File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 13/markSceme-HL-paper2html
File size: 830.82 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Determine the frequency of a photon that will cause the first ionization of copper. Use sections 1, 2 and 8 of the data booklet.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Explain why a copper(II) solution is blue, using section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0"> Copper plating can be used to improve the conductivity of an object.</span></p>
<p><span class="fontstyle0">State, giving your reason, at which electrode the object being electroplated should be placed.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>E</mi><mo>=</mo><mfrac><mrow><mn>745</mn><mo> </mo><mn>000</mn><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>6</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>18</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>E</mi><mo>=</mo><mi>h</mi><mi>ν</mi><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>1</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi><mo>=</mo><mn>6</mn><mo>.</mo><mn>63</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>34</mn></mrow></msup><mo> </mo><mi mathvariant="normal">J</mi><mo> </mo><mi mathvariant="normal">s</mi><mo>×</mo><mi mathvariant="normal">ν</mi><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">ν</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>87</mn><mo>×</mo><msup><mn>10</mn><mn>15</mn></msup><mo> </mo><mo>«</mo><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>/</mo><mi>Hz</mi><mo>»</mo></math> ✔</p>
<p><br><em>Award <strong>[2]</strong> for correct final answer.</em><br><em>Award <strong>[1]</strong> for 1.12 × 10<sup>39</sup> «Hz».</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>orange light is absorbed «and the complementary colour is observed» ✔</p>
<p><em>Any <strong>TWO</strong> from:</em><br>partially filled d-orbitals ✔<br>«ligands/water cause» d-orbitals «to» split ✔<br>light is absorbed as electrons move to a higher energy orbital «in d–d transitions»<br><em><strong>OR</strong></em><br>light is absorbed as electrons are promoted ✔<br>energy gap corresponds to «orange» light in the visible region of the spectrum ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cathode/negative «electrode» <em><strong>AND</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cu</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></em> reduced «at that electrode» ✔</p>
<p><em>Accept cathode/negative «electrode» <strong>AND</strong> copper forms «at that electrode».</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Determining the frequency of a photon that will cause the first ionization of copper was the most&nbsp;challenging question on the exam. Many could not do it all, although some came up with the answer that&nbsp;came from using the result that would arise from the ionization energy in J/mole (and frequently kJ/mole)&nbsp;rather than J/atom.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students were able to fully explain why solutions containing Cu<sup>2+</sup> appear blue, however the&nbsp;misconception between absorption and emission spectra is still quite evident.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly not that well answered. Most students identified the cathode as the electrode where&nbsp;electroplating occurs but few could adequately justify why.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Millerite, a nickel sulfide mineral, is an important source of nickel. The first step in extracting&nbsp;nickel is to roast the ore in air.</p>
</div>

<div class="specification">
<p>The reaction for the formation of liquid tetracarbonylnickel is shown below:</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{Ni(s)}} + 4{\text{CO(g)}} \to {\text{Ni(CO}}{{\text{)}}_4}{\text{(l)}}">
  <mrow>
    <mtext>Ni(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <mtext>CO(g)</mtext>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mn>4</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the oxidation of nickel(II) sulfide to nickel(II) oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nickel obtained from another ore, nickeliferous limonite, is contaminated with iron. Both nickel and iron react with carbon monoxide gas to form gaseous complexes, tetracarbonylnickel, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Ni(CO}}{{\text{)}}_{\text{4}}}{\text{(g)}}">
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>, and pentacarbonyliron, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Fe(CO}}{{\text{)}}_{\text{5}}}{\text{(g)}}">
  <mrow>
    <mtext>Fe(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>. Suggest why the nickel can be separated from the iron successfully using carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {S^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>S</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span>, of the reaction, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{J}}\,{{\text{K}}^{ - 1}}">
  <mrow>
    <mtext>J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>, using the values given.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>H</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> in kJ.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to (c)(i) and (c)(ii), to determine the temperature, in °C, at which the decomposition of liquid tetracarbonylnickel to nickel and carbon monoxide becomes favourable.</p>
<p><br>(If you did not get answers to (c)(i) and (c)(ii), use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 500{\text{ J}}\,{{\text{K}}^{ - 1}}">
  <mo>−</mo>
  <mn>500</mn>
  <mrow>
    <mtext> J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 200{\text{ kJ}}">
  <mo>−</mo>
  <mn>200</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
</math></span> respectively but these are not the correct answers.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why experiments involving tetracarbonylnickel are very hazardous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{2NiS(s)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2NiO(s)}} + {\text{2S}}{{\text{O}}_{\text{2}}}{\text{(g)}}">
  <mrow>
    <mtext>2NiS(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>2NiO(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2S</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>formation of «gaseous» pentacarbonyliron is slower<br><em><strong>OR</strong></em><br>«gaseous» complexes form at different rates<br><em><strong>OR</strong></em><br>gases have different rates of diffusion «due to difference in masses»<br><em><strong>OR</strong></em><br>difference in thermal stability of «gaseous» complexes<br><em><strong>OR</strong></em><br>difference in boiling points of «gaseous» complexes<br><em><strong>OR</strong></em><br>difference in solubility of «gaseous» complexes<br><em><strong>OR</strong></em><br>difference in surface affinity «onto solid absorbent»<br><em><strong>OR</strong></em><br>difference in chemical properties of «gaseous» complexes</p>
<p> </p>
<p><em>Accept any other valid answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {S_{{\text{RHS}}}^\theta  = 313.4{\text{ }}\ll {\text{J}}\,{{\text{K}}^{ - 1}}\gg } ">
  <mo>∑</mo>
  <mrow>
    <msubsup>
      <mi>S</mi>
      <mrow>
        <mrow>
          <mtext>RHS</mtext>
        </mrow>
      </mrow>
      <mi>θ</mi>
    </msubsup>
    <mo>=</mo>
    <mn>313.4</mn>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mo>≪</mo>
    <mrow>
      <mtext>J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>≫</mo>
  </mrow>
</math></span><br><em><strong>AND</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {S_{{\text{LHS}}}^\theta  = \ll (4 \times 197.6) + 29.9{\text{ J}}\,{{\text{K}}^{ - 1}} = \gg {\text{ }}820.3{\text{ }}\ll {\text{J}}\,{{\text{K}}^{ - 1}}\gg } ">
  <mo>∑</mo>
  <mrow>
    <msubsup>
      <mi>S</mi>
      <mrow>
        <mrow>
          <mtext>LHS</mtext>
        </mrow>
      </mrow>
      <mi>θ</mi>
    </msubsup>
    <mo>=≪</mo>
    <mo stretchy="false">(</mo>
    <mn>4</mn>
    <mo>×</mo>
    <mn>197.6</mn>
    <mo stretchy="false">)</mo>
    <mo>+</mo>
    <mn>29.9</mn>
    <mrow>
      <mtext> J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>=≫</mo>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mn>820.3</mn>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mo>≪</mo>
    <mrow>
      <mtext>J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>≫</mo>
  </mrow>
</math></span></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {S^\theta }\ll  = \sum {S_{{\text{RHS}}}^\theta  - \sum {S_{{\text{LHS}}}^\theta  = } {\text{ }}313.4 - 820.3\gg  =  - 506.9{\text{ }}\ll {\text{J}}\,{{\text{K}}^{ - 1}}\gg } ">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>S</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>≪=</mo>
  <mo>∑</mo>
  <mrow>
    <msubsup>
      <mi>S</mi>
      <mrow>
        <mrow>
          <mtext>RHS</mtext>
        </mrow>
      </mrow>
      <mi>θ</mi>
    </msubsup>
    <mo>−</mo>
    <mo>∑</mo>
    <mrow>
      <msubsup>
        <mi>S</mi>
        <mrow>
          <mrow>
            <mtext>LHS</mtext>
          </mrow>
        </mrow>
        <mi>θ</mi>
      </msubsup>
      <mo>=</mo>
    </mrow>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mn>313.4</mn>
    <mo>−</mo>
    <mn>820.3</mn>
    <mo>≫=</mo>
    <mo>−</mo>
    <mn>506.9</mn>
    <mrow>
      <mtext> </mtext>
    </mrow>
    <mo>≪</mo>
    <mrow>
      <mtext>J</mtext>
    </mrow>
    <mspace width="thinmathspace"></mspace>
    <mrow>
      <msup>
        <mrow>
          <mtext>K</mtext>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
      </msup>
    </mrow>
    <mo>≫</mo>
  </mrow>
</math></span></p>
<p> </p>
<p><em>Award [2] for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H^\theta }\ll  =  - 633.0 - 4 \times ( - 110.5)\gg  =  - 191{\text{ }}\ll kJ\gg ">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>H</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
  <mo>≪=</mo>
  <mo>−</mo>
  <mn>633.0</mn>
  <mo>−</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mo stretchy="false">(</mo>
  <mo>−</mo>
  <mn>110.5</mn>
  <mo stretchy="false">)</mo>
  <mo>≫=</mo>
  <mo>−</mo>
  <mn>191</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mi>k</mi>
  <mi>J</mi>
  <mo>≫</mo>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«when» <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta G = 0">
  <mi mathvariant="normal">Δ</mi>
  <mi>G</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> «forward and backward reactions are equally favourable»</p>
<p>«when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta G = 0">
  <mi mathvariant="normal">Δ</mi>
  <mi>G</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{T}} = \frac{{\Delta H}}{{\Delta S}}">
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>H</mi>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mi>S</mi>
    </mrow>
  </mfrac>
</math></span>», <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{T}} = \ll \frac{{191{\text{ kJ}}}}{{0.5069{\text{ kJ}}\,{{\text{K}}^{ - 1}}}} = \gg {\text{ }}377{\text{ }}\ll {\text{K}}\gg ">
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mo>=≪</mo>
  <mfrac>
    <mrow>
      <mn>191</mn>
      <mrow>
        <mtext> kJ</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.5069</mn>
      <mrow>
        <mtext> kJ</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=≫</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mn>377</mn>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo>≪</mo>
  <mrow>
    <mtext>K</mtext>
  </mrow>
  <mo>≫</mo>
</math></span></p>
<p>«temperature =» 104 «°C»</p>
<p> </p>
<p><em>Award [3] for correct final answer. Use of –500 J K<sup>–1</sup> and –200 kJ gives 127 °C.</em></p>
<p><em>Award [2 max] for T &lt; 104 «°C».</em></p>
<p><em>Accept ΔG &lt; 0 and T &gt; 104 «°C».</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CO is toxic/poisonous<br><em><strong>OR</strong></em><br>Ni(CO)<sub>4</sub> decomposition deposits nickel in the lungs<br><em><strong>OR</strong></em><br>tetracarbonylnickel is toxic/poisonous<br><em><strong>OR</strong></em><br>tetracarbonylnickel is highly flammable «auto-ignition temperature of 60 °C»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The concentration of a solution of a weak acid, such as ethanedioic acid, can be determined<br>by titration with a standard solution of sodium hydroxide, NaOH (aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>5.00 g of an impure sample of hydrated ethanedioic acid, (COOH)<sub>2</sub>•2H<sub>2</sub>O, was dissolved in water to make 1.00 dm<sup>3</sup> of solution. 25.0 cm<sup>3</sup> samples of this solution were titrated against a 0.100 mol dm<sup>-3</sup> solution of sodium hydroxide using a suitable indicator.</p>
