File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 13/markSceme-HL-paper3html
File size: 279.97 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>Alloys containing at least 60 % copper reduce the presence of bacteria on their surface.The percentage of copper in brass, an alloy of copper and zinc, can be determined by UV-vis spectrometry.</p>
<p>A sample of brass is dissolved in concentrated nitric acid and then made up to 250.0 cm<sup>3</sup>&nbsp;with water before analysis.</p>
<p style="text-align: center;">Cu (s) + 4HNO<sub>3</sub>&nbsp;(aq) → Cu(NO<sub>3</sub>)<sub>2</sub>&nbsp;(aq) + 2NO<sub>2</sub>&nbsp;(g) + 2H<sub>2</sub>O (l)</p>
<p style="text-align: center;">3Zn (s) + 8HNO<sub>3</sub>&nbsp;(aq) → 3Zn(NO<sub>3</sub>)<sub>2</sub>&nbsp;(aq) + 2NO (g) + 4H<sub>2</sub>O (l)</p>
<p>The concentration of copper(II) ions in the resulting solution is then determined from a calibration curve, which is plotted by measuring the light absorbance of standard solutions.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">You may find the following chart and diagram helpful.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;">&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the initial reaction should be carried out under a fume hood.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the equation for the relationship between absorbance and concentration.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copper(II) ion solutions are blue. Suggest, giving your reason, a suitable wavelength of light for the analysis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a solution of 0.0100 mol dm<sup>−3</sup> is obtained from a standard 1.000 mol dm<sup>−3</sup> copper(II) sulfate solution, including <strong>two</strong> essential pieces of glassware you would need.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The original piece of brass weighed 0.200 g. The absorbance was 0.32.</p>
<p>Calculate, showing your working, the percentage of copper by mass in the brass.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the appropriate number of significant figures for your answer in (e)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the suitability of using brass of this composition for door handles in hospitals.</p>
<p>If you did not obtain an answer to (e)(i), use 70 % but this is not the correct answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest another property of brass that makes it suitable for door handles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titration is another method for analysing the solution obtained from adding brass to nitric acid.</p>
<p>Copper(II) ions are reduced to copper(I) iodide by the addition of potassium iodide solution, releasing iodine that can be titrated with sodium thiosulfate solution, Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq). Copper(I) iodide is a white solid.</p>
<p style="text-align: center;">4I<sup>−</sup> (aq) + 2Cu<sup>2+</sup> (aq) → 2CuI (s) + I<sub>2</sub> (aq)</p>
<p style="text-align: center;">I<sub>2</sub> (aq) + 2S<sub>2</sub>O<sub>3</sub><sup>2−</sup> (aq) → 2I<sup>−</sup> (aq) + S<sub>4</sub>O<sub>6</sub><sup>2−</sup> (aq)</p>
<p>Suggest why the end point of the titration is difficult to determine, even with the addition of starch to turn the remaining free iodine black.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>NO<sub>2</sub>/NO/NO<sub>x</sub>/HNO<sub>3</sub>/gas is poisonous/toxic/irritant ✔</p>
<p> </p>
<p><em>Accept formula or name.</em></p>
<p><em>Accept “HNO<sub>3</sub> is corrosive” <strong>OR</strong> “poisonous/toxic gases produced”.</em></p>
<p><em>Accept “reaction is harmful/hazardous”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Slope (gradient):</em></p>
<p>40 ✔</p>
<p> </p>
<p><em>Equation:</em></p>
<p>absorbance = 40 × concentration</p>
<p><em><strong>OR</strong></em></p>
<p><em>y</em> = 40<em>x</em> ✔</p>
<p> </p>
<p><em>Accept any correct relationship for slope such as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00}}{{0.025}}">
  <mfrac>
    <mrow>
      <mn>1.00</mn>
    </mrow>
    <mrow>
      <mn>0.025</mn>
    </mrow>
  </mfrac>
</math></span>.</em></p>
<p><em>Award <strong>[2]</strong> if equation in M2 is correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>orange is opposite blue «in the colour wheel»</p>
<p><em><strong>OR</strong></em></p>
<p>the complementary colour «blue» is seen/transmitted ✔</p>
<p> </p>
<p>585–647 «nm would be absorbed» ✔</p>
<p> </p>
<p><em>Accept any value or range within 550–680 «nm» for M2.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>dilute 1.00 cm<sup>3</sup> «of the standard solution with water» to 100 cm<sup>3</sup></p>
<p><em><strong>OR</strong></em></p>
<p>dilute sample of standard solution «with water» 100 times ✔</p>
<p> </p>
<p>«graduated/volumetric» pipette/pipet ✔</p>
<p>volumetric flask ✔</p>
<p> </p>
<p><em>Accept any 1 : 100 ratio for M1.</em></p>
<p><em>Accept “mix 1 cm<sup>3</sup> of the standard solution with 99 cm<sup>3</sup> of water” for M1.</em></p>
<p><em>Do <strong>not</strong> accept “add 100 cm<sup>3</sup> of water to 1.00 cm<sup>3</sup> of standard solution” for M1.</em></p>
