File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 13/markSceme-HL-paper1html
File size: 115.79 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>What is the correct explanation for the colour of [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>?</p>
<p>A. Light is absorbed when an electron moves to a d orbital of higher energy.</p>
<p>B. Light is released when an electron moves to a d orbital of higher energy.</p>
<p>C. Light is absorbed when electrons move from the ligands to the central metal ion.</p>
<p>D. Light is absorbed when electrons move between d and s orbitals.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the charge on the iron(III) complex ion in [Fe(OH)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]Br?</p>
<p>A.     0</p>
<p>B.     1+</p>
<p>C.     2+</p>
<p>D.     3+</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The oxidation state of cobalt in the complex ion [Co(NH<sub>3</sub>)<sub>5</sub>Br]<em><sup>x</sup></em> is +3. Which of the following statements are correct?</p>
<p>I.   The overall charge, <em>x</em>, of the complex ion is 2+.<br>II.  The complex ion is octahedral.<br>III. The cobalt(III) ion has a half-filled d-subshell.</p>
<p>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>[CoCl<sub>6</sub>]<sup>3–</sup> is orange while [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> is yellow. Which statement is correct?</p>
<p>A. [CoCl<sub>6</sub>]<sup>3–</sup> absorbs orange light.</p>
<p>B. The oxidation state of cobalt is different in each complex.</p>
<p>C. The different colours are due to the different charges on the complex.</p>
<p>D. The different ligands cause different splitting in the 3d orbitals.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which of these statements are correct?<br></span></p>
<p style="padding-left:30px;"><span class="fontstyle0">I. Zinc is <span class="fontstyle2"><strong>not</strong> </span>a transition element.<br>II. Ligands are Lewis bases.<br>III. Manganese(II) chloride is paramagnetic.</span></p>
<p><span class="fontstyle0">A.  I and II only<br></span></p>
<p><span class="fontstyle0">B.  I and III only<br></span></p>
<p><span class="fontstyle0">C.  II and III only<br></span></p>
<p><span class="fontstyle0">D.  I, II and III</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was one of only two questions where less than 50% of candidates got the correct answer. Many either didn't understand manganese chloride as paramagnetic or classified zinc as a transition element.</p>
</div>
<br><hr><br><div class="question">
<p>Which of these ions are likely to be paramagnetic?</p>
<p style="padding-left:30px;">I.   Ti<sup>3+</sup><br>II.  Cr<sup>3+</sup><br>III. Fe<sup>3+</sup></p>
<p><br>A.  I and II only</p>
<p>B.  I and III only</p>
<p>C.  II and III only</p>
<p>D.  I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Half of the candidates selected the correct combination of paramagnetic ions. The most commonly chosen distractor excluded Ti<sup>3+</sup>.</p>
</div>
<br><hr><br><div class="question">
<p>What is the overall charge, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, of the chromium (III) complex?</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>[</mo><mi>Cr</mi><mo>(</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><msub><mo>)</mo><mn>4</mn></msub><msub><mi>Cl</mi><mn>2</mn></msub><msup><mo>]</mo><mi>x</mi></msup></math></p>
<p>A.&nbsp; 0</p>
<p>B.&nbsp; 1+</p>
<p>C.&nbsp; 2−</p>
<p>D.&nbsp; 3+</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the oxidation state of the metal ion and charge of the complex ion in [Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]Cl?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="412" height="239"></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was one of the most challenging questions on the paper and it discriminated well between high scoring and low scoring candidates. 57 % of the candidates were able to use the formula of the compound to deduce the oxidation state of the metal ion and the charge of the complex ion. The most commonly chosen distractor was B where the charge of the complex ion was correct but the charge of the metal ion was not. Some teachers commented that the question was challenging but reasonable.</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which electrons are removed from iron (Z = 26) to form iron(II)?</span></p>
<p><span style="background-color: #ffffff;">A. two 3d electrons</span></p>
<p><span style="background-color: #ffffff;">B. two 4s electrons</span></p>