<p>(COOH)<sub>2</sub> (aq) + 2NaOH (aq) → (COONa)<sub>2 </sub>(aq) + 2H<sub>2</sub>O (l)</p>
<p>The mean value of the titre was 14.0 cm<sup>3</sup>.</p>
<p>(i) Suggest a suitable indicator for this titration. Use section 22 of the data booklet.</p>
<p>(ii) Calculate the amount, in mol, of NaOH in 14.0 cm<sup>3</sup> of 0.100 mol dm<sup>-3</sup> solution.</p>
<p>(iii) Calculate the amount, in mol, of ethanedioic acid in each 25.0 cm<sup>3</sup> sample.</p>
<p>(iv) Determine the percentage purity of the hydrated ethanedioic acid sample.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of the ethanedioate ion, <sup>–</sup>OOCCOO<sup>–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why all the C–O bond lengths in the ethanedioate ion are the same length and suggest a value for them. Use section 10 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how ethanedioate ions act as ligands.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br>phenolphthalein<br><em><strong>OR</strong></em><br>phenol red</p>
<p> </p>
<p>ii<br>«n(NaOH) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{{14.0}}{{1000}}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>14.0</mn>
        </mrow>
        <mrow>
          <mn>1000</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> dm<sup>3</sup> × 0.100 mol dm<sup>-3</sup> =» 1.40 × 10<sup>-3</sup> «mol»</p>
<p><br><br>iii<br>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span> × 1.40 × 10<sup>-3 </sup>=» 7.00 × 10<sup>-4</sup> «mol»</p>
<p> </p>
<p>iv<br><em><strong>ALTERNATIVE 1:</strong></em><br>«mass of pure hydrated ethanedioic acid in each titration = 7.00 × 10<sup>-4</sup> mol × 126.08 g mol<sup>-1</sup> =» 0.0883 / 8.83 × 10<sup>-2</sup> «g»</p>
<p>mass of sample in each titration = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{25}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>25</mn>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span> × 5.00 g =» 0.125 «g»</p>
<p>«% purity = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.0883{\rm{g}}}}{{0.125{\rm{g}}}}">
  <mfrac>
    <mrow>
      <mn>0.0883</mn>
      <mrow>
        <mrow>
          <mi mathvariant="normal">g</mi>
        </mrow>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.125</mn>
      <mrow>
        <mrow>
          <mi mathvariant="normal">g</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span> × 100 =» 70.6 «%»</p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br>«mol of pure hydrated ethanedioic acid in 1 dm<sup>3</sup> solution = 7.00 × 10<sup>-4</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1000}}{{25}}">
  <mfrac>
    <mrow>
      <mn>1000</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
</math></span>=» 2.80 × 10<sup>-2 </sup>«mol»</p>
<p>«mass of pure hydrated ethanedioic acid in sample = 2.80 × 10<sup>-2</sup> mol × 126.08 g mol<sup>-1</sup> =» 3.53 «g»</p>
<p>«% purity = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.53{\rm{g}}}}{{5.00{\rm{g}}}}">
  <mfrac>
    <mrow>
      <mn>3.53</mn>
      <mrow>
        <mrow>
          <mi mathvariant="normal">g</mi>
        </mrow>
      </mrow>
    </mrow>
    <mrow>
      <mn>5.00</mn>
      <mrow>
        <mrow>
          <mi mathvariant="normal">g</mi>
        </mrow>
      </mrow>
    </mrow>
  </mfrac>
</math></span> × 100 =» 70.6 «%»</p>
<p><em><strong>ALTERNATIVE 3:</strong></em><br>mol of hydrated ethanedioic acid (assuming sample to be pure) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5.00{\rm{g}}}}{{126.08{\rm{gmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}">
  <mfrac>
    <mrow>
      <mn>5.00</mn>
      <mrow>
        <mrow>
          <mi mathvariant="normal">g</mi>
        </mrow>
      </mrow>
    </mrow>
    <mrow>
      <mn>126.08</mn>
      <mrow>
        <mrow>
          <mi mathvariant="normal">g</mi>
          <mi mathvariant="normal">m</mi>
          <mi mathvariant="normal">o</mi>
        </mrow>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mi mathvariant="normal">l</mi>
            </mrow>
          </mrow>
          <mrow>
            <mrow>
              <mrow>
                <mo>−</mo>
                <mn>1</mn>
              </mrow>
            </mrow>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = 0.03966 «mol»</p>
<p>actual amount of hydrated ethanedioic acid = «7.00 × 10<sup>-4</sup> × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1000}}{{25}}">
  <mfrac>
    <mrow>
      <mn>1000</mn>
    </mrow>
    <mrow>
      <mn>25</mn>
    </mrow>
  </mfrac>
</math></span> =» 2.80 × 10<sup>-2</sup> «mol»</p>
<p>«% purity = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.80 \times {{10}^{ - 2}}}}{{0.03966}}">
  <mfrac>
    <mrow>
      <mn>2.80</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>2</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.03966</mn>
    </mrow>
  </mfrac>
</math></span> × 100 =» 70.6 «%»</p>
<p><em>Award suitable part marks for alternative methods.</em><br><em>Award<strong> [3]</strong> for correct final answer.</em><br><em>Award <strong>[2 max]</strong> for 50.4 % if anhydrous ethanedioic acid assumed.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em>Accept single negative charges on two O atoms singly bonded to C.</em><br><em>Do not accept resonance structures.</em><br><em>Allow any combination of dots/crosses or lines to represent electron pairs.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrons delocalized «across the O–C–O system»<br><em><strong>OR <br></strong></em>resonance occurs</p>
<p><em>Accept delocalized π-bond(s). <br>No ECF from (d). </em></p>
<p> </p>
<p>122 «pm» &lt; C–O &lt; 143 «pm»</p>
<p><em>Accept any answer in range 123 «pm» to 142 «pm». <br>Accept “bond intermediate between single and double bond” or “bond order 1.5”.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>coordinate/dative/covalent bond from O to «transition» metal «ion»<br><em><strong>OR <br></strong></em>acts as a Lewis base/nucleophile</p>
<p>can occupy two positions<br><em><strong>OR <br></strong></em>provide two electron pairs from different «O» atoms<br><em><strong>OR<br></strong></em>form two «coordinate/dative/covalent» bonds «with the metal ion»<br><em><strong>OR <br></strong></em>chelate «metal/ion»</p>
<p> </p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium and vanadium are consecutive elements in the first transition metal series.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.37.43.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.b"></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{Ti}}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
</math></span> atom.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.43.58.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{T}}{{\text{i}}^{2 + }}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>i</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
</math></span> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the melting point of vanadium is higher than that of titanium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six successive ionization energies of vanadium on the axes provided.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.09.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.d.iii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of the electrons involved, how the bond between a ligand and a central metal ion is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why transition metals form coloured compounds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction</p>
<p>between <strong>«</strong>a lattice of<strong>» </strong>metal/positive ions/cations <strong><em>AND </em></strong><strong>«</strong>a sea of<strong>» </strong>delocalized electrons</p>
<p> </p>
<p><em>Accept “mobile electrons”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “metal atoms/nuclei”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{(46 \times 7.98){\text{ + }}(47 \times 7.32){\text{ + }}(48 \times 73.99){\text{ + }}(49 \times 5.46){\text{ + }}(50 \times 5.25)}}{{100}} = 47.93">
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mn>46</mn>
      <mo>×</mo>
      <mn>7.98</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>47</mn>
      <mo>×</mo>
      <mn>7.32</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>48</mn>
      <mo>×</mo>
      <mn>73.99</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>49</mn>
      <mo>×</mo>
      <mn>5.46</mn>
      <mo stretchy="false">)</mo>
      <mrow>
        <mtext> + </mtext>
      </mrow>
      <mo stretchy="false">(</mo>
      <mn>50</mn>
      <mo>×</mo>
      <mn>5.25</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mrow>
      <mn>100</mn>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>47.93</mn>
</math></span></p>
<p> </p>
<p><em>Answer must have two decimal places </em><em>with a value from 47.90 to 48.00.</em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><em>Award [0] for 47.87 (data booklet value).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Protons: </em>22 <strong><em>AND </em></strong><em>Neutrons: </em>26 <strong><em>AND </em></strong><em>Electrons: </em>22</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{s}}^{\text{2}}}{\text{3}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{d}}^{\text{2}}}">
  <mrow>
    <mtext>1</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>p</mtext>
      </mrow>
      <mrow>
        <mtext>6</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>p</mtext>
      </mrow>
      <mrow>
        <mtext>6</mtext>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mtext>3</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msup>
  </mrow>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>vanadium has smaller ionic radius «leading to stronger metallic bonding»</p>
<p> </p>
<p><em>Accept vanadium has «one» more valence electron«s» «leading to stronger metallic bonding».</em></p>
<p><em>Accept “atomic” for “ionic”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><img src=""></p>
<p>regular increase for first five <em><strong>AND</strong> </em>sharp increase to the 6th</p>
<p> </p>
<p><em>A log graph is acceptable.</em></p>
<p><em>Accept log plot on given axes (without amendment of y-axis).</em></p>
<p><em>Award mark if gradient of 5 to 6 is greater than “best fit line” of 1 to 5.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>titanium atoms/ions distort the regular arrangement of atoms/ions</p>
<p><strong><em>OR</em></strong></p>
<p>titanium atoms/ions are a different size to aluminium <strong>«</strong>atoms/ions<strong>»</strong></p>
<p>prevent layers sliding over each other</p>
<p> </p>
<p><em>Accept diagram showing different sizes </em><em>of atoms/ions.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pair of electrons provided by the ligand</p>
<p> </p>
<p><em>Do not accept “dative” or “coordinate bonding” alone.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially filled d-orbitals</p>
<p>«ligands cause» d-orbitals «to» split</p>
<p>light is absorbed as electrons transit to a higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light is absorbed as electrons are promoted</p>
<p>energy gap corresponds to light in the visible region of the spectrum</p>
<p>colour observed is the complementary colour</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ionic</p>
<p><strong><em>OR</em></strong></p>
<p>«electrostatic» attraction between oppositely charged ions</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«simple» molecular structure</p>
<p><strong><em>OR</em></strong></p>
<p>weak«er» intermolecular bonds</p>
<p><strong><em>OR</em></strong></p>
<p>weak«er» bonds between molecules</p>
<p> </p>
<p><em>Accept specific examples of weak </em><em>bonds such as London/dispersion and </em><em>van der Waals.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “covalent”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}{\text{(l)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} \to {\text{Ti}}{{\text{O}}_{\text{2}}}{\text{(s)}} + {\text{4HCl(aq)}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>2</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>O(l)</mtext>
