs free energy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle5"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold">mol</mi><mrow><mo mathvariant="bold">–</mo><mn mathvariant="bold">1</mn></mrow></msup></math></span><span class="fontstyle0">, for the reaction (</span><strong><span class="fontstyle5">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle5">B</span></strong><span class="fontstyle0">) at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene. Suggest the synthetic route including all the necessary reactants and steps.<br> </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene.</span></p>
<p><span class="fontstyle0">Suggest why propanal is a minor product obtained from the synthetic route in (g)(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The Bombardier beetle sprays a mixture of hydroquinone and hydrogen peroxide to fight off&nbsp;predators. The reaction equation to produce the spray can be written as:</p>
<table style="width: 388.667px; margin-left: 120px;">
<tbody>
<tr>
<td style="width: 211px;">C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub>(aq) + H<sub>2</sub>O<sub>2</sub>(aq)</td>
<td style="width: 18px;">→</td>
<td style="width: 195.667px;">C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>(aq) + 2H<sub>2</sub>O(l)</td>
</tr>
<tr>
<td style="width: 211px;">hydroquinone</td>
<td style="width: 18px;">&nbsp;</td>
<td style="width: 195.667px;">quinone</td>
</tr>
</tbody>
</table>
<p style="text-align: center; padding-left: 120px;"><br>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogenation of propene produces propane. Calculate the standard entropy change, Δ<em>S<sup> </sup></em><sup>θ</sup>, for the hydrogenation of propene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy change, Δ<em>H </em><sup>θ</sup>, for the hydrogenation of propene is –124.4 kJ mol<sup>–1</sup>. Predict the temperature above which the hydrogenation reaction is not spontaneous.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Vanadium has a number of different oxidation states.</p>
</div>

<div class="specification">
<p>Electrode potentials for the reactions of vanadium and other species are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of vanadium in each of the following species.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.58.14.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/03.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that can reduce VO<sup>2+</sup>(aq) to V<sup>3+</sup>(aq) but no further.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that could convert <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{VO}}_2^ + {\text{(aq)}}">
  <msubsup>
    <mrow>
      <mtext>VO</mtext>
    </mrow>
    <mn>2</mn>
    <mo>+</mo>
  </msubsup>
  <mrow>
    <mtext>(aq)</mtext>
  </mrow>
</math></span> to V<sup>2+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction between VO<sup>2+</sup>(aq) and V<sup>2+</sup>(aq) in acidic solution to form V<sup>3+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the spontaneity of this reaction by calculating a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>G</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> using the data given in (b) and in section 1 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, reacts with thionyl chloride, SOCl<sub>2</sub>, according to the reaction&nbsp;below.</p>
<p style="text-align: center;">HOCH<sub>2</sub>CH<sub>2</sub>OH (l) + 2SOCl<sub>2</sub> (l) → ClCH<sub>2</sub>CH<sub>2</sub>Cl (l) + 2SO<sub>2</sub> (g) + 2HCl (g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change for this reaction using the following data.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change for this reaction using the following data.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard free energy change, Δ<em>G</em><sup>θ</sup>, for the above reaction is –103 kJ mol<sup>–1</sup> at 298 K.</p>
<p>Suggest why Δ<em>G</em><sup>θ</sup> has a large negative value considering the sign of Δ<em>H</em><sup>θ</sup> in part (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about ethene, C<sub>2</sub>H<sub>4</sub>, and ethyne, C<sub>2</sub>H<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne reacts with chlorine in a similar way to ethene. Formulate equations for the following reactions.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Under certain conditions, ethyne can be converted to benzene.</p>
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the reaction stated, using section 11 of the data booklet.</p>
<p style="text-align: center;">3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(g)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the following similar reaction, using Δ<em>H</em><sub>f</sub> values in section 12 of the data booklet.</p>
<p style="text-align: center;">3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(l)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, giving two reasons, the difference in the values for (c)(i) and (ii). If you did not obtain answers, use −475 kJ for (i) and −600 kJ for (ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, Δ<em>S</em><sup>Θ</sup>, in J K<sup>−1</sup>, for the reaction in (ii) using section 12 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, showing your working, the spontaneity of the reaction in (ii) at 25 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible Lewis structure for benzene is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_14.31.21.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/03.d"></p>
<p>State one piece of physical evidence that this structure is <strong>incorrect</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Enthalpy changes depend on the number and type of bonds broken and formed.</p>
</div>

<div class="specification">
<p>Enthalpy changes depend on the number and type of bonds broken and formed.</p>
</div>

