File "markSceme-SL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 10/markSceme-SL-paper3html
File size: 691.27 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>Infrared (IR) spectroscopy is often used for the identification of polymers, such as PETE, for&nbsp;recycling.</p>
</div>

<div class="specification">
<p>LDPE and high density polyethene (HDPE) have very similar IR spectra even though&nbsp;they have rather different structures and physical properties.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are the IR spectra of two plastics (<strong>A</strong> and <strong>B</strong>); one is PETE, the other is low density polyethene (LDPE).</p>
<p><img src=""></p>
<p>Deduce, giving your reasons, the identity and resin identification code (RIC) of <strong>A</strong> and <strong>B </strong>using sections 26 and 30 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the difference in their structures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the difference in their structures affects their melting points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>A RIC:</em> 1 <em><strong>AND</strong> B RIC:</em> 4</p>
<p><em><strong>ALTERNATIVE 1:</strong></em><br>«only» PETE contains carbonyl/C=O/ester/COO groups<br>carbonyl groups absorb at 1700–1750 «cm<sup>–1</sup>»</p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br>LDPE contains more C–H bonds «than PETE»<br>C–H bonds absorb at 2850–3090 «cm<sup>–1</sup>»</p>
<p> </p>
<p><em>For either, accept specific frequencies in these ranges (eg 1735 «cm<sup>–1</sup>» or 2900 «cm<sup>–1</sup>»).</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HDPE less branched<br><em><strong>OR</strong></em><br>LDPE more branched</p>
<p> </p>
<p><em>Accept “no branching in HDPE <strong>AND </strong>branching in LDPE”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HDPE «polymer» chains/molecules can pack together more closely «than LDPE chains»<br><em><strong>OR</strong></em><br>HDPE «polymer» chains/molecules have a higher contact surface area «than LDPE chains»</p>
<p>stronger intermolecular/dispersion/London/van der Waals’ forces in HDPE <em><strong>AND</strong> </em>higher melting point</p>
<p> </p>
<p><em>Accept converse arguments.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Vitamins are organic compounds essential in small amounts.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of <strong>one</strong> functional group common to all three vitamins shown in section 35 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the biomagnification of the pesticide DDT.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why maltose, C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>, is soluble in water.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">hydroxyl ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “hydroxy” but <strong>not</strong> “hydroxide”. <br>Accept “alkenyl”. <br>Do <strong>not</strong> accept formula.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">accumulates in fat/tissues/living organisms<br><em><strong>OR</strong></em><br>cannot be metabolized/does not break down «in living organisms»<br><em><strong>OR</strong></em><br>not excreted / excreted «very» slowly ✔</span></p>
<p><span style="background-color: #ffffff;">passes «unchanged» up the food chain<br><em><strong>OR</strong></em><br>increased concentration as one species feeds on another «up the food chain» ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “lipids” for “fat”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«solubility depends on forming many» H-bonds with water ✔<br>maltose has many hydroxyl/OH/oxygen atom/O «and forms many H-bonds» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Reference to “with water” required. <br>Accept “hydroxy” for “hydroxyl” but <strong>not</strong> “hydroxide/OH<sup>–</sup>”. <br>Reference to many/several OH groups/O atoms required for M2.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbohydrates are energy-rich molecules which can be synthesized in some plant cells from inorganic compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the raw materials and source of energy used in the process described above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structures of two molecules, <strong>X</strong> and <strong>Y</strong>, are shown below.</p>
<p><img src=""></p>
<p>(i) Justify why both these molecules are carbohydrates.</p>
<p>(ii) Distinguish between these molecules in terms of their functional groups.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Amylose is an unbranched polysaccharide composed of repeating units of glucose.</p>
<p>(i) Draw the structure of the repeating unit of amylose. Use section 34 of the data booklet.</p>
<p>(ii) Amylose is a major component of starch. Corn starch can be used to make replacements for plastics derived from oil, especially for packaging. Discuss <strong>one</strong> potential advantage and <strong>one</strong> disadvantage of this use of starch.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CO<sub>2</sub> <em><strong>AND</strong></em> H<sub>2</sub>O <em><strong>AND</strong></em> sun</p>
<p><em>Accept names.</em><br><em>Accept “sunlight/light/photons” instead of “sun”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>both have formula C<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub><br><em><strong>OR</strong></em><br>both contain several OH/hydroxyl «groups» <em><strong>AND</strong></em> a C=O/carbonyl «group»</p>
<p><em>Accept “both have the formula C<sub>n</sub>H<sub>2n</sub>O<sub>n</sub> /empirical formula CH<sub>2</sub>O” but do <strong>not</strong> accept “both have same molecular formula/have formula C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>”.</em></p>
<p><em>Accept “aldehyde or ketone” for “carbonyl”.</em></p>
<p> </p>
<p>ii</p>
<p><img src=""></p>
<p><em>Accept “alkyl” for “R”.</em><br><em>Accept “<strong>X</strong>: aldose/aldehyde <strong>AND Y</strong>: ketose/ketone”.</em><br><em>Accept “CO” for “C=O”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src=""></p>
<p>continuation bonds <em><strong>AND</strong></em> open O on either but not both ends</p>
<p><em>Brackets are not necessary for the mark.</em><br><em>Do <strong>not</strong> accept β-isomer.</em><br><em>Mark may be awarded if a polymer is shown but with the repeating unit clearly identified.</em><br><em>3-D representation is <strong>not</strong> required.</em></p>
<p> </p>
<p>ii</p>
<p><em>Advantage:<br>Any one of:</em></p>
<p>biodegradable / break down naturally/by bacteria</p>
<p><em>Do <strong>not</strong> accept just “decompose easily”.</em></p>
<p>compostable</p>
<p>does not contribute to land-fill</p>
<p>renewable/sustainable resource</p>
<p>starch grains swell <em><strong>AND</strong></em> help break up plastic</p>
<p>lower greenhouse gas emissions</p>
<p>uses less fossil fuels than traditional plastics</p>
<p>less energy needed for production</p>
<p> </p>
<p><em>Disadvantage:<br>Any one of:</em></p>
<p>land use «affects biodiversity/loss of habitat»</p>
<p>growing corn for plastics instead of food</p>
<p>«starch» breakdown can increase acidity of soil/compost</p>
<p>«starch» breakdown can produce methane «especially when buried»</p>
<p>sensitive to moisture/bacteria/acidic foods</p>
<p>«bioplastics sometimes» degrade quickly/before end of use</p>
<p>cannot be reused</p>
<p>poor mechanical strength</p>
<p>eutrophication</p>
<p>increased use of fertilizers/pesticides/phosphorus/nitrogen «has negative environmental effects»</p>
<p><em>Ignore any reference to cost.<br><br>Accept “prone to site explosions/fires” or “low heat resistance” for disadvantage.</em></p>