<p><em>Accept “burette/buret” for M2.</em></p>
<p><em>Accept “graduated/measuring flask” for M3 but <strong>not </strong>“graduated/measuring cylinder” or “conical/Erlenmeyer flask”.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>concentration of copper = 0.0080 «mol dm<sup>–3</sup>» ✔</p>
<p> </p>
<p>mass of copper in 250.0 cm<sup>3</sup> = «0.0080 mol dm<sup>–3</sup> × 0.2500 dm<sup>3</sup> × 63.55 g mol<sup>–1</sup> =» 0.127 «g»</p>
<p><em><strong>OR</strong></em></p>
<p>mass of brass in 1 dm<sup>3</sup> = «4 × 0.200 g =» 0.800 g <em><strong>AND </strong></em>[Cu2+] = «0.0080 mol dm<sup>–3</sup> × 63.55 g mol<sup>–1</sup> =» 0.5084 g dm<sup>–3</sup> ✔</p>
<p> </p>
<p>«% copper in this sample of brass <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.127}}{{0.200}} \times 100 = ">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.127</mn>
    </mrow>
    <mrow>
      <mn>0.200</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span>» 64 «%»</p>
<p><em><strong>OR</strong></em></p>
<p>«% copper in this sample of brass <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.5084}}{{0.800}} \times 100 = ">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.5084</mn>
    </mrow>
    <mrow>
      <mn>0.800</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span>» 64 «%» ✔</p>
<p> </p>
<p><em>Accept any value in range 0.0075–0.0085 «mol dm<sup>–3</sup>» for M1.</em></p>
<p><em>Accept annotation on graph for M1.</em></p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<p><em>Accept “65 «%»”.</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>two ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> apply ECF from 1(e)(i).</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«since it is greater than 60%» it will reduce the presence of bacteria «on door handles» ✔</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>resistant to corrosion/oxidation/rusting</p>
<p><em><strong>OR</strong></em></p>
<p>low friction surface «so ideal for connected moving components» ✔</p>
<p> </p>
<p><em>Accept “hard/durable”, “«high tensile» strength”, “unreactive”, “malleable” or any reference to the appearance/colour of brass (eg “gold-like”, “looks nice” etc.).</em></p>
<p><em>Do <strong>not</strong> accept irrelevant properties, such as “high melting/boiling point”, “non-magnetic”, “good heat/electrical conductor”, “low volatility”, etc.</em></p>
<p><em>Do <strong>not</strong> accept “ductile”.</em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>precipitate/copper(I) iodide/CuI makes colour change difficult to see</p>
<p><em><strong>OR</strong></em></p>
<p>release of I<sub>2</sub>/iodine from starch-I<sub>2</sub> complex is slow so titration must be done slowly ✔</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Lithium has many uses.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The emission spectra obtained by ICP-OES for a mixture containing the isotope <sup>6</sup>Li (Li-6) and naturally occurring lithium (Li (N)) is shown.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="688" height="464"></span></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of bonding in lithium hydride, using sections 8 and 29 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the colour of the emission spectrum of lithium using section 17 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why ICP-OES does not give good quantitative results for distinguishing <sup>6</sup>Li from naturally occurring lithium.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a better method.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium is obtained by electrolysis of molten lithium chloride. Calculate the time, in seconds, taken to deposit 0.694 g Li using a current of 2.00 A.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><em>Q</em> (charge) = <em>I</em> (current) × <em>t</em> (time)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium has shown some superconductive properties when doped into graphene or when under high pressure. Under high pressure, however, the Meissner effect is absent.</span></p>
<p><span style="background-color: #ffffff;">Describe the Meissner effect.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">At very low temperatures, lithium atoms enhance the phonon binding of electrons in graphene suggesting the formation of Cooper pairs.</span></p>