<div class="specification">
<p>The table lists the standard enthalpies of formation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\text{f}}^\Theta ">
  <mi mathvariant="normal">Δ<!-- Δ --></mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mtext>f</mtext>
    </mrow>
    <mi mathvariant="normal">Θ<!-- Θ --></mi>
  </msubsup>
</math></span>, for some of the species in the&nbsp;reaction above.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_08.21.04.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/04.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen gas can be formed industrially by the reaction of natural gas with steam.</p>
<p>                                          CH<sub>4</sub>(g) + H<sub>2</sub>O(g) → 3H<sub>2</sub>(g) + CO(g)</p>
<p>Determine the enthalpy change, Δ<em>H, </em>for the reaction, in kJ, using section 11 of the data booklet.</p>
<p>Bond enthalpy for C≡O: 1077 kJ mol<sup>−1</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why no value is listed for H<sub>2</sub>(g).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Δ<em>H</em><sup>Θ</sup>, in kJ, for the reaction using the values in the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The table lists standard entropy, <em>S</em><sup>Θ</sup>, values.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_15.07.35.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/05.c"></p>
<p>Calculate the standard entropy change for the reaction, Δ<em>S</em><sup>Θ</sup>, in J K<sup>−1</sup>.</p>
<p>CH<sub>4</sub>(g) + H<sub>2</sub>O(g) → 3H<sub>2</sub>(g) + CO(g)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard free energy change, Δ<em>G</em><sup>Θ</sup>, in kJ, for the reaction at 298 K using your answer to (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature, in K, above which the reaction becomes spontaneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen and iodine react to form hydrogen iodide.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)</p>
</div>

<div class="specification">
<p>The following experimental data was obtained.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Consider the reaction of hydrogen with solid iodine.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(s) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)&nbsp; &nbsp; &nbsp;&Delta;<em>H</em><sup>⦵</sup>&nbsp;= +53.0&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the order of reaction with respect to hydrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> conditions necessary for a successful collision between reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change of reaction, Δ<em>S</em><sup>⦵</sup>, in J K<sup>−1</sup> mol<sup>−1</sup>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how the value of the ΔS<sup>⦵</sup><sub>reaction</sub> would be affected if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> (g) were used as a reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>−1</sup>, for the reaction at 298 K. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the equilibrium constant, <em>K</em><sub>c</sub>, for this reaction at 298 K. Use your answer to (d)(iii) and sections 1 and 2 of the data booklet.</p>
<p>(If you did not obtain an answer to (d)(iii) use a value of 2.0 kJ mol<sup>−1</sup>, although this is not the correct answer).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>

<div class="specification">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>

<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the change in entropy, Δ<em>S</em>, in J K<sup>−1</sup>, for the decomposition of calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature, in K, at which the decomposition of calcium carbonate becomes spontaneous, using b(i), b(ii) and section 1 of the data booklet.</p>
<p>(If you do not have answers for b(i) and b(ii), use Δ<em>H</em> = 190 kJ and Δ<em>S</em> = 180 J K<sup>−1</sup>, but these are not the correct answers.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch an energy profile for the decomposition of calcium carbonate based on your answer to b(i), labelling the axes and activation energy, <em>E</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how adding a catalyst to the reaction would impact the enthalpy change of reaction, Δ<em>H</em>, and the activation energy, <em>E</em><sub>a</sub>.</p>
<p><img src="" width="679" height="174"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2 </sub>(aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in d(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol and methanoic acid are important industrial products.</p>
</div>