<p><em>Only award<strong> [1 max]</strong> if the same example is used for the advantage and disadvantage.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Monosaccharides can combine to form disaccharides and polysaccharides.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional groups which are present in only one structure of glucose.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sucrose is a disaccharide formed from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
  <mi>α</mi>
</math></span>-glucose and β-fructose.</p>
<p>Deduce the structural formula of sucrose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starch is a constituent of many plastics. Suggest <strong>one</strong> reason for including starch in plastics.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> of the challenges scientists face when scaling up the synthesis of a new compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Only in straight chain form:<br></em>carbonyl<br><em><strong>OR</strong></em><br>aldehyde</p>
<p><em>Only in ring structure:</em><br>hemiacetal</p>
<p> </p>
<p><em>Accept functional group abbreviations (eg, CHO etc.). </em></p>
<p><em>Accept “ether”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct link between the two monosaccharides</p>
<p> </p>
<p><em>Correct 1,4 beta link <strong>AND</strong> all bonds on the 2 carbons in the link required for mark.</em></p>
<p><em>Ignore any errors in the rest of the structure.</em></p>
<p><em>Penalize extra atoms on carbons in link.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>plastic «more» biodegradable/degrades into nontoxic products<br><em><strong>OR</strong></em><br>plastic can be produced using green technology/renewable resource<br><em><strong>OR</strong></em><br>reduces fossil fuel use/petrochemicals<br><em><strong>OR</strong></em><br>easily plasticized<br><em><strong>OR</strong></em><br>used to form thermoplasts</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimize «negative» impact on environment<br><em><strong>OR</strong></em><br>minimize waste produced<br><em><strong>OR</strong></em><br>consider atom economy<br><em><strong>OR</strong></em><br>efficiency of synthetic process<br><em><strong>OR</strong></em><br>problems of side reactions/lower yields<br><em><strong>OR</strong></em><br>control temperature «inside large reactors»<br><em><strong>OR</strong></em><br>availability of starting/raw materials<br><em><strong>OR</strong></em><br>minimize energy costs<br><em><strong>OR</strong></em><br>value for money/cost effectiveness/cost of production</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are both used as antivirals to help prevent the spread of the flu virus, but are administered by different methods.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zanamivir must be taken by inhalation, not orally. Deduce what this suggests about the bioavailability of zanamivir if taken orally.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir does not possess the carboxyl group needed for activity until it is chemically changed in the body. Deduce the name of the functional group in oseltamivir which changes into a carboxyl group in the body. Use section 37 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The synthesis of oseltamivir is dependent on a supply of the precursor shikimic acid, which is available only in low yield from certain plants, notably Chinese star anise. State one alternative green chemistry source of shikimic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«oral bioavailability is» low<br><em><strong>OR<br></strong></em>drug is broken down/pH too low/unable to be absorbed from gut<br><em><strong>OR<br></strong></em>only a small proportion of the drug «taken by mouth» reaches the target organ</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethoxycarbonyl/carbonyl attached to oxygen</p>
<p><em>Accept “ester”. </em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>fermentation<br><em><strong>OR<br></strong></em>microbial production</p>
<p>genetically engineered bacteria/E.coli</p>
<p>sweetgum «seeds/leaves/bark»<br><em><strong>OR<br></strong></em>pine/fir/spruce tree «needles»<br><em><strong>OR<br></strong>Ginkgo biloba</em></p>
<p><em>Accept other specific examples of more plentiful plant sources.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Vegetable oils, such as that shown, require conversion to biodiesel for use in current internal&nbsp;combustion engines.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> reagents required to convert vegetable oil to biodiesel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the formula of the biodiesel formed when the vegetable oil shown is reacted with the reagents in (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of the molecular structure, the critical difference in properties that makes biodiesel a more suitable liquid fuel than vegetable oil.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the specific energy, in kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>g<sup>−1</sup>, and energy density, in kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>cm<sup>−3</sup>, of a particular biodiesel using the following data and section 1 of the data booklet.</p>
<p>Density = 0.850 g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>cm<sup>−3</sup>; Molar mass = 299 g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>;</p>
<p>Enthalpy of combustion = 12.0 MJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>mol<sup>−1</sup>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>methanol<br><em><strong>OR</strong></em><br>ethanol</p>
<p>strong acid<br><em><strong>OR</strong></em><br>strong base</p>
<p> </p>
<p><em>Accept “alcohol”.</em></p>
<p><em>Accept any specific strong acid or strong base other than HNO<sub>3</sub>/nitric acid.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>(CH<sub>2</sub>)<sub>16</sub>COOCH<sub>3</sub> / CH<sub>3</sub>OCO(CH<sub>2</sub>)<sub>16</sub>CH<sub>3</sub><br><em><strong>OR</strong></em><br>CH<sub>3</sub>(CH<sub>2</sub>)<sub>16</sub>COOC<sub>2</sub>H<sub>5</sub> / C<sub>2</sub>H<sub>5</sub>OCO(CH<sub>2</sub>)<sub>16</sub>CH<sub>3</sub></p>
<p> </p>
<p><em>Product <strong>must</strong> correspond to alcohol chosen in (a), but award mark for either structure if neither given for (a).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lower viscosity</p>
<p>weaker intermolecular/dispersion/London/van der Waals’ forces<br><em><strong>OR</strong></em><br>smaller/shorter molecules</p>
<p> </p>
<p><em>Accept “lower molecular mass/M<sub>r</sub>” or “lower number of electrons”.</em></p>
<p><em>Accept converse arguments.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Specific energy:</em> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{12\,000{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}{{299{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>12</mn>
      <mspace width="thinmathspace"></mspace>
      <mn>000</mn>
      <mrow>
        <mtext> kJ</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>299</mn>
      <mrow>
        <mtext> g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 40.1 «kJ g<sup>−1</sup>»</p>
<p><em>Energy density:</em> «= 40.1 kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>g<sup>−1</sup> x 0.850 g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>cm<sup>−3</sup>» = 34.1 «kJ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>cm<sup>−3</sup>»</p>
<p> </p>