  </mrow>
  <mo stretchy="false">→</mo>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mrow>
    <mtext>4HCl(aq)</mtext>
  </mrow>
</math></span> correct products<br>correct balancing</p>
<p> </p>
<p><em>Accept ionic equation.</em></p>
<p><em>Award M2 if products are HCl and a </em><em>compound of Ti and O.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCl causes breathing/respiratory problems</p>
<p><strong><em>OR</em></strong></p>
<p>HCl is an irritant</p>
<p><strong><em>OR</em></strong></p>
<p>HCl is toxic</p>
<p><strong><em>OR</em></strong></p>
<p>HCl has acidic vapour</p>
<p><strong><em>OR</em></strong></p>
<p>HCl is corrosive</p>
<p> </p>
<p><em>Accept TiO<sub>2</sub> causes breathing</em></p>
<p><em>problems/is an irritant.</em></p>
<p><em>Accept “harmful” for both HCl and TiO<sub>2</sub></em><em>.</em></p>
<p><em>Accept “smoke is asphyxiant”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">h.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An acidic sample of a waste solution containing Sn<sup>2+</sup>(aq) reacted completely with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>&nbsp;solution to form Sn<sup>4+</sup>(aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify one organic functional group that can react with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Corrosion of iron is similar to the processes that occur in a voltaic cell. The initial steps involve the following half-equations:</p>
<p>Fe<sup>2+</sup>(aq) + 2e<sup>–</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Fe(s)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>O<sub>2</sub>(g) + H<sub>2</sub>O(l) + 2e<sup>–</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> 2OH<sup>–</sup>(aq)</p>
<p>Calculate <em>E</em> <sup>θ</sup>, in V, for the spontaneous reaction using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy, Δ<em>G</em> <sup>θ</sup>, in kJ, which is released by the corrosion of 1 mole of iron. Use section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why iron forms many different coloured complex ions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zinc is used to galvanize iron pipes, forming a protective coating. Outline how this process prevents corrosion of the iron pipes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>hydroxyl/OH<br><em><strong>OR</strong></em><br>aldehyde/CHO</p>
<p> </p>
<p><em>Accept “hydroxy/alcohol” for “hydroxyl”.</em></p>
<p><em>Accept amino/amine/NH<sub>2</sub>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>E</em> <sup>θ</sup> =» +0.85 «V»</p>
<p> </p>
<p><em>Accept 0.85 V.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>G</em> <sup>θ</sup> «= –<em>nFE</em> <sup>θ</sup>» = –2 «mol e<sup>–</sup>» x 96500 «C mol<sup>–1</sup>» x 0.85 «V»</p>
<p>«Δ<em>G</em> <sup>θ</sup> =» –164 «kJ»</p>
<p> </p>
<p><em>Accept “«+»164 «kJ»” as question states energy released.</em></p>
<p><em>Award <strong>[1 max]</strong> for “+” or “–” 82 «kJ».</em></p>
<p><em>Do not accept answer in J.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>incompletely filled d-orbitals</p>
<p>colour depends upon the energy difference between the split d-orbitals</p>
<p>variable/multiple/different oxidation states</p>
<p>different «nature/identity of» ligands</p>
<p>different number of ligands</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Zn/zinc is a stronger reducing agent than Fe/iron<br><em><strong>OR</strong></em><br>Zn/zinc is oxidized instead of Fe/iron<br><em><strong>OR</strong></em><br>Zn/zinc is the sacrificial anode</p>
<p> </p>
<p><em>Accept “Zn is more reactive than Fe”.</em></p>
<p><em>Accept “Zn oxide layer limits further corrosion”.</em></p>
<p><em>Do not accept “Zn layer limits further corrosion”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Rhenium, Re, was the last element with a stable isotope to be isolated.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Before its isolation, scientists predicted the existence of rhenium and some of its properties.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">One chloride of rhenium has the empirical formula ReCl<sub>3</sub>.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Rhenium forms salts containing the perrhenate(VII) ion, ReO<sub>4</sub><sup>−</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The stable isotope of rhenium contains 110 neutrons.</span></p>
<p><span style="background-color: #ffffff;">State the nuclear symbol notation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span> for this isotope.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest the basis of these predictions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A scientist wants to investigate the catalytic properties of a thin layer of rhenium </span><span style="background-color: #ffffff;">metal on a graphite surface.<br></span></p>
<p><span style="background-color: #ffffff;">Describe an electrochemical process to produce a layer of rhenium on graphite.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict <strong>two</strong> other chemical properties you would expect rhenium to have, given its position in the periodic table.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the relative reactivity of rhenium, compared to silver, zinc, and copper, can be established using pieces of rhenium and solutions of these metal sulfates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of this compound, applying IUPAC rules.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the percentage, by mass, of rhenium in ReCl<sub>3</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the existence of salts containing an ion with this formula could be predicted. Refer to section 6 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the coefficients required to complete the half-equation.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">ReO<sub>4</sub><sup>−</sup> (aq) + ____H<sup>+</sup> (aq) + ____e<sup>−</sup> ⇌ [Re(OH)<sub>2</sub>]<sup>2+</sup> (aq) + ____H<sub>2</sub>O (l)        E<sup>θ</sup> = +0.36 V</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, whether the reduction of ReO<sub>4</sub><sup>−</sup> to [Re(OH)<sub>2</sub>]<sup>2+</sup> would oxidize Fe<sup>2+</sup> to Fe<sup>3+</sup> in aqueous solution. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{75}}}^{{\text{185}}}{\text{Re}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>75</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>185</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Re</mtext>
  </mrow>
</math></span>    <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">gap in the periodic table<br><em><strong>OR</strong></em><br>element with atomic number «75» unknown<br><em><strong>OR</strong></em><br>break/irregularity in periodic trends     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«periodic table shows» regular/periodic trends «in properties»      <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">electrolyze «a solution of /molten» rhenium salt/Re<sup>n+</sup>     <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">graphite as cathode/negative electrode<br>OR<br>rhenium forms at cathode/negative electrode     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “using rhenium anode” for M1.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>variable oxidation states<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">forms complex ions/compounds<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">coloured compounds/ions<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">     </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«para»magnetic compounds/ions     <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other valid responses related to its <strong>chemical</strong> metallic properties.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “catalytic properties”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">place «pieces of» Re into each solution    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">if Re reacts/is coated with metal, that metal is less reactive «than Re»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other valid observations such as “colour of solution fades” or “solid/metal appears” for “reacts”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">rhenium(III) chloride<br><em><strong>OR</strong></em><br>rhenium trichloride    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«M<sub>r</sub> ReCl<sub>3</sub> = 186.21 + (3 × 35.45) =» 292.56    <strong>[✔]</strong><br>«100 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{186.21}}{{292.56}}">
  <mfrac>
    <mrow>
      <mn>186.21</mn>
    </mrow>
    <mrow>
      <mn>292.56</mn>
    </mrow>
  </mfrac>
</math></span> =» 63.648 «%» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">  </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">same group as Mn «which forms M</span>n<span style="background-color: #ffffff;">O<sub>4</sub><sup>-</sup>»<br><em><strong>OR</strong></em><br>in group 7/has 7 valence electrons, so its «highest» oxidation state is +7    <strong>[✔]</strong></span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 6H</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">+</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 3e</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">⇌</span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> [Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> (aq) + 2H</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">O (l)    <strong>[<span style="background-color: #ffffff;">✔]</span></strong></span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup></em> is a weaker oxidizing agent than Fe<sup>3+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>Fe<sup>3+</sup> is a stronger oxidizing agent than <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">ReO</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">4</sub><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">−</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>Fe<sup>2+</sup> is a weaker reducing agent than <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[Re(OH)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">]</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">2+</sup></em> is a stronger reducing agent than Fe<sup>2+</sup><br><em><strong>OR</strong></em><br>no <em><strong>AND</strong> </em>cell emf would be negative/–0.41 V     <strong>[✔]</strong></span></p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>It was expected that this question would be answered correctly by all HL candidates. However, many confused the A-Z positions or calculated very unusual numbers for A, sometimes even with decimals.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This is a NOS question which required some reflection on the full meaning of the periodic table and the wealth of information contained in it. But very few candidates understood that they were being asked to explain periodicity and the concept behind the periodic table, which they actually apply all the time. Some were able to explain the “gap” idea and other based predictions on properties of nearby elements instead of thinking of periodic trends. A fair number of students listed properties of transition metals in general.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done; most described the cell identifying the two electrodes correctly and a few did mention the need for Re salt/ion electrolyte.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well answered though some students suggested physical properties rather than chemical ones.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates chose to set up voltaic cells and in other cases failed to explain the actual experimental set up of Re being placed in solutions of other metal salts or the reaction they could expect to see.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates were able to name the compound according to IUPAC.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to answer this stoichiometric question correctly.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This should have been a relatively easy question but many candidates sometimes failed to see the connection with Mn or the amount of electrons in its outer shell.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, a great number of students were unable to balance this simple half-equation that was given to them to avoid difficulties in recall of reactants/products.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students understood that the oxidation of Fe<sup>2+</sup> was not viable but were unable to explain why in terms of oxidizing and reducing power; many students simply gave numerical values for <em>E</em><sup>Θ</sup> often failing to realise that the oxidation of Fe<sup>2+</sup> would have the inverse sign to the reduction reaction.</p>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is soluble in water and forms an alkaline solution:</p>