<div class="specification">
<p>Ethanol is used as a fuel.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the chemical equation for the complete combustion of ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in enthalpy, Δ<em>H</em>, in kJ, when 56.00 g of ethanol is burned. Use section 13 in the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oxidation of ethanol with potassium dichromate, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, can form two different organic products. Determine the names of the organic products and the methods used to isolate them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation and name the organic product when ethanol reacts with methanoic acid.</p>
<p><img src="" width="667" height="189"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the titration curve of methanoic acid with sodium hydroxide, showing how you would determine methanoic acid p<em>K</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify an indicator that could be used for the titration in 5(d)(i), using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration of methanoic acid in a solution of pH = 4.12. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify if aqueous solutions of the following salts are acidic, basic, or neutral.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Properties of elements and their compounds can be related to the position of the elements in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the decrease in atomic radius from Na to Cl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the radius of the sodium ion, Na<sup>+</sup>, is smaller than the radius of the oxide ion, O<sup>2−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show the relative values of the successive ionization energies of boron.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether Mn<sup>2+</sup> or Fe<sup>2+</sup> is likely to have a more exothermic enthalpy of hydration.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about sodium and its compounds.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The Born-Haber cycle for sodium oxide is shown (not to scale).</span></p>
<p><span style="background-color: #ffffff;"><img src="images/3d.PNG" alt width="391" height="427"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Sodium peroxide is used in diving apparatus to produce oxygen from carbon dioxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Na<sub>2</sub>O<sub>2</sub> (s) + 2CO<sub>2</sub> (g) → 2Na<sub>2</sub>CO<sub>3</sub> (s) + O<sub>2</sub> (g)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Plot the relative values of the first four ionization energies of sodium.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why the alkali metals (group 1) have similar chemical properties.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the structure and bonding in solid sodium oxide.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate values for the following changes using section 8 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;"><br>ΔH<sub>atomisation</sub> (Na) = 107 kJ mol<sup>−1</sup><br>ΔH<sub>atomisation</sub> (O) = 249 kJ mol<sup>−1</sup></span></p>
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></span>O<sub>2</sub>(g) <span style="background-color: #ffffff;">→ </span>O<sup>2- </sup>(g):</p>
<p><span style="background-color: #ffffff;">Na (s) → Na<sup>+</sup> (g):</span></p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The standard enthalpy of formation of sodium oxide is −414 kJ mol<sup>−1</sup>. Determine the lattice enthalpy of sodium oxide, in kJ mol<sup>−1</sup>, using section 8 of the data booklet and your answers to (d)(i).</span></p>
<p><span style="background-color: #ffffff;"><br>(If you did not get answers to (d)(i), use +850 kJ mol<sup>−1</sup> and +600 kJ mol<sup>−1</sup> respectively, but these are not the correct answers.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Justify why K<sub>2</sub>O has a lower lattice enthalpy (absolute value) than Na<sub>2</sub>O.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write equations for the separate reactions of solid sodium oxide and solid phosphorus(V) oxide with excess water and differentiate between the solutions formed.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Sodium oxide, Na<sub>2</sub>O:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Phosphorus(V) oxide, P<sub>4</sub>O<sub>10</sub>:</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Differentiation:</span></span></span></span></p>
<p> </p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: left;"><span style="background-color: #ffffff;">Sodium peroxide, Na<sub>2</sub>O<sub>2</sub>, is formed by the reaction of sodium oxide with oxygen.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Na<sub>2</sub>O (s) + O<sub>2</sub> (g) → 2Na<sub>2</sub>O<sub>2</sub> (s)</span></p>
<p style="text-align: left;"><span style="background-color: #ffffff;">Calculate the percentage yield of sodium peroxide if 5.00g of sodium oxide produces 5.50g of sodium peroxide.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy change, <em>ΔH</em>, in kJ, for this reaction using data from the table and section 12 of the data booklet.</span></p>
<p style="padding-left:90px;"><span style="background-color: #ffffff;"><img src=""></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why bond enthalpy values are not valid in calculations such as that in (g)(i).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An allotrope of molecular oxygen is ozone. Compare, giving a reason, the bond enthalpies of the O to O bonds in O<sub>2</sub> and O<sub>3</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why a real gas differs from ideal behaviour at low temperature and high pressure.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The reaction of sodium peroxide with excess water produces hydrogen peroxide and one other sodium compound. Suggest the formula of this compound.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the oxidation number of carbon in sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>White phosphorus is an allotrope of phosphorus and exists as P<sub>4</sub>.</p>
</div>