<p><em>Award [1] if both are in terms of a unit other than kJ (such as J or MJ).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Amino acids are usually identified by their common names. Use section 33 of the data booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the IUPAC name for leucine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A mixture of amino acids is separated by gel electrophoresis at pH 6.0. The amino acids are then stained with ninhydrin.</p>
<p>(i) On the diagram below draw the relative positions of the following amino acids at the end of the process: Val, Asp, Lys and Thr.</p>
<p><img src=""></p>
<p>(ii) Suggest why glycine and isoleucine separate slightly at pH 6.5.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of different tripeptides that can be made from twenty different amino acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fibrous protein keratin has a secondary structure with a helical arrangement.</p>
<p>(i) State the type of interaction responsible for holding the protein in this arrangement.</p>
<p>(ii) Identify the functional groups responsible for these interactions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2-amino-4-methylpentanoic acid</p>
<p><em>Accept 4-methyl-2-aminopentanoic acid.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src=""></p>
<p>Lys on cathode side <em><strong>AND</strong></em> Asp on anode side<br>Val at origin <em><strong>AND</strong></em> Thr on anode side but closer to origin than Asp</p>
<p><em>Val and Thr need not overlap.</em><br><em>Accept any (reasonable) size and demarcation of position so long as position relative to origin is correct.</em><br><em>Accept crosses for spots.</em><br><em>Award <strong>[1 max]</strong> for any two correct.</em><br><em>Award <strong>[1 max]</strong> if net direction of spots is reversed.</em><br><em>Award <strong>[1 max]</strong> if the four points are in the correct order but not in a straight line.</em></p>
<p> </p>
<p>ii</p>
<p>different sizes/molar masses/chain lengths «so move with different speeds»</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«20<sup>3</sup> =» 8000</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>hydrogen bonds</p>
<p> </p>
<p>ii</p>
<p>carboxamide/amide/amido<br><em><strong>OR<br></strong></em>C=O <em><strong>AND</strong></em> N–H</p>
<p><em>Accept peptide.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Aspartame is formed from the two amino acids aspartic acid (Asp) and phenylalanine (Phe).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the dipeptide Asp–Phe using section 33 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The isoelectric point of amino acids is the intermediate pH at which an amino acid is electrically neutral.</span></p>
<p><span style="background-color: #ffffff;">Suggest why Asp and Phe have different isoelectric points.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="298" height="167"></p>
<p><span style="background-color: #ffffff;">amide link (<em>eg,</em> CONH) ✔</span></p>
<p><span style="background-color: #ffffff;">correct order and structures of amino acids ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept a skeletal formula or a full or condensed structural formula.<br>Accept zwitterion form of dipeptide.<br>Accept CO–NH but <strong>not</strong> CO–HN for amide link.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«Asp isoelectric point lower than Phe and » Phe has a neutral/hydrocarbon side chain ✔<br>Asp side chain contains −COOH/carboxyl ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award<strong> [1 max]</strong> for “Asp has two carboxyl/−COOH groups and Phe has one carboxyl/−COOH group”.<br>Accept “Asp has an acidic side chain” for M2</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Ethanol is a biofuel that can be mixed with gasoline.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the equation for the complete combustion of ethanol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the evidence that relates global warming to increasing concentrations of greenhouse gases in the atmosphere.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain, including a suitable equation, why biofuels are considered to be carbon neutral.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of reaction that occurs when ethanol reacts with vegetable oil to form biodiesel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>2</sub>H<sub>5</sub>OH (l) + 3O<sub>2</sub> (g) → 2CO<sub>2</sub> (g) + 3H<sub>2</sub>O (l) ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em> <br>«showing strong» correlation between «atmospheric» CO<sub>2</sub> concentration/greenhouse gas concentration and average «global/surface/ocean» temperature ✔</span></p>
<p><span style="background-color: #ffffff;">lab evidence that greenhouse gases/CO<sub>2</sub> absorb(s) infrared radiation ✔</span></p>
<p><span style="background-color: #ffffff;">«advanced» computer modelling ✔</span></p>
<p><span style="background-color: #ffffff;"> ice core data ✔</span></p>
<p><span style="background-color: #ffffff;">tree ring data ✔</span></p>
<p><span style="background-color: #ffffff;">ocean sediments / coral reefs / sedimentary rocks data ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Do <strong>not</strong> accept “global warming” for “average temperature”.<br>Do <strong>not</strong> accept “traps/reflects heat” <strong>OR</strong> “thermal energy”.<br>Evidence must be outlined and connected to data.<br>Accept references to other valid greenhouse gases other than carbon dioxide/CO<sub>2</sub>, such as methane/CH<sub>4</sub> or nitrous oxide/N<sub>2</sub>O.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">biofuel raw material/sugar/glucose formed by photosynthesis<br><em><strong>OR</strong></em><br>biofuel raw material/sugar/glucose uses up carbon dioxide during its formation<br><em><strong>OR</strong></em><br>biofuel from capturing gases due to decaying organic matter formed from photosynthesis ✔</span></p>
<p><span style="background-color: #ffffff;">6CO<sub>2</sub> (g) + 6H<sub>2</sub>O (l) → C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> (aq) + 6O<sub>2</sub> (g) ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept arguments based on material coming from plant sources consuming carbon dioxide/carbon for M1.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">transesterification<br><em><strong>OR</strong></em><br>«nucleophilic» substitution/S<sub>N</sub> ✔</span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Octane number is a measure of the performance of engine fuel.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why a high-octane number fuel is preferable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Reforming reactions are used to increase the octane number of a hydrocarbon fuel.</span></p>
<p><span style="background-color: #ffffff;">Suggest the structural formulas of <strong>two</strong> possible products of the reforming reaction of heptane, C<sub>7</sub>H<sub>16</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The <sup>1</sup>H NMR spectrum of one of the products has four signals. The integration trace shows a ratio of the areas under the signals of 9 : 3 : 2 : 2.</span></p>
<p><span style="background-color: #ffffff;">Deduce the structural formula of the product.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">low knocking/auto-ignition<br><em>NOTE: Do <strong>not</strong> accept “pre-ignition”.</em><br><em><strong>OR</strong></em><br>more efficient fuel<br><em>NOTE: Accept “less CO<sub>2</sub> emissions since knocking engine uses more fuel «to produce the same power»”.</em><br><em><strong>OR</strong></em><br>high compression<br><em><strong>OR</strong></em><br>more power extracted<br><em><strong>OR</strong> <br></em>more air going into engine / turbocharging<br><em><strong>OR</strong></em><br>less engine damage ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span style="background-color: #ffffff;">Any two of:</span></em></p>