<p style="text-align: center;">NH<sub>3&thinsp;</sub>(g) + H<sub>2</sub>O&thinsp;(l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> NH<sub>4</sub><sup>+&thinsp;</sup>(aq) + HO<sup>&ndash;&thinsp;</sup>(aq)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> in terms of the Brønsted–Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration, in mol dm<sup>–3</sup>, of the solution formed when 900.0 dm<sup>3</sup> of NH<sub>3 </sub>(g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm<sup>3</sup> of solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration, in mol dm<sup>–3</sup>, of ammonia molecules in the solution with pH = 9.3. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An aqueous solution containing high concentrations of both NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> acts as an acid-base buffer solution as a result of the equilibrium:</p>
<p style="text-align:center;">NH<sub>3</sub> (aq) + H<sup>+</sup> (aq) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇌</mo></math> NH<sub>4</sub><sup>+</sup> (aq)</p>
<p>Referring to this equilibrium, outline why adding a small volume of strong acid would leave the pH of the buffer solution almost unchanged.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium salts form slightly acidic solutions owing to equilibria such as:</p>
<p style="text-align:center;">Mg<sup>2+ </sup>(aq) + H<sub>2</sub>O (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> Mg(OH)<sup>+ </sup>(aq) + H<sup>+ </sup>(aq)</p>
<p>Comment on the role of Mg<sup>2+</sup> in forming the Mg(OH)<sup>+</sup> ion, in acid-base terms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mg(OH)<sup>+</sup> is a complex ion, but Mg is not regarded as a transition metal. Contrast Mg with manganese, Mn, in terms of one characteristic chemical property of transition metals, other than complex ion formation.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="text-decoration:underline;">conjugate</span> «acid and base» ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of ammonia <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mrow><mi>P</mi><mo>.</mo><mi>V</mi></mrow><mrow><mi>R</mi><mo>.</mo><mi>T</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>100</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>k</mi><mi>P</mi><mi>a</mi><mo>×</mo><mn>900</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>d</mi><msup><mi>m</mi><mn>3</mn></msup></mrow><mrow><mn>8</mn><mo>.</mo><mn>31</mn><mo> </mo><mi>J</mi><mo> </mo><msup><mi>K</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mi>m</mi><mi>o</mi><msup><mi>l</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>×</mo><mn>300</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>K</mi></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo> </mo><mo>=</mo><mo> </mo><mn>36</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p>concentration <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><mi>n</mi><mi>V</mi></mfrac><mo>=</mo><mfrac><mrow><mn>36</mn><mo>.</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>.</mo><mn>00</mn></mrow></mfrac><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>18</mn><mo>.</mo><mn>1</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msup><mi>OH</mi><mo>−</mo></msup><mo>]</mo><mo> </mo><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><msub><mi mathvariant="normal">K</mi><mi mathvariant="normal">W</mi></msub><mfenced open="[" close="]"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup></mfenced></mfrac><mo>=</mo><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>3</mn></mrow></msup></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>0</mn><mo> </mo><mo>×</mo><mo> </mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>⟨</mo><mo>⟨</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo></math>  ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi>b</mi></msub><mo>=</mo><mfrac><mrow><mfenced open="[" close="]"><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>O</mi><msup><mi>H</mi><mo>-</mo></msup></mrow></mfenced></mrow><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced></mfrac><mo>/</mo><mfrac><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>7</mn></mrow></msup></mrow><mfenced open="[" close="]"><mrow><mi>N</mi><msub><mi>H</mi><mn>3</mn></msub></mrow></mfenced></mfrac><mo>⟨</mo><mo>⟨</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><msub><mi>NH</mi><mn>3</mn></msub></mfenced><mo>=</mo><mo>⟨</mo><mo>⟨</mo><mo>=</mo><mfrac><msup><mn>10</mn><mrow><mo>-</mo><mn>9</mn><mo>.</mo><mn>4</mn></mrow></msup><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup></mfrac><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>65</mn></mrow></msup><mo>⟩</mo><mo>⟩</mo><mo>=</mo><mn>2</mn><mo>.</mo><mn>24</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p> </p>
<p><em>Accept other methods of carrying out the calculation.</em></p>
<p><em>Award <strong>[2]</strong> for correct answer.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equilibrium shifts to right/H<sup>+</sup> reacts with NH<sub>3</sub> ✔</p>
<p>«as large excess» ratio [NH<sub>3</sub>]:[NH<sub>4</sub><sup>+</sup>] «and hence pH» almost unchanged ✔</p>
<p> </p>
<p><em>Accept “strong acid/H<sup>+</sup> converted to a weak acid/NH<sub>4</sub><sup>+</sup> «and hence pH almost unchanged».</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Lewis acid ✔</p>
<p>accepts «a lone» electron pair «from the hydroxide ion» ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept electron acceptor without mention of electron pair.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><em>Property</em>: variable oxidation state ✔</p>
<p><em>Comparison</em>: Mn compounds can exist in different valencies/oxidation states <em><strong>AND</strong> </em>Mg has a valency/oxidation state of +2 in all its compounds ✔</p>
<p><em><br>Accept valency.</em><br><em>Accept for second statement “Mg «always» has the same oxidation state”.</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p><em>Property</em>: coloured ions/compounds/complexes ✔</p>
<p><em>Comparison</em>: Mn ions/compounds/complexes coloured <em><strong>AND</strong> </em>Mg ions/compounds white/«as solids»/colourless «in aqueous solution» ✔</p>
<p><em><br>Accept Mn forms coloured ions/compounds/complexes and Mg does not.</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p><em>Property:</em> catalytic activity ✔</p>
<p><em>Comparison:</em> «many» Mn compounds act as catalysts <em><strong>AND</strong> </em>Mg compounds do not «generally» catalyse reactions ✔<br><br><em><br>For any property accept a correct specific example, for example manganate(VII) is purple.</em><br><em>Do <strong>not</strong> accept differences in atomic structure, such as partially filled d sub-levels, but award ECF for a correct discussion.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Well done; However, instead of identifying the conjugate acid-base relationship, some simply identified these as Brønsted–Lowry base and acid.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Good performance. Some teachers suggested the question had an error in units, but this was not the case. The question had to be solved, first by using the data provided for application of gas law to determine the number of moles of gas. Next, given volume of solution, <em>V</em> = 2.00 dm<sup>3</sup>, determine its concentration.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Concentration of [OH<sup>˗</sup>] was asked for but some calculated [H<sub>3</sub>O<sup>+</sup>] instead. On the whole, question was done well.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance. Since a mark was given for the <em>K</em><sub>b</sub> expression, that mark could also be scored for the Henderson Hasselbalch (HH) equation, provided it is specific to the equilibrium reaction. Unfortunately, there was poor understanding of the application of the equation in most cases. Students should be strongly encouraged to use the HH equation only when a buffer is involved. Appropriate <em>K</em><sub>a</sub> or <em>K</em><sub>b</sub> expressions should be used when buffer solutions are not involved.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance. One mark was scored for suggesting equilibrium shifts to right or H<sup>+</sup> reacts with NH<sub>3</sub>. However, some made reference to ammonia being a strong base or no reference to the strong acid, H<sup>+</sup> being converted to a weak acid, NH<sub>4</sub><sup>+</sup>.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mediocre performance; although some Mg<sup>2+</sup> was identified as a Lewis acid, the reasoning given was that it accepts an electron, rather than an electron pair or references were made to Bronsted-Lowry theory.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>

<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is set up between the Fe<sup>2+ </sup>(aq) | Fe (s) and Fe<sup>3+</sup> (aq) | Fe<sup>2+</sup> (aq) half-cells.</p>
<p>Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.</p>
<p><img src="" width="651" height="204"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, unlike typical transition metals, zinc compounds are not coloured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1:2 ✔</p>
<p><em>Accept 2 Fe<sup>3+</sup>: 1 Fe<sup>2+</sup></em><br><em>Do <strong>not</strong> accept 2:1 only</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass «spectroscopy»/MS ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="515" height="88"></p>
<p><em><br>Award <strong>[1 max]</strong> for 4 correct values.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>specific heat capacity « = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><mi>q</mi><mrow><mi>m</mi><mo>×</mo><mo>∆</mo><mi>T</mi></mrow></mfrac><mo>/</mo><mfrac><mrow><mn>1000</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow><mrow><mn>50</mn><mo> </mo><mi mathvariant="normal">g</mi><mo>×</mo><mn>44</mn><mo> </mo><mi mathvariant="normal">K</mi></mrow></mfrac></math>» = 0.45 «J g<sup>−1 </sup>K<sup>−1</sup>» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>2Fe<sup>3+</sup>(aq) + Fe(s) → 3Fe<sup>2+</sup>(aq) ✔</p>
<p><em>Cell potential:</em><br>«+0.77 V − (−0.45 V) = +»1.22 «V» ✔</p>
<p><em><br>Do <strong>not</strong> accept reverse reaction or equilibrium arrow.</em></p>
<p><em>Do <strong>not</strong> accept negative value for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>left electrode/anode labelled zinc/Zn <em><strong>AND</strong> </em>right electrode/cathode labelled iron/Fe ✔</p>
<p>electrolyte labelled as «aqueous» zinc salt/Zn<sup>2+</sup> ✔</p>
<p><em><br>Accept an inert conductor for the anode.</em></p>
<p><em>Accept specific zinc salts such as ZnSO<sub>4</sub>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>« <em>Zn</em><sup>2+</sup>» has a full d-shell<br><em><strong>OR</strong></em><br>does not form « ions with» an incomplete d-shell ✔</p>
<p><em><br>Do <strong>not</strong> accept “Zn is not a transition metal”.</em></p>
<p><em>Do <strong>not</strong> accept zinc atoms for zinc ions.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ligands donate pairs of electrons to metal ions<br><em><strong>OR</strong></em><br>forms coordinate covalent/dative bond✔</p>
<p>ligands are Lewis bases<br><em><strong>AND</strong></em><br>metal «ions» are Lewis acids ✔</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>