<div class="specification">
<p>An equilibrium exists between PCl<sub>3</sub> and PCl<sub>5</sub>.</p>
<p style="text-align: center;">PCl<sub>3&thinsp;</sub>(g) + Cl<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> PCl<sub>5&thinsp;</sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the Lewis (electron dot) structure of the P<sub>4</sub> molecule, containing only single bonds.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation for the reaction of white phosphorus (P<sub>4</sub>) with chlorine gas to form phosphorus trichloride (PCl<sub>3</sub>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the electron domain and molecular geometry using VSEPR theory, and estimate the Cl–P–Cl bond angle in PCl<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the reason why PCl<sub>5</sub> is a non-polar molecule, while PCl<sub>4</sub>F is polar.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change (Δ<em>H</em><sup>⦵</sup>) for the forward reaction in kJ mol<sup>−1</sup>.</p>
<p style="text-align:center;">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>3 </sub>(g) = −306.4 kJ mol<sup>−1</sup></p>
<p style="text-align:center;">Δ<em>H</em><sup>⦵</sup><sub>f</sub> PCl<sub>5 </sub>(g) = −398.9 kJ mol<sup>−1</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change, Δ<em>S</em>, in J K<sup>−1 </sup>mol<sup>−1</sup>, for this reaction.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:center;"> </p>
<p style="text-align:center;"><em>Chemistry 2e, Chpt. 21 Nuclear Chemistry, Appendix G: Standard Thermodynamic Properties for Selected Substances https://openstax.org/books/chemistry-2e/pages/g-standard-thermodynamic-properties-for- selectedsubstances# page_667adccf-f900-4d86-a13d-409c014086ea © 1999-2021, Rice University. Except where otherwise noted, textbooks on this site are licensed under a Creative Commons Attribution 4.0 International License. (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change (Δ<em>G</em>), in kJ mol<sup>−1</sup>, for this reaction at 25 °C. Use section 1 of the data booklet.</p>
<p>If you did not obtain an answer in c(i) or c(ii) use −87.6 kJ mol<sup>−1</sup> and −150.5 J mol<sup>−1 </sup>K<sup>−1</sup> respectively, but these are not the correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equilibrium constant, <em>K</em>, for this reaction at 25 °C, referring to section 1 of the data booklet.</p>
<p>If you did not obtain an answer in (c)(iii), use Δ<em>G</em> = –43.5 kJ mol<sup>−1</sup>, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression,<em> K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, the effect of an increase in temperature on the position of this equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(vi).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A molecule of citric acid, C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>, is shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="215" height="123"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The equation for the first dissociation of citric acid in water is</span></span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>8</sub>O<sub>7</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> C<sub>6</sub>H<sub>7</sub>O<sub>7</sub><sup>−</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a conjugate acid–base pair in the equation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The value of <em>K</em><sub>a</sub> at 298 K for the first dissociation is 5.01 × 10<sup>−4</sup>.</span></p>
<p><span style="background-color: #ffffff;">State, giving a reason, the strength of citric acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H<sup>+</sup>], and on K<sub>a</sub>, of increasing the temperature.</span></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {G^\theta }"><mi mathvariant="normal">Δ</mi><msup><mi>G</mi><mtext>θ</mtext></msup></math>, in kJ mol<sup>−1</sup>, for the first dissociation of citric acid at 298 K, using section 1 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> laboratory methods of distinguishing between solutions of citric acid and hydrochloric acid of equal concentration, stating the expected observations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>
<p><span style="background-color: #ffffff;">The <em>x</em>-axis and <em>y</em>-axis are shown with arbitrary units.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/2.PNG" alt width="564" height="283"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">This decomposition obeys the rate expression:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{d[{{\text{N}}_2}{\text{O]}}}}{{dt}}">
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mi>d</mi>
      <mo stretchy="false">[</mo>
      <mrow>
        <msub>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mrow>
        <mtext>O]</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>d</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
</math></span> = <em>k</em>[N<sub>2</sub>O]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce how the rate of reaction at <em>t</em> = 2 would compare to the initial rate.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">It has been suggested that the reaction occurs as a two-step process:</span></p>
<p><span style="background-color: #ffffff;">Step 1: N<sub>2</sub>O (g) → N<sub>2</sub> (g) + O (g)</span></p>
<p><span style="background-color: #ffffff;">Step 2: N<sub>2</sub>O (g) + O (g) → N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">Explain how this could support the observed rate expression.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>
<p><span style="background-color: #ffffff;">Sketch, on the axes in question 2, the graph that you would expect.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment gave an error in the rate because the pressure gauge was inaccurate.</span></p>
<p><span style="background-color: #ffffff;">Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>
<p><img src="images/2f.PNG" alt width="637" height="309"></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the standard entropy change, in J K−1, for the decomposition of dinitrogen monoxide. </span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src="images/2gi.PNG" alt width="325" height="154"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide has a positive standard enthalpy of formation, Δ<em>H</em><sub>f</sub></span><sup>θ</sup><span style="background-color: #ffffff;">.</span></p>
<p><span style="background-color: #ffffff;">Deduce, giving reasons, whether altering the temperature would change the </span><span style="background-color: #ffffff;">spontaneity of the <strong>decomposition</strong> reaction.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>This reaction is used in the manufacture of sulfuric acid.</p>
<p style="text-align: center;">2SO<sub>2</sub> (g) + O<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> 2SO<sub>3</sub> (g)&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>K</em><sub>c</sub> = 280 at 1000 K</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why this equilibrium reaction is considered homogeneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reason, the sign of the standard entropy change of the forward reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in kJ, for this reaction at 1000 K. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether the forward reaction is endothermic or exothermic. Use your answers to (b) and (c).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.200 mol sulfur dioxide, 0.300 mol oxygen and 0.500 mol sulfur trioxide were mixed in a 1.00 dm<sup>3</sup> flask at 1000 K.</p>
<p>Predict the direction of the reaction showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50&deg;C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Now consider the second stage of the reaction.</p>
<p style="text-align: center;">CO (g) + 2H<sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Δ<em>H</em><sup>⦵</sup>&nbsp;= –129 kJ</p>
</div>