<p><em><img src="" width="567" height="561"></em></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept skeletal formulas or full or condensed structural formulas.<br>Accept any other branched cycloalkane that contains 7 carbons.<br>Do <strong>not</strong> accept any alkenes.<br>Penalise missing hydrogens or bond connectivities once only in Option C.<br>Accept hydrogen as the second product if the first product is toluene or a cycloalkane.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="355" height="116"></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept a skeletal formula or a full or condensed structural formula.<br>Penalise missing hydrogens or bond connectivities once only in Option C.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Gasoline (petrol), biodiesel and ethanol are fuels.</span></p>
<p><span class="fontstyle0"><img src="" width="602" height="122"></span></p>
<p style="text-align: left;"><span class="fontstyle0">[U.S. Department of Energy. https://afdc.energy.gov/]&nbsp;<br> </span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the energy released, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>kJ</mi></math>, from the complete combustion of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>5</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">of ethanol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State a class of organic compounds found in gasoline.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline the advantages and disadvantages of using biodiesel instead of gasoline as fuel for a car. Exclude any discussion of cost.</span></p>
<p><span class="fontstyle0"><img src="" width="694" height="392"></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">A mixture of gasoline and ethanol is often used as a fuel. Suggest an advantage of such a mixture over the use of pure gasoline. Exclude any discussion of cost.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Contrast the molecular structures of biodiesel and the vegetable oil from which it is formed.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">When combusted, all three fuels can release carbon dioxide, a greenhouse gas, as well as particulates. Contrast how carbon dioxide and particulates interact with sunlight.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Methane is another greenhouse gas. Contrast the reasons why methane and carbon dioxide are considered significant greenhouse gases.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a wavenumber absorbed by methane gas.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>21</mn><mo> </mo><mn>200</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>5</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>=</mo><mo>»</mo><mn>106000</mn><mo>/</mo><mn>1</mn><mo>.</mo><mn>06</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>«</mo><mi>kJ</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alkane<br><em><strong>OR</strong></em><br>cycloalkane<br><em><strong>OR</strong></em><br>arene ✔</p>
<p><br><em>Accept “alkene”.</em><br><em>Do <strong>not</strong> accept just “hydrocarbon”, since given in stem.</em><br><em>Do <strong>not</strong> accept “benzene/aromatic” for “arene”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Advantages: <strong>[2 max]</strong></em></p>
<p>renewable ✔</p>
<p>uses up waste «such as used cooking oil» ✔</p>
<p>lower carbon footprint/carbon neutral ✔</p>
<p>higher flashpoint ✔</p>
<p>produces less <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>SO</mi><mi mathvariant="normal">x</mi></msub></math>/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>SO</mi><mn>2</mn></msub></math><br><em><strong>OR</strong></em><br>less polluting emissions ✔</p>
<p>has lubricating properties<br><em><strong>OR</strong></em><br>preserves/increases lifespan of engine ✔</p>
<p>increases the life of the catalytic converter ✔</p>
<p>eliminates dependence on foreign suppliers ✔</p>
<p>does not require pipelines/infrastructure «to produce» ✔</p>
<p>relatively less destruction of habitat compared to obtaining petrochemicals ✔</p>
<p> </p>
<p><em>Accept “higher energy density” OR “biodegradable” for advantage.</em></p>
<p><br><em>Disadvantages: <strong>[2 max]</strong></em></p>
<p>needs conversion/transesterification ✔</p>
<p>takes time to produce/grow plants ✔</p>
<p>takes up land<br><em><strong>OR</strong></em><br>deforestation ✔</p>
<p>fertilizers/pesticides/phosphates/nitrates «used in production of crops» have negative environmental effects ✔</p>
<p>biodiversity affected<br><em><strong>OR</strong></em><br>loss of habitats «due to energy crop plantations» ✔</p>
<p>cannot be used at low temperatures ✔</p>
<p>variable quality «in production» ✔</p>
<p>high viscosity/can clog/damage engines ✔</p>
<p><br><em>Accept “lower specific energy” as disadvantage.</em></p>
<p><em>Do <strong>not</strong> accept “lower octane number” as disadvantage”.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one:</em></p>
<p>uses up fossil fuels more slowly ✔</p>
<p>lower carbon footprint/CO2 emissions ✔</p>
<p>undergoes more complete combustion ✔</p>
<p>produces fewer particulates ✔</p>
<p>higher octane number/rating<br><em><strong>OR</strong></em><br>less knocking ✔</p>
<p>prevents fuel injection system build up<br><em><strong>OR</strong></em><br>helps keep engine clean ✔</p>
<p><br><em>Accept an example of a suitable advantage even if repeated from 9c.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two:</em><br>biodiesel has smaller molecules/single «hydrocarbon» chain <em><strong>AND</strong> </em>oil has larger molecules/multiple «hydrocarbon» chains ✔</p>
<p>biodiesel is methyl/ethyl ester <em><strong>AND</strong> </em>oil has «backbone of» glycerol joined to fatty acids ✔</p>
<p>biodiesel contains one ester group AND oil contains three ester groups ✔</p>
<p><br><em>Do <strong>not</strong> accept properties such as “less viscous” or “lower ignition point”.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon dioxide allows sunlight/short wavelength radiation to pass through <em><strong>AND</strong> </em>particulates reflect/scatter/absorb sunlight ✔</p>
<p><em>Accept “particulates reflect/scatter/absorb sunlight <strong>AND</strong> carbon dioxide does not”. </em><br><em>Accept “<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msub><mi>O</mi><mn mathvariant="italic">2</mn></msub></math> absorbs <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>I</mi><mi>R</mi></math> «radiation» <strong>AND</strong> particulates reflect/scatter/absorb sunlight”. </em></p>
<p><em>Do <strong>not</strong> accept “traps” for “absorbs”.</em></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon dioxide is highly/more abundant «in the atmosphere» ✔</p>
<p>methane is more effective/potent «as a greenhouse gas»<br><em><strong>OR</strong></em><br>methane/better/more effective at absorbing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>IR</mi></math> «radiation»<br><em><strong>OR</strong></em><br>methane has greater greenhouse factor<br><em><strong>OR</strong></em><br>methane has greater global warming potential/GWP✔</p>