<p><span style="background-color: #ffffff;">C. one 4s electron and one 3d electron</span></p>
<p><span style="background-color: #ffffff;">D. two 4p electrons</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Stating the 4s electrons are lost first in forming the Fe(II) ion was done correctly by 58 % but with a low discrimination index.</p>
</div>
<br><hr><br><div class="question">
<p>Which factor does <strong>not</strong> affect the colour of a complex ion?</p>
<p>A.  temperature of the solution</p>
<p>B.  identity of the ligand</p>
<p>C.  identity of the metal</p>
<p>D.  oxidation number of the metal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the effect of a stronger ligand?</span></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is correct for the complex ion in [Fe(H<sub>2</sub>O)<sub>5</sub>Cl]SO<sub>4</sub>?</p>
<p> </p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Why is hydrated copper (II) sulfate blue?</p>
<p>A.  Blue light is emitted when electrons return to lower d-orbitals.</p>
<p>B.  Light complimentary to blue is absorbed when electrons return to lower d-orbitals.</p>
<p>C.  Blue light is emitted when electrons are promoted between d-orbitals.</p>
<p>D.  Light complimentary to blue is absorbed when electrons are promoted between d-orbitals.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Higher scoring candidates managed to identify why hydrated copper(II) sulfate is blue in colour.</p>
</div>
<br><hr><br><div class="question">
<p>[Cr(OH<sub>2</sub>)<sub>6</sub>]<sup>3+</sup> is violet and [Cr(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> is yellow. What is correct?</p>
<p style="text-align:center;">The Colour Wheel</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>61% of the candidates were able to determine the relative d-level splitting and the wavelength of light absorbed by complex ions with different ligands, given the colours of the complex ions and a colour wheel labelled with the wavelengths of light.</p>
</div>
<br><hr><br><div class="question">
<p>Which complex has the greatest d orbital splitting?</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_09.28.41.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/08"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which complex ion contains a central ion with an oxidation state of +3?</p>
<p><br>A.  [PtCl<sub>6</sub>]<sup>2−</sup></p>
<p>B.  [Cu(H<sub>2</sub>O)<sub>4</sub>(OH)<sub>2</sub>]</p>
<p>C.  [Ni(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup></p>
<p>D.  [Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Ammonia is a stronger ligand than water. Which is correct when concentrated aqueous ammonia solution is added to dilute aqueous copper(II) sulfate solution?</p>
<p>A.     The d-orbitals in the copper ion split.</p>
<p>B.     There is a smaller splitting of the d-orbitals.</p>
<p>C.     Ammonia replaces water as a ligand.</p>
<p>D.     The colour of the solution fades.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">How is colour produced in transition metal complexes?</span></p>
<p><span style="background-color: #ffffff;">A. Light is absorbed when electrons are promoted between split d-orbitals.</span></p>
<p><span style="background-color: #ffffff;">B. Light is emitted when electrons fall between split d-orbitals.</span></p>
<p><span style="background-color: #ffffff;">C. Light is absorbed when electrons escape from the complex.</span></p>
<p><span style="background-color: #ffffff;">D. Light is emitted when the complex returns to ground state.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>69&thinsp;% of the candidates understood how colour is produced in transition metal complexes. The most commonly chosen distractor was B, which also recognized the involvement of the split d-orbitals, however stated that colour is produced when light is emitted when electrons fall between split d-orbitals.</p>
</div>
<br><hr><br><div class="question">
<p>Part of the spectrochemical series is shown for transition metal complexes.</p>
<p style="text-align: center;">I<sup>−</sup>&lt; Cl<sup>−</sup> &lt; H<sub>2</sub>O &lt; NH<sub>3</sub></p>
<p>Which statement can be correctly deduced from the series?</p>
<p>A.     H<sub>2</sub>O increases the p–d separation more than Cl<sup>−</sup>.</p>
<p>B.     H<sub>2</sub>O increases the d–d separation more than Cl<sup>−</sup>.</p>
<p>C.     A complex with Cl<sup>−</sup> is more likely to be blue than that with NH<sub>3</sub>.</p>
<p>D.     Complexes with water are always blue.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>