<div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>

<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> reason why you would expect the value of Δ<em>H</em> calculated from the&nbsp;<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mi>f</mi><mi mathvariant="normal">⦵</mi></msubsup></math> values, given in section 12 of data booklet, to differ from your answer to (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equilibrium constant, <em>K</em><sub>c</sub>, has a value of 1.01 at 298 K.</p>
<p>Calculate Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>–1</sup>, for this reaction. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for the entropy change, Δ<em>S</em><sup>⦵</sup>, in J K<sup>–1</sup> mol<sup>–1</sup> at 298 K. Use your answers to (e)(i) and section 1 of the data booklet.</p>
<p>If you did not get answers to (e)(i) use –1 kJ, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the sign of Δ<em>S</em> with reference to the equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how a change in temperature from 298 K to 273 K would affect the spontaneity of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is produced by the Haber&ndash;Bosch process which involves the equilibrium:</p>
<p style="text-align: center;">N<sub>2&thinsp;</sub>(g) + 3&thinsp;H<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2&thinsp;NH<sub>3&thinsp;</sub>(g)</p>
<p>The percentage of ammonia at equilibrium under various conditions is shown:</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><sup>[The Haber Bosch Process [graph] Available at: https://commons.wikimedia.org/wiki/File:Ammonia_yield.png</sup><br><sup>[Accessed: 16/07/2022].]</sup></p>
</div>

<div class="specification">
<p>One factor affecting the position of equilibrium is the enthalpy change of the reaction.</p>
</div>

<div class="specification">
<p>The standard free energy change, &Delta;<em>G</em><sup>⦵</sup>, for the Haber&ndash;Bosch process is &ndash;33.0&thinsp;kJ at 298&thinsp;K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the expression for the equilibrium constant, <em>K</em><sub>c</sub>, for this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the use of a catalyst affects the position of the equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the reaction quotient, Q, explain why the percentage yield increases as the pressure is increased at constant temperature.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, for the Haber–Bosch process, in kJ. Use Section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the value obtained in (b)(i) might differ from a value calculated using Δ<em>H</em><sub>f</sub> data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate that your answer to (b)(i) is consistent with the effect of an increase in temperature on the percentage yield, as shown in the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, whether the reaction is spontaneous or not at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the equilibrium constant, <em>K</em>, at 298 K. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change for the Haber–Bosch process, in J mol<sup>–1 </sup>K<sup>–1</sup> at 298 K. Use your answer to (b)(i) and section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the reaction equation, why this sign for the entropy change is expected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate Δ<em>H</em><sup>θ</sup>, in kJ, for this similar reaction below using <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\rm{f}}^\theta ">
  <mi mathvariant="normal">Δ</mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mrow>
        <mi mathvariant="normal">f</mi>
      </mrow>
    </mrow>
    <mi>θ</mi>
  </msubsup>
</math></span> data from section 12 of the data booklet. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H_{\rm{f}}^\theta ">
  <mi mathvariant="normal">Δ</mi>
  <msubsup>
    <mi>H</mi>
    <mrow>
      <mrow>
        <mi mathvariant="normal">f</mi>
      </mrow>
    </mrow>
    <mi>θ</mi>
  </msubsup>
</math></span> of HOCH<sub>2</sub>CH<sub>2</sub>OH(l) is –454.8kJmol<sup>-1</sup>.</p>
<p>2CO (g) + 3H<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>(ii) Deduce why the answers to (a)(iii) and (b)(i) differ.</p>
<p>(iii) Δ<em>S</em><sup>θ</sup> for the reaction in (b)(i) is –620.1JK<sup>-1</sup>. Comment on the decrease in entropy.</p>
<p>(iv) Calculate the value of ΔG<sup>θ</sup>, in kJ, for this reaction at 298 K using your answer to (b)(i). (If you did not obtain an answer to (b)(i), use –244.0 kJ, but this is not the correct value.)</p>
<p>(v) Comment on the statement that the reaction becomes less spontaneous as temperature is increased.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the <sup>1</sup>HNMR data for ethanedioic acid and ethane-1,2-diol by completing the table.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br>