<p><br><em>Accept “carbon dioxide contributes more to global warming” for M1.</em></p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any value or range within <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2850</mn><mo>–</mo><mn>3090</mn><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Even rather weak candidates answered this one correctly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates answered alkanes with a lower number stating hydrocarbons or benzene and&nbsp;therefore lost the mark.&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many good answers, but few candidates fully scored. Higher energy density and lower&nbsp;specific energy were quite common, and so references to damaging engines. Many students spent more&nbsp;time explaining each advantage rather than simply outlining. There were fewer journalistic and generic&nbsp;answers for this type of question than in the past.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question where many candidates obtained the mark. In quite a few cases students repeated&nbsp;the argument for (c) and this allowed them to get two points for the same answer.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Quite disappointing with few candidates producing answers that showed deep understanding.&nbsp;Answers such as less viscous or lower ignition point were common. This question specifically asks for&nbsp;contrasts in the structures not the properties of the compounds. Students need to be reminded that a&nbsp;contrast statement requires something about each substance.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Showed a wide variety of answers but is was worrying that many students limited to explain the&nbsp;greenhouse effect. There were many responses that did not answer the question or only gave a response&nbsp;for one of the 2 substances.</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>We received many good answers, but it was worrying the number of students that still provided&nbsp;general and shallow comments. Of the 3 contrast question this had the best response.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many good answers with some students losing the mark as didn't read or understand the question correctly and provided answers in terms of wavelengths.</p>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Codeine, morphine and diamorphine (heroin) are derived from opium.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">S</span><span style="background-color: #ffffff;">tate the names of <strong>two</strong> functional groups present in all three molecules, using section 37 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why diamorphine has greater potency than morphine.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>benzene/aromatic ring ✔<br>«tertiary» amino «group» ✔<br>ethenylene/1,2-ethenediyl «group» ✔<br>ether «group» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “phenyl” for “benzene ring” although there are no phenyl groups as the benzene ring in this compound is a part of a polycyclic structure.<br>Do <strong>not</strong> accept “arene” or “benzene” alone.<br>Accept “amine” for “amino «group»”.<br>Accept “alkenyl/alkene/vinylene” for ethenylene/1,2-ethenediyl «group».</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em><br>morphine has «two» hydroxyl «groups» <em><strong>AND</strong> </em>diamorphine has «two» ester/ethanoate/acetate «groups» ✔<br></span></p>
<p><em>NOTE: Accept “heroin” for “diamorphine”. </em><br><em>Accept formulas. </em><br><em>Accept “hydroxy” for “hydroxyl” but <strong>not</strong> “hydroxide”. </em><br><em>Accept “acyl” for “ester «groups»”.</em><span style="background-color: #ffffff;"><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">morphine is more polar than diamorphine<br><em><strong>OR</strong></em><br>groups in morphine are replaced with less polar/non-polar groups in diamorphine ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Do <strong>not</strong> accept just “diamorphine is non-polar” for M2.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">morphine is «more» soluble in blood «plasma»<br><em>NOTE: Accept “water” for “blood”.</em><br><em><strong>OR</strong></em><br>diamorphine is «more» soluble in lipids<br><em>NOTE: Accept “fats” for “lipid”.</em><br><em><strong>OR</strong></em><br>diamorphine is more soluble in non-polar environment of CNS/central nervous system than morphine ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">diamorphine crosses the blood–brain barrier/BBB «easily» ✔</span></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic molecules can be visualized using three-dimensional models built from kits such as&nbsp;that pictured below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_11.20.15.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/02"></p>
</div>

<div class="specification">
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two </strong>differences, other than the number of atoms, between the models of&nbsp;ethane and ethene constructed from the kit shown.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The above ball and stick model is a substituted pyridine molecule (made of&nbsp;carbon, hydrogen, nitrogen, bromine and chlorine atoms). All atoms are shown&nbsp;and represented according to their relative atomic size.</p>
<p>Label each ball in the diagram, excluding hydrogens, as a carbon, C, nitrogen, N,&nbsp;bromine, Br, or chlorine, Cl.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one </strong>advantage of using a computer generated molecular model&nbsp;compared to a ball and stick 3-D model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Pyridine, like benzene, is an aromatic compound.</p>
<p>Outline what is meant by an aromatic compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p><em>Ethene:</em> <strong>«</strong>carbon–carbon<strong>» </strong>double bond <strong><em>AND </em></strong><em>Ethane: </em><strong>«</strong>carbon–carbon<strong>» </strong>single&nbsp;bond</p>
<p>ethene has a shorter carbon–carbon bond <strong>«</strong>than ethane<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Ethene</em>: planar/two-dimensional/2-D <strong><em>AND </em></strong><em>Ethane: </em>tetrahedral <strong>«</strong>carbons<strong>»</strong>/three-dimensional/3-D</p>
<p><strong><em>OR</em></strong></p>
<p><em>Ethene: </em>each carbon surrounded by three electron domains <strong><em>AND </em></strong><em>Ethane: </em>each&nbsp;carbon surrounded by four electron domains</p>
<p><strong><em>OR</em></strong></p>
<p>different molecular geometries/shapes</p>
<p>&nbsp;</p>
<p>rotation about carbon–carbon inhibited/blocked in ethene <strong><em>AND </em></strong>not in ethane</p>
<p>&nbsp;</p>
<p><strong>«</strong>H–C–C/H–C–H<strong>» </strong>bond angles different</p>
<p><strong><em>OR</em></strong></p>
<p><em>Ethene: </em><strong>«</strong>bond angles approximately<strong>» </strong>120°&nbsp;<strong><em>AND </em></strong><em>Ethane: </em>109.5/109°</p>
<p>&nbsp;</p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “different number of&nbsp;</em><em>atoms/hydrogens/bonds” etc.</em></p>
<p><em>Accept “Ethene: unsaturated </em><strong><em>AND</em></strong><em>&nbsp;Ethane: saturated” </em><strong><em>OR </em></strong><em>“Ethene: has a&nbsp;</em><em>double bond </em><strong><em>AND </em></strong><em>Ethane: does not”&nbsp;</em><strong><em>OR </em></strong><em>“Ethene: two flexible bonds between&nbsp;</em><em>carbon atoms </em><strong><em>AND </em></strong><em>Ethane: one”.</em></p>
<p><em>Accept any reasonable physical&nbsp;</em><em>description of the two different&nbsp;</em><em>molecular models based on a variety of&nbsp;</em><em>kits for M1.</em></p>