<div class="specification">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p style="text-align: center;">2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) &nbsp; &nbsp; Δ<em>H </em>&lt; 0</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_11.43.42.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_11.45.16.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_02"></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p style="text-align: center;">KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an approximate order of magnitude for <em>K</em><sub>c</sub>, using sections 1 and 2 of the data booklet. Assume Δ<em>G</em><sup>Θ</sup> for the forward reaction is approximately +50 kJ at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch two different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of CO<sub>2</sub>, in cm<sup>3</sup>, produced at STP by the combustion of 0.600 g of urea, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bond formation when urea acts as a ligand in a transition metal complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.00.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.j_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.07.17.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.k_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the splitting pattern of the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why TMS (tetramethylsilane) may be added to the sample to carry out <sup>1</sup>H NMR spectroscopy and why it is particularly suited to this role.</p>
<div class="marks">[2]</div>
<div class="question_part_label">l.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>molar mass of urea <strong>«</strong>4 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 1.01 + 2 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 14.01 + 12.01 + 16.00<strong>» </strong>= 60.07 <strong>«</strong>g mol<sup><sub>-1</sub></sup><strong>»</strong></p>
<p><strong>«</strong>% nitrogen = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{2}} \times {\text{14.01}}}}{{{\text{60.07}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>2</mtext>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mtext>14.01</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>60.07</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 100 =<strong>» </strong>46.65 <strong>«</strong>%<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for final answer not to </em><em>two decimal places.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>cost<strong>»</strong> increases <strong><em>AND </em></strong>lower N%<strong> «</strong>means higher cost of transportation per unit of nitrogen<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>cost<strong>»</strong> increases <strong><em>AND </em></strong>inefficient/too much/about half mass not nitrogen</p>
<p> </p>
<p><em>Accept other reasonable explanations.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept answers referring to </em><em>safety/explosions.</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_11.46.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b/M"></p>
<p> </p>
<p><em>Note: Urea’s structure is more complex </em><em>than that predicted from VSEPR theory.</em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>n</em>(KNCO) <strong>«=</strong> 0.0500 dm<sup>3</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 0.100 mol dm<sup>–3</sup><strong>» =</strong> 5.00 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 10<sup>–3</sup> <strong>«</strong>mol<strong>»</strong></p>
<p><strong>«</strong>mass of urea = 5.00 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 10<sup>–3</sup> mol <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 60.07 g mol<sup>–1</sup><strong>» =</strong> 0.300 <strong>«</strong>g<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{K_{\text{c}}} = \frac{{[{{({{\text{H}}_2}{\text{N}})}_2}{\text{CO}}] \times [{{\text{H}}_2}{\text{O}}]}}{{{{[{\text{N}}{{\text{H}}_3}]}^2} \times [{\text{C}}{{\text{O}}_2}]}}">
  <mrow>
    <msub>
      <mi>K</mi>
      <mrow>
        <mtext>c</mtext>
      </mrow>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">[</mo>
      <mrow>
        <msub>
          <mrow>
            <mo stretchy="false">(</mo>
            <mrow>
              <msub>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mn>2</mn>
              </msub>
            </mrow>
            <mrow>
              <mtext>N</mtext>
            </mrow>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mrow>
        <mtext>CO</mtext>
      </mrow>
      <mo stretchy="false">]</mo>
      <mo>×</mo>
      <mo stretchy="false">[</mo>
      <mrow>
        <msub>
          <mrow>
            <mtext>H</mtext>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mrow>
        <mtext>O</mtext>
      </mrow>
      <mo stretchy="false">]</mo>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">[</mo>
            <mrow>
              <mtext>N</mtext>
            </mrow>
            <mrow>
              <msub>
                <mrow>
                  <mtext>H</mtext>
                </mrow>
                <mn>3</mn>
              </msub>
            </mrow>
            <mo stretchy="false">]</mo>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mo stretchy="false">[</mo>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mrow>
        <msub>
          <mrow>
            <mtext>O</mtext>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mo stretchy="false">]</mo>
    </mrow>
  </mfrac>
</math></span></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>K</em><sub>c</sub><strong>»</strong> decreases <strong><em>AND </em></strong>reaction is exothermic</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong><em>K</em><sub>c</sub><strong>»</strong> decreases <strong><em>AND</em></strong> Δ<em>H </em>is negative</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong><em>K</em><sub>c</sub><strong>»</strong> decreases <strong><em>AND </em></strong>reverse/endothermic reaction is favoured</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ln <em>K </em><strong>« = </strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{ - \Delta {G^\Theta }}}{{RT}} = \frac{{ - 50 \times {{10}^3}{\text{ J}}}}{{8.31{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} \times 298{\text{ K}}}}">
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>G</mi>
          <mi mathvariant="normal">Θ</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>50</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> J</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mrow>
        <mtext> J </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>298</mn>
      <mrow>
        <mtext> K</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> <strong>»</strong> = –20</p>
<p> </p>
<p><strong>«</strong><em>K</em><sub>c</sub> =<strong>»</strong> 2 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 10<sup>–9</sup></p>
<p><strong><em>OR</em></strong></p>
<p>1.69 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 10<sup>–9</sup></p>
<p><strong><em>OR</em></strong></p>
<p>10<sup>–9</sup></p>
<p> </p>
<p><em>Accept range of 20-20.2 for M1.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>urea has greater molar mass</p>
<p>urea has greater electron density/greater London/dispersion</p>
<p>urea has more hydrogen bonding</p>
<p>urea is more polar/has greater dipole moment</p>
<p> </p>
<p><em>Accept “urea has larger size/greater </em><em>van der Waals forces”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “urea has greater </em><em>intermolecular forces/IMF”.</em></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_12.44.01.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.e.ii/M"></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for each correct interaction.</em></p>
<p> </p>
<p><em>If lone pairs are shown on N or O, then </em><em>the lone pair on N or one of the lone </em><em>pairs on O </em><strong><em>MUST </em></strong><em>be involved in the </em><em>H-bond.</em></p>
<p><em>Penalize solid line to represent </em><em>H-bonding only once.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2(H<sub>2</sub>N)<sub>2</sub>CO(s) + 3O<sub>2</sub>(g) → 4H<sub>2</sub>O(l) + 2CO<sub>2</sub>(g) + 2N<sub>2</sub>(g)</p>
<p>correct coefficients on LHS</p>
<p>correct coefficients on RHS</p>
<p> </p>
<p><em>Accept (H</em><sub><em>2</em></sub><em>N)</em><sub><em>2</em></sub><em>CO(s) +</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{2}">
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span><em>O</em><sub><em>2</em></sub><em>(g) → </em><em>2H</em><sub><em>2</em></sub><em>O(l) +</em> <em>CO</em><sub><em>2</em></sub><em>(g) +</em> <em>N</em><sub><em>2</em></sub><em>(g).</em></p>
<p><em>Accept any correct ratio.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>V = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{0.600 g}}}}{{{\text{60.07 g mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>0.600 g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>60.07 g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span> 22700 cm<sup>3</sup> mol<sup>–1</sup> =<strong>» </strong>227 <strong>«</strong>cm<sup>3</sup><strong>»</strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lone/non-bonding electron pairs <strong>«</strong>on nitrogen/oxygen/ligand<strong>» </strong>given to/shared with metal ion</p>
<p>co-ordinate/dative/covalent bonds</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lone pairs on nitrogen atoms can be donated to/shared with C–N bond</p>
<p><strong><em>OR</em></strong></p>
<p>C–N bond partial double bond character</p>
<p><strong><em>OR</em></strong></p>
<p>delocalization <strong>«</strong>of electrons occurs across molecule<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>slight positive charge on C due to C=O polarity reduces C–N bond length</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>60</em>: CON<sub>2</sub>H<sub>4</sub><sup>+</sup></p>
<p><em>44</em>: CONH<sub>2</sub><sup>+</sup></p>
<p> </p>
<p><em>Accept “molecular ion”.</em></p>
<p> </p>
<p> </p>
<p><em><strong>[2 marks]</strong><br></em></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>3450 cm</em><sup><em>–</em><em>1</em></sup><em>:</em> N–H</p>
<p><em>1700 cm</em><sup><em>–</em><em>1</em></sup><em>:</em> C=O</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “O</em><em>–</em><em>H” for 3450 cm</em><sup><em>–1</em></sup><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>singlet</p>
<p> </p>
<p><em>Accept “no splitting”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>acts as internal standard</p>
<p><strong><em>OR</em></strong></p>
<p>acts as reference point</p>
<p> </p>
<p>one strong signal</p>
<p><strong><em>OR</em></strong></p>
<p>12 H atoms in same environment</p>
<p><strong><em>OR</em></strong></p>
<p>signal is well away from other absorptions</p>
<p> </p>
<p><em>Accept “inert” or “readily removed” or </em><em>“non-toxic” for M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">l.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">l.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>IE <strong>«</strong>= Δ<em>E =</em> <em>h</em>ν = 6.63 × 10<sup>–34</sup> J s × 3.28 × 10<sup>15</sup> s<sup>–1</sup><strong>» =</strong> 2.17 × 10<sup>–18</sup> <strong>«</strong>J<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda  = \frac{C}{{\text{v}}} = \frac{{3.00 \times {{10}^8}{\text{ m}}{{\text{s}}^{ - 1}}}}{{3.28 \times {{10}^{15}}{\text{ }}{{\text{s}}^{ - 1}}}} = ">
  <mi>λ</mi>
  <mo>=</mo>
  <mfrac>
    <mi>C</mi>
    <mrow>
      <mtext>v</mtext>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.00</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>8</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> m</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.28</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>15</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>»</strong> 9.15 × 10<sup>–8</sup> <strong>«</strong>m<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change <strong>«</strong>in colour<strong>»</strong></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “solution around cathode </em><em>will become paler and solution around </em><em>the anode will become darker”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxygen/O<sub>2</sub></p>
<p> </p>
<p><em>Accept “carbon dioxide/CO2”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Transition metals:</em></p>