<p><span style="background-color: #ffffff;">Explain how Cooper pairs are formed.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium forms a crystalline lattice with the unit cell structure shown below.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="215" height="208"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">X-ray diffraction shows that the length of the edge of the unit cell is 3.51 × 10<sup>−8</sup> cm.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Determine the density of lithium, in g cm<sup>−3</sup>, using sections 2 and 6 of the data booklet.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ionic   <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">red   <strong>[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">emission spectra of both «<sup>6</sup>Li and natural Li» give same colour/produce same «range of» wavelengths<br><em><strong>OR</strong></em><br>they have same electron transitions/same nuclear charge    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “the spectra are almost identical”.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ICP-MS   <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “MS/mass spectrometry”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">n <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span>=  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{m}}}{{{{\text{M}}_{\text{r}}}}} = \frac{{0.694}}{{6.94}}">
  <mfrac>
    <mrow>
      <mtext>m</mtext>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mrow>
            <mtext>M</mtext>
          </mrow>
          <mrow>
            <mtext>r</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.694</mn>
    </mrow>
    <mrow>
      <mn>6.94</mn>
    </mrow>
  </mfrac>
</math></span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">»</span> =0.100«mol» </span></p>
<p><span style="background-color: #ffffff;"> « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{0.100{\text{mol}} \times {\text{96 500 C mo}}{{\text{l}}^{ - 1}}}}{{2.00{\text{ C }}{{\text{s}}^{ - 1}}}}">
  <mi>t</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.100</mn>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mtext>96 500 C mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2.00</mn>
      <mrow>
        <mtext> C </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> »<br></span></p>
<p><span style="background-color: #ffffff;">4830 «s»   <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">creation of mirror image/opposing magnetic field of external field «below critical temperature/T of superconductor»<br><em><strong>OR</strong></em><br>expulsion of magnetic field from superconductor «below critical temperature/T»    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em><br>positive ions/cations in lattice are attracted to passing electron    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">lattice is distorted «by this passing electron» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">creates «local» regions of increased positive charge <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">second electron is attracted to deformation <em><strong>AND</strong> </em>a coupling occurs <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of Li in unit cell = « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times \frac{{6.94{\text{ g mo}}{{\text{l}}^{ - 1}}}}{{6.02 \times {{10}^{23}}{\text{ mo}}{{\text{l}}^{ - 1}}}}">
  <mn>2</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>6.94</mn>
      <mrow>
        <mtext> g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> » 2.31 × 10<sup>–23</sup> g    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">volume of unit cell = «(3.51 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 10<sup>–8</sup> cm)<sup>3</sup> =» 4.32 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 10<sup>–23</sup> cm<sup>3</sup>    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«density = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.31 \times {{10}^{ - 23}}{\text{ g}}}}{{4.32 \times {{10}^{ - 23}}{\text{ c}}{{\text{m}}^3}}}">
  <mfrac>
    <mrow>
      <mn>2.31</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>4.32</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> c</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 0.535 «g cm<sup>–3</sup>»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award <strong>[3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the type of bonding and the colour of the emission spectrum of lithium.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the type of bonding and the colour of the emission spectrum of lithium.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the type of bonding and the colour of the emission spectrum of lithium, but frequently referred to the ICP-OES spectra of 6Li and naturally occurring lithium as being the same, rather than similar and thus failed to score the mark in (b)(ii).&nbsp;</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A better method was selected by most candidates.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The calculation in was done well.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates had some difficulty describing the Meissner effect, with several responses using the terms repelling or repulsion instead of opposing and expulsion. Correct terminology is required.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poor expression was also evident in responses explaining the formation of Cooper pairs, with very few candidates scoring full marks.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates had difficulty determining the number of atoms in lithium in a unit cell, even with a diagram provided. However, ECF marks were frequently scored.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br>