<p><em>For ethene, accept any bond angle in&nbsp;</em><em>the range 117–122</em><em>°</em><em>.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>if </em><em>any two of the concepts&nbsp;</em><em>listed </em><em>are shown in a correctly labelled&nbsp;</em><em>or annotated diagram.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for two correct&nbsp;</em><em>statements for either molecule but with&nbsp;</em><em>no comparison given to the other.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for suitable unlabeled&nbsp;</em><em>diagrams of both compounds.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 carbon atoms labelled in correct positions</p>
<p>both nitrogen atoms labelled in correct positions</p>
<p>bromine <strong><em>AND </em></strong>chlorine atoms labelled in correct positions</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_12.53.07.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/02.b.i/M"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>accurate bond angles/lengths can be measured</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>using mathematical functions<strong>» </strong>can calculate expected shapes based on energy&nbsp;minimizations</p>
<p><strong><em>OR</em></strong></p>
<p>better visualization of possible bond rotations/conformation/modes of vibration</p>
<p><strong><em>OR</em></strong></p>
<p>can visualize macromolecules/proteins/DNA</p>
<p><strong><em>OR</em></strong></p>
<p>hydrogen bonding <strong>«</strong>networks<strong>» </strong>can be generated/allows intermolecular forces <strong>«</strong>of&nbsp;attraction<strong>» </strong>to be simulated</p>
<p><strong><em>OR</em></strong></p>
<p>more variety of visualization representations/can observe space filling</p>
<p><strong><em>OR</em></strong></p>
<p>can produce an electron density map/electrostatic potential map</p>
<p><strong><em>OR</em></strong></p>
<p>once model is generated file can be saved for future use/computer models can be&nbsp;shared globally by scientists</p>
<p><strong><em>OR</em></strong></p>
<p>helps design molecules of biological significance/assists in drug design <strong>«</strong>using&nbsp;libraries<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>can predict molecular interactions with solvents/can predict physical&nbsp;properties/can predict spectral data/can examine crystal structures</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>often<strong>» </strong>easier to construct/modify <strong>«</strong>model<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept “precise” for “accurate”.</em></p>
<p><em>Accept “computer generated structural&nbsp;</em><em>representation is normally what is&nbsp;</em><em>expected in order to be published </em><strong><em>«</em></strong><em>in a&nbsp;</em><em>scientific journal</em><strong><em>»”.</em></strong></p>
<p><em>Accept “easier to see different sizes of&nbsp;</em><em>atoms/atomic radii”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bonds within ring have resonance</p>
<p><strong><em>OR</em></strong></p>
<p>contains delocalized <strong>«</strong>conjugated pi<strong>» </strong>electrons in ring</p>
<p>&nbsp;</p>
<p><em>There must be reference to a ring or&nbsp;</em><em>cyclic structure.</em></p>
<p><em>Accept “alternating single and double&nbsp;</em><em>bonds in a ring”.</em></p>
<p><em>Accept “ring which shows&nbsp;</em><em>resonance/delocalization”.</em></p>
<p><em>Accept “follows Hückel/4n +2 rule”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “contains one or more&nbsp;</em><em>benzene rings”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Stearic acid (<em>M</em><sub>r</sub> = 284.47) and oleic acid (<em>M</em><sub>r</sub> = 282.46) have the same number of carbon atoms. The structures of both lipids are shown in section 34 of the data booklet.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The iodine number is the number of grams of iodine which reacts with 100 g of fat. Calculate the iodine number of oleic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> impact on health of the increase in LDL cholesterol concentration in blood.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why stearic acid has a higher melting point than oleic acid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> similarity and <strong>one</strong> difference in composition between phospholipids and triglycerides.</span></p>
<p><span style="background-color: #ffffff;">Similarity:</span></p>
<p><span style="background-color: #ffffff;">Difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a reagent that hydrolyses triglycerides.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«one C=C bond»<br>«1 mole iodine : 1 mole oleic acid»</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100 \times 253.80}}{{282.46}}"> <mfrac> <mrow> <mn>100</mn> <mo>×</mo> <mn>253.80</mn> </mrow> <mrow> <mn>282.46</mn> </mrow> </mfrac> </math></span> =» 89.85 «g of I<sub>2</sub>» ✔</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"> NOTE: Accept “90 «g of I<sub>2</sub>»”.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">atherosclerosis/cholesterol deposition «in artery walls»/increases risk of heart attack/stroke/cardiovascular disease/CHD ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “arteries become blocked/walls become thicker”, “increases blood pressure”, <strong>OR</strong> “blood clots”.<br>Do <strong>not</strong> accept “high cholesterol” <strong>OR</strong> "obesity"</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no kinks in chain/more regular structure<br><em><strong>OR</strong></em><br>straight chain<br><em><strong>OR</strong></em><br>no C=C/carbon to carbon double bonds<br><em><strong>OR</strong></em><br>saturated<br><em><strong>OR</strong></em><br>chains pack more closely together ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept “greater surface area/electron density” for M1.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between molecules» ✔<br> </span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept “stronger intermolecular/van der Waals’/vdW forces” for M2.</em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Similarity:<br></em></span></p>
<p><span style="background-color: #ffffff;">«derived from» propane-1,2,3-triol/glycerol/glycerin/glycerine<br></span></p>
<p><span style="background-color: #ffffff;"> <em><strong>OR</strong> <br></em>«derived from» at least two fatty acids<br> <strong><em>OR<br></em></strong> contains ester linkages <br><em><strong>OR</strong></em> <br>long carbon chains ✔</span></p>
<p><span style="background-color: #ffffff;"><em>NOTE:</em> <em>Do <strong>not</strong> accept “two fatty acids as both a similarity and a difference”.</em><br><em>Do <strong>not</strong> accept just “hydrocarbon/carbon chains”.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Difference</em>: <br></span></p>
<p><span style="background-color: #ffffff;">phospholipids contain two fatty acids «condensed onto glycerol» <em><strong>AND</strong> </em>triglycerides three<br></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em> phospholipids contain phosphate/phosphato «group»/residue of phosphoric acid <em><strong>AND</strong> </em>triglycerides do not ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “phospholipids contain phosphorus <strong>AND</strong> triglycerides do not". <br>Accept “phospholipids are amphiphilic <strong>AND</strong> triglycerides are not” <strong>OR</strong> “phospholipids have hydrophobic tails and hydrophilic heads <strong>AND</strong> triglycerides do not”.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«concentrated» NaOH (aq)/sodium hydroxide<br><em><strong>OR</strong></em><br>«concentrated» HCl (aq)/hydrochloric acid<br><em><strong>OR</strong></em><br>enzymes/lipases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept other strong acids or bases.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>In a class experiment, students were asked to determine the value of <strong>x</strong> in the formula of a hydrated salt, BaCl<sub>2</sub><strong>・x</strong>H<sub>2</sub>O. They followed these instructions:</p>