<p><strong>«</strong>contain<strong>» </strong>d and s orbitals <strong>«</strong>which are close in energy<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>successive<strong>» </strong>ionization energies increase gradually</p>
<p> </p>
<p><em>Alkali metals</em>:</p>
<p>second electron removed from <strong>«</strong>much<strong>» </strong>lower energy level</p>
<p><strong><em>OR</em></strong></p>
<p>removal of second electron requires large increase in ionization energy</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Bromine can form the bromate(V) ion, BrO<sub>3</sub><sup>−</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of a bromine atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the orbital diagram of the <strong>valence shell</strong> of a bromine atom (ground state) on the energy axis provided. Use boxes to represent orbitals and arrows to represent electrons.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw two Lewis (electron dot) structures for BrO<sub>3</sub><sup>−</sup>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the preferred Lewis structure based on the formal charge on the bromine atom, giving your reasons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, using the VSEPR theory, the geometry of the BrO<sub>3</sub><sup>−</sup> ion and the O−Br−O bond angles.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions act as oxidizing agents in acidic conditions to form bromide ions.</p>
<p>Deduce the half-equation for this reduction reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions oxidize iron(II) ions, Fe<sup>2+</sup>, to iron(III) ions, Fe<sup>3+</sup>.</p>
<p>Deduce the equation for this redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in J, of the redox reaction in (ii), using sections 1 and 24 of the data booklet.</p>
<p><em>E</em><sup>Θ</sup> (BrO<sub>3</sub><sup>−</sup> / Br<sup>−</sup>) = +1.44 V</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the magnetic property of iron(II) and iron(III) ions.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup></p>
<p><em><strong>OR</strong></em></p>
<p>[Ar] 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>5</sup> ✔</p>
<p> </p>
<p><em>Accept 3d before 4s.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept double-headed arrows.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Structure I - follows octet rule:</em></p>
<p><img src=""></p>
<p><em>Structure II - does not follow octet rule:</em></p>
<p><img src=""></p>
<p> </p>
<p><em>Accept dots, crosses or lines to represent electron pairs.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«structure I» formal charge on Br = +2</p>
<p><em><strong>OR</strong></em></p>
<p>«structure II» formal charge on Br = 0/+1 ✔</p>
<p> </p>
<p>structure II is preferred <em><strong>AND</strong> </em>it produces formal charge closer to 0 ✔</p>
<p> </p>
<p><em>Ignore any reference to formal charge on oxygen.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Geometry:</em><br>trigonal/pyramidal ✔</p>
<p><em>Reason:</em><br>three bonds <em><strong>AND</strong> </em>one lone pair<br><em><strong>OR</strong></em><br>four electron domains ✔</p>
<p><em>O−Br−O angle:</em><br>107° ✔</p>
<p> </p>
<p><em>Accept “charge centres” for “electron domains”.</em></p>
<p><em>Accept answers in the range 104–109°.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6e<sup>−</sup> + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l)</p>
<p>correct reactants and products ✔</p>
<p>balanced equation ✔</p>
<p> </p>
<p><em>Accept reversible arrows.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>BrO<sub>3</sub><sup>−</sup> (aq) + 6Fe<sup>2+</sup> (aq) + 6H<sup>+</sup> (aq) → Br<sup>−</sup> (aq) + 3H<sub>2</sub>O (l) + 6Fe<sup>3+</sup> (aq) ✔</p>
<p> </p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E</em><sup>Θ</sup><sub>reaction</sub> = «+1.44 V – 0.77 V =» 0.67 «V» ✔</p>
<p>Δ<em>G</em><sup>Θ</sup> = «–n<em>FE</em><sup>Θ</sup><sub>reaction</sub> = – 6 × 96500 C mol<sup>–1</sup> × 0.67 V =» –3.9 × 10<sup>5</sup> «J» ✔</p>
<p> </p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>both are paramagnetic ✔</p>
<p>«both» contain unpaired electrons ✔</p>
<p> </p>
<p><em>Accept orbital diagrams for both ions showing unpaired electrons.</em></p>
<p> </p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Cobalt forms the transition metal complex [Co(NH<sub>3</sub>)<sub>4</sub> (H<sub>2</sub>O)Cl]Br.</p>
</div>

<div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group whereas the melting points of the group 17 elements (F → I) increase down the group.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the shape of the complex ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the complex ion and the oxidation state of cobalt.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of acid-base theories, the type of reaction that takes place between the cobalt ion and water to form the complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p><em>Group 1:</em><br>atomic/ionic radius increases</p>
<p>smaller charge density</p>
<p><em><strong>OR</strong></em></p>
<p>force of attraction between metal ions and delocalised electrons decreases</p>
<p><em>Do not accept discussion of attraction between valence electrons and nucleus for M2.</em></p>
<p><em>Accept “weaker metallic bonds” for M2.</em></p>
<p><em>Group 17:</em><br>number of electrons/surface area/molar mass increase</p>
<p>London/dispersion/van der Waals’/vdw forces increase</p>
<p><em>Accept “atomic mass” for “molar mass”.</em></p>
<p><strong><em>[Max 3 Marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«distorted» octahedral</p>
<p><em>Accept “square bipyramid”.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Charge on complex ion:</em> 1+/+<br><em>Oxidation state of cobalt:</em> +2</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Lewis «acid-base reaction»</p>
<p>H2O: electron/e<sup>–</sup> pair donor</p>
<p><em><strong>OR</strong></em></p>
<p>Co<sup>2+</sup>: electron/e<sup>–</sup> pair acceptor</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The overall equation for the production of hydrogen cyanide, HCN, is shown below.</p>
<p style="text-align: center;">CH<sub>4</sub>&thinsp;(g) + NH<sub>3</sub>&thinsp;(g) +<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>O<sub>2</sub>&thinsp;(g) &rarr; HCN&thinsp;(g) + 3H<sub>2</sub>O&thinsp;(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why NH<sub>3</sub> is a Lewis base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of a 1.00 × 10<sup>−2</sup> mol dm<sup>−3</sup> aqueous solution of ammonia.</p>
<p style="text-align:center;">p<em>K</em><sub>b</sub> = 4.75 at 298 K.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether a 1.0 dm<sup>3</sup> solution made from 0.10 mol NH<sup>3</sup> and 0.20 mol HCl will form a buffer solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the shape of one sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>) and one pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>) bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the number of sigma and pi bonds in HCN.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the carbon atom in HCN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why hydrogen chloride, HCl, has a lower boiling point than hydrogen cyanide, HCN.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metal cyanide complexes are coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>donates «lone/non-bonding» pair of electrons ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Kb</em> = 10<sup>-4.75</sup> /1.78 x 10<sup>-5</sup><br><em><strong>OR</strong></em><br><em>Kb</em> = <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><msup><mfenced open="[" close="]"><msup><mi>OH</mi><mo>-</mo></msup></mfenced><mn>2</mn></msup><mfenced open="[" close="]"><msub><mi>NH</mi><mn>3</mn></msub></mfenced></mfrac></math> ✔</p>
<p> </p>
<p>[OH<sup>–</sup>] = « <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfenced><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>2</mn></mrow></msup><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn><mo>.</mo><mn>75</mn></mrow></msup></mrow></mfenced></msqrt></math> =» 4.22 × 10<sup>–4</sup> «(mol dm<sup>–3</sup>)» ✔</p>
<p> </p>
<p>pOH« = –log<sub>10</sub> (4.22 × 10<sup>–4</sup>)» = 3.37<br><em><strong>AND</strong></em><br>pH = «14 – 3.37» = 10.6<br><em><strong><br>OR</strong></em><br><br>[H<sup>+</sup>]« =<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>14</mn></mrow></msup></mrow><mrow><mn>4</mn><mo>.</mo><mn>22</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow></mfrac></math>» = 2.37 × 10<sup>–11</sup><br><em><strong>AND</strong></em><br>pH« = –log<sub>10</sub> 2.37 × 10<sup>–11</sup>» = 10.6 ✔</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no <em><strong>AND</strong> </em>is not a weak acid conjugate base system</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>weak base «totally» neutralized/ weak base is not in excess</p>
<p><em><strong>OR</strong></em></p>
<p>no <em><strong>AND</strong> </em>will not neutralize small amount of acid ✔</p>
<p> </p>
<p><em>Accept “no <strong>AND</strong> contains 0.10 mol NH<sub>4</sub>Cl + 0.10 mol HCl”.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>):</em></p>
<p> <img src=""></p>
<p> </p>
<p><em>Pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi></math>):</em></p>
<p><img src=""></p>
<p> </p>
<p><em>Accept overlapping p-orbital(s) with both lobes of equal size/shape.</em></p>
<p><em>Shaded areas are not required in either diagram.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>): 2 <em><strong>AND</strong> </em>Pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>): 2 ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sp ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HCN has stronger dipole–dipole attraction ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept reference to H-bonds.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three from:</em></p>
<p>partially filled d-orbitals ✔</p>
<p>«CN- causes» d-orbitals «to» split ✔</p>
<p>light is absorbed as electrons transit to a higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light is absorbed as electrons are promoted ✔</p>
<p>energy gap corresponds to light in the visible region of the spectrum ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “colour observed is the complementary colour” for M4.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The main error was the omission of lone electron "pair", though there was also a worrying amount of very confused answers for a very basic chemistry concept where 40% provided very incorrect answers.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rather surprisingly, many students got full marks for this multi-step calculation; others went straight to the pH/pKa acid/base equation so lost at least one of the marks: students often seem less prepared for base calculations, as opposed to acid calculations.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poorly answered revealing little understanding of buffering mechanisms, which is admittedly a difficult topic.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This proved to be the most challenging question (10%). It was a good question, where candidates had to explain a huge difference in boiling point of two covalent compounds, requiring solid understanding of change of state where breaking bonds cannot be involved). Yet most considered the triple bonds in HCN as the cause, suggesting covalent bonds break when substance boil, which is very worrying. Others considered H-bonds which at least is an intermolecular force, but shows they are not too familiar with the conditions necessary for H-bonding.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question appears frequently in exams but with slightly different approaches. In general candidates ignore the specific question and give the same answers, failing in this case to describe why complexes are coloured rather than what colour is seen. These answers appear to reveal that many candidates don't really understand this phenomenon, but learn the answer by heart and make mistakes when repeating it, for example, stating that the ‘d-orbitals of the ligands were split’- an obvious misconception. The average mark was 1.6/3, with a MS providing 4 ideas that would merit a mark</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The properties of elements can be predicted from their position in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Si has a smaller atomic radius than Al.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the first ionization energy of sulfur is lower than that of phosphorus.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the condensed electron configurations for Cr and Cr3<sup>+</sup>.</p>