<ol>
<li>Measure the mass of an empty crucible and lid.</li>
<li>Add approximately 2 g sample of hydrated barium chloride to the crucible and record the mass.</li>
<li>Heat the crucible using a Bunsen burner for five minutes, holding the lid at an angle so gas can escape.</li>
<li>After cooling, reweigh the crucible, lid and contents.</li>
<li>Repeat steps 3 and 4.</li>
</ol>
<p>Their results in three trials were as follows:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the further work students need to carry out in trial 2 before they can process the results alongside trial 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In trial 3, the students noticed that after heating, the crucible had turned black on the outside. Suggest what may have caused this, and how this might affect the calculated value for <strong>x</strong> in the hydrated salt.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List <strong>two</strong> assumptions made in this experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>repeat steps 3 and 4<br><em><strong>OR<br></strong></em>repeat step 5<br><em><strong>OR<br></strong></em>conduct a third heating<br><em><strong>OR<br></strong></em>«re»heat <em><strong>AND</strong></em> «re»weigh  </p>
<p>water still present<br><em><strong>OR<br></strong></em>need two consistent readings<br><em><strong>OR<br></strong></em>heat to constant mass</p>
<p><em>Accept “ensure even/strong heating” for M1.<br>Do <strong>not</strong> accept “cleaning/washing the crucible”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>soot/carbon deposited<br><em><strong>OR<br></strong></em>incomplete combustion<br><em><strong>OR<br></strong></em>air hole of Bunsen burner closed/not fully open</p>
<p><em>Accept “using a yellow «Bunsen burner» flame” for M1.</em></p>
<p> </p>
<p>«value of <strong>x</strong>» lower</p>
<p><em>Only award M2 if M1 correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all mass loss is due to water loss</p>
<p>all the water «of crystallization» is lost</p>
<p>crucible does not absorb/lose water</p>
<p>crystal/BaCl<sub>2</sub> does not decompose/hydrolyse/oxidize/react with oxygen/air «when heated»</p>
<p><em>Accept “no loss of crystals/BaCl<sub>2</sub> occurs”, “no impurities in the «weighed hydrated» salt”, “reaction goes to completion”, “heat was consistent/strong”, “crystal/BaCl<sub>2</sub> does not absorb water during cooling”, “balance has been calibrated” or “crucible was clean at the start”. </em></p>
<p><em>Do <strong>not</strong> accept ”heat loss to surroundings” or “no carbon deposited on crucible”. </em></p>
<p><em>Reference to defects in apparatus not accepted. </em></p>
<p><em>Do <strong>not</strong> penalize if BaCl<sub>2</sub>.<strong>x</strong>H<sub>2</sub>O is used for BaCl<sub>2</sub>.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Consider the structures of medicinal molecules in section 37 of the data booklet.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Name </span><span class="fontstyle2"><strong>two</strong> </span><span class="fontstyle0">functional groups that both zanamivir and oseltamivir contain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain how zanamivir works as a preventative agent against flu viruses.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Circle the side-chain in penicillin on the structure below.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain, with reference to the action of penicillin, why new penicillins with different side-chains need to be produced.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State and explain the relative solubility of codeine in water compared to morphine and diamorphine.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the natural source from which codeine, morphine and diamorphine are obtained.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two:</em><br>«secondary» carboxamide/amido ✔<br>ether ✔<br>carbonyl ✔</p>
<p><br><em>Accept amide</em><br><em>Accept amino/amine.</em><br><em>Accept alkenyl/alkene.</em></p>
<p><em>Do <strong>not</strong> accept formula.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«drug» blocks/inhibits «viral» enzyme/neuraminidase/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>NA</mi></math> «activity» ✔<br>prevents virus from leaving/escaping host cells «thus cannot infect other cells» ✔</p>
<p><br><em>Do <strong>not</strong> accept other anti-viral methods (as question is specific to Zanamivir).</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="341" height="218"> ✔</p>
<p><em>Accept a circle that does not surround the amido group.</em></p>
<p><em>Do <strong>not</strong> accept a circle that only surrounds the phenol group.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bacterial resistance «to older penicillins/antibiotics» ✔</p>
<p>prevent penicillinase/beta-lactamase/enzyme in bacterium to deactivate/open penicillin/beta-lactam ring ✔</p>
<p><br><em>Accept “antibiotic resistant bacteria” but <strong>not</strong> “antibiotic resistance” for M1.</em><br><em>Accept “reduce allergic reactions from from penicillin” for M2.</em><br><em>Award <strong>[1 max]</strong> for “increased efficiency” <strong>OR</strong> “increased stability in GIT”.</em><br><em>Do <strong>not</strong> accept “bacteria develop tolerance”.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>codeine less soluble «in water» than morphine <em><strong>AND</strong> </em>more soluble than diamorphine<br><em><strong>OR</strong></em><br>morphine &gt; codeine &gt; diamorphine «in terms of solubility in water» ✔</p>
<p>more/stronger/greater<span style="text-decoration: underline;"> hydrogen/H bonding</span> «due to more hydroxyl groups leads to greater solubility» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>opium poppy/plants/seeds ✔</p>
<p><em>Accept “poppy” <strong>OR</strong> “opioid”.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most students scored both marks here. Some students with incorrect answers gave carboxylic&nbsp;acid/carboxyl, benzene/arene, and ester.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even when a relevant number of students obtained at least one mark, the quality of the answers was&nbsp;in general low and many evidenced very shallow understanding just repeating information</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students scored here but a relevant percentage didn't include the amide group. Quite a few students did not know where the side chain is and circled other parts of the molecule.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many good answers for M1 but only stronger students managed to score the second one. The&nbsp;answers evidenced again shallow understanding that may result from independent learning. Many&nbsp;students gave answers related to how penicillin causes bacteria to burst which is not related to this&nbsp;question. Once again it shows students perhaps memorizing answers without a true understanding of&nbsp;concepts.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>M1 was correctly presented but most students focused on the polarity of the molecules and&nbsp;presented long arguments where intermolecular forces were ignored. The concept of water solubility and&nbsp;hydrogen bonding was largely ignored.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mostly well answered. Student who missed this question were clearly guessing with other natural&nbsp;products presented with the Option D material.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following lipid and carbohydrate.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>In order to determine the number of carbon-carbon double bonds in a molecule of&nbsp;linoleic acid, 1.24 g of the lipid were dissolved in 10.0 cm<sup>3</sup> of non-polar solvent.</p>
<p>The solution was titrated with a 0.300 mol dm<sup>–3</sup> solution of iodine, I<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the empirical formula of linoleic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The empirical formula of fructose is CH<sub>2</sub>O. Suggest why linoleic acid releases more energy per gram than fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction occurring during the titration.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of iodine solution used to reach the end-point. </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the importance of linoleic acid for human health.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>9</sub>H<sub>16</sub>O</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ratio of oxygen to carbon in linoleic acid lower</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid less oxidized</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid more reduced</p>
<p><em>Accept “«average» oxidation state of carbon in linoleic acid is lower”.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition/A<sub>E</sub></p>
<p><em><strong>OR</strong></em></p>
<p>oxidation–reduction/redox</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.24\,{\text{g}}}}{{280.50\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>1.24</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>280.50</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 0.00442 «mol»</p>
<p>0.00884 mol of C=C</p>
<p><em><strong>OR</strong></em></p>
<p>ratio of linoleic acid : iodine = 1:2</p>
<p>«volume of I<sub>2</sub> solution = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.00884\,{\text{mol}}}}{{0.300\,{\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}}}">
  <mfrac>
    <mrow>
      <mn>0.00884</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>0.300</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 0.0295 «dm<sup>3</sup>» / 29.5 «cm<sup>3</sup>»</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>increases «ratio of» HDL «to LDL» cholesterol</p>
<p><em><strong>OR</strong></em></p>
<p>decreases LDL cholesterol «level»</p>
<p>removes plaque from/unblocks arteries</p>
<p><em><strong>OR</strong></em></p>
<p>decreases risk of heart disease</p>
<p>decreases risk of stroke «in the brain»</p>
<p><em>Accept "essential fatty acid".</em></p>
<p><em>Do <strong>not</strong> accept “bad cholesterol” for “LDL cholesterol” <strong>OR</strong> “good cholesterol” for “HDL cholesterol”.</em></p>
<p><em>Do <strong>not</strong> accept general answers such as “source of energy” <strong>OR</strong> “forms triglycerides” <strong>OR</strong> “regulates permeability of cell membranes” etc.</em></p>
<p><strong><em>[Max 2 Marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Liquid-crystal displays (LCDs) have many uses.</span></p>
<p><span style="background-color: #ffffff;">A molecule which acts as a thermotropic liquid crystal is shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="400" height="122"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of the functional group which allows the molecule to be responsive to applied electric fields.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the effects of very low and high temperatures on the liquid-crystal behaviour of this molecule.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Low temperature: </span></p>
<p><span style="background-color: #ffffff;">High temperature:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">nitrile  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em><strong>Note</strong>: Accept “cyano".</em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Low temperature</em>: <br>intermolecular forces prevent molecules moving AND solid/«normal» crystal formation  <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>High temperature</em>:<br>«above a critical temperature» disrupts alignment of molecules AND behaves as fluid/liquid  <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “weak intermolecular forces break <strong>AND</strong> behaves as fluid/liquid”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A few students correctly named the nitrile group as being the one responsible for the polarity of the liquid crystal molecule.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very poorly answered with candidates failing to link the change in liquid crystal properties to changes in molecular motion.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Methadone, a synthetic opioid, binds to opioid receptors in the brain.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the functional groups present in methadone and diamorphine (heroin), giving their names. Use section 37 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Methadone is sometimes used to help reduce withdrawal symptoms in the treatment of heroin addiction. Outline <strong>one</strong> withdrawal symptom that an addict may experience.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Similarity</em>:</p>
<p>both contain «at least one» benzene/aromatic ring<br><em><strong>OR<br></strong></em>both contain amino «group»  </p>
<p><em>Difference:</em></p>
<p>diamorphine has one benzene/aromatic ring <em><strong>AND</strong></em> methadone has two phenyl «groups»<br><em><strong>OR<br></strong></em>diamorphine has one vinylene/ethenylene/1,2-ethenediyl «group» <em><strong>AND</strong></em> methadone has no vinylene/ethenylene/1,2-ethenediyl «group» <br><em><strong>OR<br></strong></em>diamorphine has one ether «group» <em><strong>AND</strong></em> methadone has no ether «group»<br><em><strong>OR<br></strong></em>diamorphine has «two» ethanoate/acetate «groups» <em><strong>AND</strong></em> methadone has no ethanoate/acetate «groups»</p>
<p><em>Accept “both contain carbonyl «groups»”. <br>Accept “amine” for “amino «group»”. <br>Accept “phenyl” for “benzene ring” in M1 and M2 although there are no phenyl groups in diamorphine, as the benzene ring in this compound is a part of a polycyclic structure. <br>Do <strong>not</strong> accept “arene” or “benzene” alone in M1 and M2. <br>Accept “alkenyl/alkene” for “vinylene/ethenylene/1,2-ethenediyl” and “ester” for “ethanoate/acetate”. <br>Accept “methadone has a ketone/carbonyl <em><strong>AND</strong></em> diamorphine does not/has an ester/ethanoate/acetate”.<br>Accept “diamorphine is a heterocycle/heterocyclic compound <em><strong>AND</strong></em> methadone is not a heterocycle/heterocyclic compound”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>feeling depressed/anxious/irritable<br><em><strong>OR<br></strong></em>craving for opioids/heroin<br><em><strong>OR<br></strong></em>experience fever/cold sweats/nausea/vomiting/insomnia/muscle pain/cramps/diarrhea/increased rate of respiration/increased heartbeat/lacrimation</p>
<p><em>Accept listed symptoms (eg, depression, anxiety, fever etc.). <br>Some of the most common symptoms are listed here – there may be other valid ones. Accept “headaches”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>