<p><img src="" width="768" height="190"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe metallic bonding and how it contributes to electrical conductivity.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which complex ion [Cr(CN)<sub>6</sub>]<sup>3−</sup> or [Cr(OH)<sub>6</sub>]<sup>3−</sup> absorbs higher energy light. Use section 15 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>[Cr(OH)<sub>6</sub>]<sup>3−</sup> forms a green solution. Estimate a wavelength of light absorbed by this complex, using section 17 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the Lewis (electron dot) structure and molecular geometry of sulfur&nbsp;tetrafluoride, SF<sub>4</sub>, and sulfur dichloride, SCl<sub>2</sub>.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving reasons, the relative volatilities of SCl<sub>2</sub> and H<sub>2</sub>O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nuclear charge/number of protons/Z/Z<sub>eff</sub> increases «causing a stronger pull on the outer electrons» ✓</p>
<p>same number of shells/«outer» energy level/shielding ✓</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P has «three» unpaired electrons in 3p sub-level <em><strong>AND</strong> </em>S has one full 3p orbital «and two 3p orbitals with unpaired electrons»<br><em><strong>OR</strong></em><br>P: [Ne]3s<sup>2</sup>3p<sub>x</sub><sup>1</sup>3p<sub>y</sub><sup>1</sup>3p<sub>z</sub><sup>1</sup> <em><strong>AND</strong> </em>S: [Ne]3s<sup>2</sup>3p<sub>x</sub><sup>2</sup>3p<sub>y</sub><sup>1</sup>3p<sub>z</sub><sup>1</sup> ✓</p>
<p><em><br>Accept orbital diagrams for 3p sub-level for M1. Ignore other orbitals or sub-levels.</em></p>
<p>&nbsp;</p>
<p>repulsion between paired electrons in sulfur «and therefore easier to remove» ✓</p>
<p><em><br>Accept “removing electron from S gives more stable half-filled sub-level" for M2.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Cr:</em><br>[Ar] 4s<sup>1</sup>3d<sup>5</sup> ✓</p>
<p><em><br>Cr<sup>3+</sup>:</em><br>[Ar] 3d<sup>3</sup> ✓</p>
<p>&nbsp;</p>
<p><em>Accept “[Ar] 3d<sup>5</sup>4s<sup>1</sup>”.</em></p>
<p><em>Accept “[Ar] 3d<sup>3</sup>4s<sup>0</sup>”.</em></p>
<p><em>Award <strong>[1 max]</strong> for two correct full electron configurations “1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>3</sup>”.</em></p>
<p><em>Award<strong> [1 max]</strong> for 4s<sup>1</sup>3d<sup>5</sup> <strong>AND</strong> 3d<sup>3</sup>.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✓</p>
<p>between «a lattice of» cations/positive «metal» ions <em><strong>AND</strong> </em>«a sea of» delocalized electrons ✓</p>
<p>mobile electrons responsible for conductivity<br><em><strong>OR</strong></em><br>electrons move when a voltage/potential difference/electric field is applied ✓</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “nuclei” for “cations/positive ions” in M2.</em></p>
<p><em>Accept “mobile/free” for “delocalized” electrons in M2.</em></p>
<p><em>Accept “electrons move when connected to a cell/battery/power supply” <strong>OR</strong> “electrons move when connected in a circuit” for M3.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[Cr(CN)<sub>6</sub>]<sup>3−</sup> <em><strong>AND</strong></em> CN<sup>−</sup>/ligand causes larger splitting «in d-orbitals compared to OH<sup>−</sup>»<br><em><strong>OR</strong></em><br>[Cr(CN)<sub>6</sub>]<sup>3−</sup> <em><strong>AND</strong> </em>CN<sup>−</sup>/ligand associated with a higher Δ/«crystal field» splitting energy/energy difference «in the spectrochemical series compared to OH<sup>−</sup> » ✓</p>
<p>&nbsp;</p>
<p><em>Accept “[Cr(CN)<sub>6</sub>]<sup>3−</sup> <strong>AND</strong> «CN<sup>−</sup>» strong field ligand”.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any value or range between 647 and 700 nm ✓</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>&nbsp;</p>
<p><em>SF<sub>4</sub>/SCl<sub>2</sub> structure does not have to be 3-D for mark.<br><br>Penalize missing lone pairs of electrons on halogens once only.<br><br>Accept any combination of dots, lines or crosses for bonds/lone pairs.<br><br>Accept “non-linear” for SCl<sub>2</sub> molecular geometry.<br><br>Award <strong>[1]</strong> for two correct electron domain geometries, e.g. trigonal bipyramidal for SF<sub>4</sub> and tetrahedral for SCl<sub>2</sub>.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H<sub>2</sub>O forms hydrogen bonding «while SCl<sub>2</sub> does not» ✓</p>
<p>SCl<sub>2</sub> «much» stronger London/dispersion/«instantaneous» induced dipole-induced dipole forces ✓</p>
<p><em><strong><br>Alternative 1:</strong></em><br>H<sub>2</sub>O less volatile <em><strong>AND</strong> </em>hydrogen bonding stronger «than dipole–dipole and dispersion forces» ✓</p>
<p><em><strong><br>Alternative 2:</strong></em><br>SCl<sub>2</sub> less volatile <em><strong>AND</strong> </em>effect of dispersion forces «could be» greater than hydrogen bonding ✓</p>
<p><em><br>Ignore reference to Van der Waals.</em></p>
<p><em>Accept “SCl<sub>2</sub> has «much» larger molar mass/electron density” for M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">[Ar] 3d<sup>10</sup><br><strong><em>OR</em></strong><br>1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>H</em><sup>θ</sup> = ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (products) − ΣΔ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span><sub>f</sub> (reactants) ✔<br>Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> = 2(−241.8 «kJ mol<sup>−1</sup>») − 4(−92.3 «kJ mol<sup>−1</sup>») = −114.4 «kJ» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="296" height="255"></p>
<p><span style="background-color: #ffffff;"><em>E</em><sub>a (cat)</sub> to the left of <em>E</em><sub>a</sub> ✔                        </span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src="" width="296" height="250"></span></p>
<p><span style="background-color: #ffffff;">peak lower <em><strong>AND</strong> E</em><sub>a (cat)</sub> smaller ✔</span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«catalyst provides an» alternative pathway ✔</span></p>
<p><span style="background-color: #ffffff;">«with» lower <em>E</em><sub>a</sub><br><em><strong>OR</strong></em><br>higher proportion of/more particles with «kinetic» <em>E</em> ≥ <em>E</em><sub>a(cat)</sub> «than <em>E</em><sub>a</sub>» ✔</span></p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of H<sub>2</sub>O = «18.360 g – 17.917 g =» 0.443 «g» <em><strong>AND</strong> </em>mass of CuCl<sub>2</sub> = «17.917 g – 16.221 g =» 1.696 «g» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">moles of H<sub>2</sub>O = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.443{\text{g}}}}{{18.02{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>0.443</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>18.02</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>=» 0.0246 «mol»<br><em><strong>OR</strong></em><br>moles of CuCl<sub>2</sub> =<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.696{\text{g}}}}{{134.45{\text{g mo}}{{\text{l}}^{ - 1}}}}"><mfrac><mrow><mn>1.696</mn><mo> </mo><mtext>g</mtext></mrow><mrow><mn>134.45</mn><mo> </mo><mtext>g mo</mtext><msup><mtext>l</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac></math></span>= » 0.0126 «mol» ✔<br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">«water : copper(II) chloride = 1.95 : 1»<br></span></p>
<p><span style="background-color: #ffffff;">«<em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> =» 2 ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept «<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> =» 1.95.</span></em></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Wires</em>:<br>«delocalized» electrons «flow» ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>Electrolyte</em>:<br>«mobile» ions «flow» ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2Cl<sup>−</sup> → Cl<sub>2</sub> (g) + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Cl<sup>−</sup> → <span class="mjpage"><math alttext="\frac{1}{2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </math></span>Cl<sub>2</sub> (g) + e<sup>−</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept e for e<sup>−</sup>.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrode» 3 <em><strong>AND</strong> </em>oxygen/O<sub>2</sub> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept chlorine/Cl<sub>2</sub>.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2H<sub>2</sub>O (l) → 4H<sup>+</sup> (aq) + O<sub>2</sub> (g) + 4e<sup>–</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept 2Cl<sup>–</sup> (aq) → Cl<sub>2</sub> (g) + 2e<sup>–</sup>.<br>Accept 4OH<sup>−</sup> → 2H<sub>2</sub>O + O<sub>2</sub> + 4e<sup>−</sup></span></em></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enthalpy of solution = lattice enthalpy + enthalpies of hydration «of Cu<sup>2+</sup> and Cl<sup>−</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;">«+2824 kJ mol<sup>–1</sup> − 2161 kJ mol<sup>–1</sup> − 2(359 kJ mol<sup>–1</sup>) =» −55 «kJ mol<sup>–1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept enthalpy cycle. <br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>E</em><sup>θ</sup> = «+0.52 – 0.15 = +» 0.37 «V» ✔</span></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">spontaneous <em><strong>AND</strong> E</em><sup>θ</sup> positive ✔</span></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><sup>θ</sup> = «−<em>nFE</em> = −1 mol × 96 500 C Mol<sup>–1</sup> × 0.37 V=» −36 000 J/−36 kJ ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “−18 kJ mol<sup>–1</sup> «per mole of Cu<sup>+</sup>»”.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept values of n other than 1.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Apply SF in this question.<br></span></em></p>
<p><em><span style="background-color: #ffffff;">Accept J/kJ or J mol<sup>−1</sup>/kJ mol<sup>−1</sup> for units.</span></em></p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2 mol (aq) → 1 mol (aq) <em><strong>AND</strong> </em>decreases ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “solid formed from aqueous solution <strong>AND</strong> decreases”.<br>Do <strong>not</strong> accept 2 mol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">→</span> 1 mol without (aq).</span></em></p>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Δ<em>G</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> </span><span style="background-color: #ffffff;">&lt; 0</span><span style="background-color: #ffffff;"> <strong>AND</strong> </span><span style="background-color: #ffffff;">Δ</span><span style="background-color: #ffffff;"><em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span></span><span style="background-color: #ffffff;"> &lt; 0</span><em><span style="background-color: #ffffff;"><br><strong>OR</strong><br></span></em><span style="background-color: #ffffff;">Δ<em>G</em></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> + <em>T</em>Δ<em>S</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 <strong>AND</strong> Δ<em>H</em><span style="font-size: 14px;"><sup><span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-style: normal;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">θ</span></sup></span> &lt; 0 ✔</span></p>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>T</em>Δ<em>S</em> more negative «reducing spontaneity» <em><strong>AND</strong> </em>stability increases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept calculation showing non-spontaneity at 433 K.</span></em></p>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ligands cause» d-orbitals «to» split ✔</span></p>
<p><span style="background-color: #ffffff;">light absorbed as electrons transit to higher energy level «in d–d transitions»<br><em><strong>OR</strong></em><br>light absorbed as electrons promoted ✔</span></p>
<p><span style="background-color: #ffffff;">energy gap corresponds to «orange» light in visible region of spectrum ✔</span></p>
<p><span style="background-color: #ffffff;">colour observed is complementary ✔</span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">full «3»d sub-level/orbitals<br><em><strong>OR</strong></em><br>no d–d transition possible «and therefore no colour» ✔</span></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">octahedral <em><strong>AND</strong> </em>90° «180° for axial» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept square-based bi-pyramid.</span></em></p>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any <strong>two </strong>of:</em><br>ligand/chloride ion Lewis base <em><strong>AND</strong> </em>donates e-pair ✔<br>not Brønsted–Lowry base <em><strong>AND</strong> </em>does not accept proton/H<sup>+</sup> ✔<br>Lewis definition extends/broader than Brønsted–Lowry definition ✔</span></p>
<div class="question_part_label">f(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Fast moving helium nuclei (<sup>4</sup>He<sup>2+</sup>) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><em>Figure from PPLATO / FLAP (Flexible Learning Approach To Physics), http://www.met.reading.ac.uk/pplato2/h-flap/</em><br><em>phys8_1.html#top 1996 The Open University and The University of Reading.</em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest what can be concluded about the gold atom from this experiment.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent experiments showed electrons existing in energy levels occupying various orbital shapes.</p>
<p>Sketch diagrams of 1s, 2s and 2p.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copper is a transition metal that forms different coloured complexes. A complex [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+ </sup>(aq) changes colour when excess Cl<sup>− </sup>(aq) is added.</p>
<p>Explain the cause of this colour change, using sections 3 and 15 from the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Most <sup>4</sup>He<sup>2+</sup> passing straight through:</em></p>
<p>most of the atom is empty space<br><em><strong>OR</strong></em><br>the space between nuclei is much larger than <sup>4</sup>He<sup>2+</sup> particles<br><em><strong>OR</strong></em><br>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>
<p><em><br>Very few <sup>4</sup>He<sup>2+</sup> deviating largely from their path:</em></p>
<p>nucleus/centre is positive «and repels <sup>4</sup>He<sup>2+</sup> particles»<br><em><strong>OR</strong></em><br>nucleus/centre is «more» dense/heavy «than <sup>4</sup>He<sup>2+</sup> particles and deflects them»<br><em><strong>OR</strong></em><br>nucleus/centre is «very» small «compared to the size of the atom» ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept the same reason for both <strong>M1</strong> and <strong>M2</strong>.</em></p>
<p><em>Accept “most of the atom is an electron cloud” for <strong>M1</strong>.</em></p>
<p><em>Do not accept only “nucleus repels <sup>4</sup>He<sup>2+</sup> particles” for <strong>M2</strong>.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="372" height="174"></p>
<p>1s <em><strong>AND</strong> </em>2s as spheres ✔</p>
<p>one or more 2p orbital(s) as figure(s) of 8 shape(s) of any orientation (p<sub>x</sub>, p<sub>y</sub> p<sub>z</sub>) ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>4s<sup>1</sup>3d<sup>10</sup><br><em><strong>OR</strong></em><br>[Ar] 4s<sup>1</sup>3d<sup>10</sup> ✔</p>
<p><em><br>Accept configuration with 3d before 4s.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloride is lower in the spectrochemical series ✔</p>
<p>«ligand cause» decreased/lesser splitting «in d-orbitals compared to H<sub>2</sub>O» ✔</p>
<p><br>frequency/energy of light absorbed is decreased<br><em><strong>OR</strong></em><br>wavelength of light absorbed is increased ✔</p>
<p><em><br></em><em>Accept <strong>·</strong>chloride a weaker ligand than water/produces a smaller energy difference than water for <strong>M1</strong>.</em></p>
<p><em>Award <strong>[2 max]</strong> for mentioning splitting of orbitals is changed <strong>AND</strong> frequency/ wavelength/energy of light absorbed</em><br><em>are different/changed without mentioning correct decrease or increase.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about iron.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the <strong>full</strong> electron configuration of Fe<sup>2+</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, when ligands bond to the iron ion causing the d-orbitals to split, the complex is coloured.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>, for iron-54.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6d.PNG" alt width="269" height="186"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An iron nail and a copper nail are inserted into a lemon.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6e.PNG" alt width="400" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard electrode potential, in V, when the Fe<sup>2+</sup> (aq) | Fe (s) and Cu<sup>2+</sup> (aq) | Cu (s) standard half-cells are connected at 298 K. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate ΔG<sup>θ</sup>, in kJ, for the spontaneous reaction in (f)(i), using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate a value for the equilibrium constant, K<sub>c</sub>, at 298 K, giving your answer to two significant figures. Use your answer to (f)(ii) and section 1 of the data booklet. </span></p>
<p><span style="background-color: #ffffff;">(If you did not obtain an answer to (f)(ii), use −140 kJ mol<sup>−1</sup>, but this is not the correct value.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>6</sup>   <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«frequency/wavelength of visible» light absorbed by electrons moving between d levels/orbitals    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">colour due to remaining frequencies<br><em><strong>OR</strong></em><br>complementary colour transmitted    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\text{26}}}^{{\text{54}}}{\text{Fe}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mrow>
        <mtext>26</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>54</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Fe</mtext>
  </mrow>
</math></span>     <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 54 × 0.0584 + 56 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.9168 + 57 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0217 + 58 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 0.0031</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em></span></p>
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 55.9111    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«A<sub>r</sub> =» 55.91    <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Award <strong>[2]</strong> for correct final answer</span></em></p>
<p><em><span style="background-color: #ffffff;"><br>Do <strong>not</strong> accept data booklet value (55.85).</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lemon juice is the electrolyte<br><em><strong>OR</strong></em><br>lemon juice allows flow of ions<br><em><strong>OR</strong></em><br>each nail/metal forms a half-cell with the lemon juice    <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>iron is higher than copper in the activity series<br><em><strong>OR</strong></em><br>each half-cell/metal has a different redox/electrode potential     <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">iron is oxidized<br><strong><em>OR</em></strong><br>Fe → Fe<sup>2+</sup> + 2e<sup>−</sup><br><em><strong>OR</strong></em><br>Fe → Fe<sup>3+</sup> + 3e<sup>−</sup><br><em><strong>OR</strong></em><br>iron is anode/negative electrode of cell   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">copper is cathode/positive electrode of cell<br><em><strong>OR</strong></em><br>reduction occurs at the cathode<br><em><strong>OR</strong></em><br>2H<sup>+</sup> + 2e<sup>−</sup> → H<sub>2</sub>   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br>electrons flow from iron to copper   <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«E<sup>θ</sup> = +0.34 V −(−0.45 V) = +»0.79 «V»   <strong>[✔]</strong></span></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ΔG</span><sup>θ</sup> <span style="background-color: #ffffff;">= −nFE<sup>θ</sup> = −2mol × 96 500 C mol<sup>−1</sup> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.79{\text{ J }}{{\text{C}}^{ - 1}}}}{{1000}}">
  <mfrac>
    <mrow>
      <mn>0.79</mn>
      <mrow>
        <mtext> J </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>C</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1000</mn>
    </mrow>
  </mfrac>
</math></span> =» −152 «kJ»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept range 150−153 kJ.</span></em></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ln<em>K<sub>c</sub></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{\Delta {G^\theta }}}{{RT}} = - \frac{{ - 152 \times {{10}^3}{\text{ Jmo}}{{\text{l}}^{ - 1}}}}{{8.31{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \times 298{\text{K}}}}">
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msup>
          <mi>G</mi>
          <mi>θ</mi>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mo>−</mo>
  <mfrac>
    <mrow>
      <mo>−</mo>
      <mn>152</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mrow>
        <mtext> Jmo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8.31</mn>
      <mrow>
        <mtext>J</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>K</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>298</mn>
      <mrow>
        <mtext>K</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 61.38    <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"><em>K</em> = 4.5 × 10<sup>26</sup>    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept answers in range 2.0 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>26</sup> to 5.5 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>26</sup>.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> award M2 if answer not given to two significant figures.</span></em></p>
<p><span style="background-color: #ffffff;"><em>If −140 kJmol<sup>−1</sup> used, answer is 3.6 <span style="text-align: left;color: #000000;text-indent: 0px;letter-spacing: normal;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-variant: normal;font-weight: 400;text-decoration: none;display: inline !important;white-space: normal;float: none;background-color: #ffffff;">×</span> 10<sup>24</sup></em>.</span></p>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Done fairly well with common mistakes leaving in the 4s<sup>2</sup> electrons as part of Fe<sup>2+</sup> electron configuration, or writing 4s<sup>1</sup> 3d<sup>5</sup></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was poorly answered and showed a clear misconception and misunderstanding of the concepts. Most of the candidates failed to explain why the complex is coloured and based their answers on the emission of light energy when electrons fall back to ground state and not on light absorption by electrons moving between the split d-orbitals and complementary colour transmitted of certain frequencies.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates wrote the nuclear notation for iron as Z over A.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question on average atomic mass was the best answered question on the exam. A few candidates did not write the answer to two decimal places as per instructions.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few candidates scored M1 regarding the lemon juice role as electrolyte. Some earned M2 but a lot of answers were too vague, such as ‘electrons move through the circuit’, <em>etc</em>.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only 50 % of candidates earned this relatively easy mark on calculate EMF from 2 half-cell electrode potentials.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Average performance; typical errors were using the incorrect value for n, the number of electrons, or not using consistent units and making a factor of 1000 error in the final answer.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was left blank by quite a few candidates. Common errors included not using correct units, or more often, calculation error in converting ln <em>K</em><sub>c</sub> into <em>K</em><sub>c</sub> value.</p>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br>